JPH0479304A - Superconducting magnet apparatus - Google Patents

Superconducting magnet apparatus

Info

Publication number
JPH0479304A
JPH0479304A JP2193116A JP19311690A JPH0479304A JP H0479304 A JPH0479304 A JP H0479304A JP 2193116 A JP2193116 A JP 2193116A JP 19311690 A JP19311690 A JP 19311690A JP H0479304 A JPH0479304 A JP H0479304A
Authority
JP
Japan
Prior art keywords
superconducting
coil
magnet device
superconducting magnet
superconducting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2193116A
Other languages
Japanese (ja)
Inventor
Kotaro Hamashima
浜島 高太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2193116A priority Critical patent/JPH0479304A/en
Publication of JPH0479304A publication Critical patent/JPH0479304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To obtain a light and compact apparatus, and relieve the anxiety of a patient as best as possible, by installing a small refrigerator generating a temperature higher than or equal to 4.2K, a heat conduction plate cooled by the refrigerator, and a superconducting coil which is in thermal contact with the heat conduction plate via insulator. CONSTITUTION:The cooling surface of a small refrigerator 7 capable of cooling at the liquid helium temperature or at a temperature lower than or equal to the liquid helium temperature is brought into thermal contact with one end of a plate 8 made of high purity aluminum excellent in thermal conductivity or the like. The aluminum plate 8 is brought into thermal contact, via electric insulator, with the outer periphery or the inner periphery or both of a superconducting coil 1. The coil is cooled by the small refrigerator 7 via the insulator and the aluminum plate, thereby obtaining the superconducting state. Since liquid helium is excluded, a helium vessel is unnecessitated. The helium vessel is excluded and further a heat insulated retaing member for retaining a heavy object can be reduced, so that the heat insulating space is shortened and the axial length of an apparatus also can be reduced.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、磁気共鳴(M R: magnetic r
esonance)現象を利用して被検体(生体)のス
ライス画像等の形態情報やスペクトロスコピー等の形態
情報を得るMRI装置(磁気共鳴イメージング装置)等
における静磁界を発生する超電導マグネット装置に関す
る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is directed to magnetic resonance (MR)
The present invention relates to a superconducting magnet device that generates a static magnetic field in an MRI device (magnetic resonance imaging device), etc., which uses the phenomenon of magnetic resonance imaging to obtain morphological information such as slice images of a subject (biological body) or morphological information such as spectroscopy.

(従来の技術) 磁気共鳴現象は、静磁界中に置かれた零でないスピン及
び磁気モーメントをもつ原子核が特定の周波数の電磁波
のみを共鳴的に吸収・放出する現象であり、この原子核
は下記式に示す角周波数ω。(ω。=2πVIIIVI
Iニラーモア周波数)で共鳴する。
(Prior art) Magnetic resonance is a phenomenon in which an atomic nucleus with non-zero spin and magnetic moment placed in a static magnetic field resonantly absorbs and emits only electromagnetic waves of a specific frequency. The angular frequency ω shown in (ω.=2πVIIIVI
It resonates at the I-Niramor frequency).

ω。=γB0 ここで、γは原子核の種類に固有の磁気回転比であり、
また、Boは静磁界の強度である。
ω. =γB0 Here, γ is the gyromagnetic ratio specific to the type of atomic nucleus,
Further, Bo is the strength of the static magnetic field.

以上の原理を利用して生体診断を行うMRI装置は、上
述の共鳴吸収の後に誘起される上記と同じ周波数の電磁
波を信号処理して、原子核密度、縦緩和時間T□、横緩
和時間T2.流れ、化学シフト等の情報が反映された診
断情報例えば被検体のスライス像等を無侵襲で得るよう
にしている。
An MRI apparatus that performs biological diagnosis using the above-mentioned principle processes the electromagnetic waves of the same frequency as above, which are induced after the above-mentioned resonance absorption, to determine nuclear density, longitudinal relaxation time T□, transverse relaxation time T2, and so on. Diagnostic information that reflects information such as flow and chemical shift, such as slice images of a subject, can be obtained non-invasively.

そして、磁気共鳴による診断情報の収集は、静磁界中に
配置した被検体の全部位を励起し、かつ、信号収集する
ことができるものではあるが、装置構成上の制約やイメ
ージング像の臨床上の要請から実際の装置としては特定
の部位に対する励起とその信号収集とを行なうようにし
ている。
Although the collection of diagnostic information by magnetic resonance is able to excite all parts of the subject placed in a static magnetic field and collect signals, there are limitations in the equipment configuration and clinical problems with imaging images. Due to these demands, actual devices excite a specific region and collect its signals.

