JP7575131B2 - USER CONTROLLER WITH USER PRESENCE DETECTION, ASSOCIATED SYSTEMS AND METHODS - Patent application - Google Patents
USER CONTROLLER WITH USER PRESENCE DETECTION, ASSOCIATED SYSTEMS AND METHODS - Patent application Download PDFInfo
- Publication number
- JP7575131B2 JP7575131B2 JP2023136252A JP2023136252A JP7575131B2 JP 7575131 B2 JP7575131 B2 JP 7575131B2 JP 2023136252 A JP2023136252 A JP 2023136252A JP 2023136252 A JP2023136252 A JP 2023136252A JP 7575131 B2 JP7575131 B2 JP 7575131B2
- Authority
- JP
- Japan
- Prior art keywords
- thumb
- user
- sheath
- controller
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title description 55
- 238000001514 detection method Methods 0.000 title description 2
- 210000003813 thumb Anatomy 0.000 claims description 187
- 210000003811 finger Anatomy 0.000 claims description 15
- 230000003287 optical effect Effects 0.000 claims description 5
- 238000002432 robotic surgery Methods 0.000 claims 6
- 230000033001 locomotion Effects 0.000 description 10
- 239000012636 effector Substances 0.000 description 6
- 230000001953 sensory effect Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 210000004247 hand Anatomy 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 210000000080 chela (arthropods) Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000026058 directional locomotion Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/74—Manipulators with manual electric input means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/76—Manipulators having means for providing feel, e.g. force or tactile feedback
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/77—Manipulators with motion or force scaling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
- B25J9/161—Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05G—CONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
- G05G9/00—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
- G05G9/02—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
- G05G9/04—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
- G05G9/047—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
- G05G9/04737—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks with six degrees of freedom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/74—Manipulators with manual electric input means
- A61B2034/741—Glove like input devices, e.g. "data gloves"
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/064—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
- A61B2090/065—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05G—CONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
- G05G9/00—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
- G05G9/02—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
- G05G9/04—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
- G05G9/047—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
- G05G2009/04774—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks with additional switches or sensors on the handle
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05G—CONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
- G05G5/00—Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member
- G05G5/005—Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member for preventing unintentional use of a control mechanism
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Robotics (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Mechanical Engineering (AREA)
- User Interface Of Digital Computer (AREA)
- Manipulator (AREA)
- Surgical Instruments (AREA)
Description
本明細書の様々な実施形態は、例えば、ロボット医療装置システムなどのシステムで使用するための多自由度のユーザ入力装置のユーザ存在検出に関する。 Various embodiments herein relate to user presence detection in a multi-degree-of-freedom user input device for use in systems such as robotic medical device systems.
多自由度(multi-degree-of-freedom)のユーザ入力装置は、ユーザによって入力装置の質量を支持することを要求する。
そのような従来の入力装置の一例が、図1~2Bに示されている。図1は、ユーザの左手用の多自由度のユーザ入力装置8を示す。装置8とインタフェースするために、ユーザは、左手の手のひらをユーザコントローラ8の本体10上に配置し、人差し指を回転リンク14を用いて本体10に対して移動することができる人差し指インターフェース12上に配置し、親指を親指用溝16に配置する。ユーザインタフェース8の本体10は、リンク機構18を介して多自由度の位置決めまたは検知システムに結合されている。力およびトルクを供給してユーザインタフェース8を動かすために、親指インタフェース20および人差し指インタフェース22の両方によって、ユーザの手が装置8に拘束される。
A multi-degree-of-freedom user input device requires that the mass of the input device be supported by the user.
An example of such a conventional input device is shown in Figures 1-2B. Figure 1 shows a multi-degree-of-freedom user input device 8 for a user's left hand. To interface with the device 8, the user places the palm of his or her left hand on the body 10 of the user controller 8, the index finger on the index finger interface 12 that can be moved relative to the body 10 by means of a rotational link 14, and the thumb in the thumb groove 16. The body 10 of the user interface 8 is coupled to a multi-degree-of-freedom positioning or sensing system via a linkage 18. The user's hand is constrained to the device 8 by both the thumb interface 20 and the index finger interface 22 to provide forces and torques to move the user interface 8.
図2Aおよび図2Bは、リンク14およびロータリージョイント30を用いて本体10に結合されている人差し指インタフェース12の開閉動作をユーザがさらに入力する機能を示す。(図2Aに示すように)最小変位32および(図2Bに示すような)最大変位34が測定され、追加の制御信号として用いられ得る。親指用拘束部20および人差し指用拘束部22は、把持装置をその動作範囲全体にわたって動かしながらユーザが本体10の制御を維持するような制限を付与する。そのような制限は、ユーザが別の制御信号を入力することを可能にする一方で、規制された態様でユーザが装置8から離脱することを困難にする。 2A and 2B show the ability for the user to further input the opening and closing of the index finger interface 12, which is coupled to the body 10 using a link 14 and a rotary joint 30. A minimum displacement 32 (as shown in FIG. 2A) and a maximum displacement 34 (as shown in FIG. 2B) can be measured and used as additional control signals. The thumb constraint 20 and index finger constraint 22 provide limits to allow the user to maintain control of the body 10 while moving the gripping device through its range of motion. Such limits make it difficult for the user to disengage from the device 8 in a regulated manner while still allowing the user to input another control signal.
さらに、規制された態様でユーザが装置から離脱するためには、入力装置の支持を入力装置自体に移すか、または装置によって出力されている信号を停止しなければならない。すなわち、使用中、入力装置は、ユーザの手によって操作可能な位置に支持または維持されるが、システム自体によって付与される機械的な力なしに入力装置からユーザの手を離すと、入力装置は、重力によって下方に引っ張られる。その結果、ロボット装置または入力装置に動作可能に結合されたコンポーネントが、望ましくない方法で移動したり、または作動したりする可能性がある。 Furthermore, in order for the user to disengage from the device in a controlled manner, support of the input device must be transferred to the input device itself or the signal being output by the device must be terminated. That is, during use, the input device is supported or maintained in an operable position by the user's hands, but upon removal of the user's hands from the input device without mechanical force applied by the system itself, the input device is pulled downward by gravity. As a result, the robotic device or components operably coupled to the input device may move or actuate in undesirable ways.
当技術分野では、ユーザ入力装置で、その上で、またはそれを用いて、ユーザの存在を検出する改善された方法および装置が必要とされている。
本明細書で説明されるのは、ロボット手術システムを含む様々なシステムと共に使用する様々なユーザコントローラである。
There is a need in the art for improved methods and apparatus for detecting the presence of a user at, on, or with a user input device.
Described herein are various user controllers for use with various systems, including robotic surgical systems.
第1の例では、ユーザコントローラは、コントローラ本体と、コントローラ本体に結合された親指用シースとを備える。親指用シースは、コントローラ本体から延出する第1のシース部分と、第1のシース部分から延出する第2のシース部分と、を含み、第2のシース部分は、第1のシース部分に対して横断方法にある。第1のシース部分、第2のシース部分、およびコントローラ本体は、親指開口部および開口側を画定する。 In a first example, the user controller comprises a controller body and a thumb sheath coupled to the controller body. The thumb sheath includes a first sheath portion extending from the controller body and a second sheath portion extending from the first sheath portion, the second sheath portion being in a transverse manner relative to the first sheath portion. The first sheath portion, the second sheath portion, and the controller body define a thumb opening and an opening side.
第2の例は、第1の例によるユーザコントローラに関し、第1のシース部分、第2のシース部分、およびコントローラ本体は、親指用開口部の周りに360°のエンクロージャを形成しない。 The second example relates to a user controller according to the first example, where the first sheath portion, the second sheath portion, and the controller body do not form a 360° enclosure around the thumb opening.
第3の例は、第1の例によるユーザコントローラに関し、親指用開口部内に配置された光センサをさらに含む。
第4の例は、第1の例によるユーザコントローラに関し、親指用シースの内壁に配置された発光器と、コントローラー本体に配置された受光器とをさらに備え、受光器が、発光器によって放射された光を受け取るように配置されている。
A third example relates to a user controller according to the first example, further including a light sensor disposed within the thumb opening.
A fourth example relates to a user controller according to the first example, further comprising a light emitter disposed on an inner wall of the thumb sheath and a light receiver disposed on the controller body, the light receiver being arranged to receive light emitted by the light emitter.
