JPH04206257A - Separator for battery, its manufacture and battery - Google Patents

Separator for battery, its manufacture and battery

Info

Publication number
JPH04206257A
JPH04206257A JP2334309A JP33430990A JPH04206257A JP H04206257 A JPH04206257 A JP H04206257A JP 2334309 A JP2334309 A JP 2334309A JP 33430990 A JP33430990 A JP 33430990A JP H04206257 A JPH04206257 A JP H04206257A
Authority
JP
Japan
Prior art keywords
temperature
separator
stretching
film
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2334309A
Other languages
Japanese (ja)
Other versions
JP3128132B2 (en
Inventor
Hiroyuki Higuchi
浩之 樋口
Toshihiko Shinomura
篠村 俊彦
Kiichiro Matsushita
喜一郎 松下
Minoru Ezoe
江副 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP02334309A priority Critical patent/JP3128132B2/en
Publication of JPH04206257A publication Critical patent/JPH04206257A/en
Application granted granted Critical
Publication of JP3128132B2 publication Critical patent/JP3128132B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To satisfy practicability both in SD start temperature and resisting temperature by using in a battery separator a porous film made of polymer alloy wherein polyethylene (PE) and polypropylene (PP) are mixed at a specific ratio. CONSTITUTION:A separator is made of a porous film being mixture of PE and PP, which is formed of 10 to 90wt.% of PE and 90 to 10wt.% of PP. Thus if a temperature rises to a melting point of PE, only PE constituting the porous film is melted to have pores closed, and as a result an increase in a resistance value shuts current and prevents excessive rise in the temperature. Until a melting point of PP is reached, a film shape is maintained by PP being one of separator constituents and sufficient heat resisting temperature is exhibited. Thus shutdown (SD) start temperature is approximately 115 to 130 deg.C and the heat resisting temperature is approximately 150 deg.C or higher, so that practicability can be satisfied.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電池用セパレータ、その製造法および該セパレ
ータを組み込んだ電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a battery separator, a method for manufacturing the same, and a battery incorporating the separator.

〔従来の技術〕[Conventional technology]

種々のタイプの電池が実用に供されており、これら電池
には正負両極の短絡防止のために該両極間にセパレータ
が介在させられる。
Various types of batteries are in practical use, and in these batteries, a separator is interposed between the positive and negative electrodes to prevent short circuits between the two electrodes.

最近、電子機器のコードレス化等に対応するための電池
として、高エネルギー密度、高起電力、自己放電の少な
さからリチウム電池が注目を浴びている。
BACKGROUND ART Recently, lithium batteries have been attracting attention as batteries for use in cordless electronic devices due to their high energy density, high electromotive force, and low self-discharge.

リチウム電池としては、例えば、負極を金属リチウム、
リチウムとアルミニウム等の金属との合金、カーボンや
グラファイト等リチウムイオンを吸着する能力またはイ
ンターカレーシランにより吸蔵する能力を有する有機材
料、あるいはリチウムイオンをドーピングした導電性高
分子で形成したもの等が知られている。
For lithium batteries, for example, metal lithium is used as the negative electrode,
Examples include alloys of lithium and metals such as aluminum, organic materials such as carbon and graphite that have the ability to adsorb lithium ions or the ability to occlude them with intercalated silane, and materials formed from conductive polymers doped with lithium ions. It is being

そして、このリチウム電池は電極構成材料としてのリチ
ウムが強い反応性を有し、また、エチレンカーボネート
、プロピレンカーボネート、アセトニトリル、γ−ブチ
ロラクトン、1,2−ジメトキシエタン、テトラヒドロ
フラン等の有機溶媒にLiPFi、 、LiCF35O
:l 、Liclo4、LiBFn等を電解質として溶
解した液を電解液としているので、外部短絡や誤接続等
により異常電流が流れた場合、これに伴って内部温度が
著しく上昇し、遂には火災や破裂という重大事故を引き
起こす危険性がある。
In this lithium battery, lithium as an electrode constituent material has strong reactivity, and LiPFi, LiPFi, LiCF35O
Since the electrolyte is a solution containing 1, Licl4, LiBFn, etc. as an electrolyte, if an abnormal current flows due to an external short circuit or incorrect connection, the internal temperature will rise significantly and eventually cause a fire or explosion. There is a risk of causing a serious accident.

かような危険を回避するために、ポリエチレン(以下、
PEと称す)多孔質フィルムあるいはポリプロピレン(
以下、PPと称す)多孔質フィルムをセパレータとして
用いることが提案されている(特開昭60−23954
号公報、特開平2−75151号公報等)。
To avoid such dangers, polyethylene (hereinafter referred to as
porous film (referred to as PE) or polypropylene (referred to as
It has been proposed to use a porous film (hereinafter referred to as PP) as a separator (Japanese Patent Laid-Open No. 60-23954
(Japanese Patent Application Laid-open No. 2-75151, etc.).

この多孔質セパレータを使用する意図は、正常通電時に
は正極と負極の間に位置してこれら両極の短絡を防止す
ると共に、その多孔質構造により両極間の電気抵抗を小
さくして通電効率に貢献し、一方、異常電流により電池
の内部温度が上昇した場合には、所定温度で溶融して多
孔質構造から無孔質構造に変質させることにより、その
電気抵抗を増大させて電流を遮断し、過度の温度上昇を
防止して安全を確保しようとするにある。
The purpose of using this porous separator is to prevent a short circuit between the positive and negative electrodes by being located between the positive and negative electrodes during normal energization, and also to reduce the electrical resistance between the two electrodes due to its porous structure, contributing to the energization efficiency. On the other hand, if the internal temperature of the battery rises due to abnormal current, it melts at a predetermined temperature and transforms from a porous structure to a non-porous structure, increasing its electrical resistance and interrupting the current. The goal is to prevent temperature rises and ensure safety.

このように温度の異常上昇があった場合、電気抵抗の増
大によりiiE流を遮断し、火災、破裂を回避すること
により電池の安全を確保する機能を一般にシャットダウ
ン(Shut−doun)特性(以下、SD特性と称す
)と呼び、リチウム電池用セパレータ等には必須の特性
である。
When there is an abnormal rise in temperature in this way, the iiE current is cut off due to an increase in electrical resistance, and the function that ensures the safety of the battery by avoiding fire and explosion is generally activated by the shut-down characteristic (hereinafter referred to as "shut-down"). This is called the SD characteristic) and is an essential characteristic for lithium battery separators and the like.