この場合、イメージング対象とする特定部位は。In this case, what is the specific area to be imaged?

一般にある厚さを持ったスライス部位であるのが通例で
あり、このスライス部位からのエコー信号やFID信号
の磁気共鳴信号(MR倍信号を、例えば位相エンコード
法であれば多数回のデータエンコード過程を実行するこ
とにより収集し、これらデータ群を、例えば2次元フー
リエ変換法により画像再構成処理することにより前記特
定スライス部位の画像を生成するようにしている。
In general, the slice region has a certain thickness, and the echo signal from this slice region and the magnetic resonance signal (MR multiplied signal) of the FID signal are processed by multiple data encoding processes in the phase encoding method. The image of the specific slice region is generated by performing image reconstruction processing on these data groups using, for example, a two-dimensional Fourier transform method.

かかるMRI装置にあって、B、つまり静磁界強度は、
数千〜敵方ガウスを必要とし、一般には超電導マグネッ
ト常電導マグネットを用いている。
In such an MRI apparatus, B, that is, the static magnetic field strength, is
It requires several thousand to gauss, and generally a superconducting magnet or a normal conducting magnet is used.

一方、磁石内の診断空間内に形成される静磁界は、高磁
界にするほど、一般に高画質になるため、超電導マグネ
ットが普及している。その超電導マグネットは第8図に
示す様になっている。例えば文献(J 、 Alcor
n、 etal+ IEEE Transations
 onMagnetics、 Vol 24. No2
 t March 1988. p1280)に示され
ている。すなわち、超電導コイル(ト)は1気圧の液体
ヘリウム■の中に浸漬され、その液体ヘリウムを保持す
るヘリウム容器(3)がある。液体ヘリウムの温度は約
4.2Kであり、常温部からの放射熱を低減するために
、ヘリウム容器■と常温にある真空容器4との間に、熱
シールド板■を入れる。熱シールド板は一般に、約20
Kに保持される20にシールド板(51)と、約80K
に保持される80にシールド板(52)から構成される
ことが多いが、場合によっては1枚の熱シールド板で構
成されることもある。
On the other hand, superconducting magnets are popular because the higher the static magnetic field formed in the diagnostic space within the magnet, the higher the image quality. The superconducting magnet is as shown in FIG. For example, in the literature (J, Alcor
n, etal+ IEEE Transactions
onMagnetics, Vol 24. No2
t March 1988. p1280). That is, the superconducting coil (g) is immersed in liquid helium (3) at 1 atm, and there is a helium container (3) that holds the liquid helium. The temperature of liquid helium is about 4.2 K, and in order to reduce the radiant heat from the room temperature part, a heat shield plate (2) is inserted between the helium container (2) and the vacuum container 4 which is at room temperature. The heat shield plate is generally about 20
Shield plate (51) on 20 held by K, about 80K
It is often composed of a shield plate (52) held at 80, but in some cases it is composed of a single heat shield plate.

熱シールド板■は一般的に、小型冷凍機■の冷却面に熱
的に接触されて、温度が維持されている。
The heat shield plate (2) is generally brought into thermal contact with the cooling surface of the small refrigerator (2) to maintain its temperature.

従って、熱シールド板の温度は小型冷凍機の能力と熱シ
ールド板に入ってくる熱量と平衡した温度になる。80
にと20にの2段の冷却ステージをもった小型冷凍機の
場合には、2枚の熱シールド板を用いることができる。
Therefore, the temperature of the heat shield plate is balanced with the capacity of the small refrigerator and the amount of heat entering the heat shield plate. 80
In the case of a small refrigerator with two cooling stages, two heat shield plates can be used.

一方、小型冷凍機を用いない場合は、熱シールド板の一
方は約77にの液体チッ素を用いる。あるいは、液体ヘ
リウムの蒸発したヘリウムガスを循環させて、熱シール
ド板の温度を低く保つ方法がとられている。
On the other hand, if a small refrigerator is not used, one side of the heat shield plate uses approximately 77% liquid nitrogen. Alternatively, a method is used to keep the temperature of the heat shield plate low by circulating helium gas that is evaporated from liquid helium.

また、液体ヘリウム容器(3)と熱シールド板■、真空
容器(4)の間には、図示されていないが、多層断熱層
が配置されて、低温側への熱の侵入を低減している。
Furthermore, although not shown, a multilayer heat insulating layer is placed between the liquid helium container (3), the heat shield plate (3), and the vacuum container (4) to reduce the intrusion of heat to the low temperature side. .