第5の例は、第1の例によるユーザコントローラに関し、コントローラ本体上に配置された発光器と、親指用シースの内壁に配置された受光器と、をさらに備え、受光器は、発光器によって放射された光を受け取るように配置されている。 The fifth example relates to a user controller according to the first example, further comprising a light emitter disposed on the controller body and a light receiver disposed on an inner wall of the thumb sheath, the light receiver being positioned to receive light emitted by the light emitter.
第6の例は、第1の例によるユーザコントローラに関し、発光器および受光器をさらに備え、発光器および受光器は、コントローラ本体上に配置されている。
第7の例は、第1の例によるユーザコントローラに関し、親指用シース内のコントローラ本体上に配置された静電容量センサをさらに備える。
A sixth example relates to the user controller according to the first example, further comprising a light emitter and a light receiver, the light emitter and the light receiver being disposed on the controller body.
A seventh example relates to a user controller according to the first example, further comprising a capacitance sensor disposed on the controller body within the thumb sheath.
第8の例は、第1の例によるユーザコントローラに関し、親指用シース内のコントローラ本体上に配置された機械的センサをさらに備える。
第9の例は、第1の例によるユーザコントローラに関し、親指用シースは、引き込み位置と引き出し位置との間で調整可能である。
An eighth example relates to a user controller according to the first example, further comprising a mechanical sensor disposed on the controller body within the thumb sheath.
A ninth example relates to a user controller according to the first example, wherein the thumb sheath is adjustable between a retracted position and an extended position.
第10の例は、第1の例によるユーザコントローラに関し、親指用シースの外面に配置されたフィードバック信号コンポーネントをさらに備え、フィードバック信号コンポーネントは、ユーザによって見ることができる。 A tenth example relates to a user controller according to the first example, further comprising a feedback signal component disposed on an outer surface of the thumb sheath, the feedback signal component being visible to a user.
第11の例は、第1の例によるユーザコントローラに関し、ユーザの親指は、親指用開口部または開口側を介して親指用シースから離脱することができる。
第12の例では、ロボット手術システムは、システムコントローラと、システムコントローラに動作可能に結合されたロボット手術装置と、システムコントローラに動作可能に結合されたユーザコントローラと、を備える。ロボット手術装置は、装置本体と、装置本体に動作可能に結合された少なくとも1つのロボットアームと、ロボットアームに動作可能に結合された少なくとも1つのエンドエフェクタと、を備える。ユーザコントローラは、コントローラ本体と、コントローラ本体に結合された親指用シースと、を含み、親指用シースおよびコントローラ本体は、親指用開口部および側方開口部を区画する。
An eleventh example relates to a user controller according to the first example, where the user's thumb is capable of disengaging from the thumb sheath via the thumb opening or open side.
In a twelfth example, a robotic surgical system includes a system controller, a robotic surgical device operably coupled to the system controller, and a user controller operably coupled to the system controller. The robotic surgical device includes a device body, at least one robotic arm operably coupled to the device body, and at least one end effector operably coupled to the robotic arm. The user controller includes a controller body and a thumb sheath coupled to the controller body, the thumb sheath and the controller body defining a thumb opening and a side opening.
第13の例は、第12の例によるロボット手術システムに関し、親指用シースは、コントローラ本体から延出し且つ親指用開口部の第1の壁を区画する第1のシース部分と、第1のシース部分から延出し且つ親指用開口部の第2の壁を区画する第2のシース部分と、コントローラ本体によって区画された親指用開口部の第3の壁と、を含む。 A thirteenth example relates to the robotic surgical system according to the twelfth example, in which the thumb sheath includes a first sheath portion extending from the controller body and defining a first wall of the thumb opening, a second sheath portion extending from the first sheath portion and defining a second wall of the thumb opening, and a third wall of the thumb opening defined by the controller body.
第14の例は、第13の例によるロボット手術システムに関し、側方開口部は、第2の壁と第3の壁との間に画定される。
第15の例は、第12の例によるロボット手術システムに関し、親指用シースは、親指用開口部の周りに360°のエンクロージャを形成しない。
A fourteenth example relates to the robotic surgical system according to the thirteenth example, wherein the lateral opening is defined between the second wall and the third wall.
A fifteenth example relates to a robotic surgical system according to the twelfth example, wherein the thumb sheath does not form a 360° enclosure around the thumb opening.
第16の例は、第12の例によるロボット手術システムに関し、親指用開口部内に配置された親指存在センサをさらに含む。
第17の例は、第16の例によるロボット手術システムに関し、親指存在センサは、光センサ、静電容量センサ、または機械的センサを含む。
A sixteenth example relates to a robotic surgical system according to the twelfth example, further including a thumb presence sensor disposed within the thumb opening.
A seventeenth example relates to the robotic surgical system according to the sixteenth example, wherein the thumb presence sensor includes an optical sensor, a capacitive sensor, or a mechanical sensor.
第18の例は、第12の例によるロボット手術システムに関し、親指用シースは、引き込み位置と引き出し位置との間で調節可能である。
第19の例は、第12の例によるロボット手術システムに関し、親指用シースの外面に配置されたフィードバック信号コンポーネントをさらに備え、フィードバック信号コンポーネントは、ユーザによって見ることができる。
An eighteenth example relates to the robotic surgical system according to the twelfth example, wherein the thumb sheath is adjustable between a retracted position and an extended position.
A nineteenth example relates to the robotic surgical system according to the twelfth example, further comprising a feedback signal component disposed on an outer surface of the thumb sheath, the feedback signal component being viewable by a user.
第20の例は、第12の例によるロボット手術システムに関し、ユーザの親指は、親指用開口部または側方開口部を介して親指用シースから離脱することができる。
複数の実施形態が開示されているが、本発明のさらなる他の実施形態は、本発明の例示的な実施形態を示し且つ説明する以下の詳細な説明から当業者には明らかになるであろう。具体化されるように、本発明は、本発明の趣旨および範囲から逸脱することなく、種々の自明の態様において修正が可能である。したがって、図面および詳細な説明は、本質的に例示的であり且つ限定的ではないと考えるべきである。
A twentieth example relates to the robotic surgical system according to the twelfth example, wherein the user's thumb can be disengaged from the thumb sheath via the thumb opening or the side opening.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As embodied, the invention is capable of modification in various obvious aspects without departing from the spirit and scope of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
本明細書の種々の実施形態は、ユーザが指先把持部(pincer grasp)を使用して装置を把持する多自由度のユーザ入力装置で、その上で、またはそれを用いてユーザの存在を検出する方法および装置に関する。すなわち、種々の実施形態は、ユーザの手の存在を検出するように構成されたシース(sheath)を入力装置に搭載している。ユーザの手(または、より具体的には、特定の実施形態によれば、親指)がシースによって検出された場合、装置は、ユーザが位置しかつ制御がイネーブルとなっているシステム(例えば、システムのシステムコントローラコンポーネントなど)に信号(「存在信号」)を送信する。手を離すと、「存在信号」が存在しないことは、装置出力の使用を中止するか、または触覚的に有効になっている(haptically enabled)場合には装置を所定の位置に固定するように用いられる。 Various embodiments herein relate to methods and devices for detecting user presence on or with a multi-degree-of-freedom user input device in which the user grasps the device using a pincer grasp. That is, various embodiments include a sheath on the input device configured to detect the presence of the user's hand. When the user's hand (or, more specifically, according to certain embodiments, the thumb) is detected by the sheath, the device transmits a signal (the "presence signal") to a system where the user is located and is enabled to control (e.g., a system controller component of the system, etc.). Upon removal of the hand, the absence of the "presence signal" is used to discontinue use of the device output or, if haptically enabled, to lock the device in place.