リチウム電池用セパレータはこのSD特性を有すること
が重要であるが、更に、電気抵抗の増大が適当な温度で
開始されること(以下、電気抵抗の増大が始まる温度を
SD開始温度と称す)および増大された電気抵抗が適当
な温度まで維持されることも要求される。
It is important for a separator for lithium batteries to have this SD characteristic, but it is also important that the increase in electrical resistance starts at an appropriate temperature (hereinafter, the temperature at which the increase in electrical resistance starts is referred to as the SD start temperature) and It is also required that the increased electrical resistance be maintained up to a suitable temperature.

SD開始温度が低過ぎる場合は僅かな温度上昇で電気抵
抗の増大が開始されることになり実用性に乏しく、高過
ぎる場合は安全の確保が不充分となる。現在のところ、
このSD開始温度は約115〜130″Cが好ましいと
認識されている。
If the SD starting temperature is too low, an increase in electrical resistance will start with a slight temperature rise, which is impractical; if it is too high, safety will not be ensured sufficiently. at present,
It has been recognized that this SD initiation temperature is preferably about 115-130''C.

また、増大した電気抵抗は約140″C付近(勿論、こ
れ以上の高温まで維持できればより好ましい)まで維持
できれば火災や破裂をほぼ防止できると認識されている
。増大した電気抵抗が維持される上限温度を本発明にお
いては、以下、「耐熱温度」と称すこととする。耐熱温
度はセパレータのフィルム形状維持機能と見ることもで
き、温度の過昇によってセパレータが溶融してそのフィ
ルム形状を維持できなくなると、電気抵抗は減少しSD
特性は喪失される。そして、SD特性が喪失されると、
リチウム電池内において正極と負極が接触して温度が急
激に上昇し、発火等に至る。
Additionally, it is recognized that fires and explosions can be almost prevented if the increased electrical resistance can be maintained up to around 140"C (of course, it would be better if it could be maintained at a higher temperature).The upper limit at which the increased electrical resistance can be maintained. In the present invention, the temperature will hereinafter be referred to as "heat-resistant temperature". The heat resistance temperature can be seen as the function of maintaining the film shape of the separator; if the separator melts due to an excessive rise in temperature and cannot maintain its film shape, the electrical resistance decreases and SD
Characteristics are lost. And when the SD characteristic is lost,
In a lithium battery, the positive and negative electrodes come into contact and the temperature rises rapidly, leading to ignition.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、本発明者の実験によれば、PE製多孔質フィ
ルムは耐熱温度が約140〜155°C程度と−低く、
比較的早期にSD特性を喪失し、一方、PP製多孔質フ
ィルムはSD開始温度が約155°Cと高(、いずれも
安全性の確保の点で未だ改良すべきものであることが判
った。
By the way, according to the inventor's experiments, PE porous film has a low heat resistance temperature of about 140 to 155°C.
It was found that the SD characteristics were lost relatively early, while the SD onset temperature of the porous PP film was as high as approximately 155°C (both of which still need improvement in terms of ensuring safety).

従って、本発明はSD開始温度が約115〜130℃で
あり、耐熱温度も約150°C以上である実用性に冨む
新規なセパレータを提供することを目的とするものであ
る。
Therefore, an object of the present invention is to provide a novel separator which is rich in practicality and has an SD starting temperature of about 115 to 130°C and a heat resistance temperature of about 150°C or higher.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は従来技術の有する上記問題を解決すくため種
々研究の結果、PEとPPを特定の割合で混合したポリ
マーアロイから成る多孔質フィルムがSD開始温度およ
び耐熱温度共に実用性を満足するものであることを見い
出し、本発明を完成するに至ったものである。
As a result of various studies to solve the above-mentioned problems of the prior art, the present inventor has found that a porous film made of a polymer alloy made by mixing PE and PP in a specific ratio satisfies practicality in both the SD start temperature and the heat resistance temperature. We have discovered that this is the case, and have completed the present invention.

即ち、本発明に係る電池用セパレータはPEl0〜90
重量%とPP9O−10重量%の混合物であり、且つ多
孔質フィルム形状を有することを特徴とするものである
That is, the battery separator according to the present invention has a PEl of 0 to 90.
It is a mixture of PP9O-10% by weight and is characterized by having a porous film shape.

本発明のセパレータはPEとPPの混合物から成る多孔
質フィルムであり、PEl0〜90重量%とPP90〜
10重量%から成る。
The separator of the present invention is a porous film made of a mixture of PE and PP, with 0 to 90% by weight of PE1 and 90 to 90% by weight of PP.
It consists of 10% by weight.

本発明のセパレータは多孔質構造を有する点では上記従
来のPE多孔質フィルムあるいはPP多孔質フィルムと
共通するが、SD特性の発揮機構がこれらとは異なるも
のである。
Although the separator of the present invention has a porous structure in common with the above-mentioned conventional PE porous film or PP porous film, it differs from these in the mechanism by which it exhibits the SD characteristic.

上記従来のPE多孔質フィルムあるいはPP多TL’!
フィルムから成るセパレータではPEあるいはPPの融
点に達するとセパレータが溶融して無孔構造へと変化し
、抵抗値の増大が生じて電流が遮断されるのである。従
って、そのSD特性はセパレータを構成するPEあるい
はPPの融点に依存することになる。それ故に、PE多
孔質フィルム製のセパレータは耐熱温度が低くて実用性
に乏しいのであり、一方、PPPE孔質フィルムのセパ
レータはSD開始温度が高過ぎて安全性の確保に不安が
あるのである。
The above conventional PE porous film or PP polyTL'!
When a separator made of a film reaches the melting point of PE or PP, the separator melts and changes into a non-porous structure, causing an increase in resistance and cutting off the current. Therefore, its SD characteristics depend on the melting point of PE or PP constituting the separator. Therefore, a PE porous film separator has a low heat resistance temperature and is not practical, while a PPP porous film separator has an SD starting temperature that is too high and there are concerns about ensuring safety.

ところが、本発明のPEとPPの混合物から成る多孔質
フィルムでは、温度が上昇してPEの融点に達すると多
孔質フィルムを構成するPEのみが溶融して気孔を閉塞
し、その゛結果、抵抗値の増大により電流が遮断され、
温度の過昇が防止される。そして、PPの融点に至るま
ではセパレータ構成材料の一つであるPPによりフィル
ム形状が維持されることになり、充分な耐熱温度を示す
のである。即ち、本発明のセパレータでは、それを構成
するPEがSD開始温度および抵抗値の増大に寄与し、
PPが耐熱温度に寄与することにより、優れた実用性を
有するセパレータが提供できるのである。このように、
二つの必須構成材料が異なる機能を分担することにより
、優れた実用性を発揮するようにしたセパレータは、本
発明により始めて開発されたのである。
However, in the porous film made of a mixture of PE and PP of the present invention, when the temperature rises and reaches the melting point of PE, only the PE constituting the porous film melts and closes the pores, resulting in a decrease in resistance. The increase in value blocks the current,
Excessive temperature rise is prevented. The film shape is maintained by PP, which is one of the constituent materials of the separator, until the melting point of PP is reached, and the film exhibits sufficient heat resistance. That is, in the separator of the present invention, the PE constituting it contributes to an increase in the SD start temperature and resistance value,
Since PP contributes to the heat resistance temperature, a separator with excellent practicality can be provided. in this way,
The present invention is the first to develop a separator that exhibits excellent practicality by having two essential constituent materials share different functions.

