JPH04202070A - Siliceous porous body and its production - Google Patents
Siliceous porous body and its productionInfo
- Publication number
- JPH04202070A JPH04202070A JP33604590A JP33604590A JPH04202070A JP H04202070 A JPH04202070 A JP H04202070A JP 33604590 A JP33604590 A JP 33604590A JP 33604590 A JP33604590 A JP 33604590A JP H04202070 A JPH04202070 A JP H04202070A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- silica powder
- sio2
- crystalline
- amorphous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 78
- 239000000843 powder Substances 0.000 claims abstract description 53
- 239000002245 particle Substances 0.000 claims abstract description 35
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 21
- 239000011148 porous material Substances 0.000 claims abstract description 16
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 14
- 238000010304 firing Methods 0.000 claims abstract description 6
- 229910002026 crystalline silica Inorganic materials 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 2
- 238000007493 shaping process Methods 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 abstract description 2
- 239000002244 precipitate Substances 0.000 abstract description 2
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 abstract 4
- 229910021488 crystalline silicon dioxide Inorganic materials 0.000 abstract 4
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 230000003301 hydrolyzing effect Effects 0.000 abstract 1
- 238000000465 moulding Methods 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000007858 starting material Substances 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 230000035699 permeability Effects 0.000 description 8
- 239000013078 crystal Substances 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002459 porosimetry Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910021489 α-quartz Inorganic materials 0.000 description 1
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、液体や気体の濾過等に使用されるシリカ質多
孔体及びその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a siliceous porous material used for filtration of liquids and gases, and a method for producing the same.
[従来の技術]
シリカ質の多孔体は、耐薬品性に優れ、半導体素子の特
性に影響をもたらす有害な元素を含まないので、半導体
素子製造に必要な各種の液体や気体の濾過用フィルター
として注目されている。[Prior art] Siliceous porous materials have excellent chemical resistance and do not contain harmful elements that affect the characteristics of semiconductor devices, so they can be used as filters for various liquids and gases necessary for semiconductor device manufacturing. Attention has been paid.
この用途のためには、
(1)高純度であること、
(2)気孔率が高く、流体の透過性に優れていること、
(3)ボア(気孔)の口径が揃っていること、(4)多
孔体の機械的強度が高いこと、等が必要である。For this purpose, (1) high purity, (2) high porosity and excellent fluid permeability, (3) uniform bore diameter, ( 4) It is necessary that the porous body has high mechanical strength.
従来、この種のシリカ質多孔体としては、必要に応じて
粒度調整したシリカ質の粉体、例えば石英ガラス粉末を
気孔が残留する条件で焼結して製造される焼結ガラス、
又は分相させたガラスの可溶性成分を溶かし出すことに
より多孔質のシリカを得る、いわゆるバイコールガラス
多孔体が知られている。Conventionally, this type of siliceous porous material includes sintered glass manufactured by sintering siliceous powder whose particle size is adjusted as necessary, such as quartz glass powder, under conditions where pores remain.
Alternatively, a so-called Vycor glass porous material is known in which porous silica is obtained by dissolving soluble components of phase-separated glass.
[発明が解決しようとする課題]
しかしながら、焼結ガラスは、骨格を形成させる石英ガ
ラス粉末の粒子自体が軟化流動する条件まで昇温しなけ
れば、強固な焼結体を得ることが困難である。そのため
に気孔径が不揃いとなると共に、気孔率も小さくなって
流体の透過抵抗を小さくすることができない。[Problems to be Solved by the Invention] However, it is difficult to obtain a strong sintered body of sintered glass unless the temperature is raised to a point where the quartz glass powder particles themselves that form the skeleton soften and flow. . As a result, the pore diameters become uneven and the porosity becomes small, making it impossible to reduce the fluid permeation resistance.
そこで、例えば酸化はう素等の焼結助剤を添加し、粒子
表面の流動性を高めることにより、全体の骨格を保持し
たまま焼結させたものも知られているが、シリカ以外の
成分が含まれることとなって濾過流体を汚染する可能性
があり、半導体製造プロセス用等には好ましくない。Therefore, it is known that particles are sintered while retaining the entire skeleton by adding a sintering aid such as boron oxide to increase the fluidity of the particle surface. This may contaminate the filtration fluid, which is not preferable for use in semiconductor manufacturing processes, etc.
又、バイコール多孔体は、例えばアルカリやほう素等の
不純物が残留していると共に、透過性や機械的強度も十
分に満足すべきものとは言えない。In addition, the Vycor porous material has residual impurities such as alkali and boron, and its permeability and mechanical strength are not fully satisfactory.
そこで、本発明は、高純度で、気孔率が高く、流体の透
過性に優れていると共に、気孔径が揃って機械的強度の
高いシリカ質多孔体及びその製造方法の提供を目的とす
る。Therefore, an object of the present invention is to provide a porous siliceous material having high purity, high porosity, excellent fluid permeability, uniform pore diameter, and high mechanical strength, and a method for producing the same.
[課題を解決するための手段]
前記課題を解決するため、第1の発明のシリカ質多孔体
は、結晶質シリカ粉体粒子をその表面を覆う非晶質シリ
カ層によって密に結合させ、かつ結晶質シリカ粉体粒子
間に多数の開気孔を形成させて構成したものである。[Means for Solving the Problems] In order to solve the above problems, the siliceous porous body of the first invention has crystalline silica powder particles tightly bonded by an amorphous silica layer covering the surface thereof, and It is constructed by forming a large number of open pores between crystalline silica powder particles.
第2の発明は、第1の発明のシリカ質多孔体の製造方法
であって、結晶質シリカ粉体に平均粒径が結晶質シリカ
粉体粒子の1/2以下の非晶質シリカ粉体を5〜50重
量%添加し、混合、成形後、1300〜1500℃の温
度で焼成する方法である。A second invention is the method for producing a siliceous porous material according to the first invention, wherein the crystalline silica powder includes amorphous silica powder having an average particle size of 1/2 or less of the crystalline silica powder particles. This is a method in which 5 to 50% by weight of is added, mixed, molded, and then fired at a temperature of 1300 to 1500°C.
[作用]
上記手段においては、結晶質シリカ粉体粒子が、その表
面を覆う非晶質シリカ層(シリカガラス層)により結合
されて多孔質基体の骨格を形成する。[Operation] In the above means, the crystalline silica powder particles are bonded together by the amorphous silica layer (silica glass layer) covering the surface thereof to form the skeleton of the porous substrate.
結晶質シリカ粉体としては、珪石や水晶の粉砕物等が用
いられ、非晶質シリカ粉体としては、石英ガラス粉末、
合成シリカの粉体等が用いられる。As the crystalline silica powder, crushed silica stone or crystal is used, and as the amorphous silica powder, quartz glass powder,
Synthetic silica powder or the like is used.
非晶質シリカ粉体の平均粒径が結晶質シリカ粉体粒子の
1/2を越えると、非晶質シリカ粉体の軟化、流動速度
が大きくないため、非晶質シリカが結晶質シリカ粉体粒
子の表面全体に行き渡らず、塊状に残って目詰まりの原
因となる。When the average particle size of the amorphous silica powder exceeds 1/2 of the crystalline silica powder particles, the amorphous silica powder softens and the flow rate is not large, so the amorphous silica becomes crystalline silica powder. It does not spread over the entire surface of the body particles and remains in lumps, causing clogging.
又、非晶質シリカ粉体の添加量が、50重重量を越える
と結晶質シリカが埋め込まれたような構造となり、結晶
質シリカ粉体粒子が多孔質基体の骨格を形成せず、5重
量%未満であると結晶質シリカ粉体全体の粒子表面に非
晶質シリカ層が形成されず、十分な機械的強度が得られ
ない。Furthermore, if the amount of amorphous silica powder added exceeds 50% by weight, a structure will appear in which crystalline silica is embedded, and the crystalline silica powder particles will not form the framework of the porous substrate, If it is less than %, an amorphous silica layer will not be formed on the entire particle surface of the crystalline silica powder, and sufficient mechanical strength will not be obtained.
焼成温度は、1300℃未満では非晶質シリカ粉体が軟
化、流動しにくく、1500℃を越えると結晶質シリカ
粉体も軟化変形して多孔質基体の骨格形成が損なわれる
。If the firing temperature is less than 1,300°C, the amorphous silica powder will soften and become difficult to flow, and if it exceeds 1,500°C, the crystalline silica powder will also be softened and deformed, impairing the formation of the skeleton of the porous substrate.
[実施例] 以下、本発明の実施例を詳細に説明する。[Example] Examples of the present invention will be described in detail below.
実施例1
純度99%以上のシリカ(Sio2)からなる珪石粉を
水難によって粒度調整し、20〜30μmの粒径に揃え
た。この珪石粉は、X線回折によれば、α石英の結晶か
らなっていた。Example 1 The particle size of silica powder made of silica (Sio2) with a purity of 99% or more was adjusted by water testing to have a particle size of 20 to 30 μm. According to X-ray diffraction, this silica powder was composed of α-quartz crystals.
一方、エチルシリケートをアンモニアの存在下で加水分
解し、得られた沈殿物を450℃の温度で焼成して非晶
質シリカの粉体を得た。この粉体は、約0.1μmの粒
子からなっていた。On the other hand, ethyl silicate was hydrolyzed in the presence of ammonia, and the resulting precipitate was calcined at a temperature of 450°C to obtain amorphous silica powder. This powder consisted of particles of approximately 0.1 μm.
ついで、上記珪石粉100重量部に対し非晶質シリカ粉
体を20重量部の割合で混合し、プレス成形により直径
30mm、厚さ5mmの円盤状と、縦5mm、横5mm
、長さ60mmの棒状に成形し、1400℃の温度で2
時間焼成して円盤状試料と棒状試料を得た。Next, 20 parts by weight of amorphous silica powder was mixed with 100 parts by weight of the silica powder, and the mixture was press-molded into a disk shape with a diameter of 30 mm and a thickness of 5 mm, and a length of 5 mm and a width of 5 mm.
, molded into a rod shape with a length of 60 mm, and heated at a temperature of 1400°C for 2 hours.
A disk-shaped sample and a rod-shaped sample were obtained by firing for a time.
円盤状試料について空気による透過性を調べたところ、
10mu/mi n、am2の通気速度で差圧が100
mmTorrの良好な値を示した。When examining the air permeability of the disc-shaped sample, we found that
The differential pressure is 100 at an air flow rate of 10 mu/min, am2.
It showed a good value of mmTorr.
水銀圧入法により気孔分布を調べた結果、3μmの平均
径であり、±10%の範囲内にあった。The pore distribution was examined by mercury porosimetry, and the average diameter was 3 μm, within a range of ±10%.
一方、棒状試料について曲げ強度を測定したところ、3
0〜50MPaと、多孔体としては非常に大きな値を示
した。そして、その破断面をSEM(走査電子顕微鏡)
観察したところ、非晶質シリカ粉体が軟化し、流動した
非晶質シリカ層が珪石粉の粒子表面に形成されると共に
、非晶質シリカが珪石粉の粒子同志の接触部に集まって
ネック部を太らせていることがわかった。On the other hand, when we measured the bending strength of the rod-shaped sample, we found that 3
The pressure was 0 to 50 MPa, which is a very large value for a porous material. Then, the fracture surface was examined using an SEM (scanning electron microscope).
When observed, the amorphous silica powder softens, and a fluidized amorphous silica layer is formed on the surface of the silica powder particles, and the amorphous silica gathers at the contact area between the silica powder particles, forming a neck. I found out that I was gaining weight in my midsection.
実施例2
結晶質及び非晶質のシリカ原料は、実施例1と同様の方
法で調製し、表1に示したように各種割合て調合し、種
々の温度条件で焼成した。得られた各試料の通気性と強
度を実施例1のものとの比をとって表1に示した。通気
性及び強度とも0.1以下では目的を達しなかった。Example 2 Crystalline and amorphous silica raw materials were prepared in the same manner as in Example 1, mixed in various proportions as shown in Table 1, and fired under various temperature conditions. Table 1 shows the air permeability and strength of each sample obtained in comparison with that of Example 1. If both air permeability and strength were 0.1 or less, the objectives could not be achieved.
表1
従って、結晶質シリカ粉体に対する非晶質シリカ粉体の
添加量を5〜50重量%とじ、焼成温度を1300〜1
500℃とすればよいことがわかる。Table 1 Therefore, the amount of amorphous silica powder added to the crystalline silica powder was set at 5 to 50% by weight, and the firing temperature was set at 1300 to 1.
It can be seen that the temperature should be 500°C.
実施例3
純度99%以上の水晶粉を100μm±10%の粒径に
調整する一方、石英ガラスを粉砕した後、表2に示すよ
うに種々の粒径に調整した。Example 3 Quartz crystal powder with a purity of 99% or higher was adjusted to a particle size of 100 μm±10%, while quartz glass was ground and adjusted to various particle sizes as shown in Table 2.
上記水晶粉に各種粒度の石英ガラス粉をそれぞれ表2に
示す割合で添加し、実施例1と同じ形状にプレス成形し
た後、15000℃の温度で3時間焼成して各種の円盤
状試料と棒状試料を得た。Quartz glass powder of various particle sizes was added to the above crystal powder in the proportions shown in Table 2, and the mixture was press-molded into the same shape as in Example 1, and then fired at a temperature of 15,000°C for 3 hours to obtain various disc-shaped and rod-shaped samples. A sample was obtained.
得られた各試料の通気性と強度を実施例1のものとの比
をとって表2に示した。The air permeability and strength of each sample obtained are shown in Table 2 in comparison with those of Example 1.
この例では水晶粉の粒径が大きいので、通気性が1以下
では目的を達しなかった。In this example, since the particle size of the crystal powder was large, the purpose could not be achieved if the air permeability was less than 1.