本明細書における様々なユーザコントローラの実施形態は、ユーザコントローラがユーザインタフェースであり、手術システムに結合された様々なロボット手術システムで用いられ、ユーザコントローラは、患者の腔(cavity)内へまたは患者の腔内に配置されたロボット手術装置を制御するように用いられ得ることが理解される。すなわち、本明細書に開示されている様々なユーザコントローラの実施形態ならびに関連するシステムおよび方法は、他の任意の従来のロボット手術システム、装置、または方法に組み込むことができ、一緒に使用でき、またはその一部として使用できる。例えば、本明細書に開示されている様々な実施形態は、米国特許第8,968,332号(2015年3月3日に出願され、「磁気的連結可能ロボット装置および関連方法(Magnetically Coupleable Robotic Devices and Related Methods)」と題する)、米国特許第8,834,488号(2014年9月16日に出願され、「磁気的に結合可能な外科用ロボット装置および関連方法(Magnetically Coupleable Surgical Robotic Devices and Related Methods)」と題する)、米国特許出願第14/617,232号(2015年2月9日に出願され、「ロボット手術装置および関連方法(Robotic Surgical Devices and Related Methods)」と題する)、米国特許第9,579,088号(2017年2月28日に出願され、「外科的視覚化および装置操作のための方法、システム、および装置(Methods, Systems, and Devices for Surgical Visualization and Device Manipulation)」と題する)、米国特許第8,343,171号(2013年1月1日に出願され、「ロボット装置における作動方法および作動システム(Methods and Systems of Actuation in Robotic Devices)」と題する)、米国特許第8,828,024号(2014年9月9日に出願され、「ロボット装置における作動の方法およびシステム(Methods and Systems of Actuation in Robotic Devices)」と題する)、米国特許出願第14/454,035号(2014年8月7日に出願され、「ロボット装置における作動の方法およびシステム(Methods and Systems of Actuation in Robotic Devices)」と題する)、米国特許出願第12/192,663号(2008年8月15日に出願され、「医療用膨張、取り付け、および送達装置ならびに関連方法(Medical Inflation, Attachment, and Delivery Devices and Related Methods)」と題する)、米国特許出願第15/018,530号(2016年2月8日に出願され、「医療用膨張、取り付け、および送達装置ならびに関連方法(Medical Inflation, Attachment, and Delivery Devices and Related Methods)」と題する)、米国特許第8,974,440号(2015年3月10日に出願され、「モジュール式および協調医療装置ならびに関連するシステムおよび方法(Modular and Cooperative Medical Devices and Related Systems and Methods)」と題する)、米国特許第8,679,096号(2014年3月25日に出願され、「ロボット装置用の多機能操作コンポーネント(Multifunctional Operational Component for Robotic Devices)」と題する)、米国特許第9,179,981号(2015年11月10日に出願され、「ロボット装置のための多機能操作コンポーネント(Multifunctional Operational Component for Robotic Devices)」と題する)、米国特許出願第14/936,234号(2015年11月9日に出願され、「ロボット装置のための多機能操作コンポーネント(Multifunctional Operational Component for Robotic Devices)」と題する)、米国特許第8,894,633号(2014年11月25日に出願され、「モジュール式および共同医療装置ならびに関連するシステムおよび方法(Modular and Cooperative Medical Devices and Related Systems and Methods)」と題する)、米国特許第8,968,267号(2015年3月3日に出願され、「自然開口部手術のための物質の取扱いまたは送達のための方法およびシステム(Methods and Systems for Handling or Delivering Materials for Natural Orifice Surgery)」と題する)、米国特許第9,060,781号(2015年6月23日に出願され、「外科用エンドエフェクタに関する方法、システム、および装置(Methods, Systems, and Devices Relating to Surgical End Effectors)」と題する)、米国特許出願第14/745,487号(2015年6月22日に出願され、「外科用エンドエフェクタに関する方法、システム、および装置(Methods, Systems, and Devices Relating to Surgical End Effectors)」と題する)、米国特許第9,089,353号(2015年7月28日に出願され、「ロボット外科用装置、システム、および関連方法(Robotic Surgical Devices, Systems, and Related Methods)」と題する)、米国特許出願第14/800,423号(2015年7月15日に出願され、「ロボット手術装置、システム、および関連方法(Robotic Surgical Devices, Systems, and Related Methods)」と題する)、米国特許出願第13/573,849号(2012年10月9日に出願され、「ロボット手術装置、システム、および関連方法(Robotic Surgical Devices, Systems, and Related Methods)」と題する)、米国特許出願第13/738,706号(2013年1月10日に出願され、「外科的アクセスおよび挿入のための方法、システム、およびデバイス(Methods, Systems, and Devices for Surgical Access and Insertion)」と題する)、米国特許出願第13/833,605号(2013年3月15日に出願され、「ロボット手術装置、システム、および関連方法(Robotic Surgical Devices, Systems, and Related Methods)」と題する)、米国特許出願第14/661,465号(2015年3月18日に出願され、「外科的アクセスおよび挿入のための方法、システム、および装置(Methods, Systems, and Devices for Surgical Access and Insertion)」と題する)、米国特許第9,498,292号(2016年11月22日に出願され、「シングルサイトロボット装置および関連システムおよび方法(Single Site Robotic Devices and Related Systems and Methods)」と題する)、米国特許出願第15/357,663号(2016年11月21日に出願され、「シングルサイトロボット装置および関連システムおよび方法(Single Site Robotic Devices and Related Systems and Methods)」と題する)、米国特許第9,010,214号(2015年4月21日に出願され、「局所制御ロボット手術装置および関連方法(Local Control Robotic Surgical Devices and Related Methods)」と題する)、米国特許出願第14/656,109号(2015年3月12日に出願され、「局所制御ロボット外科手術装置および関連方法(Local Control Robotic Surgical Devices and Related Methods)」と題する)、米国特許出願第14/208,515号(2014年3月13日に出願され、「ロボット外科手術デバイス、エンドエフェクタ、およびコントローラに関する方法、システム、およびデバイス(Methods, Systems, and Devices Relating to Robotic Surgical Devices, End Effectors, and Controllers)」と題する)、米国特許出願第14/210,934号(2014年3月14日に出願され、「力制御外科手術システムに関連する方法、システム、およびデバイス(Methods, Systems, and Devices Relating to Force Control Surgical Systems)」と題する)、米国特許出願第14/212,686号(2014年3月14日に出願され、「ロボット外科用装置、システム、および関連方法(Robotic Surgical Devices, Systems, and Related Methods)」と題する)、米国特許出願第14/334,383号(2014年7月17日に出願され、「ロボット外科用装置、システム、および関連方法(Robotic Surgical Devices, Systems, and Related Methods)」と題する)、米国特許出願第14/853,477号(2015年9月14日に出願され、「クイックリリースエンドエフェクタならびに関連するシステムおよび方法(Quick-Release End Effectors and Related Systems and Methods)」と題する)、米国特許出願第14/938,667号(2015年11月11日に出願され、「コンパクトジョイント設計を有するロボット装置ならびに関連するシステムおよび方法(Robotic Device with Compact Joint Design and Related Systems and Methods)」と題する)、米国特許出願第15/227,813号(2016年8月3日に出願され、「ロボット手術装置、システム、および関連方法(Robotic Surgical Devices, Systems, and Related Methods)」と題する)、米国特許出願第15/599,231号(2017年5月18日に出願され、「ロボット手術装置、システム、および関連方法(Robotic Surgical Devices, Systems, and Related Methods)」と題する)、米国特許出願第15/691,087号(2017年8月30日に出願され、「コンパクトな関節構成およびさらなる自由度を有するロボット装置ならびに関連するシステムおよび方法(Robotic Device with Compact Joint Design and an Additional Degree of Freedom and Related Systems and Methods)と題する」)、米国特許出願第62/425,149号(2016年11月22日に出願され、「改良された総位置決め装置ならびに関連するシステムおよび方法(Improved Gross Positioning Device and Related Systems and Methods)」と題する)、米国特許出願第62/433,837号(2016年12月14日に出願され、「医療機器に連結するための解放可能な取り付け装置ならびに関連するシステムおよび方法(Releasable Attachment Device for Coupling to Medical Devices and Related Systems and Methods)」と題する)、米国特許第7,492,116号(2007年10月31日に出願され、「手術用ロボット(Robot for Surgical Applications)」と題する)、米国特許7,772,796号(2007年4月3日に出願され、「手術用ロボット(Robot for Surgical Applications)」と題する)、米国特許第8,179,073(2011年5月15日に出願され、「薬剤搬送コンポーネントを有するロボット装置および関連方法(Robotic Devices with Agent Delivery Components and Related Methods)」と題する)、に開示されている任意の医療機器およびシステムに組み込むことができ、またはそれらと共に使用することができ、これらの全ては、参照によりその全体が本明細書に組み込まれる。 It is understood that the various user controller embodiments herein may be used in various robotic surgical systems, where the user controller is a user interface and is coupled to the surgical system, and the user controller may be used to control a robotic surgical device disposed in or within a patient's cavity. That is, the various user controller embodiments and related systems and methods disclosed herein may be incorporated into, used with, or used as part of any other conventional robotic surgical system, device, or method. For example, various embodiments disclosed herein may be implemented using any of the techniques disclosed herein, including, but not limited to, U.S. Pat. No. 8,968,332, filed Mar. 3, 2015 and entitled “Magnetically Coupleable Robotic Devices and Related Methods,” U.S. Pat. No. 8,834,488, filed Sep. 16, 2014 and entitled “Magnetically Coupleable Surgical Robotic Devices and Related Methods,” U.S. patent application Ser. No. 14/617,232, filed Feb. 9, 2015 and entitled “Robotic Surgical Devices and Related Methods,” U.S. Pat. No. 9,579,088, filed Feb. 28, 2017 and entitled “Methods, Systems, and Devices for Surgical Visualization and Device Manipulation,” and U.S. Pat. No. 8,343,171, filed Jan. 1, 2013, entitled "Methods and Systems of Actuation in Robotic Devices," U.S. Pat. No. 8,828,024, filed Sep. 9, 2014, entitled "Methods and Systems of Actuation in Robotic Devices," U.S. patent