JPH04181779A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPH04181779A
JPH04181779A JP2310462A JP31046290A JPH04181779A JP H04181779 A JPH04181779 A JP H04181779A JP 2310462 A JP2310462 A JP 2310462A JP 31046290 A JP31046290 A JP 31046290A JP H04181779 A JPH04181779 A JP H04181779A
Authority
JP
Japan
Prior art keywords
gate electrode
thin film
gate
insulating film
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2310462A
Other languages
Japanese (ja)
Other versions
JP3008485B2 (en
Inventor
Takashi Nakazawa
尊史 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP31046290A priority Critical patent/JP3008485B2/en
Publication of JPH04181779A publication Critical patent/JPH04181779A/en
Application granted granted Critical
Publication of JP3008485B2 publication Critical patent/JP3008485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To obtain characteristics having a large ON to OFF ratio and a large ON current to OFF current ratio by providing the second gate electrode having a large width compared to the first gate electrode in source region and drain region directions. CONSTITUTION:On a substrate 101 such as silicon substrate, sequentially formed are a metal such as Cr, a first gate electrode 102 comprising a transparent electrode such as ITO, a first gate insulation film 103 made of an insulation film such as SiO2 and a semiconductor layer 104 comprising a silicon thin film such as polycrystal silicon. Also, a second gate insulation film 107 made of an insulation film such as SiO2, a metal such as Cr, a transparent electrode such as ITO and a second gate electrode 108 comprising a silicon thin film containing impurities are sequentially formed. Impurity ions such P and B are driven into the semiconductor layer 104 with a predetermined energy, and a source zone 106 and drain zone 105 are formed. The second gate electrode 108 is provided to cover the first gate electrode 102. By doing this, the characteristics of a large ON to OFF ratio and a large ON current to OFF current ratio can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアクティブマトリックス方式の液晶デイスプレ
ィや、イメージセンサや3次元集積回路などに応用され
る薄膜トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film transistor applied to active matrix liquid crystal displays, image sensors, three-dimensional integrated circuits, and the like.

〔従来の技術〕[Conventional technology]

従来の薄膜トランジスタは、例えばJAPAND工5P
iAY′86の1986年P196〜P199に示され
る様な構造であった。この構造を一般化して、その概要
を第2図に示す。(α)図は上視図であり、(b)図は
AA’における断面図である。ガラス、石英、サファイ
ア等の絶縁基板201上に、ドナーあるいは、アクセプ
タとなる不純物を添加した多結晶シリコン薄膜から成る
ソース領域202及びドレイン領域205が形成されて
いる。これに接して、ソース電極204とドレイン電極
205が設けられており、更にソース領域202及びド
レイン領域2CI5の上側で接し両者を結ぶように多結
晶シリコン薄膜から成るチャネル領域206が形成され
ている。これらを被覆するようにゲート絶縁膜207が
設けられている。
Conventional thin film transistors are, for example, JAPAND 5P.
The structure was as shown in iAY'86, 1986, P196-P199. This structure is generalized and its outline is shown in FIG. The figure (α) is a top view, and the figure (b) is a cross-sectional view at AA'. A source region 202 and a drain region 205 are formed on an insulating substrate 201 made of glass, quartz, sapphire, etc., which are made of a polycrystalline silicon thin film doped with impurities to serve as donors or acceptors. A source electrode 204 and a drain electrode 205 are provided in contact with this, and a channel region 206 made of a polycrystalline silicon thin film is formed so as to contact and connect above the source region 202 and drain region 2CI5. A gate insulating film 207 is provided to cover these.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前述の従来技術には以下に述べるような課題が
ある。
However, the above-mentioned conventional technology has the following problems.