本発明ではPEとPPを両者の合計重量中に、PEが9
0〜10重量%、PPが10〜90重量%の割合で含ま
れるように配合する。PEの配合量が少な過ぎると異常
電流により温度が上昇しても気孔が充分に閉塞されず抵
抗値の増大程度が小さくSD特性に劣り、PEの配合量
が多過ぎるとSD開始温度および耐熱温度が低くなるの
で、いずれも好ましくない。なお、所望により充填剤、
着色剤、老化防止剤、難燃化剤等の添加剤を適量配食す
ることもできる。
In the present invention, PE is 9% in the total weight of both PE and PP.
The content of PP is 0 to 10% by weight, and PP is blended in a proportion of 10 to 90% by weight. If the amount of PE blended is too small, the pores will not be sufficiently closed even when the temperature rises due to abnormal current, and the degree of increase in resistance will be small, resulting in poor SD characteristics. If the amount of PE blended is too large, the SD starting temperature and heat resistance temperature will decrease Both are unfavorable because they result in a low value. In addition, if desired, a filler,
Appropriate amounts of additives such as colorants, anti-aging agents, and flame retardants can also be provided.

かような本発明のセパレータは上記したように多孔質構
造を有するものであり、その気孔径、空孔率はそれを組
み込む電池に応じて設定するが、通常、平均孔径は0.
01〜5μm、空孔率は20〜80%である。そして、
気孔径、空孔率をこのように設定したセパレータは、通
常、20Ω・ctA/枚以下(8000Ω・cm以下)
の抵抗値(を解液抵抗も含めた値)を示す。
The separator of the present invention has a porous structure as described above, and its pore diameter and porosity are set depending on the battery in which it is incorporated, but usually the average pore diameter is 0.
01 to 5 μm, and the porosity is 20 to 80%. and,
Separators with pore diameter and porosity set in this way usually have a pore size of 20Ω・ctA/piece or less (8000Ω・cm or less)
shows the resistance value (value including solution resistance).

なお、セパレータの抵抗値R,(Ω)は、体積固有抵抗
値ρ(Ω・cm)、セパレータ厚さjl!(cm)およ
びセパレータ面積S (d)を用い、下記式%式% 抵抗値R0は、セパレータの厚さに比例し、面積に反比
例する。そして、セパレータの厚さを考慮しない1枚当
たりの抵抗値R1(Ω・47枚)は下記式(II)で表
され、セパレータの厚さを考慮した体積固有抵抗値R1
(Ω・C11l)は下記式(%式% ([[) 上記抵抗値R0は電解液の抵抗値Reとセパレータの抵
抗値Rsの和である。
Note that the resistance value R, (Ω) of the separator is the volume specific resistance value ρ (Ω・cm), and the separator thickness jl! (cm) and separator area S (d) using the following formula % formula % The resistance value R0 is proportional to the thickness of the separator and inversely proportional to the area. Then, the resistance value R1 (Ω・47 pieces) per sheet without considering the thickness of the separator is expressed by the following formula (II), and the volume specific resistance value R1 considering the thickness of the separator
(Ω·C11l) is expressed by the following formula (% formula % ([[) The above resistance value R0 is the sum of the resistance value Re of the electrolytic solution and the resistance value Rs of the separator.

ここで本発明のセパレータの安全性について説明する。Here, the safety of the separator of the present invention will be explained.

室温付近で有機電解液(を導度約101m S / c
m )中にて測定したリチウム電池用セパレータの電気
抵抗は、一般に、厚さ25μmで、約20Ω・d以下で
ある。
Organic electrolyte (conductivity approximately 101 m S/c) near room temperature
The electrical resistance of a lithium battery separator measured in m) is generally about 20 Ω·d or less at a thickness of 25 μm.

そして、異常電流による過度の温度上昇を抑制するため
、電流を遮断するには電気抵抗値が室温付近での値より
も少なくとも2〜3桁増大する必要があると認識されて
いる。
In order to suppress excessive temperature rise due to abnormal current, it is recognized that the electrical resistance value needs to increase by at least two to three orders of magnitude compared to the value near room temperature in order to interrupt the current.

本発明者がこの発明に係るセパレータについて試験した
ところ、該セパレータの室温付近での電気抵抗は厚さ2
5μmで約20Ω・d以下であるが、SD特性発現温度
(SD開始温度〜耐熱温度)では約10’〜10hΩ・
dとなり、4〜5桁の抵抗増加を示すことが判明した(
下記実施例参照)、この大きな抵抗増加は本発明に係る
セパレータの電流遮断機能、即ち、SD特性が優れてい
ること、およびこのセパレータを組み込んだ電池の安全
性が優れていることを示すものである。
When the present inventor tested the separator according to the present invention, the electrical resistance of the separator at around room temperature was 2
It is approximately 20 Ω・d or less at 5 μm, but it is approximately 10′ to 10 hΩ・d at the SD characteristic development temperature (SD starting temperature to heat resistant temperature).
d, and it was found that the resistance increased by 4 to 5 orders of magnitude (
(See Examples below), this large increase in resistance indicates that the separator of the present invention has an excellent current interrupting function, that is, an SD characteristic, and that a battery incorporating this separator has excellent safety. be.

かような本発明のセパレータは従来のそれと同様に、正
極と負極の間に介在せしめて電池を組立ることかできる
。この際、正極、負極、電池ケース、電解液等の材質や
これら構成要素の配置構造は何ら格別である必要はなく
、従来の電池と同様であってよいものである。
Such a separator of the present invention can be interposed between a positive electrode and a negative electrode to assemble a battery in the same manner as conventional separators. In this case, the materials of the positive electrode, negative electrode, battery case, electrolyte, etc., and the arrangement structure of these components do not need to be special at all, and may be the same as those of conventional batteries.

本発明はセパレータの新規な製造法をも提供する。The present invention also provides a novel method for manufacturing separators.