application Ser. No. 14/454,035, filed Aug. 7, 2014, entitled "Methods and Systems of Actuation in Robotic Devices," U.S. patent application Ser. No. 12/192,663, filed Aug. 15, 2008, entitled "Medical Inflation, Attachment, and Delivery Devices and Related Methods," U.S. Pat. No. 15/018,530, filed Feb. 8, 2016, entitled “Medical Inflation, Attachment, and Delivery Devices and Related Methods,” U.S. Patent Application No. 8,974,440, filed Mar. 10, 2015, entitled “Modular and Cooperative Medical Devices and Related Systems and Methods,” U.S. Patent No. 8,679,096, filed Mar. 25, 2014, entitled “Multifunctional Operational Component for Robotic Devices,” U.S. Patent No. 9,179,981, filed Nov. 10, 2015, entitled “Multifunctional Operational Component for Robotic Devices,” U.S. Patent No. 9,179,981, filed Nov. 10, 2015, entitled “Multifunctional Operational Component for Robotic Devices,” U.S. Patent Application ... No. 14/936,234, filed Nov. 9, 2015, entitled “Multifunctional Operational Component for Robotic Devices,” U.S. Patent Application No. 8,894,633, filed Nov. 25, 2014, entitled “Modular and Cooperative Medical Devices and Related Systems and Methods,” U.S. Patent No. 8,968,267, filed Mar. 3, 2015, entitled “Methods and Systems for Handling or Delivering Materials for Natural Orifice Surgery,” U.S. Patent No. 9,060,781, filed Jun. 23, 2015, entitled “Methods, Systems, and Devices Relating to Surgical End Effectors,” U.S. Patent Application No. 14/936,234, filed Nov. 9, 2015, entitled “Multifunctional Operational Component for Robotic Devices,” U.S. Patent No. 8,894,633, filed Nov. 25, 2014, entitled “Modular and Cooperative Medical Devices and Related Systems and Methods,” U.S. Patent No. 8,968,267, filed Mar. 3, 2015, entitled “Methods and Systems for Handling or Delivering Materials for Natural Orifice Surgery,” U.S. Patent No. 9,060,781, filed Jun. 23, 2015, entitled “Methods, Systems, and Devices Relating to Surgical End Effectors ... No. 14/745,487, filed June 22, 2015, entitled "Methods, Systems, and Devices Relating to Surgical End Effectors," U.S. Patent Application No. 9,089,353, filed July 28, 2015, entitled "Robotic Surgical Devices, Systems, and Related Methods," U.S. Patent Application No. 14/800,423, filed July 15, 2015, entitled "Robotic Surgical Devices, Systems, and Related Methods," U.S. Patent Application No. 13/573,849, filed October 9, 2012 ...10, 2012, entitled "Robotic Surgical Devices, Systems, and Related Methods," U.S. Patent Application No. 13/573,849, filed October 11, 2012, entitled "Robotic Surgical Devices, Systems, and Related Methods," U.S. Patent Application No. 13/573,849, filed October 12, 2012, entitled "Robotic Surgical Devices, Systems, and Related Methods," U.S. Patent Application No. 13/573,849, filed October 13, 2012, entitled "Robotic Surgical Devices, Systems, and Related Methods," U.S. No. 13/738,706, filed Jan. 10, 2013, entitled “Methods, Systems, and Devices for Surgical Access and Insertion,” U.S. Patent Application No. 13/833,605, filed Mar. 15, 2013, entitled “Robotic Surgical Devices, Systems, and Related Methods,” U.S. Patent Application No. 14/661,465, filed Mar. 18, 2015, entitled “Methods, Systems, and Devices for Surgical Access and Insertion,” U.S. Patent Application No. 9,498,292, filed Nov. 22, 2016, entitled “Single Site Robotic Devices and Related Systems and Methods,” U.S. Patent Application No. 13/10, 2013, entitled “Methods, Systems, and Devices for Surgical Access and Insertion,” U.S. Patent Application No. 13/10, 2013, entitled “Robotic Surgical Devices, Systems, and Related Methods ... No. 15/357,663, filed Nov. 21, 2016, entitled “Single Site Robotic Devices and Related Systems and Methods,” U.S. Patent No. 9,010,214, filed Apr. 21, 2015, entitled “Local Control Robotic Surgical Devices and Related Methods,” U.S. Patent Application No. 14/656,109, filed Mar. 12, 2015, entitled “Local Control Robotic Surgical Devices and Related Methods,” U.S. Patent Application No. 14/208,515, filed Mar. 13, 2014, entitled “Methods, Systems, and Devices Relating to Robotic Surgical Devices, End Effectors, and Controller ... No. 14/210,934, filed March 14, 2014, entitled “Methods, Systems, and Devices Relating to Force Control Surgical Systems,” U.S. Patent Application No. 14/212,686, filed March 14, 2014, entitled “Robotic Surgical Devices, Systems, and Related Methods,” U.S. Patent Application No. 14/334,383, filed July 17, 2014, entitled “Robotic Surgical Devices, Systems, and Related Methods,” No. 14/853,477, filed on September 14, 2015, entitled "Quick-Release End Effectors and Related Systems and Methods," U.S. patent application Ser. No. 14/938,667, filed on November 11, 2015, entitled "Robotic Device with Compact Joint Design and Related Systems and Methods," U.S. patent application Ser. No. 15/227,813, filed on August 3, 2016, entitled "Robotic Surgical Devices, Systems, and Related Methods," U.S. patent application Ser. No. 15/599,231, filed on May 18, 2017, entitled "Robotic Surgical Devices, Systems, and Related Methods," U.S. patent application Ser. No. 15/227,813, filed on August 3, 2016, entitled "Robotic Surgical Devices, Systems, and Related Methods," U.S. patent application Ser. No. 15/599,231, filed on May 18, 2017, entitled "Robotic Surgical Devices, Systems, and Related Methods," No. 15/691,087, filed Aug. 30, 2017, entitled “Robotic Device with Compact Joint Design and an Additional Degree of Freedom and Related Systems and Methods,” U.S. patent application Ser. No. 62/425,149, filed Nov. 22, 2016, entitled “Improved Gross Positioning Device and Related Systems and Methods,” U.S. patent application Ser. No. 62/433,837, filed Dec. 14, 2016, entitled “Releasable Attachment Device for Coupling to Medical Devices and Related Systems and Methods,” U.S. Patent Application No. 7,492,116, filed Oct. 31, 2007, entitled “Robot for Surgical Robotics,” U.S. Patent Application No. 6,492,116, filed Oct. 31, 2007, entitled “Robot for Surgical Robotics,” U.S. Patent Application No. 6,492,116, filed Oct. 31, 2007, entitled “Robotic Device with Compact Joint Design and an Additional Degree of Freedom and Related Systems and Methods,” U.S. patent application Ser. No. 7,772,796 (filed April 3, 2007, entitled "Robot for Surgical Applications"), or U.S. Pat. No. 8,179,073 (filed May 15, 2011, entitled "Robotic Devices with Agent Delivery Components and Related Methods"), all of which are incorporated herein by reference in their entireties.
したがって、本明細書で開示または企図される様々なユーザコントローラ8の実施形態は、任意のロボット手術システムと共に使用されて、患者の対象となる腔または組織内に位置付けられるかまたは切開を通して位置付けられる装置等を含むロボットデバイスまたはその構成要素を操作することができる。このように、ユーザは、自分の親指と人差し指を用いてユーザコントローラ8を操作し、それによってロボットデバイスまたはその構成要素を作動させて所望の処置を実行する。 Thus, the various user controller 8 embodiments disclosed or contemplated herein can be used with any robotic surgical system to operate a robotic device or component thereof, including instruments and the like, that are positioned within a target cavity or tissue of a patient or through an incision. In this manner, a user operates the user controller 8 using his or her thumb and index finger, thereby actuating the robotic device or component thereof to perform a desired procedure.