第5図は第2図で説明した様な構造を持つチャネル長1
0μm、チャネル幅10μmの薄膜トランジスタの特性
の一例を示すグラフであり、横軸がゲート電圧Vge、
縦軸はドレイン電流工dの対数値である。ここでトラン
ジスタがオフ状態の時(ゲート電圧が負)にソース、ド
レイン間に流れる電流をオフ電流工Off、トランジス
タがオン状態の時(ゲート電圧1ov以上)にソース、
ドレイン間に流れる電流をオン電流工onと呼ぶ。オン
電流が大きくオフ電流の小さな特性、言い替えるとオン
/オフ比工on/工Offの大きな特性が望ましい。と
ころが一般にオン電流を上げるとオフ電流も増加する傾
向にあり、この事は特にドライバー内蔵型の液晶デイス
プレィを実現する上で問題となる。即ち液晶デイスプレ
ィの画素部に用いるトランジスタには特にオフ電流の少
ない特性が要求されるのに対し、周辺回路に用いるトラ
ンジスタには高速動作をさせる為に、オン電流の大きい
特性が要求される。
Figure 5 shows a channel length 1 with the structure explained in Figure 2.
It is a graph showing an example of the characteristics of a thin film transistor with a channel width of 0 μm and a channel width of 10 μm, where the horizontal axis is the gate voltage Vge,
The vertical axis is the logarithm of the drain current d. Here, when the transistor is in the off state (gate voltage is negative), the current flowing between the source and drain is OFF, and when the transistor is in the on state (gate voltage is 1ov or more), the current flows between the source and drain.
The current flowing between the drains is called on current. It is desirable that the on-current is large and the off-current is small, or in other words, the on/off ratio (on/off) is large. However, in general, when the on-state current increases, the off-state current also tends to increase, and this becomes a problem especially when realizing a liquid crystal display with a built-in driver. That is, transistors used in the pixel portion of a liquid crystal display are required to have particularly low off-current characteristics, whereas transistors used in peripheral circuits are required to have large on-current characteristics in order to operate at high speed.

本発明はこの様な問題点を解決するものであり、その目
的とするところはオン/オフ比工on/工offの大き
な特性を持つ薄膜トランジスタを提供する事にある。
The present invention is intended to solve these problems, and its purpose is to provide a thin film transistor having a large on/off ratio (on/off).

〔課題を解決するための手段〕[Means to solve the problem]

本発明の薄膜トランジスタは、所定の基板上に第1のゲ
ート電極、該第1のゲート電極を覆うように設けられた
第Tのゲート絶縁膜、該第1のゲート絶縁膜と接するよ
うに設けられた半導体層、該半導体層分覆うように設け
られた第2のゲート絶縁膜、該第2のゲート絶縁膜と接
し、該第1のゲート電極を被覆するように設けられた第
2のゲート電極、該第2のゲート電極をマスクに自己整
合的に形成されたソース領域及びドレイン領域企順次積
層したことを特徴とする。
The thin film transistor of the present invention includes a first gate electrode on a predetermined substrate, a T-th gate insulating film provided to cover the first gate electrode, and a T-th gate insulating film provided in contact with the first gate insulating film. a second gate insulating film provided to cover the semiconductor layer; a second gate electrode provided in contact with the second gate insulating film and covering the first gate electrode; The second gate electrode is characterized in that a source region and a drain region formed in a self-aligned manner are sequentially stacked using a mask.

〔実施例〕〔Example〕

以下実施例に基づいて、本発明の詳細な説明する。第1
図に本発明による薄膜トランジスタの1例を示す。
The present invention will be described in detail below based on Examples. 1st
The figure shows an example of a thin film transistor according to the present invention.

ガラス、セラミックス、シリコン基板等の基板101上
にOr、Ti等の金属、■To等の透明電極から成る第
1のゲート電極102を形成する。その膜厚は5QO〜
5[]DDXが望ましい。材質は上記の材質に限定され
るものではなく、導電性の料質であればよい。次に5i
n2 、SiN。
A first gate electrode 102 made of a metal such as Or, Ti, or a transparent electrode such as To is formed on a substrate 101 such as a glass, ceramic, or silicon substrate. The film thickness is 5QO~
5[]DDX is desirable. The material is not limited to the above materials, and any conductive material may be used. Next 5i
n2, SiN.

