JPH04313281A - Light emitting diode - Google Patents
Light emitting diodeInfo
- Publication number
- JPH04313281A JPH04313281A JP3077827A JP7782791A JPH04313281A JP H04313281 A JPH04313281 A JP H04313281A JP 3077827 A JP3077827 A JP 3077827A JP 7782791 A JP7782791 A JP 7782791A JP H04313281 A JPH04313281 A JP H04313281A
- Authority
- JP
- Japan
- Prior art keywords
- type
- substrate
- light emitting
- emitting diode
- active layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims abstract description 44
- 239000000969 carrier Substances 0.000 claims description 8
- 230000004044 response Effects 0.000 abstract description 9
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 7
- 238000005530 etching Methods 0.000 abstract description 6
- 125000005842 heteroatom Chemical group 0.000 abstract description 3
- 230000004913 activation Effects 0.000 abstract 4
- 239000013078 crystal Substances 0.000 description 8
- 238000001312 dry etching Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- -1 GaAlAs Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Landscapes
- Led Devices (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明はダブルヘテロ構造の発光
ダイオード、特に高輝度で高速応答性をもつ発光ダイオ
ードに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double heterostructure light emitting diode, particularly to a light emitting diode with high brightness and high speed response.
【0002】0002
【従来の技術】発光ダイオードは、高輝度特性、高速応
答性をもつことが要求され、これに応えるためにヘテロ
構造の発光ダイオードが用いられる。2. Description of the Related Art Light-emitting diodes are required to have high brightness characteristics and high-speed response, and to meet these requirements, heterostructure light-emitting diodes are used.
【0003】汎用発光ダイオードとしては、シグルヘテ
ロ構造をもち、表面中央に円形電極またはそれに近い電
極を形成し、裏面に全面または部分電極を形成した発光
ダイオードが用いられている。この発光ダイオードは製
作プロセスが簡単で、安価であることから、使用されて
いる発光ダイオードの90%近くを占めている。しかし
、輝度特性や応答性は十分ではない。[0003] As a general-purpose light emitting diode, a light emitting diode is used which has a single-hetero structure, in which a circular electrode or an electrode close to the circular electrode is formed at the center of the front surface, and a full or partial electrode is formed on the back surface. Since this light emitting diode has a simple manufacturing process and is inexpensive, it accounts for nearly 90% of all light emitting diodes in use. However, the brightness characteristics and responsiveness are not sufficient.
【0004】一方、通信用など特殊用途向け発光ダイオ
ードとしては、発光ダイオードチップの中央のみが発光
するような電流狭窄構造をもたせた特殊なものが作られ
ており、これによれば発光出力及び応答特性の両特性は
共に満足のいくものであるが、高価であるため広く用い
られていない。On the other hand, as light-emitting diodes for special purposes such as communications, special ones are manufactured that have a current confinement structure in which only the center of the light-emitting diode chip emits light. Although both properties are satisfactory, they are not widely used due to their high cost.
【0005】広く用いられるためには安価であることが
重要である。そこで、従来の円形電極構造で、基板上に
ダブルヘテロ構造の発光ダイオードを形成したものが製
品化された。これは基板上に、基板と同じ伝導形で高混
晶比のクラッド層、同じく同一の伝導形で膜厚の薄い低
混晶比の活性層、基板と反対の伝導形をもち活性層との
間でpn接合を構成する高混晶比のウインド層を順次形
成したものである。このような構造で活性層にキャリア
を閉じ込めることにより、輝度特性と高速応答特性が大
きく改善された。しかし特性改善の要求はさらに大きい
。[0005] In order for it to be widely used, it is important that it be inexpensive. Therefore, a product has been commercialized in which a double heterostructure light emitting diode is formed on a substrate using the conventional circular electrode structure. This consists of a cladding layer on the substrate with the same conductivity type as the substrate and a high mixed crystal ratio, an active layer with the same conductivity type and a thin film thickness and a low mixed crystal ratio, and an active layer with the opposite conductivity type as the substrate. Wind layers having a high mixed crystal ratio and forming a pn junction between the two are successively formed. By confining carriers in the active layer with this structure, brightness characteristics and high-speed response characteristics were greatly improved. However, the demand for improved characteristics is even greater.