図3は、図1~2Bに関して上述した親指拘束部(thumb restraint)の代わりに、親指用シース40(「エンクロージャ(enclosure)」、「スリーブ(sleeve)」、または「シュラウド(shroud)」とも呼ばれる)を有する一実施形態によるユーザコントローラ8を示す。本明細書で用いられる場合、「シース」、「エンクロージャ」、「スリーブ」、または「シュラウド」は、3つの側でユーザの親指を囲むが、ユーザが自分の親指を離脱することができる開口部を第4の側に画定する任意の構造を意味する。親指用シース40は、親指を2つの側で取り囲み、本体10は、第3の側を拘束し、単一の側を開口した状態にする。より具体的には、シース40は、本体10から延出する第1の部分40Aと、第1の部分40Aと実質的に直角な方向に第1の部分40Aから延出する第2の部分40Bと、を有して、親指用開口部48が、第1の部分40A、第2の部分40B、および親指用溝16によって画定されるように、親指用開口部48の周りの2つの側を囲む。あるいは、装置8は、親指溝を有する必要はなく、本体10は、そのような実施形態において第3の側を画定することができる。結果として、親指用シース40および親指用溝16または本体10は、図示されるように、開放側49をさらに画定する。対照的に、上述した従来の親指用拘束部20は、親指用溝16とともに作用して、4つの側、すなわち、親指の周りの360°全体で親指を完全に取り囲むかまたは囲む。 FIG. 3 illustrates a user controller 8 according to one embodiment having a thumb sheath 40 (also called an "enclosure," "sleeve," or "shroud") in place of the thumb restraint described above with respect to FIGS. 1-2B. As used herein, "sheath," "enclosure," "sleeve," or "shroud" means any structure that encloses a user's thumb on three sides but defines an opening on a fourth side through which the user can remove his or her thumb. The thumb sheath 40 encloses the thumb on two sides and the body 10 restrains the third side while leaving a single side open. More specifically, the sheath 40 has a first portion 40A extending from the body 10 and a second portion 40B extending from the first portion 40A in a direction substantially perpendicular to the first portion 40A to surround two sides around the thumb opening 48 such that the thumb opening 48 is defined by the first portion 40A, the second portion 40B, and the thumb groove 16. Alternatively, the device 8 need not have a thumb groove, and the body 10 can define a third side in such an embodiment. As a result, the thumb sheath 40 and thumb groove 16 or body 10 further define an open side 49 as shown. In contrast, the conventional thumb constraint 20 described above works with the thumb groove 16 to completely encircle or surround the thumb on four sides, i.e., a full 360° around the thumb.
一実施形態では、親指を人差し指と共に用いて「つまみ動作(pinching motion)」を実行し、人差し指用拘束部22を矢印42で示す方向に本体10から離れるように又は本体10に近づけるように、親指用シース40は、親指用開口部48内に配置された場合にユーザの親指を十分に拘束することができる。したがって、親指用シース40は、上述した従来の親指用拘束部20と同様に作用することができる。しかしながら、その拘束部20とは対照的に、シース40はまた、親指のための2つの脱出方法を可能にする。すなわち、ユーザの親指を、従来の親指用拘束部20を用いて可能な限り同じ方法で矢印46によって示された方向に近位で後ろに引っ込めることができるだけでなく、矢印44によって示された方向に親指用開口部48から開放側49を介して外に動かすこともできる。図3から分かるように、可能な2つの離脱方向は、つまみ方向(direction of pinching)(矢印42で示す)に対して互いに垂直である。このように、シース40のこの構成は、規制された簡単な態様(controlled and simple manner)でユーザが親指を離脱することによって装置8から外れることを可能にしながら、つまみ動作の細かい制御を可能にする。 In one embodiment, the thumb sheath 40 can sufficiently restrain the user's thumb when placed in the thumb opening 48 so that the thumb can be used together with the index finger to perform a "pinching motion" to move the index finger restraint 22 away from or towards the body 10 in the direction indicated by the arrow 42. The thumb sheath 40 can thus act similarly to the conventional thumb restraint 20 described above. However, in contrast to that restraint 20, the sheath 40 also allows two escape methods for the thumb. That is, the user's thumb can not only be retracted proximally back in the direction indicated by the arrow 46 in the same manner as possible with the conventional thumb restraint 20, but can also be moved out of the thumb opening 48 through the open side 49 in the direction indicated by the arrow 44. As can be seen from FIG. 3, the two possible escape directions are mutually perpendicular to the direction of pinching (indicated by the arrow 42). Thus, this configuration of the sheath 40 allows fine control of the pinching action while still allowing the user to disengage from the device 8 by releasing the thumb in a controlled and simple manner.
明確にするために、本明細書で用いられる「ユーザコントローラ」という用語は、ロボットシステムのいくつかの部分に入力を提供してそのいくつかの部分を操作するためにユーザによって操作されるユーザ入力装置の様々な実施形態を指す。対照的に、「システムコントローラ」という用語は、システムを動作させるために用いられる任意のプロセッサ、コンピュータ、または他のシステムコントローラコンポーネント(マイクロプロセッサなど)を指す。 For clarity, the term "user controller" as used herein refers to various embodiments of a user input device that is manipulated by a user to provide input to and operate some portion of a robotic system. In contrast, the term "system controller" refers to any processor, computer, or other system controller component (such as a microprocessor) used to operate the system.
図4は、ユーザの親指の存在を検出するように構成されたセンサ51を有するユーザコントローラ8のさらなる実施態様を示す。コントローラ8のこの実施形態は、説明したような特徴および利点を含む、上述した親指用シース40と実質的に同様の親指用シース40を有することが理解される。さらに、この例示的な実施形態では、ユーザ存在センサ51がシース40に組み込まれている。装置8は、シース40上に配置された整合した発光器50と、本体10上に配置された受光器52と、を有する。あるいは、発光器は、本体10上にあり、受光器は、シース40上にあってもよい。さらなる代替案では、2つ以上のそのようなセンサを装置8に組み込むことができる。発光器50および受光器52は、矢印42によって示された発光器50によって放射された光54の経路をつまみ動作の動作方向と概ね整列させるように配置される。使用時に、発光器50および受光器52は、ユーザの親指が存在しないときに発光器50からの(可視またはその他の)光が受光器52に到達するように配置される。対照的に、ユーザの親指が親指用開口部48内に存在するとき、光54の経路は遮断される。次いで、この信号が存在しないことは、ユーザの存在(すなわち、親指用開口部48内のユーザの親指の存在)の指標として使用することができ、それによって、ユーザがユーザコントローラ8を把持していることを示す。光路がユーザの親指によって遮られると、(上述したように)矢印42によって示されるつまみ方向および光路54に対して垂直である矢印44および46によって示された2つの方向のいずれかに親指を引き込むことによってこの信号の回復が達成される。シース40およびセンサ51のこの構成は、光を通過させることなく、(矢印42によって示されるように)つまみ方向への親指の動きを可能にする。これにより、離脱が容易に達成されるように、シース40が十分に緩くなる(loose)ことが可能になる。すなわち、ユーザの親指に対する親指用開口部48の大きさは、センサ51がその中に存在することを検出する能力、またはユーザがシース40を用いてユーザがつまみ動作を行うことを可能にする能力に影響を与えない。 4 shows a further embodiment of a user controller 8 having a sensor 51 configured to detect the presence of a user's thumb. It will be appreciated that this embodiment of the controller 8 has a thumb sheath 40 substantially similar to the thumb sheath 40 described above, including the features and advantages as described. Additionally, in this exemplary embodiment, a user presence sensor 51 is incorporated into the sheath 40. The device 8 has a matched light emitter 50 disposed on the sheath 40 and a light receiver 52 disposed on the body 10. Alternatively, the light emitter may be on the body 10 and the light receiver on the sheath 40. In a further alternative, two or more such sensors may be incorporated into the device 8. The light emitter 50 and the light receiver 52 are positioned to generally align the path of light 54 emitted by the light emitter 50, indicated by the arrow 42, with the direction of motion of the pinch motion. In use, the light emitter 50 and the light receiver 52 are positioned such that light (visible or otherwise) from the light emitter 50 reaches the light receiver 52 when the user's thumb is not present. In contrast, when the user's thumb is present within the thumb opening 48, the path of the light 54 is blocked. The absence of this signal can then be used as an indication of the presence of the user (i.e., the presence of the user's thumb within the thumb opening 48), thereby indicating that the user is gripping the user controller 8. When the light path is blocked by the user's thumb, restoration of this signal is achieved by retracting the thumb in either of two directions indicated by arrows 44 and 46, which are perpendicular to the pinching direction indicated by arrow 42 and the light path 54 (as described above). This configuration of the sheath 40 and the sensor 51 allows for movement of the thumb in the pinching direction (as indicated by arrow 42) without passing light. This allows the sheath 40 to be loose enough so that disengagement is easily accomplished. That is, the size of the thumb opening 48 relative to the user's thumb does not affect the ability of the sensor 51 to detect its presence therein or to allow the user to perform a pinching action with the sheath 40.