Ta2O,等の絶縁膜から成る第1のゲート絶縁膜10
5を形成する。その膜厚は500〜5000Xが望まし
い。一方第1のゲート電極102・を不純物を添加した
シリコン薄膜とし、熱酸化法により第1のゲート電極1
02の表面を酸化して、第1のゲート絶縁膜103を形
成してもよい。次に多結晶シリコン、非晶質シリコン等
のシリコン薄膜から成る半導体層104を形成する。そ
の膜厚は500〜2oooXが望ましい。次に5102
、S iN 、Ta2O,等の絶縁膜から成る第2のゲ
ート絶縁膜107を形成する。その膜厚は500〜5o
ooXが望ましい。第2のゲート絶縁膜107は、第1
のゲート絶縁膜105と同様に、半導体層104を熱酸
化法により表面を酸化して形成してもよい。次にOr、
Ti等の金属、工TO等の透明電極、不純物を添加した
シリコン薄膜より成る第2のゲート電極108を形成す
る。最後に、P、B等の不純物をイオン打込み法、イオ
ンドーピング法等により、所定のエネルギーで不純物イ
オンを半導体層104へ打込み、ソース領域106.ド
レイン領域105を形成し、熱処理、レーザービーム照
射により不純物を活性化する。第2のゲート電極108
は、導電性があり、かつソース領域106.ドレイン領
域105を形成する際のイオン打込みに対してのマスク
となる材質、膜厚5等の条件が要求される。この様に形
成された薄膜トランジスタの等何回路を第4図に示す。
A first gate insulating film 10 made of an insulating film such as Ta2O, etc.
form 5. The film thickness is preferably 500 to 5000X. On the other hand, the first gate electrode 102 is made of a silicon thin film doped with impurities, and the first gate electrode 102 is formed using a thermal oxidation method.
The first gate insulating film 103 may be formed by oxidizing the surface of 02. Next, a semiconductor layer 104 made of a silicon thin film such as polycrystalline silicon or amorphous silicon is formed. The film thickness is preferably 500 to 200X. Next 5102
, SiN, Ta2O, or the like is formed. The film thickness is 500~5o
ooX is desirable. The second gate insulating film 107
Similarly to the gate insulating film 105, the semiconductor layer 104 may be formed by oxidizing the surface using a thermal oxidation method. Then Or,
A second gate electrode 108 is formed of a metal such as Ti, a transparent electrode such as TO, and a silicon thin film doped with impurities. Finally, impurity ions such as P and B are implanted into the semiconductor layer 104 at a predetermined energy by an ion implantation method, an ion doping method, etc., and the source region 106. A drain region 105 is formed, and impurities are activated by heat treatment and laser beam irradiation. Second gate electrode 108
is conductive and the source region 106. Conditions such as the material used as a mask for ion implantation when forming the drain region 105 and the film thickness 5 are required. FIG. 4 shows a circuit of thin film transistors formed in this manner.

401は第2のゲート電極108.402はソース電極
、403はドレイン電極、404は第1のゲート電極1
02である。ここで、41:M*402.405より成
る薄膜トランジスタをTF’T1.404,402,4
05より成る薄膜トランジスタをTFT2とする。第5
図に示す等何回路の様にTFTlとTFT2のゲート電
極を接続する。第1図に示す第1のゲート絶縁膜105
と第2のゲート絶縁膜107が同材質で膜厚が第1のゲ
ート絶縁膜105に比べ第2のゲート絶縁膜が厚い場合
、第6図の実線で示す特性が得られる。
401 is the second gate electrode 108. 402 is the source electrode, 403 is the drain electrode, and 404 is the first gate electrode 1.
It is 02. Here, a thin film transistor consisting of 41:M*402.405 is TF'T1.404,402,4
A thin film transistor made of 05 is referred to as TFT2. Fifth
The gate electrodes of TFT1 and TFT2 are connected like the circuit shown in the figure. First gate insulating film 105 shown in FIG.
When the second gate insulating film 107 is made of the same material and is thicker than the first gate insulating film 105, the characteristics shown by the solid line in FIG. 6 are obtained.