即ち、本発明に係る電池用セパレータの製造法はPE(
この融点をTlIb′Cとする)10〜90重量%とP
P90〜10重量%から成るフィルム状物を一20℃〜
(Tmb、b−30)”Cの低温度領域で1軸延伸し、
次に該延伸フィルムを(Tmb−30)℃〜(T、、−
2)°Cの高温度領域において前記低温延伸と同一方向
に延伸することにより多孔質化せしめることを特徴とす
るものである。
That is, the method for manufacturing a battery separator according to the present invention is based on PE (
This melting point is defined as TlIb'C) 10 to 90% by weight and P
A film-like material consisting of 90 to 10% by weight of P is heated to -20°C.
(Tmb, b-30) uniaxially stretched in the low temperature range of “C”,
Next, the stretched film is (Tmb-30)℃~(T,,-
2) It is characterized in that it is made porous by stretching in the same direction as the low temperature stretching in a high temperature range of °C.

本発明の方法に用いるフィルム状物はPEとPPを必須
成分とし、両者の合計重量中に占めるPEの割合が10
〜90重量%、PPの割合が90〜10重量%になるよ
うに配合した混合物から成るものである。このフィルム
状物を形成するPEは特に限定されることなく、低密度
、中密度あるいは高密度PEや直鎖状低密度PE等を用
いることができる。また、PPも限定されるわけではな
いが、空孔率の高いセパレータを得るためにはアイソタ
クチックPPが好ましく、沸騰n−へブタンで抽出され
ない部分の重量分率で表されるアイソタクチックインデ
ックスが90%以上より好ましくは95%以上のアイソ
タクチックPPが好適である。
The film-like material used in the method of the present invention contains PE and PP as essential components, and the proportion of PE in the total weight of both is 10
It consists of a mixture in which the proportion of PP is 90 to 10% by weight. The PE forming this film-like material is not particularly limited, and low-density, medium-density, or high-density PE, linear low-density PE, etc. can be used. Although PP is not limited, isotactic PP is preferable in order to obtain a separator with high porosity, and isotactic PP is expressed as the weight fraction of the part that is not extracted with boiling n-hebutane. Isotactic PP having an index of 90% or more, preferably 95% or more is suitable.

かようなフィルム状物は例えばTダイ押出法、インフレ
ーション法等の既に公知の方法により得ることができる
Such a film-like material can be obtained by a known method such as a T-die extrusion method or an inflation method.

Tダイ押出法による場合のダイス温度は、PPの融点(
以下、この温度をT、、”Cと称す)よりも10°C高
い温度〜(T 、、 +150) ”Cとするのが好ま
しい。
The die temperature when using the T-die extrusion method is the melting point of PP (
Hereinafter, this temperature is preferably set to 10°C higher than T (referred to as T, +150)C.

本発明の方法においては、フィルム状′JjyJ牽低温
延伸するが、この延伸に先立ち、該フィルムを(Tmb
−30)”C〜CT、b−2)”Cの温度領域で所定時
間(通常、数秒〜数時間)加熱するアニーリングを施す
ことができる。このアニーリングにより、後に行われる
二つの延伸により得られる多孔質フィルムの気孔率を高
めることができる。
In the method of the present invention, the film is stretched at a low temperature by JjyJ, but prior to this stretching, the film is (Tmb
-30) "C to CT, b-2)" Annealing can be performed by heating in the temperature range of "C" for a predetermined period of time (usually several seconds to several hours). This annealing can increase the porosity of the porous film obtained by the two subsequent stretching steps.

上記フィルム状物あるいはアニーリングを施したフィル
ム状物は、先ず、−20℃〜(Tmb、b−30)°C
の低温度領域においてロール延伸、テンター式延伸等の
方法でl軸延伸される。温度が低過ぎると延伸が困難と
なり、高過ぎると次の工程での高温延伸を行っても目的
とする多孔質フィルムが得られないので、いずれも好ま
しくない。
The film-like material or the annealed film-like material is first heated at -20°C to (Tmb, b-30)°C.
L-axis stretching is carried out in a low temperature region by a method such as roll stretching or tenter stretching. If the temperature is too low, stretching becomes difficult, and if the temperature is too high, the desired porous film cannot be obtained even if high-temperature stretching is performed in the next step, so neither is preferable.

この低温延伸時の延伸率は、通常約25〜200%、好
ましくは約10〜100%であり、延伸速度は、通常約
50〜5000%/minである。延伸率はフィルム状
物の延伸前の長さLoと、延伸後の長さLlを用い、下
記式(IV)によって算出した値である。
The stretching rate during this low-temperature stretching is usually about 25 to 200%, preferably about 10 to 100%, and the stretching speed is usually about 50 to 5000%/min. The stretching ratio is a value calculated by the following formula (IV) using the length Lo of the film-like material before stretching and the length Ll after stretching.

本発明の方法では、この低温延伸の後に(T。In the method of the present invention, after this low temperature stretching (T.

−30)”C〜(’r、b−2)℃の高温度領域におい
て、該低温延伸時の延伸方向と同一の方向に1軸延伸を
行う。この高温延伸により、低温延伸時にフィルム状物
に生した極微細孔が拡大されて多孔質化される。高温延
伸時の温度が上記範囲を外れると多孔質化の度合いが不
十分となるので、好ましくない。
-30) In a high temperature region of ``C~('r,b-2)℃, uniaxial stretching is carried out in the same direction as the stretching direction during the low temperature stretching. The extremely fine pores formed in the film are enlarged and the film becomes porous.If the temperature during high-temperature stretching is outside the above range, the degree of porosity will be insufficient, which is not preferable.

この高温延伸も低温延伸と同じくロール延伸、テンター
延伸等により行うことができる。また、高温延伸時の延
伸率は、通常約10〜400%、好ましくは約50〜2
00%であり、延伸速度は通常約50〜5000%/m
inである。なお、この延伸率は低温延伸前の長さLo
と、低温延伸済みフィルム状物の長さ(即ち、高温延伸
前の長さ)Llと、高温延伸後の長さL2を用い、下記
(V)弐により算出した値である。
This high-temperature stretching can also be performed by roll stretching, tenter stretching, etc., like the low-temperature stretching. In addition, the stretching ratio during high-temperature stretching is usually about 10 to 400%, preferably about 50 to 2
00%, and the stretching speed is usually about 50-5000%/m
It is in. Note that this stretching rate is the length Lo before low-temperature stretching.
This is a value calculated using the following (V) 2 using the length Ll of the low-temperature stretched film material (that is, the length before high-temperature stretching) and the length L2 after high-temperature stretching.

れる多孔質セパレータは延伸歪みを内蔵することがあり
、その除去のため、高温延伸後にセパレータを緊張状態
あるいは緩和状態に保ち、所定温度、通常は該高温延伸
時とほぼ同温度に加熱する(この加熱をヒートセットと
称す)ことができる。
The porous separator that is used may have built-in stretching strain, and in order to remove this strain, the separator is kept in a tensioned or relaxed state after high-temperature stretching and heated to a predetermined temperature, usually approximately the same temperature as during the high-temperature stretching. Heating can be referred to as heat setting).

この歪み除去のための加熱時間は、温度、セパレータに
残存する歪み量等に応じて設定するが、通常、約5秒〜
2分である。
The heating time for removing distortion is set depending on the temperature, the amount of distortion remaining in the separator, etc., but is usually about 5 seconds to
It is 2 minutes.

[発明の効果] 本発明は上記のように構成され、PEとPPの混合物に
よる多孔質セパレータであるので、温度が異常に上昇し
た場合、PEが溶融してその孔を閉塞し抵抗を増大させ
て電流を遮断し、一方、PPはセパレータのフィルム形
状維持機能を発揮するので、実用的且つ安全性が高い利
点がある。
[Effects of the Invention] The present invention is configured as described above and is a porous separator made of a mixture of PE and PP, so when the temperature rises abnormally, the PE melts and closes the pores, increasing the resistance. On the other hand, PP functions to maintain the film shape of the separator, so it has the advantage of being practical and highly safe.

また、本発明の方法によれば、低温延伸および 。Moreover, according to the method of the present invention, low temperature stretching and.

高温延伸により特性の優れたセパレータを得ることがで
き、そして、その工程において有機溶媒を用いることが
ないので、製造現場や地球環境に悪影響を及ぼすことも
ない。
A separator with excellent properties can be obtained by high-temperature stretching, and since no organic solvent is used in the process, there is no adverse effect on the manufacturing site or the global environment.

[実施例] 以下、実施例により本発明を更に詳細に説明する。なお
、実施例および比較例中において、使用材料の配合部数
を示す「部」は全て11部、である。
[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples. In the Examples and Comparative Examples, all "parts" indicating the number of parts of the materials used are 11 parts.

実施例1 メルトインデンクス(以下、Mlと称す)0.7、融点
134°CのPE50部およびMT2.5、融点158
°CのPP50部を溶融混練し、これをダイス温度24
0°CのTダイ押出機から押出し、厚さ27μmの長尺
のフィルム状物を得る。
Example 1 50 parts of PE with melt index (hereinafter referred to as Ml) 0.7, melting point 134°C and MT 2.5, melting point 158
Melt and knead 50 parts of PP at a die temperature of 24 °C.
It is extruded from a T-die extruder at 0°C to obtain a long film with a thickness of 27 μm.

このフィルム状物を温度120°Cで60分間加熱して
アニーリングした後、温度25゛Cで長尺方向に延伸率
が35%になるように1軸延伸し、次いで、温度120
″Cで前記方向と同方向に延伸率が65%になるように
1軸延伸して多孔質化し、更に温度120°Cで1分間
加熱してヒートセットを行いセパレータ(試料1)を得
た。なお、ヒートセットに際しては延伸方向の長さが変
化しないようにした。
This film-like material was annealed by heating at a temperature of 120°C for 60 minutes, then uniaxially stretched at a temperature of 25°C to a stretching ratio of 35% in the longitudinal direction, and then at a temperature of 120°C.
The separator (sample 1) was obtained by uniaxially stretching the film in the same direction as the above at a temperature of 65% to make it porous, and then heating it for 1 minute at 120°C for heat setting. Note that during heat setting, the length in the stretching direction was kept unchanged.

このセパレータの厚さは25μmであり、平均孔径は0
.14μm、空孔率は40%、抵抗は15Ω、−c11
1/枚であった。
The thickness of this separator is 25 μm, and the average pore size is 0.
.. 14μm, porosity 40%, resistance 15Ω, -c11
It was 1/piece.

また、そのSD特性は第1図中に曲線Aとして示すとお
りであった。曲線Aから判るように、このセパレータは
温度130°C付近(SD開始温度)で抵抗値が4〜5
桁急激に増大し、この大きな抵抗値が維持され、そして
、165°C付近(耐熱温度)から抵抗値が減少する。
Further, its SD characteristic was as shown as curve A in FIG. As can be seen from curve A, this separator has a resistance value of 4 to 5 at around 130°C (SD starting temperature).
The resistance value rapidly increases by an order of magnitude, this large resistance value is maintained, and then the resistance value decreases from around 165°C (allowable temperature).

130°C付近での抵抗値の象、激な増大は、セパレー
タの形成材料の一つであるPEが溶融して孔を閉塞した
ために生ずる現象であり、この抵抗増大現象および増大
した抵抗値が165°C付近まで維持されることから、
このセパレータが優れたSD特性を有することが理解で
きる。また、165°C付近から抵抗値が減少するのは
、セパレータのもう一つの形成材料であるPPも溶融し
、フィルム形状を維持しなくなったために生ずる現象で
ある。
The dramatic increase in resistance around 130°C is a phenomenon that occurs because PE, which is one of the materials forming the separator, melts and closes the pores. Since the temperature is maintained at around 165°C,
It can be seen that this separator has excellent SD characteristics. Further, the reason why the resistance value decreases from around 165° C. is a phenomenon that occurs because PP, which is another forming material of the separator, also melts and no longer maintains its film shape.

なお、使用した樹脂のMl、融点およびセパレータ特性
は下記要領により測定した。
The Ml, melting point, and separator properties of the resin used were measured in the following manner.

(MT) JIS  K  7210に規定される方法により測定
する。
(MT) Measured by the method specified in JIS K 7210.

(融点) PEあるいはPPを温度230°Cで5分間加熱して溶
融させた後、5°C/minの速度で25°Cまで冷却
する。次いで、5°C/minの速度で昇温させ、その
際の吸熱ピーク時の温度を融点とする。
(Melting point) PE or PP is heated at a temperature of 230°C for 5 minutes to melt it, and then cooled to 25°C at a rate of 5°C/min. Next, the temperature is raised at a rate of 5°C/min, and the temperature at the endothermic peak is defined as the melting point.

なお、吸熱ピークの測定にはセイコー電子工業社製、D
 S C200を用いた。
In addition, for measurement of the endothermic peak, D
SC200 was used.

(平均孔径) カルロエルバ社製水銀圧入式ポロシメーター2000型
を用いて測定した。
(Average pore diameter) Measured using a mercury intrusion porosimeter model 2000 manufactured by Carlo Erba.

(空孔率) 未延伸のフィルム状物の厚さ、面積および重量から該フ
ィルム状物の密度(ρ。)を求める。
(Porosity) The density (ρ.) of the unstretched film-like material is determined from the thickness, area, and weight of the unstretched film-like material.