あるいは、シース40内のユーザの親指の存在(および不在)を検出するために、任意の既知のセンサまたはセンサ技術をユーザコントローラ8とともに使用することができる。 Alternatively, any known sensor or sensor technology can be used with the user controller 8 to detect the presence (and absence) of the user's thumb within the sheath 40.
センサ51は、ユーザコントローラ8(およびコントローラ8が結合されているシステム)がユーザの親指の有無に関する情報を利用して、ユーザコントローラ8の機械的支持を有効または無効にすることを可能にする。すなわち、センサ51は、親指がシース40内に挿入された場合にシステム(図示せず)のシステムコントローラ(図示せず)に「存在」の信号を送信するように構成されて、システムコントローラが、ユーザコントローラ8の機械的支持を無効にすることができる。同様に、センサ51は、親指がシース40から引っ込められた場合に「不存在」の信号をシステムコントローラ(図示せず)に送信するように構成されて、システムコントローラが、ユーザコントローラ8の機械的支持を有効にし、それによって重力によってユーザコントローラ8を望ましくない方法で動かすことを防ぎ、制御されるロボット装置も望ましくない方法で動かされるのを防ぐ。 The sensor 51 allows the user controller 8 (and the system to which the controller 8 is coupled) to utilize information regarding the presence or absence of the user's thumb to enable or disable mechanical support of the user controller 8. That is, the sensor 51 is configured to send a "presence" signal to a system controller (not shown) of a system (not shown) when the thumb is inserted into the sheath 40, so that the system controller can disable mechanical support of the user controller 8. Similarly, the sensor 51 is configured to send an "absence" signal to the system controller (not shown) when the thumb is retracted from the sheath 40, so that the system controller can enable mechanical support of the user controller 8, thereby preventing gravity from moving the user controller 8 in an undesired manner and also preventing the controlled robotic device from being moved in an undesired manner.
図5は、反射光センサ61を有するユーザコントローラ8の代替実施形態を示す。すなわち、ユーザコントローラ8は、図示のように本体10に埋め込まれた発光器60と受光器62とを有し、発光器60からの放射光64が反射光66として最近接閉塞部(nearest occlusion)によって受光器62に戻る。この構成では、シース40内のユーザの親指を存在することによって、シース40よりもはるかに短い経路を提供して、親指が存在しない場合に検出されるよりも対応するより強い戻り信号を供給する。その後、この信号をしきい値処理して、ユーザの親指のバイナリの存在/不存在を判定することができる。すなわち、「存在」の信号がシステムコントローラ(図示せず)に送信されるように、ユーザの親指がシース40内に存在することが理解される所定の閾値を設定することができる。一実施形態では、この実施形態は、前述の実施形態と実質的に同じ特徴、離脱モード、およびつまみ動作の方向の動作に対する鈍感性(insensitivity)を含む利点を有することが理解される。 5 shows an alternative embodiment of the user controller 8 having a reflected light sensor 61. That is, the user controller 8 has a light emitter 60 and a light receiver 62 embedded in the body 10 as shown, with emitted light 64 from the light emitter 60 returning to the light receiver 62 by the nearest occlusion as reflected light 66. In this configuration, the presence of the user's thumb within the sheath 40 provides a much shorter path than the sheath 40 to provide a corresponding stronger return signal than would be detected if the thumb were not present. This signal can then be thresholded to determine the binary presence/absence of the user's thumb. That is, a predetermined threshold can be set at which the user's thumb is understood to be present within the sheath 40 such that a "presence" signal is sent to the system controller (not shown). It is understood that in one embodiment, this embodiment has substantially the same features as the previous embodiment, including disengagement mode and insensitivity to motion in the direction of the pinch motion.
図6は、シース40内でのユーザの親指の存在を検出する図4,5に関して上述したセンサ51、61のいずれかなどのセンサと共に用いる例示的な既知な回路を示す。この実施形態では、図4または図5で説明したものと同様の1対以上の赤外線(IR)放射体および検出器が設けられている。ユーザの親指が存在することによって、放射体からのIR光が検出器に到達するのが妨がれ、回路の出力状態が変化する。説明された各対の放射体/検出器は、図6の回路を用いて存在を検出する。ユーザの親指が装置から離れている場合、フォトトランジスタ(phototransistor)Q1は、LED1からIR光を受け取る。これによって、トランジスタがオンになり、電流が抵抗器R1を通って流れ、ゼロでない電圧が比較器U1の非反転入力(ピン5)に生じる。この電圧がR2とR3の分圧器によって設定されるU1の反転入力よりも高い場合、コンパレータの出力がオンになって出力電圧が「0」に低下する。検出器Q1が遮られると、トランジスタはオフになって回路の出力は5ボルトになる。あるいは、この目的のために、任意の既知の回路または回路構成が用いられ得る。 FIG. 6 illustrates an exemplary known circuit for use with a sensor such as either of sensors 51, 61 described above with respect to FIGS. 4 and 5 to detect the presence of a user's thumb within the sheath 40. In this embodiment, one or more pairs of infrared (IR) emitters and detectors similar to those described in FIG. 4 or FIG. 5 are provided. The presence of the user's thumb blocks IR light from the emitter from reaching the detector, causing an output state of the circuit to change. Each pair of emitters/detectors described detects presence using the circuit of FIG. 6. When the user's thumb is away from the device, phototransistor Q1 receives IR light from LED1. This turns on the transistor, causing current to flow through resistor R1, and a non-zero voltage to appear at the non-inverting input (pin 5) of comparator U1. If this voltage is higher than the inverting input of U1, as set by the voltage divider of R2 and R3, the output of the comparator turns on and the output voltage drops to "0". When detector Q1 is blocked, the transistor turns off and the output of the circuit goes to 5 volts. Alternatively, any known circuit or circuit configuration may be used for this purpose.
図7は、ユーザコントローラ8で使用するセンサ70のさらなる実施形態を示す。この特定の実施形態では、光学ベースの技術の代わりに、センサ70は、図示のように本体10内に配置された既知の静電容量センサ(capacitive sensor)70である。静電容量センサ70は、シース40内のユーザの親指の存在を検出するように動作する既知の静電容量センサ70のように機能する。一実施形態によれば、この実施形態は、前述の実施形態と実質的に同じ特徴、離脱モード、およびつまみ動作の方向の動作に対する鈍感性を含む利点を有することが理解される。 Figure 7 illustrates a further embodiment of a sensor 70 for use with the user controller 8. In this particular embodiment, instead of optical-based technology, the sensor 70 is a known capacitive sensor 70 disposed within the body 10 as shown. The capacitive sensor 70 functions like a known capacitive sensor 70 that operates to detect the presence of a user's thumb within the sheath 40. It will be appreciated that, according to one embodiment, this embodiment has substantially the same features, disengagement modes, and advantages as the previously described embodiment, including insensitivity to directional motion of the pinch motion.
図8は、別の実施形態に従った、シース40内のユーザの親指の存在を検出するために、図7に関して上述したセンサ70のような静電容量センサと共に用いる例示的な既知の回路を示す。1つ以上の静電容量センサが、図7のセンサ70のように、親指用シースの内面に配置される。使用中、ユーザの親指がシース40内に置かれる場合、静電容量が変化することによって回路の出力状態が変化する。あるいは、静電容量センサと共に動作する任意の既知の回路または回路構成をこの目的のために使用することができる。 Figure 8 illustrates an exemplary known circuit for use with a capacitance sensor, such as sensor 70 described above with respect to Figure 7, to detect the presence of a user's thumb within the sheath 40, according to another embodiment. One or more capacitance sensors are disposed on the inner surface of the thumb sheath, such as sensor 70 of Figure 7. In use, when a user's thumb is placed within the sheath 40, the capacitance changes, thereby changing the output state of the circuit. Alternatively, any known circuit or circuit configuration that works with a capacitance sensor can be used for this purpose.
図12は、ユーザコントローラ8において用いるセンサ120のさらなる実施形態を示す。この特定の実施形態では、光学または容量ベースの技術の代わりに、センサ120は、図示のように本体10内に配置された既知の機械的センサ(mechanical sensor)120である。機械的センサ120は、既知の機械的センサ120として機能し、シース40内のユーザの親指の存在を検出するように動作する。例えば、機械的センサ120は、ユーザの親指がセンサ120を押圧することによって活性化させることができ、それによって親指がシース40内に存在することを示す。一実施形態によれば、この実施形態は、前述の実施形態と実質的に同じ特徴、離脱モード、およびつまみ動作の方向の動作に対する鈍感性を含む利点を有することが理解される。 12 illustrates a further embodiment of a sensor 120 for use in the user controller 8. In this particular embodiment, instead of optical or capacitance-based technology, the sensor 120 is a known mechanical sensor 120 disposed within the body 10 as shown. The mechanical sensor 120 functions as a known mechanical sensor 120 and operates to detect the presence of the user's thumb within the sheath 40. For example, the mechanical sensor 120 can be activated by the user's thumb pressing against the sensor 120, thereby indicating the thumb is present within the sheath 40. It will be appreciated that, according to one embodiment, this embodiment has substantially the same features, disengagement modes, and advantages as the previously described embodiment, including insensitivity to motion in the direction of the pinch motion.
図9は、さらなる実施形態に従った、シース40内でのユーザの親指の存在を検出する図12に関して上述したセンサ120などの機械的センサと共に使用する例示的な既知の回路を示す。この実施形態では、(スイッチ120のような)機械的スイッチが、親指用シース40の内側に配置されている。使用中、ユーザの親指が定位置に到達すると、スイッチが作動して回路の出力状態が変化する。ユーザの親指がシースに入っていないときは、スイッチは開放状態であり、スイッチの出力は5Vまで引き上げられる。V1はこの信号を0ボルトの出力に反転する。親指がシース内に置かれると、スイッチが押されて回路の出力が5Vに変化する。スイッチデバウンス回路(switch debouncing circuitry)は、機械的スイッチがオンされ、またはオフされた(engaged and disengaged)場合に、出力の短期間の遷移を除去する回路である。あるいは、機械的センサと共に動作する任意の既知の回路または回路構成が、目的のために使用され得る。 9 shows an exemplary known circuit for use with a mechanical sensor, such as sensor 120 described above with respect to FIG. 12, that detects the presence of a user's thumb within the sheath 40, according to a further embodiment. In this embodiment, a mechanical switch (such as switch 120) is located inside the thumb sheath 40. In use, when the user's thumb reaches a home position, the switch is actuated and the output state of the circuit changes. When the user's thumb is not in the sheath, the switch is open and the output of the switch is pulled up to 5V. V1 inverts this signal to an output of 0 volts. When the thumb is placed within the sheath, the switch is pressed and the output of the circuit changes to 5V. Switch debouncing circuitry is a circuit that removes short-term transitions in the output when a mechanical switch is engaged and disengaged. Alternatively, any known circuit or circuit configuration that works with a mechanical sensor may be used for the purpose.
図10は、一実施形態による、ユーザ感覚フィードバック信号コンポーネント(user sensory feedback signal component )100を有するユーザコントローラ8を示す。すなわち、この特定の実施形態は、ユーザの親指がシース40内に配置されているかどうかについてある種の感覚フィードバックをユーザに提供する信号コンポーネント100を有する。図10に示す特定の実施形態では、フィードバック信号コンポーネント100は、親指用シース40に配置されたLED100の形態の視覚的フィードバックコンポーネント100である。あるいは、任意の形態の感覚フィードバック信号が使用され得る。このフィードバックコンポーネント100は、システム(図示せず)がシース40内にユーザの親指の存在を検出したかどうかに関してユーザにフィードバックを提供する。フィードバックは、複数のLED、聴覚、または他の視覚信号によって提供されてもよい。使用中、この実施形態によれば、LED100は、ユーザの親指が検出された場合に点灯し、それによって親指がシース40内に配置されていることを示す。ユーザフィードバック信号コンポーネント100を有するユーザコントローラ8は、本明細書に開示または企図される様々なセンサコンポーネントのうちのいずれかを有することができることが理解される。さらに、ユーザフィードバック信号コンポーネント100は、本明細書で開示または企図される他の任意の実施形態に組み込むことができることを理解されたい。 FIG. 10 illustrates a user controller 8 having a user sensory feedback signal component 100 according to one embodiment. That is, this particular embodiment has a signal component 100 that provides some kind of sensory feedback to the user as to whether the user's thumb is placed within the sheath 40. In the particular embodiment illustrated in FIG. 10, the feedback signal component 100 is a visual feedback component 100 in the form of an LED 100 located on the thumb sheath 40. Alternatively, any form of sensory feedback signal may be used. This feedback component 100 provides feedback to the user as to whether the system (not shown) has detected the presence of the user's thumb within the sheath 40. Feedback may be provided by multiple LEDs, an auditory, or other visual signal. In use, according to this embodiment, the LED 100 illuminates when the user's thumb is detected, thereby indicating that the thumb is placed within the sheath 40. It is understood that the user controller 8 having the user feedback signal component 100 may have any of the various sensor components disclosed or contemplated herein. Further, it should be understood that the user feedback signal component 100 may be incorporated into any other embodiment disclosed or contemplated herein.
図11Aおよび11Bは、一実施形態による調整可能シース40を示す。より具体的には、この特定の実施形態におけるシース40は、図11Aに示されるように引き込み位置と、図11Bに示されるように引き出し位置との間で移動することができる。このように、シース40は、(図11Aに示されるように)親指用開口部48が矢印110によって示される最小幅を有する引き込み位置において本体10に対して位置決めされるように調整され得るか、または(図11Bに示されるように)親指用開口部48が矢印112によって示される最大幅を有する引き出し位置まで本体10から離れて引き出され得る。この調節は、シース40が、十分な制御権限をユーザに提供しつつ、規制された態様でユーザが離脱することを可能にしながら、広範囲のユーザの親指サイズに適合することを可能にする。調整可能なシース40を有するユーザコントローラ8は、本明細書に開示または企図される様々なセンサまたは感覚フィードバックコンポーネントのうちのいずれかを有することができることがさらに理解される。さらに、調節可能なシース40は、本明細書に開示または企図されている他の任意の実施形態に組み込むことができることを理解されたい。 11A and 11B show an adjustable sheath 40 according to one embodiment. More specifically, the sheath 40 in this particular embodiment can be moved between a retracted position as shown in FIG. 11A and an extended position as shown in FIG. 11B. In this manner, the sheath 40 can be adjusted to be positioned relative to the body 10 in a retracted position in which the thumb opening 48 has a minimum width as indicated by arrow 110 (as shown in FIG. 11A) or can be retracted away from the body 10 to an extended position in which the thumb opening 48 has a maximum width as indicated by arrow 112 (as shown in FIG. 11B). This adjustment allows the sheath 40 to accommodate a wide range of user thumb sizes while providing the user with sufficient control authority while allowing the user to disengage in a regulated manner. It is further understood that the user controller 8 having the adjustable sheath 40 can have any of the various sensors or sensory feedback components disclosed or contemplated herein. Additionally, it should be understood that the adjustable sheath 40 may be incorporated into any other embodiment disclosed or contemplated herein.