横軸がゲート電圧76日(v)、縦軸はドレイン電流工
dの対数値、ソース、ドレイン電圧4(v)、チャネル
幅10μmTFT1のチャネル長10μm、TFT2の
チャネル長8μmである。従来の特性第3図と比べると
、ゲート電圧V g sが負領域でのドレイン電流の増
大がなく、従来の薄膜トランジスタにおけるゲート電圧
o(v)’のドレイン電流値をそのまま保っている。す
なわち薄膜トランジスタのオフ特性を大幅に改善できて
いる。これは、薄膜トランジスタがオフ時に、芦2のゲ
ート電極とドレイン領域の間の電圧が実効的に小さくな
るからである。一方ゲート電圧Vgが正領域では従来と
ほとんど差がない。これは薄膜トランジスタにおいては
、チャネル部の半導体層が500〜2000にと薄い為
空乏層の延びる範囲が限られ、反転層ができやすいので
、オフセット量109を最適化(ΔL(jμm)すれば
、オン電流の減少を抑える事ができる。第7図にオフセ
ット量ΔLとオン電流工onの対数値の関係を示す。横
軸はオフセット量ΔL1縦軸はオン電流工onである。
The horizontal axis is the gate voltage 76 days (v), and the vertical axis is the logarithm of the drain current d, the source and drain voltages are 4 (v), the channel width is 10 μm, the channel length of TFT1 is 10 μm, and the channel length of TFT2 is 8 μm. Compared to the conventional characteristics shown in FIG. 3, the drain current does not increase in the negative region of the gate voltage V g s, and the drain current value of the gate voltage o(v)' in the conventional thin film transistor is maintained as it is. In other words, the off-characteristics of the thin film transistor can be significantly improved. This is because the voltage between the gate electrode and the drain region of the reed 2 becomes effectively small when the thin film transistor is off. On the other hand, when the gate voltage Vg is in the positive region, there is almost no difference from the conventional method. This is because in thin film transistors, the semiconductor layer in the channel part is as thin as 500 to 2000 nm, so the range in which the depletion layer extends is limited, and an inversion layer is likely to form. The decrease in current can be suppressed. Fig. 7 shows the relationship between the offset amount ΔL and the logarithmic value of the on-current value on. The horizontal axis represents the offset amount ΔL1, and the vertical axis represents the on-current value on.

この図から明らかな様にオフセット量ΔLが3μmを超
えると急激にオン電流が減少する。ここでは、TFTl
とT F T 2(1’J’ゲート絶縁膜の材質が同じ
で膜厚が違う場合について説明したが、TF’TIのゲ
ート絶縁膜に印加される電界強度E1とTFT2のゲー
ト絶縁膜に印加される電界強度E2が E、<12    ・・・・・・(11を満たせば全(
同様の効果が得られる。すなわち、第1のゲート絶縁膜
105と第2のゲート絶縁膜107が異質の材質でも(
1)式を満たす様に膜厚を設定すればよい。
As is clear from this figure, when the offset amount ΔL exceeds 3 μm, the on-current decreases rapidly. Here, TFTl
and T F T 2 (1'J' We have explained the case where the gate insulating film is made of the same material but has different film thickness, but the electric field strength E1 applied to the gate insulating film of TF'TI and the electric field applied to the gate insulating film of TFT2 is The electric field strength E2 to be
A similar effect can be obtained. That is, even if the first gate insulating film 105 and the second gate insulating film 107 are made of different materials (
1) The film thickness may be set so as to satisfy the formula.

第4図に示す等何回路において、TFTMのゲート電極
401に印加する電圧11 、TFT2のゲート電極4
02に印加する電圧v2を変えて、+11式を満たす様
にVl、V2を設定しても上記と全(同様の効果が得ら
れる。一方V1.’V2の設定を、 El >E 2     ・・・・・・(2)を満たす
様に設定すると第6図の点線で示す特性が得られる。オ
フ電流は従来の薄膜トランジスタと同程度であるがオン
電流が従来に比べ大きくなる。すなわち、v’l、v2
の設定により薄膜トランジスタの特性をコントロールす
ることができる第8図の等何回路に示す様にTPTI 
 801のゲート電極とTPT2 802のゲート電極
を接続する。TF’T1とTFT2の電界強度は、+1
)式を満たしており、第6図の実線の特性が得られる。
In the circuit shown in FIG. 4, the voltage 11 applied to the gate electrode 401 of the TFT,
Even if you change the voltage v2 applied to 02 and set Vl and V2 to satisfy the +11 formula, the same effect as above can be obtained.On the other hand, when setting V1.'V2, El > E 2... If the settings are made to satisfy (2), the characteristics shown by the dotted line in Figure 6 will be obtained.The off-state current is about the same as that of conventional thin film transistors, but the on-state current is larger than that of conventional thin film transistors.In other words, v' l, v2
The characteristics of the thin film transistor can be controlled by setting the TPTI as shown in the circuit shown in Figure 8.
The gate electrode of TPT2 801 and the gate electrode of TPT2 802 are connected. The electric field strength of TF'T1 and TFT2 is +1
), and the characteristics shown by the solid line in FIG. 6 are obtained.