表2
従りて、非晶質シリカ粉体粒子の粒径を結晶質シリカ粉
体の1/2以下とすればよいことがわかる。Table 2 Therefore, it can be seen that the particle size of the amorphous silica powder particles should be set to 1/2 or less of that of the crystalline silica powder.
[発明の効果コ
以上のように本発明によれば、結晶質シリカ粉体粒子が
その表面を覆う非晶質シリカ層により結合されて多孔質
基体の骨格を形成するので、気孔率や気孔径を再現性よ
く制御でき、しかし機械的強度を高めることができ、か
つ従来のようにシリカ以外の成分が含まれることがなく
、極めて高純度の多孔体を得ることができる。[Effects of the Invention] As described above, according to the present invention, the crystalline silica powder particles are bonded by the amorphous silica layer covering the surface to form the skeleton of the porous substrate, so that the porosity and pore diameter are can be controlled with good reproducibility, mechanical strength can be increased, and unlike conventional methods, components other than silica are not included, making it possible to obtain a porous body of extremely high purity.
出願人 東芝セラミックス株式会社Applicant: Toshiba Ceramics Corporation
Claims (2)
リカ層によって密に結合させ、かつ結晶質シリカ粉体粒
子間に多数の開気孔を形成させて構成したことを特徴と
するシリカ質多孔体。(1) A silica characterized in that crystalline silica powder particles are tightly bonded by an amorphous silica layer covering the surface thereof, and a large number of open pores are formed between the crystalline silica powder particles. porous material.
粒子の1/2以下の非晶質シリカ粉体を5〜50重量%
添加し、混合、成形後、1300〜1500℃の温度で
焼成することを特徴とするシリカ質多孔体の製造方法。(2) 5 to 50% by weight of amorphous silica powder with an average particle size of 1/2 or less of the crystalline silica powder particles is added to the crystalline silica powder.
A method for producing a porous siliceous material, which comprises adding, mixing, shaping, and then firing at a temperature of 1,300 to 1,500°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33604590A JPH04202070A (en) | 1990-11-30 | 1990-11-30 | Siliceous porous body and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33604590A JPH04202070A (en) | 1990-11-30 | 1990-11-30 | Siliceous porous body and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04202070A true JPH04202070A (en) | 1992-07-22 |
Family
ID=18295132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33604590A Pending JPH04202070A (en) | 1990-11-30 | 1990-11-30 | Siliceous porous body and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04202070A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06256069A (en) * | 1993-02-26 | 1994-09-13 | Kikusui Kagaku Kogyo Kk | Ceramic porous material and its production |
-
1990
- 1990-11-30 JP JP33604590A patent/JPH04202070A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06256069A (en) * | 1993-02-26 | 1994-09-13 | Kikusui Kagaku Kogyo Kk | Ceramic porous material and its production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109173748A (en) | A kind of preparation method of coal ash ceramic film | |
TWI263626B (en) | Dispersion comprising silicon/titanium mixed oxide powder, and green bodies and shaped glass articles produced therefrom | |
JP2017210403A (en) | Production method of opaque quartz glass containing pore | |
TW200416202A (en) | Method of making silica-titania extreme ultraviolet elements | |
JPH075396B2 (en) | Alumina particle-bonded porous body and method for producing the same | |
CN112521177B (en) | Low-melting-point porous ceramic material and preparation method thereof | |
JP2003206185A (en) | Aluminum oxide ceramic porous body and method for producing the same | |
JPH04202070A (en) | Siliceous porous body and its production | |
WO1991001834A1 (en) | Method of improving quality of porous body having air holes | |
KR20010062256A (en) | Process for producing silica soot | |
JPS62105936A (en) | Production of quartz glass | |
JP5118345B2 (en) | Method for producing ceramic porous body | |
JPS63103877A (en) | Manufacture of mullite base porous body | |
JPH0667776B2 (en) | A continuous pore glass sintered body having a large continuous pore volume, which is particularly suitable as a filter material for liquids and gases having a high permeation rate, and a method for producing the same. | |
Şan et al. | Fabrication of glassy ceramic membrane filters for filtration of spring water with clogging phenomena | |
JP2934866B2 (en) | Silica glass gas filter | |
JP2934865B2 (en) | Silica glass filter | |
KR101328998B1 (en) | Ceramic porous body and preparing method thereof | |
JPS6191091A (en) | Production of ferrite single crystal | |
JP2934864B2 (en) | Method for producing silica glass filter | |
JPH03202106A (en) | Size separation device | |
CA2398876A1 (en) | Sol-gel process for producing synthetic silica glass | |
JP2847550B2 (en) | Silica glass filter | |
JP2001058870A (en) | Sintered quartz and its production | |
JPH0717780A (en) | Production of porous ceramic film |