【0006】これに応えるために、基板表面に環状の隆
起部を設けることにより活性層に電流集中を形成して高
輝度を得るようにしたものが提案されるに至っている。
基板表面に環状の隆起部を設けると高輝度が得られるの
は次の理由による。従来のダブルヘテロ構造発光ダイオ
ードでは、基板表面が平坦であるため電流が活性層全体
に広がる。ところが、基板表面に隆起部が形成されてい
ると、その隆起部に電流が集中する。発光ダイオードの
発光効率は活性層に注入されたキャリア濃度が高いほど
大きい。従って、同じ電流を流すならば、狭い領域に流
した方が発光出力が高くなる。In order to meet this demand, a device has been proposed in which a ring-shaped raised portion is provided on the substrate surface to form current concentration in the active layer and thereby obtain high brightness. The reason why high brightness can be obtained by providing an annular raised portion on the substrate surface is as follows. In conventional double heterostructure light emitting diodes, the flat substrate surface spreads the current across the active layer. However, if a raised portion is formed on the substrate surface, current will concentrate on the raised portion. The luminous efficiency of a light emitting diode increases as the carrier concentration injected into the active layer increases. Therefore, if the same current is passed through a narrower area, the light emission output will be higher.
【0007】[0007]
【発明が解決しようとする課題】しかし、環状の隆起部
を基板に形成した発光ダイオードは、発光出力や応答性
が大幅に改善されたものの、まだ十分に満足のいくもの
ではなかった。[Problems to be Solved by the Invention] However, although the light emitting diode in which an annular raised portion is formed on the substrate has significantly improved light emitting output and responsiveness, it is still not fully satisfactory.
【0008】本発明の目的は、上述した従来技術の欠点
を解消して、より高い発光出力と、より高い応答速度を
実現できる発光ダイオードを提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a light emitting diode that can overcome the above-mentioned drawbacks of the prior art and achieve higher light output and higher response speed.
【0009】[0009]
【課題を解決するための手段】本発明の発光ダイオード
は、一の伝導形の基板上に、活性層をもつダブルヘテロ
構造のエピタキシャル層を成長させ、このエピタキシャ
ル層の成長したウェハの表裏に各々電極を形成した発光
ダイオードに適用される。[Means for Solving the Problems] In the light emitting diode of the present invention, a double heterostructure epitaxial layer having an active layer is grown on a substrate of one conductivity type, and the epitaxial layer is grown on the front and back sides of a wafer on which the epitaxial layer is grown. Applied to light emitting diodes with electrodes formed.
【0010】活性層の伝導形を一の伝導形の基板と反対
の伝導形とし、この反対の伝導形をもつ活性層へ、一の
伝導形の基板から局所的にキャリアを注入する隆起部を
基板表面に形成したものである。キャリア濃度を高くす
るために隆起部はその径が小さいほどよい。The conductivity type of the active layer is set to be the opposite conductivity type to that of the substrate having one conductivity type, and a raised portion is provided to locally inject carriers from the substrate having one conductivity type into the active layer having the opposite conductivity type. It is formed on the surface of the substrate. In order to increase the carrier concentration, the smaller the diameter of the protrusion, the better.
【0011】なお、発光ダイオードとしては、GaAs
、GaAlAs、GaP、GaAsP、GaAlAs、
SiC、GaNなど全ての発光ダイオードに適用できる
。[0011] Note that as the light emitting diode, GaAs
, GaAlAs, GaP, GaAsP, GaAlAs,
It can be applied to all light emitting diodes such as SiC and GaN.