この薄膜トランジスタを用いて液晶層8053駆動する
と、TFT2の第1のゲート電極1゜2は、TFT2の
第2のゲート電極107によってシールドされており、
液晶層にゲート信号が印加されるのを防ぐことができ、
信頼性を向上できる。又、オフ電流も低減するこ2が’
Err*目〉かり妨晶層に蓄積された電荷の保持特性も
向上し、液晶表示装置の表示品質も大幅に向上できる。
When the liquid crystal layer 8053 is driven using this thin film transistor, the first gate electrode 1°2 of TFT2 is shielded by the second gate electrode 107 of TFT2,
It can prevent gate signals from being applied to the liquid crystal layer,
Can improve reliability. In addition, the off-state current can also be reduced.
The retention characteristics of the charges accumulated in the Err* disturbing crystal layer are also improved, and the display quality of the liquid crystal display device can be greatly improved.

以上N型の薄膜トランジスタについて説明したがPff
薄膜トランジスタでも全く同様に構成できる。
Although I have explained the N-type thin film transistor above, Pff
A thin film transistor can also be constructed in exactly the same way.

〔発明の効果〕〔Effect of the invention〕

本発明は次のようなすぐれた効果を有する。 The present invention has the following excellent effects.

第1にオン電流を減少させる事なく、オフ電流を劇的に
低減させる事ができ、液晶表示装置に応用すれば、保持
特性が向上し、コントラスト比を大幅に改善できる。
First, the off-state current can be dramatically reduced without reducing the on-state current, and when applied to a liquid crystal display device, the retention characteristics can be improved and the contrast ratio can be greatly improved.

第2に、ゲート電極をシールドすることが可能となり、
ゲート信号が液晶層へ印加されるのを防止でき、液晶表
示装置の信頼性が向上する。
Second, it becomes possible to shield the gate electrode,
Gate signals can be prevented from being applied to the liquid crystal layer, improving the reliability of the liquid crystal display device.

第6に、TFTI 、TF’T2のそれぞれのゲート電
極へ印加する信号を調整することにより、オン電流が増
大し、薄膜トランジスタによる高速のロジック回路が実
現できる。
Sixth, by adjusting the signals applied to the respective gate electrodes of TFTI and TF'T2, the on-current can be increased and a high-speed logic circuit using thin film transistors can be realized.

以上の様に、本発明の薄膜トランジスタは数多くの優れ
た効果を有するものであり、その応用範囲は、液晶表示
装置のアクティブマトリックス基板やその周辺回路、イ
メージセンサ、3次元集積回路など多岐にわたる。
As described above, the thin film transistor of the present invention has many excellent effects, and its application range is wide-ranging, including active matrix substrates of liquid crystal display devices, peripheral circuits thereof, image sensors, and three-dimensional integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のN膜トランジスタの断面図を示す。 第2図(α)、(b)は従来の薄膜トランジスタの構造
を示し、(a)は上視図、(b)は断面図である。 第3図は従来の薄膜トランジスタの特性図、第6図は本
発明の薄膜トランジスタの特性を示す図第4図、第5図
、第8図は本発明の薄膜トランジスタの等価回路を示す
図。 第7図はオフセット量ΔLとオン電極工Qnの関係を示
す図。 104.201・・・・・・基 板 102    ・・・・・・第1のゲート電極103 
   ・・・・・・第1のゲート絶縁膜104.2[)
6・・・・・・半導体層105.2m5・・・・・・ド
レイン領域106.202・・・・・・ソース領域10
7    ・・・・・・第2のゲート絶縁膜108  
   ・・・・・・第2のゲート絶縁膜109    
 ・・・・・・オフセクト量ΔL207    ・・・
・・・ゲート絶縁膜208.401,404・・・・・
・ゲート電極204.402・・・・・・ソース電極2
05.405・・・・・・ドレイン電極405.50i
 、soi・−・・−’rF’r1406.502,8
02・・・・・・TFT2以上 出H人 セイコーエプソン株式会U 代理人 弁理士 鈴木喜三部(他T名)(a) (b) 第5図 Vgs  (V) 第6図
FIG. 1 shows a cross-sectional view of an N-film transistor of the present invention. FIGS. 2(a) and 2(b) show the structure of a conventional thin film transistor, where (a) is a top view and (b) is a cross-sectional view. FIG. 3 is a characteristic diagram of a conventional thin film transistor, and FIG. 6 is a diagram showing characteristics of a thin film transistor of the present invention. FIGS. 4, 5, and 8 are diagrams showing equivalent circuits of the thin film transistor of the present invention. FIG. 7 is a diagram showing the relationship between the offset amount ΔL and the on-electrode size Qn. 104.201...Substrate 102...First gate electrode 103
...First gate insulating film 104.2 [)
6...Semiconductor layer 105.2m5...Drain region 106.202...Source region 10
7...Second gate insulating film 108
...Second gate insulating film 109
...Offsect amount ΔL207 ...
...Gate insulating film 208, 401, 404...
・Gate electrode 204.402...Source electrode 2
05.405...Drain electrode 405.50i
, soi・-・・-'rF'r1406.502,8
02... TFT2 or above H person Seiko Epson Co., Ltd. U Agent Patent attorney Kizobe Suzuki (other T names) (a) (b) Figure 5 Vgs (V) Figure 6