液体ヘリウム容器■と真空容器4との間の空間は真空に
保たれて、常温からの熱の対流を抑えている。
The space between the liquid helium container (1) and the vacuum container 4 is kept in a vacuum to suppress heat convection from room temperature.

従来の超電導マグネット装置は主として以上に述べたも
のによって構成されている。
A conventional superconducting magnet device is mainly composed of the above-mentioned components.

(発明が解決しようとする課題) 上に述べた超電導マグネット装置では、液体ヘリウム容
器が1気圧の液体ヘリウムを貯蔵し。
(Problems to be Solved by the Invention) In the superconducting magnet device described above, the liquid helium container stores liquid helium at 1 atmosphere.

かつ、外側の真空領域に対して耐えられる強度を有する
ために、ヘリウム容器の肉厚は厚くなり、同時に重くな
る欠点がある。また、超電導マグネット装置の軸長も長
くなる。さらに、半径方向には、ヘリウム容器に液体ヘ
リウムを貯蔵するための空間が必要となって、超電導マ
グネット装置の高さが高くなる欠点があった。また、液
体ヘリウムを注入するために用いるトランスアアーチュ
ーブを挿入する空間が必要となり、超電導マグネット装
置の高さの上方に空間を設けることになって、超電導マ
グネット装置を収納する建屋の室内の高さが高くなる欠
点があった。また、診断を受ける患者は、超電導マグネ
ット装置のほぼ中央にある診断領域でイメージングを受
けるために、軸長が長いと不安感が生じるなどの欠点が
あった。
In addition, in order to have enough strength to withstand the vacuum region outside, the helium container has the disadvantage of being thick and heavy at the same time. Furthermore, the axial length of the superconducting magnet device also increases. Furthermore, in the radial direction, a space is required to store liquid helium in the helium container, which has the disadvantage of increasing the height of the superconducting magnet device. In addition, a space is required to insert the transaer tube used to inject liquid helium, and a space is required above the height of the superconducting magnet device, which increases the indoor height of the building housing the superconducting magnet device. The disadvantage was that it was expensive. In addition, since patients receiving diagnosis undergo imaging in the diagnostic region located approximately in the center of the superconducting magnet device, the long axis length has the disadvantage of causing a sense of anxiety.

上記問題点に鑑み、本発明は軽量でコンパクトな超電導
マグネット装置を提供し、患者の不安感を極力取り除く
ことを目的とする。
In view of the above problems, it is an object of the present invention to provide a lightweight and compact superconducting magnet device, and to eliminate patients' sense of anxiety as much as possible.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の超電導マグネット装置は、液体ヘリウム温度ま
たはそれ以下の温度に冷却できる小型冷凍機を備え、そ
の冷却面に熱伝導の良い高純度アルミニウム等からなる
伝熱板を熱的に接触させ、その伝熱板を超電導コイルに
熱的に接触させて超電導コイルを冷却する構成とする。
(Means for Solving the Problems) The superconducting magnet device of the present invention is equipped with a small refrigerator that can be cooled to liquid helium temperature or lower, and the cooling surface is made of high-purity aluminum or the like with good heat conduction. The superconducting coil is cooled by bringing the plates into thermal contact and by bringing the heat transfer plate into thermal contact with the superconducting coil.

(作用) このように構成すると、超電導コイルは伝熱板の熱伝導
で冷却されるため、液体ヘリウムおよび液体ヘリウムを
貯蔵する容器が不用となり、全体的に軽量でコンパクト
な超電導マグネット装置が得られ、軸長も短くなる。
(Function) With this configuration, the superconducting coil is cooled by thermal conduction of the heat exchanger plate, so liquid helium and a container for storing the liquid helium are unnecessary, and an overall lightweight and compact superconducting magnet device can be obtained. , the axial length also becomes shorter.

(実施例) 本発明の一実施例について第1図を参照して説明する。(Example) An embodiment of the present invention will be described with reference to FIG.

液体ヘリウム温度または、それ以下の温度に冷却できる
小型冷凍機■の冷却面を、純度99%以上で熱伝導度の
良い高純度アルミニウムなどで作られた板(5)の一端
に熱的に接触させる。上記アルミニウム板(8)は超電
導コイル■の外周あるいは内周あるいは両者に電気絶縁
物を介して熱的に接触させる。電気絶縁物にはフェス、
エポキシ等の接着材を用いて、超電導コイルとアルミニ
ウム板の間を埋める構成にすると、熱的な接触が良くな
る。
The cooling surface of a small refrigerator ■ that can be cooled to liquid helium temperature or lower is thermally brought into contact with one end of a plate (5) made of high-purity aluminum with a purity of 99% or higher and good thermal conductivity. let The aluminum plate (8) is brought into thermal contact with the outer circumference, inner circumference, or both of the superconducting coil (2) via an electrical insulator. Fes for electrical insulators,
If an adhesive such as epoxy is used to fill the space between the superconducting coil and the aluminum plate, thermal contact will be improved.

このように構成すると、超電導コイル■は絶縁物、およ
びアルミニウム板を介して小型冷凍機■により冷却され
、超電導状態が得られる。
With this configuration, the superconducting coil (2) is cooled by the small refrigerator (2) via the insulator and the aluminum plate, and a superconducting state is obtained.

このような構成では液体ヘリウムがなくなるため、ヘリ
ウム容器が不用となり、軽量でコンパクトな超電導マグ
ネット装置が得られる。また、ヘリウム容器がなくなる
と同時に、重量物を支持する断熱支持材も小さなもので
済み、断熱空間が短くなるため、装置の軸長も短くなっ
て、患者の不安感が少なくなる効果がある。
In such a configuration, since there is no liquid helium, a helium container is not required, and a lightweight and compact superconducting magnet device can be obtained. In addition, since the helium container is eliminated, the heat insulating support material that supports the heavy object can be made smaller, and the heat insulating space is shortened, so the axial length of the device is also shortened, which has the effect of reducing the patient's sense of anxiety.

なお、第1図では小型冷凍機■は上方に取付けられてい
るが、任意の位置に取付けても同じ効果が得られる。
Although the small refrigerator (2) is mounted above in FIG. 1, the same effect can be obtained even if it is mounted in any position.

アルミニウム板■の代りに銅や無酸素銅の板を用いても
よい。
A plate of copper or oxygen-free copper may be used instead of the aluminum plate.

(他の実施例1) 他の一実施例を第2図に示す。熱伝導の良いアルミニウ
ム板(8)は一端を462K以下に冷却できる小型冷凍
機■の冷却面に熱的に接触される。また、アルミニウム
板(8)は超電導コイル■に絶縁物を介して熱的に接触
される。アルミニウム板は超電導コイルの軸方向と同じ
方向にスリット(9)が入れられる。スリット0)は片
端のみで熱的に接続していてもよい。あるいは、超電導
コイルと接触する部分はスリット0が両端まで切れてい
ても良いが、超電導コイルから離れた位置では接合され
ている。
(Other Example 1) Another example is shown in FIG. One end of the aluminum plate (8), which has good thermal conductivity, is brought into thermal contact with the cooling surface of a small refrigerator (2) that can be cooled to below 462K. Further, the aluminum plate (8) is brought into thermal contact with the superconducting coil (2) via an insulator. A slit (9) is made in the aluminum plate in the same direction as the axial direction of the superconducting coil. The slit 0) may be thermally connected only at one end. Alternatively, the slit 0 may be cut to both ends in the portion that contacts the superconducting coil, but is joined at a position away from the superconducting coil.

このように構成すると、超電導コイル■はアルミニウム
板(ハ)を介して小型冷凍機■により冷却され、超電導
状態になる。また、スリットe)をアルミニウム板■に
入れることにより、超電導コイルがクエンチした場合に
、アルミニウム板(ハ)に流れる誘導電流が少なくなり
、過度の加熱がなくなる。
With this configuration, the superconducting coil (2) is cooled by the small refrigerator (2) via the aluminum plate (3), and becomes a superconducting state. Furthermore, by inserting the slit e) into the aluminum plate (3), when the superconducting coil quenches, the induced current flowing through the aluminum plate (c) is reduced, eliminating excessive heating.

また、MR両画像とるために用いられる傾斜磁場コイル
が発生するパルス的な磁場による渦電流も少なくなる。
Furthermore, eddy currents due to pulsed magnetic fields generated by gradient magnetic field coils used to take both MR images are also reduced.

このように、アルミニウム板(8)にスリット■)を入
れることにより、前の実施例と同じ効果が得られ、さら
に、クエンチ時あるいは、傾斜磁場コイルによる影響も
少なくなる。また、第2図では、アルミニウム板(8)
が超電導コイルの外側に配しであるが、内側あるいは両
側にあっても同じ効果が得られる。
In this way, by inserting the slit (2) in the aluminum plate (8), the same effect as in the previous embodiment can be obtained, and furthermore, the influence of the quench or the gradient magnetic field coil is reduced. In addition, in Fig. 2, the aluminum plate (8)
is placed on the outside of the superconducting coil, but the same effect can be obtained even if it is placed on the inside or on both sides.

