JPH04135536A - Position detecting device of living body magnetic field measuring instrument - Google Patents

Position detecting device of living body magnetic field measuring instrument

Info

Publication number
JPH04135536A
JPH04135536A JP2256972A JP25697290A JPH04135536A JP H04135536 A JPH04135536 A JP H04135536A JP 2256972 A JP2256972 A JP 2256972A JP 25697290 A JP25697290 A JP 25697290A JP H04135536 A JPH04135536 A JP H04135536A
Authority
JP
Japan
Prior art keywords
living body
coil
magnetic field
magnetometer
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2256972A
Other languages
Japanese (ja)
Other versions
JPH0555126B2 (en
Inventor
Kenichi Okajima
健一 岡島
Hisashi Kado
賀戸 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Hitachi Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP2256972A priority Critical patent/JPH04135536A/en
Publication of JPH04135536A publication Critical patent/JPH04135536A/en
Publication of JPH0555126B2 publication Critical patent/JPH0555126B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To detect the position relation of a multi-channel flux meter and a living body with high accuracy by a simple constitution by installing one coil being equal approximately to an external form of the living body to the living body, executing an electric conduction to this coil and measuring a generated magnetic field by a multi-channel SQUID fluxmeter. CONSTITUTION:A feeble magnetic field generated from a living body 1 is detected by a pickup coil 32 cooled by liquid helium 12, converted to a voltage corresponding to input magnetic field strength by a SQUID element 31, and converted to a signal being proportional to the input magnetic flux quantity by a flux locked loop circuit 13. Subsequently, an output of each channel is recorded in a computer 15. On the other hand, to a position measuring coil 11, a current is allowed to flow from a position measuring coil control circuit 16, and when a magnetic field is generated, it is measured by a SQUID fluxmeter 3, and a position of the SQUID fluxmeter 3 by a body motion of the living body 1. In this case, a shape of the position measuring coil 11 is almost the same as an external form of the living body 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、生体から発生する磁気信号を検出する生体磁
場計測装置に係り、特に多チヤネル磁束計と生体との位
置関係を正確に検出することが可能な装置に関する。
The present invention relates to a biomagnetic field measuring device that detects magnetic signals generated from a living body, and particularly to a device that can accurately detect the positional relationship between a multichannel magnetometer and a living body.

【従来の技#i】[Conventional technique #i]

超伝導量子干渉素子(SQUID)と超伝導コイルから
なる磁束計は磁束密度が10−”T以下の極めて微弱な
磁界計測が可能で、筋肉、心臓。 肺、脳などの生体組織から発生する磁束計測により生体
の機能診断ができることは良く知られている。 さらに、多チャネルの磁束計により、神経の活動電流に
起因して発生する磁束を計測し、神経の活動電流分布を
推定する装置が得られている。 このことは、例えばr1989  インターナショナル
 スーパーコンダクテイビテイ エレクトロニクス コ
ンファレンスJ  (1989I nternatio
nal S uperconductjvityE 1
ectronics Conference) 、 p
p4 Q −45。 Junel 2−13. 1989.  Tokyo 
 Japan、)に記載される。しかし、多チヤネル磁
束計では生体組織の形態情報は得られず、MRJやXl
lCT画像のような形態画像上に神経活動電流分布を重
ね表示することにより、生体内での活動部位の同定を行
なっている。そのため、形態画像との位置合せが重要と
なる。 第2図(a)は、特表平1−503603号に示される
従来技術の一例である。5QUID磁束計3を極低温に
保持するためのクライオスタット2上に電磁信号を発生
する送信機4が複数個設けられ、さらに、該送信機4か
ら発生する電磁信号を受信するための受信機5が複数個
人体1上に設けられる。上記、送信機4は第2図(b)
に示すように、アンテナの作用をする導電性ワイヤーで
作った互いに直交する3つのコイル6よりなる。 さらに受信機5も同様に、第2c図に示すように導電性
ワイヤで作った互いに直交する3つのコイル7よりなる
。該送信機4と受信if&5を用いると。 各受信機5の送信機4に対する6軸位置を測定できる。 複数の受信機5からの角度情報から各送信機4の位置情
報が得られる。本方式は、5QUID磁束計での計測信
号帯域と異なる周波数を用いることにより、実時間で人
体1を基準としたクライオスタット2位置を求めること
ができる。さらに、クライオスタット4と磁束計3の位
置関係は一義的に決まっているので、人体1を基準とし
た磁束計3の位置を実時間で得ることができる。 第3図(a)は、アイ・イー・イー・イー、トランザク
ション オン マグネティックス、エムニー ジ−23
巻、第2号、(1987年)第1319頁から、第13
22頁(IEEE。 Trans、 Magnetics、 Vol、M A
 G −23、No。 2、(1987)pp1319−1322)において論
じられている別の従来技術である。複数の5QUID磁
束計3とそれを極低温に冷却するクライオスタット2と
5QUID磁束計3と人体1との位置関係を導出するた
めの位置計測用コイル10からなる。位置計測コイル1
0は、人体1上に複数個設置され、該コイル10から発
生した磁場を複数個の5QUID磁束計3で計測し、生
体磁場源の推定アルゴリズムと同様の方法で、コイル1
0位置を推定する。複数のコイル10から、生体座標系
と5QUID磁束計に設定された座標系との関係が得ら
れる。第3図(b)は位置計測コイル10の構造を示す
。導電性ワイヤーで作ったソレノイドコイルからなり、
コイル位置推定アルゴリズムを単純化するため、5QU
ID磁束計3からこのコイル10を見た場合、磁気ダイ
ポールとみなせるように設計されている。これは、ソレ
ノイドコイルの直径を小さくすることにより実現できる
。本方式では、位置計測を5QUID磁束計10を用い
て行なうため1位置計測と生体磁場計測を同時に行うこ
とはできないが、位置信号を受信するための専用の受信
機が不用となるため。 計測システムの規模を小さくすることが可能となる。
A magnetometer consisting of a superconducting quantum interference device (SQUID) and a superconducting coil is capable of measuring extremely weak magnetic fields with a magnetic flux density of 10-"T or less, and can measure magnetic flux generated from living tissues such as muscles, heart, lungs, and brain. It is well known that biological functions can be diagnosed through measurements.Furthermore, a multi-channel magnetometer has been developed to measure the magnetic flux generated due to nerve activity currents, and to estimate the distribution of nerve activity currents. This is true, for example, in the r1989 International Superconductivity Electronics Conference J (1989 International Superconductivity Electronics Conference J).
nal SuperconductjvityE 1
electronics conference), p.
p4 Q-45. June 2-13. 1989. Tokyo
Japan, ). However, multichannel magnetometers cannot obtain morphological information of living tissues, and MRJ and
By superimposing the neural activity current distribution on a morphological image such as an ICT image, active sites in the living body are identified. Therefore, alignment with the morphological image is important. FIG. 2(a) is an example of the prior art shown in Japanese Patent Application Publication No. 1-503603. A plurality of transmitters 4 for generating electromagnetic signals are provided on the cryostat 2 for maintaining the 5QUID magnetometer 3 at an extremely low temperature, and a receiver 5 for receiving the electromagnetic signals generated from the transmitters 4 is further provided. It is provided on a plurality of individual bodies 1. The above transmitter 4 is shown in Fig. 2(b)
As shown in the figure, it consists of three mutually orthogonal coils 6 made of conductive wire that act as an antenna. Furthermore, the receiver 5 similarly consists of three mutually orthogonal coils 7 made of conductive wire, as shown in FIG. 2c. Using the transmitter 4 and the receiver if&5. The six-axis position of each receiver 5 relative to the transmitter 4 can be measured. Position information of each transmitter 4 is obtained from angle information from a plurality of receivers 5. This method can determine the position of the cryostat 2 with respect to the human body 1 in real time by using a frequency different from the measurement signal band of the 5QUID magnetometer. Furthermore, since the positional relationship between the cryostat 4 and the magnetometer 3 is uniquely determined, the position of the magnetometer 3 with respect to the human body 1 can be obtained in real time. Figure 3 (a) shows IE, Transaction on Magnetics, MnG-23.
Volume, No. 2, (1987), pp. 1319-13
Page 22 (IEEE. Trans, Magnetics, Vol, MA
G-23, No. 2, (1987) pp 1319-1322). It consists of a plurality of 5QUID magnetometers 3, a cryostat 2 that cools them to an extremely low temperature, and a position measurement coil 10 for deriving the positional relationship between the 5QUID magnetometers 3 and the human body 1. Position measurement coil 1
A plurality of coils 10 are installed on the human body 1, and the magnetic field generated from the coil 10 is measured by a plurality of 5QUID magnetometers 3, and the coil 1 is
Estimate the 0 position. From the plurality of coils 10, the relationship between the biological coordinate system and the coordinate system set in the 5QUID magnetometer can be obtained. FIG. 3(b) shows the structure of the position measuring coil 10. Consists of a solenoid coil made of conductive wire.
To simplify the coil position estimation algorithm, 5QU
When this coil 10 is viewed from the ID flux meter 3, it is designed so that it can be regarded as a magnetic dipole. This can be achieved by reducing the diameter of the solenoid coil. In this method, position measurement is performed using the 5QUID magnetometer 10, so one-position measurement and biomagnetic field measurement cannot be performed simultaneously, but a dedicated receiver for receiving position signals is not required. It becomes possible to reduce the scale of the measurement system.

【発明が解決しようとする課題】[Problem to be solved by the invention]

上記第1の従来技術は、送信機と受信機とが必要となり
、生体磁場計測システム以外に位置計測システムが必要
となる。システム規模拡大に伴い、装置が高価になる。 さらに、5QUID磁束計に設けられた座標系と生体に
設けられた座標系との関係を出すために、5QUID磁
束計とクライオスタットに設けられた送信機との関係及
び送信機と受信機との位置関係を出すという2回の操作
が必要となり、位置精度が低下する可能性がある。 一方、上記第2の従来技術では位置計測コイル10は磁
気ダイポールとなるため、点の情報のみ得られる。すな
わち、5QUID磁束計に設けられた座標系の中での位
置計測コイルの位置:(X oH’/ oHZ 6 )
が得られる。したがって、1個のコイルで生体の座標系
を表現することは不可能である。磁気ダイポールを用い
て1つの座標系を表現するには最低でも3個の磁気ダイ
ポールが必要となる。すなわち、第3図(C)に示すよ
うに3点で1平面(例えば、xy平面)を決定し、この
平面に垂直に1軸(例えば2軸)方向を決定する。さら
に、平面上の2つの磁気ダイポールの中点を原点とし、
残る磁気ダイポールとこの原点を結ぶ方向で1軸を決定
する。これにより、生体1に座標系が設定される。 この方式では、3個の位置計測コイル10はそれぞれ別
々に生体に取り付けられるため、どれか1個でも取り付
は位置がずれると、誤った座標位置が設定される。さら
に、MHIやXCT画像との重ね合せを考えると、各画
像の座標と上記の議論で得られた座標系との関連を明ら
かにしなければならない。しかし、3個の位置計測コイ
ル10が、MRIやXCT画像のどの位置に取付けられ
ているか精度良く推定することは困難であるため、2つ
の座標系の関連を精度良く出すことはできない。このた
め5QUID磁束計で得られた神経活動電流分布をMR
IやXCT画像上に精度良く重ね合せることはできない
。多数の位置計測コイル10を生体1上に配置し、生体
の外形を求めることにより精度を向上できるが、システ
ム規模が大となり装置が高価になるという問題がある。 本発明の目的は、上記従来技術の問題点を解決して、簡
単な構成で多チヤネル磁束計と生体との位置関係を精度
良く検出することが可能な生体磁場計測装置の位置検出
装置を得るにある。 本発明の他の目的は、医用画像に設けられた座標系と上
記位置検出装置で得られた座標系との相対関係を精度良
く導出することができる位置設定方法を提供するにある
。 fll!題を解決するための手段】 上記目的は、生体の外形と近似的に等しいつまり円形で
はないひとつのコイルを生体に装着し、該コイルに通電
することにより発生する磁場を多チャネル5QUID磁
束計で計測することにより達成される。
The first conventional technique requires a transmitter and a receiver, and requires a position measurement system in addition to the biomagnetic field measurement system. As the system scale expands, equipment becomes more expensive. Furthermore, in order to determine the relationship between the coordinate system provided in the 5QUID magnetometer and the coordinate system provided in the living body, we also determined the relationship between the 5QUID magnetometer and the transmitter provided in the cryostat, and the positions of the transmitter and receiver. This requires two operations to determine the relationship, which may reduce positional accuracy. On the other hand, in the second conventional technique, since the position measuring coil 10 is a magnetic dipole, only point information can be obtained. That is, the position of the position measurement coil in the coordinate system provided in the 5QUID magnetometer: (X oH'/ oHZ 6 )
is obtained. Therefore, it is impossible to express the coordinate system of the living body with one coil. To express one coordinate system using magnetic dipoles, at least three magnetic dipoles are required. That is, as shown in FIG. 3(C), one plane (for example, the xy plane) is determined by three points, and one axis (for example, two axes) directions perpendicular to this plane are determined. Furthermore, with the midpoint of the two magnetic dipoles on the plane as the origin,
One axis is determined in the direction connecting the remaining magnetic dipole and this origin. As a result, a coordinate system is set for the living body 1. In this method, the three position measuring coils 10 are each attached to the living body separately, so if any one of them is attached out of position, an incorrect coordinate position will be set. Furthermore, when considering superimposition with MHI and XCT images, it is necessary to clarify the relationship between the coordinates of each image and the coordinate system obtained in the above discussion. However, since it is difficult to accurately estimate where the three position measurement coils 10 are attached in an MRI or XCT image, it is not possible to accurately determine the relationship between the two coordinate systems. For this reason, the neural activity current distribution obtained with the 5QUID magnetometer is
It is not possible to superimpose the image on the I or XCT image with high accuracy. Although accuracy can be improved by arranging a large number of position measuring coils 10 on the living body 1 and determining the external shape of the living body, there is a problem that the system scale becomes large and the device becomes expensive. An object of the present invention is to solve the problems of the prior art described above, and to obtain a position detection device for a biomagnetic field measurement device that can accurately detect the positional relationship between a multichannel magnetometer and a living body with a simple configuration. It is in. Another object of the present invention is to provide a position setting method that can accurately derive the relative relationship between a coordinate system provided in a medical image and a coordinate system obtained by the position detecting device. flll! [Means for Solving the Problem] The above object is to attach a single coil that is approximately the same as the external shape of the living body, that is, it is not circular, and to measure the magnetic field generated by energizing the coil using a multi-channel 5QUID magnetometer. This is achieved by measuring.

【作用】[Effect]

多チヤネル磁束計によって得られた神経活動電流分布は
、MRIやXIXCT画像上に重ね表示して生体内での
活動部位の同定を行っている。この同定には、次の2つ
の作業が必要となる。 まず第一に、生体に設定した基準座標系にもとすいて、
5QUID磁束計の位置を算出すること。 そしてこの位置を基準として、生体磁気計測を行い、そ
の磁場強度から神経活動電流分布を逆問題を解くことに
より算出する。 第二に、上記基準座標系と、重ね表示する対象となる医
用画像との座標系との関係を出し1位置合せをすること
。 X1ICTでは、通常、目尻と耳の上端付は根とからな
る平面を基準面としているので、この平面上に基準座標
系を設定すれば良い。基準座標の設定方法を第4図(a
)を用いて説明する。生体の外周と概ね同一形状のコイ
ルを生体に装着する。 このコイルで決まる平面が基準平面となる。次に生体は
正中線で左右対称であるので、上記コイルの線対称とな
る直線をX軸とし、このX軸とコイルとの交点からなる
線分の中点を原点とする。2軸及びy軸は一義的に決ま
る。 次に、多チャネル5QUID磁束計の位置計測方法を以
下に述べる。磁束計の超伝導コイルの相互の位置は決ま
っているので、各々の超伝導コイルの位置を与えるので
はなく、多チヤネル磁束計の系に設定された座標系と生
体に設定された座標系との位置関係を求めるものとする
。この束縛条件により、変数が減少し、計算量を大幅に
低減することが可能となる。生体に設けられた座標系を
(xt yt z)とし、超伝導コイルに設けられた座
標系を(X、Y、Z)とする。これらの座標系の関係は
第4図(b)で示すように、 →   → x=x、+R−a →   →     →   →     →   →
==xo+XA−a+YB−a+ZC−a→   → y=3’o+R−b →   →     →   →     →   →
=:y、+xA−b十YB −b+ZC−b→   → zzzo十RaZ →   →     →   →     →   →
=zo+XA−c十YB−c+ZC−cただし B 、
 b 、 Ct A + B + CはそれぞれX軸、
y軸、Z軸、X軸、Y軸、Z軸方向の単位ベクトル。 で与えられる。変数の数は、Xo、yow Zoと各単
位ベクトルの内積となる。コイル11に電流を流すとコ
イル形状と電流量に依存した磁場が発生する。その強度
はビオ・す・バールの法則で一義的に与えられる。 次に次式: H(rt):x番のコイル位置での推定磁場N+   
:i番のコイルの法線ベクトルH♂  =j番のコイル
の測定データ を最小とする変数(XO? yar Zo、各単位ベク
トルの内積)を決める。(ただしこのFOMは、超伝導
フィルがマグネトメータの場合を想定したものである。 微分コイルの場合には、推定磁場はn、方向の微分デー
タを用いる。)FOMを最小とする変数と(コ−)式よ
り5QUID磁束計の位置が得られる。 生体に設けられた座標系と他の画像診断装置からの画像
の位置合せは以下の手順で行なう。コイル11と同一平
面で撮影された画像上にコイル11を重ね表示し、画像
の輪郭とコイル11像が概ね重ね合うように座標位置の
調整を行う。この変分が生体に設定された座標系と画像
に設定された座標系の位置関係を示す。本方法は、二次
元の画像を使って位置関係を得るため位置精度が向上す
る。さらに、使用するコイル11の数は1個であるので
システム規模が小さくてすむという特徴がある。非磁性
のコイル11の使用によって、生体磁気信号計測のあい
だに1位置計測ができるので、被検者の体動による影響
を除くことも可能となる。さらに、位置計測コイルに流
す電流の周波数を生体磁場と異なる周波数帯域に設定す
ることにより、生体磁場を計測しなから5QUID磁束
計位置情報を取り込むことも可能となり、生体の体動を
実時間でモニターすることができる。
The nerve activity current distribution obtained by a multichannel magnetometer is superimposed on an MRI or XIXCT image to identify the active site in the living body. This identification requires the following two operations. First of all, based on the reference coordinate system set for the living body,
5 Calculate the position of the QUID magnetometer. Then, biomagnetic measurements are performed using this position as a reference, and the neural activity current distribution is calculated from the magnetic field strength by solving an inverse problem. Second, the relationship between the reference coordinate system and the coordinate system of the medical image to be displayed in an overlapping manner is determined and alignment is performed. In X1ICT, the plane consisting of the outer corner of the eye and the root of the upper end of the ear is usually used as the reference plane, so the reference coordinate system may be set on this plane. Figure 4 (a) shows how to set the reference coordinates.
). A coil having approximately the same shape as the outer circumference of the living body is attached to the living body. The plane determined by this coil becomes the reference plane. Next, since the living body is symmetrical about the midline, the straight line that is line-symmetrical to the coil is set as the X-axis, and the midpoint of the line segment formed by the intersection of this X-axis and the coil is set as the origin. The two axes and the y-axis are uniquely determined. Next, a method for measuring the position of the multi-channel 5QUID magnetometer will be described below. The mutual positions of the superconducting coils of the magnetometer are fixed, so rather than giving the positions of each superconducting coil, we can calculate the coordinate system set for the multichannel magnetometer system and the coordinate system set for the living body. Let us find the positional relationship between. This constraint reduces the number of variables, making it possible to significantly reduce the amount of calculation. Let the coordinate system provided in the living body be (xt yt z), and the coordinate system provided in the superconducting coil be (X, Y, Z). The relationship between these coordinate systems is as shown in Figure 4 (b), → → x=x, +R−a → → → → → →
==xo+XA-a+YB-a+ZC-a→ → y=3'o+R-b → → → → → →
=:y, +xA-b1YB -b+ZC-b→ → zzzo1RaZ → → → → → →
=zo+XA-c tenYB-c+ZC-cHowever, B,
b, Ct A + B + C are the X axis,
Unit vectors in the y-axis, Z-axis, X-axis, Y-axis, and Z-axis directions. is given by The number of variables is the inner product of Xo, yow Zo, and each unit vector. When a current is passed through the coil 11, a magnetic field is generated depending on the coil shape and the amount of current. Its strength is uniquely given by Biot-S-Barr's law. Next, the following formula: H(rt): Estimated magnetic field N+ at the xth coil position
: Normal vector H♂ of the i-th coil = Determine the variable (XO? yar Zo, inner product of each unit vector) that minimizes the measurement data of the j-th coil. (However, this FOM is based on the assumption that the superconducting filter is a magnetometer. In the case of a differential coil, the estimated magnetic field is n, and the differential data in the direction is used.) -) The position of the 5QUID magnetometer can be obtained from the equation. The alignment of the coordinate system provided in the living body and images from other image diagnostic apparatuses is performed by the following procedure. The coil 11 is displayed superimposed on an image photographed on the same plane as the coil 11, and the coordinate position is adjusted so that the outline of the image and the image of the coil 11 are approximately superimposed. This variation indicates the positional relationship between the coordinate system set on the living body and the coordinate system set on the image. This method uses two-dimensional images to obtain positional relationships, so positional accuracy is improved. Furthermore, since only one coil 11 is used, the system size can be small. By using the non-magnetic coil 11, one position can be measured during biomagnetic signal measurement, so it is also possible to eliminate the influence of the subject's body movement. Furthermore, by setting the frequency of the current flowing through the position measurement coil to a frequency band different from that of the biomagnetic field, it is possible to capture the 5QUID magnetometer position information without measuring the biomagnetic field, allowing the body movements of the living body to be measured in real time. can be monitored.

【実施例】【Example】

以下1本発明の一実施例を第1図を用いて説明する。生
体1又は位置計測コイル11から発生した微弱磁場は、
液体ヘリウム12で冷却されたピックアップコイル32
で検出され、5QUID素子31で入力磁場強度に応じ
た電圧に変換される。 この出力はフラックス・ロックド・ループ(FLL)回
路13で入力磁束量に比例した信号に変換される。各チ
ャネル毎の出力はA/D変換回路14でA/D変換され
ディジタルデータとしてコンピュータ】5に記録される
。5QUID磁束計3を極低温に保持するクライオスタ
ット2の素材はガラス、ステンレス、FRPなどが使わ
れているが、本実施例では■非磁性、■液体He注入時
の移送効率が高い、■液体He蒸発量が低い、■軽量で
ある。ことを考慮してFRPを使用した。 位置計測コイル11には、コンピュータ15の指示によ
り1位置計測コイル制御回路16から電流が流され、磁
場を発生する。発生磁場は生体磁場と同一の5QUID
磁束計3で計測されるため、どちらか一方の計測だけを
行うようにコンピュータ15で制御する。本実施例では
、生体磁場の計測を一定時間行なった後に5位置計測コ
イル11に通電し、生体1の体動による5QUID磁束
計3の位置をモニターした。さらに、位置計測コイル1
1に流す電流の周波数は生体磁場の周波数帯域内になけ
ればならず本実施例では、20Hzとした。生体磁場を
乱さないために、その素材は非磁性である銅とした。そ
の形状は生体1の外形と概ね同一で、かつ発生磁場強度
計算が容易であるという条件から1本実施例では楕円と
した。位置計測コイル11の装着位置は、目尻と耳付は
根上端を結ぶ平面17上が望ましいが、視野内に位置計
測コイル11が入るため、上記平面17と平行な平面で
視野内に位置計測コイル】−1が入らない平面上とした
。 以上、本発明では位置計測コイル1コ−に流す電流の周
波数を生体磁場の周波数帯域に設定した場合について述
べたが、二九に限定されず、生体磁場と異なる周波数帯
域に設定することも可能である。この場合には、F L
 L回路]3は、生体磁場信号のみを通過させるフィル
タと、位置計測信号のみを通過させるフィルタが必要と
なる。さらにA/D変換器の入力チャネル数は、生体磁
場信号用と位置計測信号用が必要となる。これによって
、生体磁場計測と同時に位置計測が可能となり、人体1
の体動を実時間でモニターすることができる。 [発明の効果] 本発明によれば、円とは異なるコイルを生体に装着する
ことにより、多チヤネル磁束計と生体との位置関係を精
度良く検出できる効果がある。 また、医用画像上に多チャネル5QU4D磁束計で得ら
れた神経活動電流分布を重畳する際、使用した位置計測
コイルが生体の外周と概ね等しいので、位置合せが極め
て容易であるという効果がある。
An embodiment of the present invention will be described below with reference to FIG. The weak magnetic field generated from the living body 1 or the position measurement coil 11 is
Pickup coil 32 cooled with liquid helium 12
is detected by the 5QUID element 31 and converted into a voltage according to the input magnetic field strength. This output is converted by a flux locked loop (FLL) circuit 13 into a signal proportional to the amount of input magnetic flux. The output of each channel is A/D converted by an A/D conversion circuit 14 and recorded in the computer 5 as digital data. 5 The material of the cryostat 2 that keeps the QUID magnetometer 3 at an extremely low temperature is glass, stainless steel, FRP, etc., but in this example, it is 1) non-magnetic, 2) has high transfer efficiency when liquid He is injected, and 2) liquid He. Low evaporation rate ■Light weight. With this in mind, FRP was used. A current is applied to the position measurement coil 11 from the 1-position measurement coil control circuit 16 according to instructions from the computer 15, and a magnetic field is generated. The generated magnetic field is 5QUID, which is the same as the biomagnetic field.
Since it is measured by the magnetometer 3, the computer 15 controls so that only one of them is measured. In this example, after measuring the biomagnetic field for a certain period of time, the 5-position measurement coil 11 was energized to monitor the position of the 5QUID magnetometer 3 due to the body movement of the living body 1. Furthermore, position measurement coil 1
The frequency of the current flowing through the magnetic field 1 must be within the frequency band of the biomagnetic field, and in this example, it was set to 20 Hz. In order not to disturb the biomagnetic field, the material was made of non-magnetic copper. In this embodiment, the shape is an ellipse because it is approximately the same as the outer shape of the living body 1 and the strength of the generated magnetic field is easy to calculate. The position of the position measurement coil 11 is preferably on the plane 17 that connects the outer corner of the eye and the upper end of the ear. However, since the position measurement coil 11 is within the field of view, the position measurement coil 11 is attached on a plane parallel to the plane 17. ] It is assumed to be on a plane where -1 does not enter. In the above, the present invention has described the case where the frequency of the current flowing through one position measurement coil is set to the frequency band of the biomagnetic field, but it is not limited to 29, and it is also possible to set it to a frequency band different from the biomagnetic field. It is. In this case, F L
L circuit] 3 requires a filter that passes only the biomagnetic field signal and a filter that passes only the position measurement signal. Furthermore, the number of input channels of the A/D converter is required for biomagnetic field signals and for position measurement signals. This makes it possible to measure the position at the same time as measuring the biomagnetic field.
body movements can be monitored in real time. [Effects of the Invention] According to the present invention, the positional relationship between the multichannel magnetometer and the living body can be accurately detected by attaching a coil different from a circular one to the living body. Furthermore, when superimposing the neural activity current distribution obtained by the multi-channel 5QU4D magnetometer on a medical image, the position measurement coil used is approximately equal to the outer circumference of the living body, so alignment is extremely easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例、第2図(a)は従来技術の
構成、第2図(b)、(C)はそれぞれ、従来技術の送
信機、受信機の構成、第3図(a)基準座標系の設定方
法、第4図(a)は本発明の基準座標系の設定方法、第
4図(b)は基準座標系と多チャネル5QUID磁束計
上の座標系との関連をそれぞれ示す図である。 1・・・生体、3・・・5QUID磁束計、11・・・
位置計測コイル、13・・・F L L回路、15・・
・コンピュータ、16・・・位置計測コイル制御回路。
FIG. 1 shows an embodiment of the present invention, FIG. 2(a) shows the configuration of the prior art, FIGS. 2(b) and (C) show the configuration of the transmitter and receiver of the prior art, respectively, and FIG. 3 (a) Method of setting the reference coordinate system, FIG. 4(a) shows the method of setting the reference coordinate system of the present invention, and FIG. 4(b) shows the relationship between the reference coordinate system and the coordinate system on the multi-channel 5QUID magnetometer. FIG. 1... Biological body, 3...5 QUID magnetometer, 11...
Position measurement coil, 13...F L L circuit, 15...
- Computer, 16... Position measurement coil control circuit.

Claims (1)

【特許請求の範囲】 1、生体より発生する生体磁場を検出する磁気感知コイ
ルと超伝導量子干渉デバイスとからなる磁束計を複数個
含み、前記生体の神経活動に起因する電流分布を算出す
る生体磁場測定装置において、前記生体の特定位置に装
着され、その位置での前記生体の外形と概ね同一形状の
位置計測コイルと、前記生体磁場の検出に先立ち前磁気
感知コイルの前記生体に対する相対位置を検出するため
に前記位置計測コイルに電流を供給する手段とを有する
ことを特徴とする生体磁場測定装置の位置検出装置。 2、前記生体磁場の計測対象は生体頭部であり、前記位
置検出コイルは前記生体の目尻と耳殼上端付け根を結ぶ
平面を基準平面として該基準平面と平行に装着されるこ
とを特徴とする請求項1に記載の生体磁場測定装置。
[Claims] 1. A living body that includes a plurality of magnetometers each consisting of a magnetic sensing coil and a superconducting quantum interference device that detect a biomagnetic field generated by the living body, and calculates the current distribution caused by the neural activity of the living body. The magnetic field measuring device includes a position measuring coil that is attached to a specific position of the living body and has a shape that is approximately the same as the external shape of the living body at that position, and a magnetic sensing coil that measures the relative position of the magnetic sensing coil to the living body prior to detecting the biological magnetic field. A position detection device for a biomagnetic field measurement device, comprising means for supplying current to the position measurement coil for detection. 2. The object to be measured of the biomagnetic field is the head of the living body, and the position detection coil is mounted parallel to the reference plane with a plane connecting the outer corner of the eye and the base of the upper end of the ear flap of the living body as a reference plane. The biomagnetic field measuring device according to claim 1.
JP2256972A 1990-09-28 1990-09-28 Position detecting device of living body magnetic field measuring instrument Granted JPH04135536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2256972A JPH04135536A (en) 1990-09-28 1990-09-28 Position detecting device of living body magnetic field measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2256972A JPH04135536A (en) 1990-09-28 1990-09-28 Position detecting device of living body magnetic field measuring instrument