Claims (5)

【特許請求の範囲】[Claims] (1)ガラス、セラミックス、シリコン基板等の基板上
に、第1のゲート電極、該第1のゲート電極を覆うよう
に設けられた第1のゲート絶縁膜、該第1のゲート絶縁
膜と接するように設けられた半導体層、該半導体層を覆
うように設けられた第2のゲート絶縁膜、該第2のゲー
ト絶縁膜と接し、該第1のゲート電極に比べ、ソース領
域及びドレイン領域方向に幅を大きくして設けられた第
2のゲート電極、第2のゲート電極をマスクとして、自
己整合的に該半導体層に不純物を添加して設けられた該
ソース領域及び該ドレイン領域を順次積層したことを特
徴とする薄膜トランジスタ。
(1) A first gate electrode, a first gate insulating film provided to cover the first gate electrode, and a contact with the first gate insulating film on a substrate such as a glass, ceramic, or silicon substrate. a second gate insulating film provided to cover the semiconductor layer; a second gate insulating film in contact with the second gate insulating film; A second gate electrode provided with an increased width, and a source region and a drain region provided by adding impurities to the semiconductor layer in a self-aligned manner are sequentially stacked using the second gate electrode as a mask. A thin film transistor characterized by:
(2)該第2のゲート絶縁膜の膜厚が該第1のゲート絶
縁膜より厚いことを特徴とする請求項1記載の薄膜トラ
ンジスタ。
(2) The thin film transistor according to claim 1, wherein the second gate insulating film is thicker than the first gate insulating film.
(3)該第1のゲート電極と該第2のゲート電極を接続
し、所定の電気信号を印加することを特徴とする請求項
1又は2記載の薄膜トランジスタ。
(3) The thin film transistor according to claim 1 or 2, wherein the first gate electrode and the second gate electrode are connected and a predetermined electric signal is applied.
(4)該第1のゲート電極と該第2のゲート電極にそれ
ぞれ所定の電気信号を印加することを特徴とする請求項
1又は2記載の薄膜トランジスタ。
(4) The thin film transistor according to claim 1 or 2, wherein predetermined electric signals are applied to the first gate electrode and the second gate electrode, respectively.
(5)該第2のゲート電極を所定の電位に固定し、該第
1のゲート電極に所定の電気信号を印加することを特徴
とする請求項1又は2記載の薄膜トランジスタ。
(5) The thin film transistor according to claim 1 or 2, wherein the second gate electrode is fixed at a predetermined potential and a predetermined electric signal is applied to the first gate electrode.
JP31046290A 1990-11-16 1990-11-16 Thin film transistor Expired - Fee Related JP3008485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31046290A JP3008485B2 (en) 1990-11-16 1990-11-16 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31046290A JP3008485B2 (en) 1990-11-16 1990-11-16 Thin film transistor

Publications (2)

Publication Number Publication Date
JPH04181779A true JPH04181779A (en) 1992-06-29
JP3008485B2 JP3008485B2 (en) 2000-02-14

Family

ID=18005543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31046290A Expired - Fee Related JP3008485B2 (en) 1990-11-16 1990-11-16 Thin film transistor

Country Status (1)