【0012】0012
【作用】本発明のように、活性層を基板の伝導形と反対
の伝導形とし、表面に隆起部を形成すると、活性層を基
板の伝導形と同じ伝導形とした場合に比して、何故高輝
度、高速応答となるかは明確ではないが、キャリアを基
板の隆起部から活性層に注入すると、キャリア濃度が高
い状態で伝導形の異なるキャリアが活性層に注入される
ため、高い発光出力及び速い応答速度が得れるとものと
思われる。[Operation] When the active layer is made of the conductivity type opposite to that of the substrate and a raised portion is formed on the surface as in the present invention, compared to the case where the active layer is made of the same conduction type as that of the substrate, It is not clear why high brightness and fast response are achieved, but when carriers are injected into the active layer from the raised part of the substrate, carriers with different conductivity types are injected into the active layer while the carrier concentration is high, resulting in high luminescence. It is believed that high output and fast response speed can be obtained.
【0013】[0013]
【実施例】以下、本発明の実施例を図面を用いて説明す
る。ここでは、発光波長850nmのGaAlAsダブ
ルヘテロ構造の赤外発光ダイオードを用いた場合につい
て説明しているが、GaAlAsに限定されない。Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, a case is described in which an infrared light emitting diode having a GaAlAs double heterostructure with an emission wavelength of 850 nm is used, but the invention is not limited to GaAlAs.
【0014】本実施例を説明するための発光ダイオード
構造を図1に示す。発光ダイオードは、キャリア濃度2
×1019cm−3のp型GaAs基板15上に、混晶
比が0.30のZnドープp型GaAlAs層14を2
0μm、混晶比が0.05のTeドープn型GaAlA
s層13(活性層13)を0.5μm、混晶比が0.3
0のTeドープn型GaAlAs層12を30μm成長
させたエピタキシャルウェハを用いている。特に、ここ
で重要なことは、活性層の伝導形をGaAs基板15と
同じp型ではなく、それとは反対のn型とすることであ
る。
このエピタキシャルウェハの表面に円形のn側電極11
を形成し、裏面全面にはp側電極16を形成している。FIG. 1 shows a light emitting diode structure for explaining this embodiment. The light emitting diode has a carrier concentration of 2
A Zn-doped p-type GaAlAs layer 14 with a mixed crystal ratio of 0.30 is formed on a p-type GaAs substrate 15 of x1019 cm-3.
Te-doped n-type GaAlA with 0 μm and mixed crystal ratio of 0.05
S layer 13 (active layer 13) is 0.5 μm, mixed crystal ratio is 0.3
An epitaxial wafer on which a Te-doped n-type GaAlAs layer 12 of 30 μm is grown is used. In particular, what is important here is that the conductivity type of the active layer is not p-type, which is the same as the GaAs substrate 15, but n-type, which is the opposite. A circular n-side electrode 11 is formed on the surface of this epitaxial wafer.
A p-side electrode 16 is formed on the entire back surface.
【0015】ここで使用したp型GaAs基板15表面
の全面には、図1の断面で示すように凸部18(メサ部
18)をつくる微細な凹凸17が、図2の基板平面図に
示すようにマトリックス状に形成されている。この凹凸
17はエッチングによって形成することができる。凹凸
17を構成する凸部18の平坦部、即ち、凸部18の頂
面は直径10μmで、その間隔は縦方向と横方向で共に
40μmの間隔で並んでいる。凸部18の高さは10〜
15μmである。The entire surface of the p-type GaAs substrate 15 used here has fine irregularities 17 forming convex portions 18 (mesa portions 18) as shown in the cross section of FIG. 1, as shown in the plan view of the substrate in FIG. It is formed like a matrix. This unevenness 17 can be formed by etching. The flat portions of the convex portions 18 constituting the unevenness 17, that is, the top surfaces of the convex portions 18, have a diameter of 10 μm, and are arranged at intervals of 40 μm in both the vertical and horizontal directions. The height of the convex portion 18 is 10~
It is 15 μm.
【0016】なお、この凹凸17を形成した凹凸基板上
15へのエピタキシャル成長は、従来通り液相エピタキ
シャル法により行ったが、平坦基板上に成長させていた
時と同じ条件で成長させても全く問題が無い。[0016] The epitaxial growth on the uneven substrate 15 on which the unevenness 17 was formed was carried out by the liquid phase epitaxial method as before, but there was no problem at all even if the growth was performed under the same conditions as when growing on a flat substrate. There is no
【0017】このような凹凸17を形成した基板15上
に、図1に示すダブルヘテロ構造をもつ発光ダイオード
を製作し、その発光ダイオードの特性を測定し、活性層
がp型の発光ダイオードと比較した。ベアチップ状態で
電流を50mA流し、発光出力の面内分布を調べた。こ
の結果、活性層がp型のものと比べ、本実施例のように
活性層がn型のものでは約1.4倍の発光出力を得るこ
とができた。また遮断周波数としては20MHzを、1
.5倍の30MHzまで高くすることができた。A light emitting diode having the double heterostructure shown in FIG. 1 was fabricated on the substrate 15 having such unevenness 17 formed thereon, and the characteristics of the light emitting diode were measured and compared with those of a light emitting diode with a p-type active layer. did. A current of 50 mA was passed in the bare chip state, and the in-plane distribution of light emission output was examined. As a result, compared to the case where the active layer is of the p-type, the case where the active layer is of the n-type as in this example was able to obtain approximately 1.4 times the light emission output. Also, the cutoff frequency is 20MHz, 1
.. It was possible to increase the frequency five times to 30MHz.
【0018】さて、発光ダイオードの出力が上述したよ
うに高く、かつ高速になったのは次の作用によるものと
考えられる。平坦基板上にp型活性層を成長させた場合
、発光出力P↓1 (↓はPのベクトル表記とする)は
(1)式で表せる。Now, the reason why the output of the light emitting diode has become higher and faster as described above is considered to be due to the following effect. When a p-type active layer is grown on a flat substrate, the light emission output P↓1 (↓ is a vector representation of P) can be expressed by equation (1).
【0019】
P↓1 =hν・B・d
・p0 Δn
(1)ここで、hνは光のエネルギ、Bは発光再結合
定数、dは活性層膜厚、p0はp型活性層のキャリア濃
度、Δnは注入された電子の密度である。なお、p0
>>Δnである。[0019] P↓1 =hν・B・d
・p0Δn
(1) Here, hv is the energy of light, B is the emission recombination constant, d is the active layer thickness, p0 is the carrier concentration of the p-type active layer, and Δn is the density of injected electrons. In addition, p0
>>Δn.
【0020】メサ部を形成したp型基板上にp型の活性
層を成長させた発光ダイオードの場合、発光出力P↓2
は(2)式で示される。In the case of a light emitting diode in which a p-type active layer is grown on a p-type substrate on which a mesa portion is formed, the light emission output P↓2
is shown by equation (2).
【0021】
P↓2 =hν・B・d
・(p0 +Δp)Δn (2)(
1)式と(2)式を比べるとメサ部の効果による注入正
孔密度ΔP成分のみ高くなっていることが分かる。なお
、p0 〓Δp>>Δnである。[0021] P↓2 =hν・B・d
・(p0 +Δp)Δn (2)(
Comparing Equation 1) and Equation (2), it can be seen that only the injected hole density ΔP component due to the effect of the mesa portion is increased. Note that p0 〓Δp >>Δn.
【0022】一方、本実施例の構造では発光出力P↓3
は(3)式で示される。On the other hand, in the structure of this embodiment, the light emission output P↓3
is shown by equation (3).
【0023】
P↓3 =hν・B・d
・n0 ・Δp
(3)ここで、n0 はn型活性層のキャリア濃度であ
る。[0023] P↓3 =hν・B・d
・n0 ・Δp
(3) Here, n0 is the carrier concentration of the n-type active layer.
【0024】P↓2 、P↓3 を比較してみると、p
0はn0 とほぼ等しい。従って(p0 +Δp)はn
0 のせいぜい倍止りである。これに対してΔnとΔp
を比べると、Δpはメサ部より狭窄されて活性層に注入
されるため、Δp>>Δnである。従ってP↓3 >P
↓2 となる。[0024] Comparing P↓2 and P↓3, we find that p
0 is approximately equal to n0. Therefore, (p0 +Δp) is n
At most, it is only twice that of 0. On the other hand, Δn and Δp
Comparing , Δp is narrowed from the mesa portion and is injected into the active layer, so Δp >> Δn. Therefore, P↓3 > P
↓2.
【0025】このようにキャリア濃度が高い状態で伝導
型の異なるキャリアが活性層に注入されるため高い発光
出力及び速い応答速度が得られるようになると考えられ
る。It is thought that carriers of different conductivity types are injected into the active layer in a state where the carrier concentration is high as described above, so that high light emission output and fast response speed can be obtained.
【0026】以上述べたように本実施例によれば、次の
ような種々の利点がある。As described above, this embodiment has the following various advantages.
【0027】■p型基板をエッチング加工して微細なメ
サ部を形成して、そのメサ部の各上部に電流を集中させ
ることにより活性層へのキャリア注入濃度を大きくし、
しかも活性層をn型とすることにより、p型基板から活
性層に注入されるキャリアの伝導形が異なるようにした
ので、発光出力を高くし、かつ応答速度を速くすること
ができる。。■ Etching the p-type substrate to form fine mesa parts, and increasing the concentration of carrier injection into the active layer by concentrating current on each upper part of the mesa parts;
Moreover, by making the active layer n-type, the conductivity types of carriers injected from the p-type substrate into the active layer are different, so that the light emission output can be increased and the response speed can be increased. .
【0028】■従来のダブルヘテロ構造と基本構造は変
らないので、比較的安価に発光ダイオードを生産できる
。(2) Since the basic structure remains the same as the conventional double hetero structure, light emitting diodes can be produced at relatively low cost.
【0029】■微細なメサ部の形成は基板をエッチング
するだけでよいので、製作が簡単であり歩留りが高い。(2) Formation of a fine mesa portion requires only etching the substrate, so manufacturing is simple and yield is high.
【0030】■発光ダイオードの特性ばらつきは、エピ
タキシャルウェハ面内での結晶欠陥ばらつきに依存して
いる。しかし、発光再結合確率が高ければ、発光効率は
注入キャリア濃度に依存し、結晶欠陥には依存しなくな
る。従って、ウェハ面内で隆起部による電流集中により
発光再結合確率が高くなれば、発光特性のばらつきが少
なくなる。この点で、本実施例のものは、GaAs基板
をp型とした電流注入型であり、かつメサ部を微細にす
ることにより、面内での特性ばらつきが少ない。(2) Characteristic variations in light emitting diodes depend on crystal defect variations within the epitaxial wafer surface. However, if the radiative recombination probability is high, the luminous efficiency depends on the injected carrier concentration and becomes independent of crystal defects. Therefore, if the probability of radiative recombination increases within the wafer plane due to current concentration due to the protrusions, variations in the luminescent characteristics will be reduced. In this respect, the device of this embodiment is of a current injection type using a p-type GaAs substrate, and has a fine mesa portion, so that variations in characteristics within the plane are small.