Publications (2)

Publication Number Publication Date
JPH04135536A true JPH04135536A (en) 1992-05-11
JPH0555126B2 JPH0555126B2 (en) 1993-08-16

Family

ID=17299934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2256972A Granted JPH04135536A (en) 1990-09-28 1990-09-28 Position detecting device of living body magnetic field measuring instrument

Country Status (1)

Country Link
JP (1) JPH04135536A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5752514A (en) * 1995-08-31 1998-05-19 Shimadzu Corporation Biomagnetism measuring method and apparatus
JP2011107126A (en) * 2009-09-01 2011-06-02 Adidas Ag Method and system for limiting interference in magnetometer fields
US8229540B2 (en) 2004-01-19 2012-07-24 Elekta Ab Method for separating multichannel signals produced by AC and DC sources from one another
US11805969B2 (en) 2019-04-01 2023-11-07 Ricoh Company, Ltd. Biological information measuring apparatus, biological information measurement method, and recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5752514A (en) * 1995-08-31 1998-05-19 Shimadzu Corporation Biomagnetism measuring method and apparatus
US8229540B2 (en) 2004-01-19 2012-07-24 Elekta Ab Method for separating multichannel signals produced by AC and DC sources from one another
JP2011107126A (en) * 2009-09-01 2011-06-02 Adidas Ag Method and system for limiting interference in magnetometer fields
US11805969B2 (en) 2019-04-01 2023-11-07 Ricoh Company, Ltd. Biological information measuring apparatus, biological information measurement method, and recording medium

Also Published As

Publication number Publication date
JPH0555126B2 (en) 1993-08-16

Similar Documents

Publication Publication Date Title
JP3204542B2 (en) Magnetic field source measurement device
US8155726B2 (en) Magnetic detection coil and apparatus for magnetic field measurement
US7912530B2 (en) Magnetic detection coil and apparatus for measurement of magnetic field
Vrba et al. Signal processing in magnetoencephalography
Hämäläinen et al. Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain
FI83266C (en) FOERFARANDE OCH ANORDNING FOER LOKALISERING AV ELEKTRODER FAESTADE VID KROPPEN AV EN MAENNISKA, I SYNNERHET HUVUDET.
US6374131B1 (en) Biomagnetism measuring method and apparatus
US20190133477A1 (en) Biomagnetism measuring device
US6424853B1 (en) Magnetic field measurement apparatus
US20020115571A1 (en) Gradiometer integrating pickup coils and magnetic field measurement system
US6842637B2 (en) Magnetic field measurement apparatus
JPH04135536A (en) Position detecting device of living body magnetic field measuring instrument
Adachi et al. A spherical coil array for the calibration of whole-head magnetoencephalograph systems
Singh et al. Neuromagnetic localization using magnetic resonance images
Kandori et al. A vector fetal magnetocardiogram system with high sensitivity
Tsukada et al. Noninvasive visualization of multiple simultaneously activated regions on torso magnetocardiographic maps during ventricular depolarization
JPH04109929A (en) Method for measuring living body magnetism
JPH05232202A (en) Software gradiometer
JPH04109932A (en) Living body magnetism measuring device
JP7227609B2 (en) Marker coil and magnetic measuring device
Oyama et al. Evaluation of an isosceles-triangle-coil phantom for magnetoencephalography
Yoshida et al. A 129-channel vector neuromagnetic imaging system
JP3814923B2 (en) Biomagnetic measurement device
Hatta et al. SQUID-based low field MRI system for small animals
JPH0295337A (en) Method for measuring position relation between multichannel squid sensor and subject

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term