Country Link
JP (1) JP3008485B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645603A (en) * 1992-07-23 1994-02-18 Nec Corp Mos thin-film transistor
JP2002033488A (en) * 2001-05-14 2002-01-31 Semiconductor Energy Lab Co Ltd Semiconductor device
US6504182B2 (en) * 1999-08-24 2003-01-07 Koninklijke Philips Electronics N.V. Thin-film transistors
US6730970B1 (en) * 1999-11-16 2004-05-04 Nec Lcd Technologies, Ltd. Thin film transistor and fabrication method of the same
JP2006049928A (en) * 2005-09-29 2006-02-16 Semiconductor Energy Lab Co Ltd Semiconductor device
US7265390B2 (en) 2001-07-17 2007-09-04 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2017139488A (en) * 2017-04-10 2017-08-10 株式会社半導体エネルギー研究所 Semiconductor device, display module, and electronic equipment
JP2020080430A (en) * 2010-02-05 2020-05-28 株式会社半導体エネルギー研究所 Semiconductor device
US10854636B2 (en) 2001-07-27 2020-12-01 Semiconductor Energy Laboratory Co., Ltd. Metal wiring and method of manufacturing the same, and metal wiring substrate and method of manufacturing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645603A (en) * 1992-07-23 1994-02-18 Nec Corp Mos thin-film transistor
US6504182B2 (en) * 1999-08-24 2003-01-07 Koninklijke Philips Electronics N.V. Thin-film transistors
US6730970B1 (en) * 1999-11-16 2004-05-04 Nec Lcd Technologies, Ltd. Thin film transistor and fabrication method of the same
JP2002033488A (en) * 2001-05-14 2002-01-31 Semiconductor Energy Lab Co Ltd Semiconductor device
US7485896B2 (en) 2001-07-17 2009-02-03 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7265390B2 (en) 2001-07-17 2007-09-04 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US10854636B2 (en) 2001-07-27 2020-12-01 Semiconductor Energy Laboratory Co., Ltd. Metal wiring and method of manufacturing the same, and metal wiring substrate and method of manufacturing the same
JP2006049928A (en) * 2005-09-29 2006-02-16 Semiconductor Energy Lab Co Ltd Semiconductor device
JP4610455B2 (en) * 2005-09-29 2011-01-12 株式会社半導体エネルギー研究所 Semiconductor device
JP2020080430A (en) * 2010-02-05 2020-05-28 株式会社半導体エネルギー研究所 Semiconductor device
US11101295B2 (en) 2010-02-05 2021-08-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11469255B2 (en) 2010-02-05 2022-10-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11749686B2 (en) 2010-02-05 2023-09-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US12113074B2 (en) 2010-02-05 2024-10-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2017139488A (en) * 2017-04-10 2017-08-10 株式会社半導体エネルギー研究所 Semiconductor device, display module, and electronic equipment

Also Published As

Publication number Publication date
JP3008485B2 (en) 2000-02-14

Similar Documents

Publication Publication Date Title
JP3556679B2 (en) Electro-optical device
EP0494628B1 (en) Manufacturing method for a multigate thin film transistor
JP2001051292A (en) Semiconductor device and semiconductor display device
JPH0777264B2 (en) Method of manufacturing thin film transistor
US7008830B2 (en) Poly-crystalline thin film transistor and fabrication method thereof
US6028333A (en) Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US6242777B1 (en) Field effect transistor and liquid crystal devices including the same
KR100676330B1 (en) Semiconductor device, method of manufacturing semiconductor device and method of manufacturing thin film transistor
JPH04181779A (en) Thin film transistor
JPS625661A (en) Thin film transistor
JPH10268254A (en) Liquid crystal display device
JP3056813B2 (en) Thin film transistor and method of manufacturing the same
JPH01218070A (en) Mos transistor
JPH1079517A (en) Semiconductor device and manufacture thereof
JP2761496B2 (en) Thin film insulated gate semiconductor device and method of manufacturing the same
JPH07159809A (en) Liquid crystal display
JPS63142851A (en) Semiconductor device
JPS60251666A (en) Thin-film transistor
JPH0277159A (en) Thin film semiconductor element
KR950009797B1 (en) Fid poly silicon tft with bottom gate
JP2867457B2 (en) Method of manufacturing thin film transistor matrix
JPS6346776A (en) Manufacture of thin film transistor
JPS59115561A (en) Manufacture of thin film transistor
JP3153515B2 (en) Method for manufacturing insulated gate semiconductor device
JPS60224278A (en) N type transistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees