JPH01238182A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPH01238182A
JPH01238182A JP6612288A JP6612288A JPH01238182A JP H01238182 A JPH01238182 A JP H01238182A JP 6612288 A JP6612288 A JP 6612288A JP 6612288 A JP6612288 A JP 6612288A JP H01238182 A JPH01238182 A JP H01238182A
Authority
JP
Japan
Prior art keywords
layer
type inp
buried
type
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6612288A
Other languages
Japanese (ja)
Inventor
Toshihiro Kusuki
楠木 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6612288A priority Critical patent/JPH01238182A/en
Publication of JPH01238182A publication Critical patent/JPH01238182A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide a structure capable of enhancing the input impedance of a semiconductor laser to facilitate the matching of a driving circuit to a semiconductor light emitting device by burying an n-type InP clad layer, an InGaAsP active layer and a p-type InP clad layer in a p-type InP buried layer 2 and an n-type InP light enclosure layer, and further burying a P-type buried layer in a screen state in the clad layer. CONSTITUTION:The unnecessary part of the surface of an n-type InP clad layer 1 is removed to form a protrusion 30, and a p-type InP buried layer 2 is grown thereon. Then, the layer 2 is selectively removed to form a plurality of grooves 20, and the surfaces of the protrusions 30 of the layer 1 are exposed in the bottom of the grooves 20. Thereafter, an n-type InP clad layer 1', an InGaAsP active layer 4, a p-type InP layer 5 are sequentially laminated on a wafer, the unnecessary parts are removed to form it in a mesa state, the mesa is buried with an n-type InP layer 6 formed on its sidewall. Subsequently, p-type electrodes 7, 9 and an n-type electrode 8 are formed. Thus, a plurality of p-type InP layers 2' are buried in a screen state in the layers 1, 1', and the input impedance of the laser becomes several to several M or more of the conventional one.

Description

【発明の詳細な説明】 〔概 要〕 半導体発光装置に関し、 駆動回路と半導体発光装置とのマンチングを容易にする
ため、半導体レーザの入力インピーダンスを高くし得る
新奇な構造を提供することを目的とし、 一導電型を有する第1のクラッド層、活性層。
[Detailed Description of the Invention] [Summary] Regarding a semiconductor light emitting device, an object of the present invention is to provide a novel structure that can increase the input impedance of a semiconductor laser in order to facilitate munching between a drive circuit and the semiconductor light emitting device. , a first cladding layer and an active layer having one conductivity type.

および反対導電型を有する第2のクラッド層が積層され
、且つ、前記活性層(4)および反対導電型の第2のク
ラッド層(5)の側壁部に形成された一導電型の光閉じ
込め層を有するとともに、前記第1のクラッド層内に埋
め込まれ且つその端部が外部に導出された反対導電型の
埋込層を有し、該反対導電型の埋込層と前記第1のクラ
ッド層とのp−n接合に所望の電圧を印加することによ
り、活性層に流れる電流を制御可能とした構成とする。
and a second cladding layer having an opposite conductivity type are laminated, and an optical confinement layer of one conductivity type is formed on the sidewalls of the active layer (4) and the second cladding layer (5) of the opposite conductivity type. and a buried layer of an opposite conductivity type that is buried in the first cladding layer and whose end portion is led outside, the buried layer of the opposite conductivity type and the first cladding layer. The current flowing through the active layer can be controlled by applying a desired voltage to the p-n junction with the active layer.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体発光装置に関する。 The present invention relates to a semiconductor light emitting device.

〔従来の技術〕[Conventional technology]

従来半導体レーザの発光を変調するのに、外部駆動回路
により直接変調する方法が使用されていた。
Conventionally, to modulate the light emission of a semiconductor laser, a method of direct modulation using an external driving circuit has been used.

この変調方法では、半導体レーザの入力インピーダンス
が低いため、駆動回路と半導体レーザのマツチングをと
る必要がある。
In this modulation method, since the input impedance of the semiconductor laser is low, it is necessary to match the drive circuit and the semiconductor laser.

〔発明が解決しようとする課題] L記従来方法では駆動回路が複雑になるばかりでなく、
駆動回路自身を個々に調整する必要が生じる。
[Problem to be solved by the invention] The conventional method described in L not only makes the drive circuit complicated, but also
It becomes necessary to individually adjust the drive circuits themselves.

本発明は駆動回路と半導体発光装置とのマツチングを容
易にするため、半導体レーザの入力インピーダンスを高
(し得る新奇な構造を提供することをl」的とする。
An object of the present invention is to provide a novel structure that can increase the input impedance of a semiconductor laser in order to facilitate matching between a drive circuit and a semiconductor light emitting device.

〔課題を解決するための手段〕[Means to solve the problem]

第1図(a)、 (b)により、本発明に係る半導体発
光装置の構成を、I n A s P / I n P
系のレーザを一例として説明する。なお同図(b)は(
a)の1−1矢視部断面を示す図である。
1(a) and (b), the structure of the semiconductor light emitting device according to the present invention is expressed as I n A s P / I n P
A laser system will be explained as an example. Note that (b) in the same figure is (
It is a figure which shows the 1-1 arrow cross section of a).

n −1n Pクラッド層(−導電型の第1のクラッド
層)1.InGaAsP活性層4.p−1nPクラツド
層(反対導電型の第2のクラッド層)5を、p−1nP
埋込層2、n−1nP光閉じ込め層で埋め込み、更に、
n−1nPクラツド層1内に同図(b)に示す如く、p
−1nP埋込層2′をすだれ状に埋め込んだものである
n −1n P cladding layer (-conductivity type first cladding layer)1. InGaAsP active layer 4. The p-1nP cladding layer (second cladding layer of opposite conductivity type) 5 is made of p-1nP
Buried layer 2, buried with n-1nP optical confinement layer, further,
In the n-1nP cladding layer 1, as shown in FIG.
-1nP buried layer 2' is buried in a blind shape.

なお同図の1.8.9は電極である。Note that 1.8.9 in the same figure is an electrode.

〔作 用〕[For production]

すだれ状のp−1nP埋込層2°とn−1nPクラツド
層1間の逆バイアスEを変化させることにより、InG
aAsP活性層4に流れる電流Iを制御できる。この時
の入力インピーダンスは、p−n接合に逆バイアスEを
印加しているので、電流は殆ど流れず、無限大に近い。
By changing the reverse bias E between the interdigital p-1nP buried layer 2° and n-1nP cladding layer 1, InG
The current I flowing through the aAsP active layer 4 can be controlled. Since the reverse bias E is applied to the pn junction, almost no current flows and the input impedance at this time is close to infinity.

〔実 施 例〕〔Example〕

第2図(a)、 (b)に示す如く、キャリア濃度が凡
そ2 X10I7c m−3のn−1nPクラツド層1
表面の不要部を除去して、幅約1.5μm、高さ約0.
4μmの凸部30を形成し、その上にキャリア濃度が凡
そ4XIO”cm−3のp−1nP埋込層2を、凡そ0
.6μmの厚さに成長する。
As shown in FIGS. 2(a) and (b), an n-1nP cladding layer 1 with a carrier concentration of approximately 2×10I7cm-3
Unwanted parts of the surface were removed to give a width of approximately 1.5 μm and a height of approximately 0.
A convex portion 30 of 4 μm is formed, and a p-1nP buried layer 2 with a carrier concentration of approximately 4XIO”cm−3 is formed thereon.
.. Grows to a thickness of 6 μm.

次いでこのp−InP埋込層2を選択的に除去して、ピ
ッチ約0.4μm、深さ約0.2μm2幅約0.2μm
の溝20を複数個形成し、この溝20の底部で上記n−
1nPクラツド層Iの凸部30表面を露出させる。
Next, this p-InP buried layer 2 is selectively removed to form a pitch of about 0.4 μm, a depth of about 0.2 μm, and a width of about 0.2 μm.
A plurality of grooves 20 are formed at the bottom of the grooves 20.
The surface of the convex portion 30 of the 1nP cladding layer I is exposed.

次いで上記ウェーハ上に第2図(C)に示す如く、約2
 X 10” c rrr’のキャリア濃度を有し、約
0.5μmの厚さのn−1nPクラツド層1″、約0.
15μmの厚さを有するr nC;aAs P活性層4
.約2×1018cm−3のキャリア濃度を有し厚さ約
1.5μmのp−InP層5を積層し、これらの不要部
を除去して図示の如くメサ状に形成し、このメザ部をそ
の側壁部に形成した2 X 10” c、 m−”のキ
ャリア濃度のn−1nP層6で埋め込む。続いてn電極
7,9およびn電極8を形成する。
Next, as shown in FIG. 2(C), about 2
An n-1 nP cladding layer 1'' with a carrier concentration of x 10''crrr' and a thickness of about 0.5 μm, about 0.5 μm thick.
r nC; aAs P active layer 4 with a thickness of 15 μm
.. A p-InP layer 5 having a carrier concentration of approximately 2×10 18 cm −3 and a thickness of approximately 1.5 μm is laminated, unnecessary portions thereof are removed to form a mesa shape as shown in the figure, and this meza portion is An n-1nP layer 6 having a carrier concentration of 2×10"c, m-" is formed on the sidewall portion and is buried. Subsequently, n-electrodes 7 and 9 and n-electrode 8 are formed.

以上で前記第1図(b)で説明した如く、n−In2層
1,1°内に複数個のp −T n P層2゛がすだれ
状に埋め込まれる。
As explained above with reference to FIG. 1(b), a plurality of p-TnP layers 2' are embedded in the n-In2 layer 1,1° in a comb-like manner.

かかる構造とした本実施例では、電極7,8間に+2■
を印加した時、電極9.8間がOVであると、1 nG
aAs P活性層4に流れる電流は凡そ100mAであ
るが、電極9,8間の印加電圧を一4■とすると、I 
nGaAs P活性層4に流れる電流はOmAとなり、
入力インピーダンスは数MΩ以上となった。
In this embodiment with such a structure, there is +2■ between the electrodes 7 and 8.
When OV is applied between electrodes 9.8, 1 nG
The current flowing through the aAsP active layer 4 is approximately 100 mA, but if the voltage applied between the electrodes 9 and 8 is -4
The current flowing through the nGaAs P active layer 4 is OmA,
The input impedance was several MΩ or more.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、レーザの人力インピ
ーダンスが、従来数Ω程度であったものが、数MΩ以上
となるため、駆動回路に付加する抵抗やコンデンサが不
要となり、且つ調整も不要となる。
As explained above, according to the present invention, the human power impedance of the laser, which was conventionally about several Ω, increases to several MΩ or more, so there is no need for a resistor or capacitor to be added to the drive circuit, and no adjustment is required. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (b)は本発明の構成説明図、第2図
(a)〜(C)は本発明一実施例を製造工程とともに示
す図である。 図において、■、1゛は一導電型の第1のクラッド層(
n−1nPクラッド層)、2は反対導電型埋込層(p−
1nP埋込層)、2′は反対導電型のすだれ状埋込層、
4はInGaAsP活性層、5は反対導電型の第2のク
ラッド層(p−1nPクラッド層)、6は一導電型の光
閉じ込め層(n−InP層)、7はp−電極■、8はn
−電極、9はp−電極を示す。 ¥11・n イ2 )a 手続主甫正書(ブ几0 羽生のヌレ六 昭和63年特許願第066122号 発明の名称 半導体発光装置 補正をする者 羽生との関係  特許出願人 住所 神奈川県用崎市中原区上小田中1015番地名称
(522)  富士通株式会社 7゜ 8゜ 不発−の穆訪鑓先口洞図 第1図 手”BA −+i、ち社(利Σ装動1ニオ呈ヒヒv(こ
示111ffi第2図
FIGS. 1(a) and 1(b) are diagrams illustrating the configuration of the present invention, and FIGS. 2(a) to (C) are diagrams showing one embodiment of the present invention together with manufacturing steps. In the figure, ■, 1゛ is the first cladding layer of one conductivity type (
n-1nP cladding layer), 2 is a buried layer of the opposite conductivity type (p-
1nP buried layer), 2' is an interdigital buried layer of opposite conductivity type,
4 is an InGaAsP active layer, 5 is a second cladding layer of the opposite conductivity type (p-1nP cladding layer), 6 is an optical confinement layer of one conductivity type (n-InP layer), 7 is a p-electrode, and 8 is a n
- electrode, 9 indicates the p-electrode. ¥11・n A2) a Procedural master's letter (Bu 几 0 Hanyu's Nure 6, 1985 Patent Application No. 066122 Name of the invention Semiconductor light emitting device Person making the amendment Relationship with Hanyu Patent applicant address Kanagawa Prefecture) 1015 Kamiodanaka, Nakahara-ku, Saki-shi Name (522) Fujitsu Ltd. (See 111ffi Figure 2.

Claims (1)

【特許請求の範囲】[Claims] 一導電型を有する第1のクラッド層(1、1’)、活性
層(4)、および反対導電型を有する第2のクラッド層
(5)が積層され、且つ、前記活性層(4)および反対
導電型の第2のクラッド層(5)の側壁部に形成された
一導電型の光閉じ込め層(6)を有するとともに、前記
第1のクラッド層(1、1’)内にすだれ状に埋め込ま
れ且つその端部が外部に導出された複数個の反対導電型
の埋込層(2’)を具備することを特徴とする半導体発
光装置。
A first cladding layer (1, 1') having one conductivity type, an active layer (4), and a second cladding layer (5) having an opposite conductivity type are laminated, and the active layer (4) and It has an optical confinement layer (6) of one conductivity type formed on the side wall part of the second cladding layer (5) of the opposite conductivity type, and has an optical confinement layer (6) of one conductivity type formed in the sidewall part of the second cladding layer (5) of the opposite conductivity type, and has an optical confinement layer (6) formed in the first cladding layer (1, 1') in the form of a blind. 1. A semiconductor light emitting device comprising a plurality of buried layers (2') of opposite conductivity types, each of which is buried and whose end portions are led out.
JP6612288A 1988-03-18 1988-03-18 Semiconductor light emitting device Pending JPH01238182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6612288A JPH01238182A (en) 1988-03-18 1988-03-18 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6612288A JPH01238182A (en) 1988-03-18 1988-03-18 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPH01238182A true JPH01238182A (en) 1989-09-22

Family

ID=13306756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6612288A Pending JPH01238182A (en) 1988-03-18 1988-03-18 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH01238182A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111471A (en) * 1990-07-16 1992-05-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
US5179040A (en) * 1990-07-16 1993-01-12 Mitsubishi Denki Kabushiki Kaisha Method of making a semiconductor laser device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111471A (en) * 1990-07-16 1992-05-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
US5179040A (en) * 1990-07-16 1993-01-12 Mitsubishi Denki Kabushiki Kaisha Method of making a semiconductor laser device

Similar Documents

Publication Publication Date Title
KR930015139A (en) Manufacturing method of light emitting diode capable of changing light intensity
JPH01238182A (en) Semiconductor light emitting device
JPH07231132A (en) Semiconductor optical device
JPS59103465U (en) Striped waveguide TJS laser
JPS62194218A (en) Semiconductor optical modulator
JPH0582907A (en) Semiconductor laser array and driving method thereof
JPH04305991A (en) Semiconductor laser element
JPS59226320A (en) Semiconductor diffraction grating
JPS63124484A (en) Semiconductor laser element
JPH0199273A (en) Optoelectronic integrated element
JPS56142691A (en) Semiconductor light emitting device
JPH01216587A (en) Optically bistable semiconductor laser
JPS59127885A (en) Semiconductor light-emitting element
JPS604286A (en) Laser diode
JPS61271886A (en) Semiconductor laser device
JPS63311786A (en) Optical integrated element
JPH0485886A (en) Semiconductor electrode
JP2005331947A (en) Electroabsorption modulator and method of making the same
JPH01209770A (en) Semiconductor light emitting device
JPS6126281A (en) Semiconductor laser device
JPS60260178A (en) Optical integrated circuit device
JP2001024289A (en) Semiconductor optical element
JPH0432912A (en) Optical matrix product sum computing element
JPS6328350B2 (en)
JPH01119075A (en) Light modulator