次に、該フィルム状物から得られた多孔質セパレータの
厚さ、面積および重量からセパレータの見掛は密度(ρ
、)を求める。
Next, the apparent density (ρ
, ).

そして、下記式(Vl)を用いて気孔率を算出する。Then, the porosity is calculated using the following formula (Vl).

(SD特性) 第4図に示すように直径20mmの白金電極1.1を対
向させると共にその間にセパレータ2を配置し、シリコ
ーンゴム3.3をパ・7キンとし、更にポリテトラフル
オロエチレン板4.4で全体を両側から締めつける。
(SD characteristics) As shown in Fig. 4, platinum electrodes 1.1 with a diameter of 20 mm are placed facing each other, and a separator 2 is placed between them, silicone rubber 3.3 is used as a pad, and a polytetrafluoroethylene plate 4 Tighten the whole thing from both sides with .4.

電解液としてはプロピレンカーボネートとジメキシメタ
ンを同重量ずつ混合し、これにLiBF4を1mol/
1の濃度になるように溶解せしめめたものを使用し、こ
れを電極1.1とポリテトラフルオロエチレン板4.4
の間に充填されたPP製不織布5に含浸した。なお、図
示を省略したが白金板電極には、抵抗計および熱電対を
接続した。
As an electrolytic solution, propylene carbonate and dimexymethane are mixed in equal weights, and LiBF4 is added in an amount of 1 mol/ml.
Use a solution that has been dissolved to a concentration of
It was impregnated into the PP nonwoven fabric 5 filled in between. Although not shown, a resistance meter and a thermocouple were connected to the platinum plate electrode.

かような構造の測定セルを乾燥雑巾にセットし、5〜7
°C/minの速度で昇温させ、各温度におけるセパレ
ータ1枚についての電気抵抗値(Ω・d)を測定する。
Set the measuring cell with such a structure on a dry cloth and dry it for 5 to 7
The temperature is raised at a rate of °C/min, and the electrical resistance value (Ω·d) of one separator at each temperature is measured.

電気抵抗は国産電機工業社製の抵抗計、LCRメーター
K C−532型を用い、IKHzの交流抵抗で測定し
、前記の式(II)により換算した。
The electrical resistance was measured using a resistance meter, LCR meter KC-532 model manufactured by Kokusan Denki Kogyo Co., Ltd., as an AC resistance at IKHz, and was converted using the above formula (II).

実施例2 低温延伸および高温延伸の条件を第1表に示すように設
定すること、およびヒートセット温度を高温延伸時の温
度と同温度とすること以外は実施例1と同様に作業して
、5種類の多孔質セパレータ(試料2〜6)を得た。な
お、第1表中の温度および延伸率の単位は、「°Cヨお
よび1%」である。
Example 2 The work was carried out in the same manner as in Example 1, except that the conditions for low-temperature stretching and high-temperature stretching were set as shown in Table 1, and the heat set temperature was the same as the temperature during high-temperature stretching. Five types of porous separators (Samples 2 to 6) were obtained. Note that the units of temperature and stretching ratio in Table 1 are "°C and 1%".

これらセパレータの特性は第6表に示すとおりであった
。なお、第6表中の1抵抗」は温度25°Cにおけるセ
パレータの抵抗値である。
The properties of these separators were as shown in Table 6. Note that "1 resistance" in Table 6 is the resistance value of the separator at a temperature of 25°C.

(以下、余白) 第1表 実施例3 PE30重量部とPP70重量部の混合物を用いること
以外は実施例1と同様にして、フィルム状物を得、これ
を温度120°Cで30分間加熱してアニーリングする
(Hereinafter, blank spaces) Table 1 Example 3 A film-like product was obtained in the same manner as in Example 1 except that a mixture of 30 parts by weight of PE and 70 parts by weight of PP was used, and this was heated at a temperature of 120°C for 30 minutes. annealing.

このアニーリング済みフィルム状物を用い、第2表に示
す条件で低温延伸および高温延伸を順次施し、更に、高
温延伸時の温度と同温度で1分間加熱してヒートセット
を行い4種類の多孔質セパレータ(試料7〜10)を得
た。これらの特性を第6表に併記する。
Using this annealed film material, low-temperature stretching and high-temperature stretching were performed sequentially under the conditions shown in Table 2, and then heat-setting was performed by heating for 1 minute at the same temperature as during high-temperature stretching, resulting in four types of porous Separators (samples 7 to 10) were obtained. These properties are also listed in Table 6.

(以下、余白) 第2表 実施例4 (フィルム状物の製造) 実施例1で用いたPE(以下、これを本実施例において
、B2と称す)およびPP(以下、これを本実施例にお
いて、A2と称す)の他に、下記第3表に示す物性値を
有するPEおよびPPを用意する。第3表に示されるP
Pは全てアイソタクチックポリプロピレンであり、PE
のうちのB+、B3は高密度ポリエチレン、B4は直鎖
状低密度ポリエチレンである。
(Hereinafter, blank space) Table 2 Example 4 (Production of film-like product) PE used in Example 1 (hereinafter referred to as B2 in this example) and PP (hereinafter referred to as B2 in this example) , A2), PE and PP having physical property values shown in Table 3 below are prepared. P shown in Table 3
P is all isotactic polypropylene, PE
Of these, B+ and B3 are high density polyethylene, and B4 is linear low density polyethylene.

(以下、余白) 第3表 これらPEおよびPPを第4表に示すように配合した混
合物を用いて、Tダイ押出機により7種類のフィルム状
物(記号C−1)を成形する。なお、これらフィルム状
物の厚さはいずれも25〜30μmとした。
(Hereinafter, blank spaces) Table 3 Using a mixture of PE and PP as shown in Table 4, seven types of film-like products (symbol C-1) were molded using a T-die extruder. Note that the thickness of each of these film-like materials was 25 to 30 μm.

(以下、余白) 第4表 (多孔質セパレータの製造) フィルム状物C−1を用い、下記第5表に示す条件で低
温延伸および高温延伸を順次行い、更に、高温延伸時の
温度と同温度で1分間加熱してヒートセットを行い8種
類の多孔質セパレータ(試料11〜18)を得た。
(Hereinafter, blank space) Table 4 (Manufacture of porous separator) Using film material C-1, low temperature stretching and high temperature stretching were performed sequentially under the conditions shown in Table 5 below, and further, the temperature was the same as that during high temperature stretching. Eight types of porous separators (samples 11 to 18) were obtained by heat setting by heating at a high temperature for 1 minute.

これらセパレータの特性は第6表に示すとおりであった
The properties of these separators were as shown in Table 6.

(以下、余白) 第5表 なお、試料11および15の場合は温度115°Cで3
0分間、試料12.13.14.16の場合は温度12
0°Cで30分間、試料17の場合は温度105°Cで
60分間の加熱によりアニーリングを施して延伸に供し
た。また、試料18の場合はアニーリングを施さずに延
伸した。
(Hereinafter, blank space) Table 5 In addition, in the case of samples 11 and 15, the temperature was 115°C.
0 minutes, temperature 12 for sample 12.13.14.16
Annealing was performed by heating at 0°C for 30 minutes, and in the case of sample 17, heating at 105°C for 60 minutes, followed by stretching. Moreover, in the case of sample 18, it was stretched without annealing.

上記実施例1〜4で得られたセパレータの特性を第6表
に示す。なお、この表中における空孔率、孔径(平均孔
径)、抵抗の単位は、「%」、「μm」、「Ω・cwt
/枚」であり、SD開始温度および耐熱温度の単位はい
ずれも「°C」である。
Table 6 shows the properties of the separators obtained in Examples 1 to 4 above. In addition, the units of porosity, pore diameter (average pore diameter), and resistance in this table are "%", "μm", and "Ω・cwt".
/ sheet", and the units of both the SD start temperature and the heat-resistant temperature are "°C".

(以下、余白) 第6表 この第6表から本発明に係る多孔質セパレータは、いず
れも約115〜130°Cの温度でSD特性が発現し始
め(即ち、抵抗がこの温度で増大し始める)、そして約
140°C以上の温度までSD特性が持続するものであ
ることが判る。
(Hereinafter, blank space) Table 6 From Table 6, the porous separators according to the present invention all begin to exhibit SD characteristics at a temperature of approximately 115 to 130°C (that is, resistance begins to increase at this temperature). ), and it can be seen that the SD characteristics persist up to temperatures of about 140°C or higher.

なお、これら試料2〜18の各セパレータにおける抵抗
値の温度依存性を示す曲線の図示は省略するが、試料1
の場合と同様にSD開始温度から4〜5桁の急激な抵抗
値の増加を生じ、そして、この増大した抵抗値が耐熱温
度まで維持されることが確認されている。
Note that the curves showing the temperature dependence of the resistance value in each of the separators of Samples 2 to 18 are not shown;
It has been confirmed that, as in the case of , a rapid increase in resistance value of 4 to 5 orders of magnitude occurs from the SD start temperature, and that this increased resistance value is maintained up to the heat-resistant temperature.

従って、本発明に係るセパレータは実用的なSD特性を
有し、安全性の優れたものである。
Therefore, the separator according to the present invention has practical SD characteristics and is excellent in safety.

比較例I PE8部とPP92部との混合物を用いること以外は実
施例1と同様に作業して、多孔質セ)iレータを得た(
試料19)。
Comparative Example I A porous separator was obtained by working in the same manner as in Example 1 except for using a mixture of 8 parts PE and 92 parts PP
Sample 19).

また、PE91部とPP9部の混合物を用いること以外
は実施例1と同様に作業して、多孔質セパレータを得た
(試料20)。
Further, a porous separator was obtained (Sample 20) in the same manner as in Example 1 except for using a mixture of 91 parts of PE and 9 parts of PP.

これらセパレータのSD特性を第2図中に曲線B(試料
19)およびC(試料20)として示す、また、その他
の特性を第8表に示す。
The SD characteristics of these separators are shown in FIG. 2 as curves B (sample 19) and C (sample 20), and other characteristics are shown in Table 8.

比較例2 低温延伸および高温延伸を第7表に示す条件で順次行う
こと以外は実施例1と同様に作業して、3種類のセパレ
ータ(試料21〜23)を作成した。低温延伸温度が低
い試料21では該低温延伸時にフィルムが破断してしま
った。
Comparative Example 2 Three types of separators (Samples 21 to 23) were produced in the same manner as in Example 1, except that low-temperature stretching and high-temperature stretching were carried out sequentially under the conditions shown in Table 7. In sample 21, in which the low-temperature stretching temperature was low, the film broke during the low-temperature stretching.

これらセパレータの特性を第8表に併記する。The properties of these separators are also listed in Table 8.

第7表 比較例3 市販のPE多孔質フィルム(試料24)とPP多孔質フ
ィルム(試料25)を比較例とする。
Table 7 Comparative Example 3 A commercially available PE porous film (Sample 24) and a PP porous film (Sample 25) are used as a comparative example.

これらのSD特性を第3図中に曲線D(試料24)およ
びE(試料25)として示す。また、その他の特性を第
8表に併記する。
These SD characteristics are shown in FIG. 3 as curves D (sample 24) and E (sample 25). Other characteristics are also listed in Table 8.

第8表 この第8表から比較例のセパレータは、SD開始温度が
高低過ぎたり、耐熱温度が低過ぎて安全性に劣るもので
あるといった欠点を存するものであることが判る。
Table 8 From Table 8, it can be seen that the separators of the comparative examples have drawbacks such as the SD start temperature being too high and the heat resistance temperature being too low, making them inferior in safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るセパレータのSD特性を示すグラ
フ、第2図および第3図は比較例のセパレータのSD特
性を示すグラフ、第4図はセパレータのSD特性を測定
するための装置の概略を示す断面図である。 1・・・白金板電極    2・・・セパレータ3・・
・シリコーンゴム
Fig. 1 is a graph showing the SD characteristics of the separator according to the present invention, Figs. 2 and 3 are graphs showing the SD characteristics of separators of comparative examples, and Fig. 4 is a graph showing the SD characteristics of the separator. FIG. 2 is a schematic cross-sectional view. 1...Platinum plate electrode 2...Separator 3...
·silicone rubber

Claims (3)

【特許請求の範囲】[Claims] (1)ポリエチレン10〜90重量%とポリプロピレン
90〜10重量%の混合物であり、且つ多孔質フィルム
形状を有することを特徴とする電池用セパレータ。
(1) A battery separator characterized by being a mixture of 10 to 90% by weight of polyethylene and 90 to 10% by weight of polypropylene and having a porous film shape.
(2)ポリエチレン(この融点をT_m_b℃とする)
10〜90重量%とポリプロピレン90〜10重量%か
ら成るフィルム状物を−20℃〜(T_m_b−30)
℃の低温度領域で1軸延伸し、次に該延伸フィルムを(
T_m_b−30)℃〜(T_m_b−2)℃の高温度
領域において前記低温延伸と同一方向に延伸することに
より多孔質化せしめることを特徴とする電池用セパレー
タの製造法。
(2) Polyethylene (this melting point is T_m_b℃)
A film-like material consisting of 10 to 90% by weight and 90 to 10% by weight of polypropylene is heated to -20°C (T_m_b-30)
Uniaxially stretched in a low temperature range of ℃, then the stretched film (
A method for producing a battery separator, characterized in that it is made porous by stretching in the same direction as the low temperature stretching in a high temperature range of T_m_b-30)°C to (T_m_b-2)°C.
(3)正極、負極およびこれら両極間に介在せしめられ
たセパレータを有し、このセパレータがポリエチレン1
0〜90重量%とポリプロピレン90〜10重量%の混
合物から成る多孔質フィルムであることを特徴とする電
池。
(3) It has a positive electrode, a negative electrode, and a separator interposed between these two electrodes, and this separator is made of polyethylene
A battery characterized in that it is a porous film made of a mixture of 0 to 90% by weight of polypropylene and 90 to 10% by weight of polypropylene.
JP02334309A 1990-11-29 1990-11-29 Manufacturing method of battery separator Expired - Lifetime JP3128132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02334309A JP3128132B2 (en) 1990-11-29 1990-11-29 Manufacturing method of battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02334309A JP3128132B2 (en) 1990-11-29 1990-11-29 Manufacturing method of battery separator

Publications (2)

Publication Number Publication Date
JPH04206257A true JPH04206257A (en) 1992-07-28
JP3128132B2 JP3128132B2 (en) 2001-01-29

Family

ID=18275911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02334309A Expired - Lifetime JP3128132B2 (en) 1990-11-29 1990-11-29 Manufacturing method of battery separator

Country Status (1)

Country Link
JP (1) JP3128132B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223802A (en) * 1992-10-28 1994-08-12 Asahi Chem Ind Co Ltd Cylindrical electric part separator
US5385777A (en) * 1992-03-30 1995-01-31 Nitto Denko Corporation Porous film, process for producing the same, and use of the same
EP0668156A1 (en) 1994-01-31 1995-08-23 Nitto Denko Corporation Porous film, process for producing the same, and use of the same
US6127438A (en) * 1995-03-03 2000-10-03 Asahi Kasei Kogyo Kabushiki Kaisha Polyethylene microporous film and process for producing the same
JP2012511794A (en) * 2008-12-12 2012-05-24 トレオファン・ジャーマニー・ゲーエムベーハー・ウント・コンパニー・カーゲー Single layer microporous membrane for batteries with barrier function
JP2012167233A (en) * 2011-02-16 2012-09-06 Asahi Kasei E-Materials Corp Method for producing microporous film, and battery separator
JP2012531009A (en) * 2009-06-20 2012-12-06 トレオファン・ジャーマニー・ゲーエムベーハー・ウント・コンパニー・カーゲー Battery microporous foil with shutdown function
US8338017B2 (en) 2007-10-12 2012-12-25 Toray Battery Separator Film Co., Ltd. Microporous membrane and manufacturing method
JP5213443B2 (en) * 2005-08-03 2013-06-19 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
CN103811700A (en) * 2014-01-22 2014-05-21 中国科学院化学研究所 Lithium-ion battery diaphragm with high melting temperature as well as preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385777A (en) * 1992-03-30 1995-01-31 Nitto Denko Corporation Porous film, process for producing the same, and use of the same
JPH06223802A (en) * 1992-10-28 1994-08-12 Asahi Chem Ind Co Ltd Cylindrical electric part separator
EP0668156A1 (en) 1994-01-31 1995-08-23 Nitto Denko Corporation Porous film, process for producing the same, and use of the same
US5480745A (en) * 1994-01-31 1996-01-02 Nitto Denko Corporation Porous film and use of the same
US6127438A (en) * 1995-03-03 2000-10-03 Asahi Kasei Kogyo Kabushiki Kaisha Polyethylene microporous film and process for producing the same
JP5213443B2 (en) * 2005-08-03 2013-06-19 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
US8338017B2 (en) 2007-10-12 2012-12-25 Toray Battery Separator Film Co., Ltd. Microporous membrane and manufacturing method
JP2012511794A (en) * 2008-12-12 2012-05-24 トレオファン・ジャーマニー・ゲーエムベーハー・ウント・コンパニー・カーゲー Single layer microporous membrane for batteries with barrier function
JP2012531009A (en) * 2009-06-20 2012-12-06 トレオファン・ジャーマニー・ゲーエムベーハー・ウント・コンパニー・カーゲー Battery microporous foil with shutdown function
JP2012167233A (en) * 2011-02-16 2012-09-06 Asahi Kasei E-Materials Corp Method for producing microporous film, and battery separator
CN103811700A (en) * 2014-01-22 2014-05-21 中国科学院化学研究所 Lithium-ion battery diaphragm with high melting temperature as well as preparation method thereof

Also Published As

Publication number Publication date
JP3128132B2 (en) 2001-01-29

Similar Documents

Publication Publication Date Title
JP2883726B2 (en) Manufacturing method of battery separator
JP5213443B2 (en) Polyolefin microporous membrane
EP2065432B1 (en) Polyolefin microporous membrane and separator for nonaqueous electrolyte battery
Ihm et al. Effect of polymer blending and drawing conditions on properties of polyethylene separator prepared for Li-ion secondary battery
JP7403680B2 (en) Battery separators, preparation methods for battery separators, batteries, and terminals
EP2819215B1 (en) Method of manufacturing porous separator comprising elastic material, porous separator manufactured by the method, and secondary battery comprising the separator
JPH07216118A (en) Porous film, its preparation and its use
JP2010202828A (en) Polyolefin microporous membrane
JPH04206257A (en) Separator for battery, its manufacture and battery
JP5235324B2 (en) Polyolefin microporous membrane
JP2001266828A (en) Separator for non-aqueous electrolyte battery
JP4230584B2 (en) Polyethylene microporous membrane
JP2012128979A (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
KR101970492B1 (en) A resin composition for manufacturing a porous separator
JP2000348703A (en) Separator for battery and lithium battery using same
JP2004204141A (en) Porous film
JP2006016550A (en) Porous film, separator for battery and battery
JPH09213295A (en) Separator for battery
JP5077975B2 (en) Battery separator
KR101803526B1 (en) Separator for electrochemical device and electrochemical device containing the same
JPH11158304A (en) Porous film, separator for battery by using the same, and battery
JPH10279717A (en) Porous membrane and separator for battery
JP6877611B1 (en) Lithium ion secondary battery
JP6626568B2 (en) Synthetic resin microporous film, method for producing the same, separator for power storage device, and power storage device
JP2004263012A (en) Porous film and separator for electric battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 11