(他の実施例2) 他の一実施例を第3図に示す。超電導コイルが多数個に
分割さ九ている場合には、アルミニウム板(8)は多数
個の超電導コイル■に絶縁物を介して熱的に接触される
。また、アルミニウム板ら)の一端あるいは一部は4.
2K以下に冷却できる小型冷凍機ωの冷却面に熱的に接
触される。
(Other Example 2) Another example is shown in FIG. When the superconducting coil is divided into multiple pieces, the aluminum plate (8) is thermally contacted with the multiple superconducting coils via an insulator. In addition, one end or part of the aluminum plate etc.) is 4.
It is in thermal contact with the cooling surface of a small refrigerator ω that can be cooled to 2K or less.

このように構成すると、多数個の超電導コイル■はアル
ミニウム板(ハ)を通して小型冷凍機■より冷却され、
超電導状態が得られる。
With this configuration, a large number of superconducting coils ■ are cooled by a small refrigerator ■ through an aluminum plate (c),
A superconducting state is obtained.

したがって、多数個の超電導コイル■を冷却するために
複雑な構成となるヘリウム容器が不用となるため、前の
実施例と同じ効果が得られる。また、アルミニウム板(
8)にスリットを入れても良い。
Therefore, since a helium container having a complicated structure for cooling a large number of superconducting coils (1) is not required, the same effect as in the previous embodiment can be obtained. In addition, aluminum plate (
You may also make a slit in 8).

(他の実施例3) 他の一実施例を第4図に示す。アルミニウム板(ハ)は
超電導コイル■の層間に配置する。
(Other Embodiment 3) Another embodiment is shown in FIG. The aluminum plate (c) is placed between the layers of the superconducting coil (2).

このように構成すると、アルミニウム板(8)と超電導
コイルのとの熱的な接触が良くなるため、前の実施例と
同じ効果が得られるのに加えて、冷却が早くできる効果
がある。
With this configuration, thermal contact between the aluminum plate (8) and the superconducting coil is improved, so that in addition to obtaining the same effect as the previous embodiment, there is also the effect of speeding up cooling.

(他の実施例4) 他の一実施例を第5図に示す。アルミニウム、銅、また
はステンレスなどで作られたパイプ(10)を超電導コ
イル■の周囲に巻きつけ、一端を小型冷凍機■に取付け
、そこでヘリウムを冷却し、液化させ、液体ヘリウムの
重力をもちいて超電導コイルを冷却する。ヘリウムは通
常の4Heでもその同位元素の’Heでも良い。
(Other Embodiment 4) Another embodiment is shown in FIG. A pipe (10) made of aluminum, copper, or stainless steel is wrapped around the superconducting coil ■, and one end is attached to a small refrigerator ■, where the helium is cooled and liquefied, using the gravity of the liquid helium to Cool the superconducting coil. Helium may be normal 4He or its isotope 'He.

また、パイプ(10)は超電導コイル■の表面に絶縁物
を介して取付けた熱伝導の良いアルミニウム板に熱的に
接触させても良い。
Further, the pipe (10) may be brought into thermal contact with an aluminum plate with good thermal conductivity attached to the surface of the superconducting coil (2) via an insulator.

このように構成すると、前の実施例と同じ効果が得られ
る。
With this configuration, the same effects as the previous embodiment can be obtained.

(他の実施例5) 他の一実施例を第6図に示す。複数個の超電導コイルか
ら構成された超電導マグネットにおいて、両端のコイル
を他のコイルより径を大きくし、かつ、他のコイルと逆
方向の磁界を中心に発生するように構成し、両端のコイ
ルの中心径よりも小さい径を有する磁性体(11)を配
置する。
(Other Example 5) Another example is shown in FIG. In a superconducting magnet composed of multiple superconducting coils, the coils at both ends have a larger diameter than the other coils, and are configured to generate a magnetic field in the opposite direction to that of the other coils. A magnetic body (11) having a diameter smaller than the center diameter is arranged.

このように配置すると、磁性体(11)は中心の磁界を
強めることになり、超電導コイルの重量を低減できる。
When arranged in this way, the magnetic body (11) strengthens the magnetic field at the center, and the weight of the superconducting coil can be reduced.

前の実施例と同じ効果が得られるとともに、軽量化に寄
与できる。
The same effect as the previous embodiment can be obtained, and it can also contribute to weight reduction.

(他の実施例6) 他の一実施例を第7図に示す。超電導コイル■を診断空
間(102)の中央で分割し、超電導コイル■にアルミ
ニウム板(ハ)を絶縁物を介して熱的に接触させる。ア
ルミニウム板(8)の一端を小型冷凍機の冷却面に熱的
に接触させる。診断空間(102)の真上に超電導マグ
ネット装置の外まで貫通した穴(101)を設ける。
(Other Embodiment 6) Another embodiment is shown in FIG. The superconducting coil (2) is divided in the center of the diagnostic space (102), and the aluminum plate (3) is brought into thermal contact with the superconducting coil (2) via an insulator. One end of the aluminum plate (8) is brought into thermal contact with the cooling surface of the small refrigerator. A hole (101) penetrating to the outside of the superconducting magnet device is provided directly above the diagnostic space (102).

穴(101)の形は径が大きくなるに従って広くなる様
にしても良い。あるいは、円周方向に扇形に開いている
様にしても良い。
The shape of the hole (101) may be made wider as the diameter becomes larger. Alternatively, it may be opened in a fan shape in the circumferential direction.

また、真空容器の端部から穴(101)までの長さしは
1m以内にする。
Also, the length from the end of the vacuum container to the hole (101) should be within 1 m.

このように構成すると、前と同し実施例の効果が得られ
る以外に、患者は診断空間から外部を見ることができる
ため、不安感が少なくなる効果がある。また、真空容器
の軸方向の長さを1m以下にしようとすると超電導コイ
ルの起磁力が大きくなったが、2分割にすることにより
、起磁力も少なくなって、不安感の減少が得られる。
With this configuration, in addition to obtaining the effects of the previous embodiment, the patient can see the outside from the diagnostic space, which has the effect of reducing anxiety. Furthermore, if the length of the vacuum vessel in the axial direction was made to be 1 m or less, the magnetomotive force of the superconducting coil became large, but by dividing the vacuum vessel into two parts, the magnetomotive force also decreases, thereby reducing the sense of anxiety.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、液体ヘリウ
ム温度以下に冷却できる小型冷凍機の冷却面に高純度ア
ルミニウム板等の伝熱板を熱的に接触し、超電導コイル
に絶縁物を介して熱的に接触する構成としたので、ヘリ
ウム容器を不用とでき、軽量でかつコンパクトな超電導
マグネット装置が得られるとともに、患者の不安感を和
らげることができる。
As explained above, in the present invention, a heat transfer plate such as a high-purity aluminum plate is brought into thermal contact with the cooling surface of a small refrigerator that can be cooled to below the temperature of liquid helium, and a superconducting coil is connected via an insulator. Because of the thermal contact structure, a helium container is not required, a lightweight and compact superconducting magnet device can be obtained, and the patient's anxiety can be alleviated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す超電導マグネット装置
の上半の断面図、第2図は他の実施例における超電導コ
イルとアルミ板と小型冷凍機の配置を示す斜視図、第3
図から第6図は他の実施例の主要な部分の断面図、第7
図はさらに他の実施例の断面図、第8図は従来の超電導
マグネット装置の上半の断面図である。
FIG. 1 is a sectional view of the upper half of a superconducting magnet device showing one embodiment of the present invention, FIG. 2 is a perspective view showing the arrangement of a superconducting coil, an aluminum plate, and a small refrigerator in another embodiment, and FIG.
6 to 6 are sectional views of main parts of other embodiments, and FIG.
The figure is a sectional view of still another embodiment, and FIG. 8 is a sectional view of the upper half of a conventional superconducting magnet device.

Claims (1)