【0031】ところで、上述した凹凸17を形成するた
めのエッチングとしては、ドライエッチングを使用する
ことができる。活性層での電流集中をより高めるために
は、深さをより深くすることが有効であると考えられる
。深さを深くするにはドライエッチングを用いる方法が
最も有効である。但し、ドライエッチングでは表面に欠
陥を生じるため、ドライエッチング後に、ウエットエッ
チングする必要がある。また、ダイシングソーで格子状
に溝を掘ってからエッチングすることにより深い凹部を
形成するようにしても良い。また、本実施例では断面円
形の凸部を形成したが、活性層に電流集中をもたらす凸
部の面積が重要であることから、凸部形状が他の形状で
あってもよい。例えば、凸部の形状が格子状になって、
凸部同士がつながっていてもかまわない。なお、隆起部
は微細な凹凸に限定されるものではなく、リング状の隆
起部をもつ発光ダイオードにも本発明を適用できること
は勿論である。By the way, dry etching can be used as the etching to form the above-described unevenness 17. In order to further increase current concentration in the active layer, it is considered effective to increase the depth. The most effective method for increasing the depth is dry etching. However, since dry etching causes defects on the surface, it is necessary to perform wet etching after dry etching. Alternatively, deep recesses may be formed by digging grooves in a grid pattern with a dicing saw and then etching. Further, in this example, the protrusions having a circular cross section are formed, but since the area of the protrusions that causes current concentration in the active layer is important, the protrusions may have other shapes. For example, the shape of the convex part becomes a grid,
It does not matter if the convex parts are connected to each other. Note that the raised portion is not limited to minute irregularities, and the present invention can of course be applied to a light emitting diode having a ring-shaped raised portion.
【0032】本実施例では、p型基板に対しn型活性層
という構造の発光ダイオードであった。しかし、逆にn
型基板に対しp型活性層という構造でも同じ効果が期待
できる。これらは、また、GaAlAs系以外のダブル
ヘテロ構造発光ダイオードでも同様に達成できる。In this example, the light emitting diode had a structure in which an n-type active layer was formed on a p-type substrate. However, on the contrary, n
The same effect can be expected with a structure in which a p-type active layer is used for a type substrate. These can also be achieved with double heterostructure light emitting diodes other than GaAlAs.
【0033】[0033]
【発明の効果】本発明によれば、基板表面に隆起部を形
成すると共に、活性層の伝導形を基板の伝導形と反対に
して、基板から活性層へ伝導形の異なる高濃度のキャリ
アを注入するようにしたので、発光出力の高い、高速度
の発光ダイオードを製作することができる。According to the present invention, a raised portion is formed on the surface of the substrate, and the conductivity type of the active layer is made opposite to that of the substrate, so that a high concentration of carriers having a different conductivity type is transferred from the substrate to the active layer. By using injection, it is possible to manufacture a high speed light emitting diode with high light emitting output.
【図1】本発明の実施例による発光ダイオード構造を示
す断面図。FIG. 1 is a cross-sectional view showing a light emitting diode structure according to an embodiment of the present invention.
【図2】本実施例による基板上に形成した凹凸配置の第
1実施例を示す平面図。FIG. 2 is a plan view showing a first example of a concavo-convex arrangement formed on a substrate according to the present example.
11 n側電極 12 n型GaAl層 13 n型GaAlAs層 14 p型GaAlAs層 15 p型GaAs基板 16 p側電極 17 凹凸 18 凸部(メサ部) 11 N-side electrode 12 N-type GaAl layer 13 N-type GaAlAs layer 14 p-type GaAlAs layer 15 p-type GaAs substrate 16 p-side electrode 17 Unevenness 18 Convex part (mesa part)
Claims (1)
ルヘテロ構造のエピタキシャル層を成長させ、このエピ
タキシャル層の成長したウェハの表裏に各々電極を形成
した発光ダイオードにおいて、活性層の伝導形を一の伝
導形の基板と反対の伝導形とし、この反対の伝導形の活
性層へ一の伝導形の基板から局所的にキャリアを注入す
る隆起部を基板表面に形成したことを特徴とする発光ダ
イオード。Claim 1: A light emitting diode in which a double heterostructure epitaxial layer having an active layer is grown on a substrate of one conductivity type, and electrodes are formed on the front and back sides of a wafer on which this epitaxial layer is grown. The conductivity type is the opposite conductivity type to the substrate of the first conductivity type, and a protrusion is formed on the substrate surface to locally inject carriers from the substrate of the first conductivity type into the active layer of the opposite conductivity type. light emitting diode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7782791A JP2765256B2 (en) | 1991-04-10 | 1991-04-10 | Light emitting diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7782791A JP2765256B2 (en) | 1991-04-10 | 1991-04-10 | Light emitting diode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04313281A true JPH04313281A (en) | 1992-11-05 |
JP2765256B2 JP2765256B2 (en) | 1998-06-11 |
Family
ID=13644876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7782791A Expired - Lifetime JP2765256B2 (en) | 1991-04-10 | 1991-04-10 | Light emitting diode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2765256B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001007393A (en) * | 1999-06-08 | 2001-01-12 | Agilent Technol Inc | ALGaInN-BASED LED WITH EPITAXIAL LAYER |
JP2003318441A (en) * | 2001-07-24 | 2003-11-07 | Nichia Chem Ind Ltd | Semiconductor light emitting element |
JP2008505507A (en) * | 2004-07-02 | 2008-02-21 | クリー インコーポレイテッド | LED using substrate modification to improve light extraction and method of making the same |
JP2009200514A (en) * | 2001-07-24 | 2009-09-03 | Nichia Corp | Semiconductor light-emitting device |
US7683386B2 (en) | 2003-08-19 | 2010-03-23 | Nichia Corporation | Semiconductor light emitting device with protrusions to improve external efficiency and crystal growth |
JP2014522119A (en) * | 2011-08-05 | 2014-08-28 | ウォステック・インコーポレイテッド | LIGHT EMITTING DIODE HAVING NANOSTRUCTURE LAYER, MANUFACTURING METHOD AND USING METHOD |
US8858004B2 (en) | 2005-12-22 | 2014-10-14 | Cree, Inc. | Lighting device |
US8901585B2 (en) | 2003-05-01 | 2014-12-02 | Cree, Inc. | Multiple component solid state white light |
US9431589B2 (en) | 2007-12-14 | 2016-08-30 | Cree, Inc. | Textured encapsulant surface in LED packages |
US9666772B2 (en) | 2003-04-30 | 2017-05-30 | Cree, Inc. | High powered light emitter packages with compact optics |
WO2017185776A1 (en) * | 2016-04-27 | 2017-11-02 | 天津三安光电有限公司 | Light emitting diode and preparation method therefor |
US10615324B2 (en) | 2013-06-14 | 2020-04-07 | Cree Huizhou Solid State Lighting Company Limited | Tiny 6 pin side view surface mount LED |
-
1991
- 1991-04-10 JP JP7782791A patent/JP2765256B2/en not_active Expired - Lifetime
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011205144A (en) * | 1999-06-08 | 2011-10-13 | Philips Lumileds Lightng Co Llc | AlGaInN-BASED LED WITH EPITAXIAL LAYER |
JP2001007393A (en) * | 1999-06-08 | 2001-01-12 | Agilent Technol Inc | ALGaInN-BASED LED WITH EPITAXIAL LAYER |
US8299486B2 (en) | 2001-07-24 | 2012-10-30 | Nichia Corporation | Semiconductor light emitting device |
US9865773B2 (en) | 2001-07-24 | 2018-01-09 | Nichia Corporation | Semiconductor light emitting device |
US8344402B2 (en) | 2001-07-24 | 2013-01-01 | Nichia Corporation | Semiconductor light emitting device |
US10593833B2 (en) | 2001-07-24 | 2020-03-17 | Nichia Corporation | Semiconductor light emitting device |
US8796721B2 (en) | 2001-07-24 | 2014-08-05 | Nichia Corporation | Semiconductor light emitting device |
US7804101B2 (en) | 2001-07-24 | 2010-09-28 | Nichia Corporation | Semiconductor light-emitting device |
US10396242B2 (en) | 2001-07-24 | 2019-08-27 | Nichia Corporation | Semiconductor light emitting device |
US9368681B2 (en) | 2001-07-24 | 2016-06-14 | Nichia Corporation | Semiconductor light emitting device |
US8148744B2 (en) | 2001-07-24 | 2012-04-03 | Nichia Corporation | Semiconductor light emitting device |
US8227280B2 (en) | 2001-07-24 | 2012-07-24 | Nichia Corporation | Semiconductor light emitting device |
JP2003318441A (en) * | 2001-07-24 | 2003-11-07 | Nichia Chem Ind Ltd | Semiconductor light emitting element |
US8344403B2 (en) | 2001-07-24 | 2013-01-01 | Nichia Corporation | Semiconductor light emitting device |
US7635875B2 (en) | 2001-07-24 | 2009-12-22 | Nichia Corporation | Semiconductor light emitting device |
US7745245B2 (en) | 2001-07-24 | 2010-06-29 | Nichia Corporation | Semiconductor light emitting device |
JP2009200514A (en) * | 2001-07-24 | 2009-09-03 | Nichia Corp | Semiconductor light-emitting device |
US9666772B2 (en) | 2003-04-30 | 2017-05-30 | Cree, Inc. | High powered light emitter packages with compact optics |
US8901585B2 (en) | 2003-05-01 | 2014-12-02 | Cree, Inc. | Multiple component solid state white light |
US8119534B2 (en) | 2003-08-19 | 2012-02-21 | Nichia Corporation | Semiconductor light emitting device with protrusions to improve external efficiency and crystal growth |
US7683386B2 (en) | 2003-08-19 | 2010-03-23 | Nichia Corporation | Semiconductor light emitting device with protrusions to improve external efficiency and crystal growth |
JP2008505507A (en) * | 2004-07-02 | 2008-02-21 | クリー インコーポレイテッド | LED using substrate modification to improve light extraction and method of making the same |
US8858004B2 (en) | 2005-12-22 | 2014-10-14 | Cree, Inc. | Lighting device |
US9431589B2 (en) | 2007-12-14 | 2016-08-30 | Cree, Inc. | Textured encapsulant surface in LED packages |
JP2014522119A (en) * | 2011-08-05 | 2014-08-28 | ウォステック・インコーポレイテッド | LIGHT EMITTING DIODE HAVING NANOSTRUCTURE LAYER, MANUFACTURING METHOD AND USING METHOD |
US10615324B2 (en) | 2013-06-14 | 2020-04-07 | Cree Huizhou Solid State Lighting Company Limited | Tiny 6 pin side view surface mount LED |
WO2017185776A1 (en) * | 2016-04-27 | 2017-11-02 | 天津三安光电有限公司 | Light emitting diode and preparation method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2765256B2 (en) | 1998-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3240097B2 (en) | Semiconductor light emitting device | |
JP2765256B2 (en) | Light emitting diode | |
JP2004047760A (en) | Light emitting diode and epitaxial wafer therefor | |
JPH09307140A (en) | Semiconductor light emitting device | |
JP2001308379A (en) | Semiconductor light-emitting element and manufacturing method thereof | |
JPH05218498A (en) | Light emitting diode provided with transverse junction | |
JP3151096B2 (en) | Semiconductor light emitting device | |
JPH01295469A (en) | Light emitting diode | |
JP2513550Y2 (en) | Luminescent diode | |
JP3662832B2 (en) | Light emitting device and manufacturing method thereof | |
JPH07169992A (en) | Semiconductor light emitter | |
JP2002151733A (en) | Light emitting diode and method of manufacturing the same | |
JPH0531316B2 (en) | ||
JP2680762B2 (en) | Semiconductor light emitting device | |
JPS5958878A (en) | Semiconductor light emitting device | |
JPH11121796A (en) | Light emitting diode and manufacture thereof | |
KR940003437B1 (en) | Surface emitting led | |
JP2650436B2 (en) | Light emitting diode and method of manufacturing the same | |
JPH0349282A (en) | Semiconductor luminescent device | |
JPH10200158A (en) | Light emitting diode | |
JPH04280481A (en) | Light emitting diode | |
JPH04313282A (en) | Light emitting diode | |
JP2642782B2 (en) | Epitaxial wafer | |
JPH02114676A (en) | Semiconductor light emitting element and manufacture thereof | |
JPH11168238A (en) | Semiconductor light emitting device |