【特許請求の範囲】 (1)4.2K以下の温度を発生する小型冷凍機と、こ
の冷凍機で冷却される伝熱板と、絶縁物を介して前記伝
熱板に熱的に接触した超電導コイルとを備えたことを特
徴とする超電導マグネット装置。 (2)伝熱板は高純度アルミニウムまたは無酸素銅から
なることを特徴とする請求項(1)記載の超電導マグネ
ット装置。 (3)伝熱板は円筒形の超電導コイルの軸と同じ方向に
スリットを入れたことを特徴とする請求項(1)記載の
超電導マグネット装置。 (4)超電導コイルは多数個の巻線部で構成され、その
各々に伝熱板を配したことを特徴とする請求項(1)記
載の超電導マグネット装置。 (5)円筒状の超電導コイルをなす複数個のコイルブロ
ックの各軸が同じであり、両端のコイルブロックが内側
のコイルブロックより径が大きく配置され、内側のコイ
ルブロックの外周に磁性体を配置したことを特徴とする
請求項(4)記載の超電導マグネット装置。(6)同軸
の複数個のブロックで構成される円筒状の超電導コイル
において、コイル軸方向の中央に常温空間の穴を形成し
たことを特徴とする請求項4記載の超電導マグネット装
置。 (7)常温空間の穴から超電導マグネット装置の端部ま
での長さを1m以内としたことを特徴とする請求項(6
)記載の超電導マグネット装置。 (8)伝熱板は超電導コイル巻線の1つ以上の層間に挿
入されたことを特徴とする請求項(1)記載の超電導マ
グネット装置。 (9)ヘリウムが封じ込められたパイプの一端が4.2
K以下の温度を発生する小型冷凍機に接触され、他端が
超電導コイルの周囲に巻回されたことを特徴とする超電
導マグネット装置。
[Scope of Claims] (1) A small refrigerator that generates a temperature of 4.2 K or less, a heat exchanger plate cooled by the refrigerator, and a heat exchanger plate that is in thermal contact with the heat exchanger plate through an insulator. A superconducting magnet device characterized by comprising a superconducting coil. (2) The superconducting magnet device according to claim (1), wherein the heat transfer plate is made of high-purity aluminum or oxygen-free copper. (3) The superconducting magnet device according to claim (1), wherein the heat transfer plate has a slit in the same direction as the axis of the cylindrical superconducting coil. (4) The superconducting magnet device according to claim (1), wherein the superconducting coil is composed of a large number of winding parts, each of which is provided with a heat transfer plate. (5) Each axis of the multiple coil blocks forming the cylindrical superconducting coil is the same, the coil blocks at both ends are arranged with a larger diameter than the inner coil block, and a magnetic material is arranged around the outer periphery of the inner coil block. The superconducting magnet device according to claim 4, characterized in that: (6) The superconducting magnet device according to claim 4, characterized in that in the cylindrical superconducting coil composed of a plurality of coaxial blocks, a hole for room temperature space is formed in the center in the axial direction of the coil. (7) Claim (6) characterized in that the length from the hole in the room temperature space to the end of the superconducting magnet device is within 1 m.
) The superconducting magnet device described. (8) The superconducting magnet device according to claim (1), wherein the heat transfer plate is inserted between one or more layers of the superconducting coil winding. (9) One end of the pipe containing helium is 4.2
A superconducting magnet device, characterized in that it is brought into contact with a small refrigerator that generates a temperature of K or less, and the other end is wound around a superconducting coil.
JP2193116A 1990-07-23 1990-07-23 Superconducting magnet apparatus Pending JPH0479304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2193116A JPH0479304A (en) 1990-07-23 1990-07-23 Superconducting magnet apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2193116A JPH0479304A (en) 1990-07-23 1990-07-23 Superconducting magnet apparatus

Publications (1)

Publication Number Publication Date
JPH0479304A true JPH0479304A (en) 1992-03-12

Family

ID=16302525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2193116A Pending JPH0479304A (en) 1990-07-23 1990-07-23 Superconducting magnet apparatus

Country Status (1)

Country Link
JP (1) JPH0479304A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0596249A2 (en) * 1992-10-20 1994-05-11 Sumitomo Heavy Industries, Ltd Compact superconducting magnet system free from liquid helium
JPH06132568A (en) * 1992-10-20 1994-05-13 Sumitomo Heavy Ind Ltd Conduction cooling type superconducting magnet apparatus
JPH06174349A (en) * 1992-12-04 1994-06-24 Sumitomo Electric Ind Ltd Super conductive magnet device
WO2006122594A1 (en) * 2005-05-18 2006-11-23 Siemens Magnet Technology Ltd Apparatus and method for installing cooling tubes on a cooled former
JP2007005793A (en) * 2005-06-20 2007-01-11 Siemens Ag Pulsed magnetic field generator
JP2008116171A (en) * 2006-11-07 2008-05-22 Chubu Electric Power Co Inc Gas heat transfer device and superconductive device using the same
JP2014512682A (en) * 2011-04-20 2014-05-22 シーメンス ピーエルシー Superconducting magnet with thermal radiation shield
JP2014517702A (en) * 2011-01-31 2014-07-24 ゼネラル・エレクトリック・カンパニイ Cooling system and method for cooling superconducting magnet devices
JP2015176990A (en) * 2014-03-14 2015-10-05 株式会社東芝 Superconducting coil device
WO2017033704A1 (en) * 2015-08-25 2017-03-02 株式会社日立製作所 Superconducting magnetic device and magnetic resonance imaging device
JP2017117980A (en) * 2015-12-25 2017-06-29 三菱電機株式会社 Superconducting magnet and superconducting magnet device for MRI
JP2020102487A (en) * 2018-12-20 2020-07-02 三菱電機株式会社 Superconducting coil device
JP2020145353A (en) * 2019-03-07 2020-09-10 株式会社東芝 Superconducting magnet device
WO2022185568A1 (en) * 2021-03-02 2022-09-09 株式会社 東芝 Superconductive electromagnet device and method for cooling superconductive electromagnet device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132568A (en) * 1992-10-20 1994-05-13 Sumitomo Heavy Ind Ltd Conduction cooling type superconducting magnet apparatus
EP0596249A3 (en) * 1992-10-20 1994-08-03 Sumitomo Heavy Industries
US5623240A (en) * 1992-10-20 1997-04-22 Sumitomo Heavy Industries, Ltd. Compact superconducting magnet system free from liquid helium
EP0596249A2 (en) * 1992-10-20 1994-05-11 Sumitomo Heavy Industries, Ltd Compact superconducting magnet system free from liquid helium
JPH06174349A (en) * 1992-12-04 1994-06-24 Sumitomo Electric Ind Ltd Super conductive magnet device
WO2006122594A1 (en) * 2005-05-18 2006-11-23 Siemens Magnet Technology Ltd Apparatus and method for installing cooling tubes on a cooled former
JP2007005793A (en) * 2005-06-20 2007-01-11 Siemens Ag Pulsed magnetic field generator
JP2008116171A (en) * 2006-11-07 2008-05-22 Chubu Electric Power Co Inc Gas heat transfer device and superconductive device using the same
JP2014517702A (en) * 2011-01-31 2014-07-24 ゼネラル・エレクトリック・カンパニイ Cooling system and method for cooling superconducting magnet devices
JP2014512682A (en) * 2011-04-20 2014-05-22 シーメンス ピーエルシー Superconducting magnet with thermal radiation shield
JP2015176990A (en) * 2014-03-14 2015-10-05 株式会社東芝 Superconducting coil device
WO2017033704A1 (en) * 2015-08-25 2017-03-02 株式会社日立製作所 Superconducting magnetic device and magnetic resonance imaging device
JP2017117980A (en) * 2015-12-25 2017-06-29 三菱電機株式会社 Superconducting magnet and superconducting magnet device for MRI
JP2020102487A (en) * 2018-12-20 2020-07-02 三菱電機株式会社 Superconducting coil device
JP2020145353A (en) * 2019-03-07 2020-09-10 株式会社東芝 Superconducting magnet device
WO2022185568A1 (en) * 2021-03-02 2022-09-09 株式会社 東芝 Superconductive electromagnet device and method for cooling superconductive electromagnet device

Similar Documents

Publication Publication Date Title
JP3706658B2 (en) Over shoulder type magnetic resonance imaging magnet
JP3673556B2 (en) Open magnetic resonance imaging magnet with superconducting shield
US5307039A (en) Frustoconical magnet for magnetic resonance imaging
JP5723299B2 (en) MRI system having a main superconducting magnet, a superconducting gradient field coil and a cooled RF coil
JPH10225447A (en) Plane-type magnetic resonance imaging magnet
JP3631533B2 (en) Magnetic resonance imaging magnet
JPH0479304A (en) Superconducting magnet apparatus
US7498810B2 (en) Systems, methods and apparatus for specialized magnetic resonance imaging with dual-access conical bore
US11009572B2 (en) Integrated single-sourced cooling of superconducting magnets and RF coils in nuclear magnetic resonance devices
JPH10192255A (en) Closed structure magnetic resonance imaging magnet and open structure magnetic resonance imaging magnet
WO2006075213A2 (en) Nmr mas probe with cryogenically cooled critical circuit components
JP2009000517A (en) Heat pipe cooled superconducting magnet with ceramic coil form
GB2243218A (en) Superconducting NMR magnet system
EP2981978B1 (en) Gradient coil assembly with outer coils comprising aluminum
JP2005152632A (en) Mri system utilizing supplemental static field-shaping coils
US5568102A (en) Closed superconductive magnet with homogeneous imaging volume
US10317013B2 (en) Dynamic boil-off reduction with improved cryogenic vessel
Chen et al. A compact SQUID-detected magnetic resonance imaging system under microtesla field in a magnetically unshielded environment
US11221382B2 (en) Optimized infant MRI system with cryocooled RF coil
JP4503405B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus using the same
EP0826978A1 (en) Closed MRI magnet having compact design
JP4866215B2 (en) Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus
JPH0438931A (en) Nuclear magnetic resonance apparatus
JP2014161427A (en) Superconducting magnet device and magnetic resonance imaging apparatus
Wakuda et al. Performance of a novel NMR apparatus with a solenoidal tape‐shaped antenna and a split‐type superconducting magnet