本発明を好ましい実施形態を参照して説明してきたが、当業者であれば、本発明の趣旨および範囲から逸脱することなく形態および詳細に変更を加えることができることを理解するであろう。 Although the present invention has been described with reference to preferred embodiments, those skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
Claims (22)
(a)第1の側面及び第2の側面を有するコントローラ本体と、
(b)前記コントローラ本体の第1の側面に配置された親指用シースであって、前記親指用シース及び前記コントローラ本体は、親指用開口部及び側方開口部を区画しており、前記親指用開口部は、前記コントローラ本体の第1の側面によって区画されており、前記親指用シースの第1の部分は、前記コントローラ本体から延在しており、前記親指用シースの第2の部分は、前記親指用シースの前記第1の部分から延在しており、前記側方開口部は、前記親指用シースの前記第2の部分と前記コントローラ本体の前記第1の側面とによって区画されている、前記親指用シースと、
(c)前記親指用シース内に配置された親指存在センサであって、前記親指用開口部内に配置されたユーザの親指の存在を検出するように構成されている前記親指存在センサと、を備え、
前記コントローラ本体は、前記親指用開口部に配置された前記ユーザの親指によって前記第1の側面を把持され、前記ユーザの人差し指によって前記第2の側面を把持されるように構成されている、ユーザコントローラ。 A user controller,
(a) a controller body having a first side and a second side ;
( b ) a thumb sheath disposed on a first side of the controller body, the thumb sheath and the controller body defining a thumb opening and a side opening, the thumb opening being defined by the first side of the controller body, a first portion of the thumb sheath extending from the controller body, a second portion of the thumb sheath extending from the first portion of the thumb sheath, and the side opening being defined by the second portion of the thumb sheath and the first side of the controller body; and
( c ) a thumb presence sensor disposed within the thumb sheath, the thumb presence sensor configured to detect the presence of a user's thumb disposed within the thumb opening ;
A user controller, wherein the controller body is configured to be grasped on the first side by the user's thumb positioned in the thumb opening and to be grasped on the second side by the user's index finger .
前記親指用開口部内に配置された光センサを備える、請求項1に記載のユーザコントローラ。 The thumb presence sensor is
The user controller of claim 1 , further comprising a light sensor disposed within the thumb opening.
前記親指用シースの内壁に配置された発光器と、
前記コントローラ本体上に配置された受光器と、を備え、
前記受光器は、前記発光器によって放射された光を受け取るように配置される、請求項1に記載のユーザコントローラ。 The thumb presence sensor is
a light emitter disposed on an inner wall of the thumb sheath;
A light receiver disposed on the controller body,
The user controller of claim 1 , wherein the light receiver is positioned to receive light emitted by the light emitter.
前記コントローラ本体に配置された発光器と、
前記親指用シースの内壁に配置された受光器と、を備え、
前記受光器は、前記発光器によって放射された光を受け取るように配置される、請求項1に記載のユーザコントローラ。 The thumb presence sensor is
A light emitter disposed in the controller body;
a light receiver disposed on an inner wall of the thumb sheath;
The user controller of claim 1 , wherein the light receiver is positioned to receive light emitted by the light emitter.
発光器および受光器を備え、
前記発光器および受光器は、前記コントローラ本体上に配置される、請求項1に記載のユーザコントローラ。 The thumb presence sensor is
A light emitter and a light receiver are provided,
The user controller of claim 1 , wherein the light emitter and light receiver are disposed on the controller body.
前記親指用シース内のコントローラ本体上に配置された静電容量センサを備える、請求項1に記載のユーザコントローラ。 The thumb presence sensor is
The user controller of claim 1 , comprising a capacitance sensor disposed on a controller body within the thumb sheath.
前記親指用シース内のコントローラ本体上に配置された機械的センサを備える、請求項1に記載のユーザコントローラ。 The thumb presence sensor is
The user controller of claim 1 , comprising a mechanical sensor located on a controller body within the thumb sheath.
前記フィードバック信号コンポーネントは、ユーザによって見ることができる、請求項1に記載のユーザコントローラ。 the thumb presence sensor includes a feedback signal component disposed on an exterior surface of the thumb sheath;
The user controller of claim 1 , wherein the feedback signal component is viewable by a user.
(a)システムコントローラと、
(b)前記システムコントローラに動作可能に結合されたロボット手術装置と、
(c)前記システムコントローラに動作可能に結合されたユーザコントローラと、を備え、
前記ユーザコントローラは、
(i)コントローラ本体と、
(ii)前記コントローラ本体の第1の側面に配置された親指用シースであって、前記親指用シースと、前記コントローラ本体とによって、親指用開口部および側方開口部が区画されており、前記親指用シースは、
(A)前記コントローラ本体から延在し、前記親指用開口部の第1の壁を区画する第1のシース部分と、
(B)前記第1のシース部分から延在し、前記親指用開口部の第2の壁を区画する第2のシース部分と、
(C)前記コントローラ本体の前記第1の側面によって区画される前記親指用開口部の第3の壁と、を含む、前記親指用シースと、
(iii)前記親指用シース内に配置された親指存在センサであって、前記親指用開口部内に配置されたユーザの親指の存在を検出するように構成されている前記親指存在センサと、を含み、
前記コントローラ本体は、前記親指用開口部に配置された前記ユーザの親指によって前記第1の側面と、前記ユーザの人差し指によって第2の側面とをつまみ把持で把持されるように構成されている、ロボット手術システム。 1. A robotic surgery system, comprising:
(a) a system controller;
(b) a robotic surgical device operably coupled to the system controller; and
(c) a user controller operably coupled to the system controller;
The user controller:
(i) a controller body;
(ii) a thumb sheath disposed on a first side of the controller body, the thumb sheath and the controller body defining a thumb opening and a side opening, the thumb sheath comprising:
(A) a first sheath portion extending from the controller body and defining a first wall of the thumb opening;
(B) a second sheath portion extending from the first sheath portion and defining a second wall of the thumb opening; and
(C) a third wall of the thumb opening defined by the first side of the controller body; and
( iii ) a thumb presence sensor disposed within the thumb sheath, the thumb presence sensor configured to detect the presence of a user 's thumb disposed within the thumb opening ;
A robotic surgery system, wherein the controller body is configured to be grasped in a pinch grip with the first side by the user's thumb placed in the thumb opening and the second side by the user's index finger .
前記フィードバック信号コンポーネントは、ユーザによって見ることができる、請求項12に記載のロボット手術システム。 a feedback signal component disposed on an exterior surface of the thumb sheath;
The robotic surgical system of claim 12 , wherein the feedback signal component is viewable by a user.
(a)コントローラ本体と、(a) a controller main body;
(b)前記コントローラ本体の第1の側面に配置された親指用シースであって、前記親指用シースは、引き込み位置と引き出し位置との間で調整可能であり、(b) a thumb sheath disposed on a first side of the controller body, the thumb sheath being adjustable between a retracted position and an extended position;
前記親指用シースは、The thumb sheath includes:
(i)前記コントローラ本体から延在する第1のシース部分と、(i) a first sheath portion extending from the controller body;
(ii)前記第1のシース部分から延在する第2のシース部分であって、前記第1のシース部分に対して実質的にと交差する方向にある前記第2のシース部分と、(ii) a second sheath portion extending from the first sheath portion, the second sheath portion being in a substantially transverse direction relative to the first sheath portion; and
(iii)前記第1のシース部分と、前記第2のシース部分と、前記コントローラ本体とによって区画される親指用開口部と、(iii) a thumb opening defined by the first sheath portion, the second sheath portion, and the controller body;
(iv)前記第2のシース部分と前記コントローラ本体とによって区画される開放側と、を含む、前記親指用シースと、(iv) the thumb sheath including an open side defined by the second sheath portion and the controller body; and
(c)前記親指用シース内に配置された親指存在センサであって、前記親指用開口部内に配置されたユーザの親指の存在を検出するように構成されている前記親指存在センサと、を備え、(c) a thumb presence sensor disposed within the thumb sheath, the thumb presence sensor configured to detect the presence of a user's thumb disposed within the thumb opening;
前記コントローラ本体は、前記親指用開口部に配置された前記ユーザの親指によって前記第1の側面を把持され、前記ユーザの人差し指によって第2の側面を把持されるように構成されている、ユーザコントローラ。A user controller, wherein the controller body is configured to be grasped on the first side by the user's thumb disposed in the thumb opening and to be grasped on the second side by the user's index finger.
発光器と、受光器と、を含み、A light emitter and a light receiver,
前記受光器は、前記発光器によって放射された光を受け取るように配置される、請求項19に記載のユーザコントローラ。The user controller of claim 19 , wherein the light receiver is positioned to receive light emitted by the light emitter.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662427357P | 2016-11-29 | 2016-11-29 | |
US62/427,357 | 2016-11-29 | ||
PCT/US2017/063739 WO2018102430A1 (en) | 2016-11-29 | 2017-11-29 | User controller with user presence detection and related systems and methods |
JP2019528915A JP7099728B2 (en) | 2016-11-29 | 2017-11-29 | User controller with user presence detection, related systems and methods |
JP2022101089A JP7343229B2 (en) | 2016-11-29 | 2022-06-23 | User controller with user presence detection function, related system and method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022101089A Division JP7343229B2 (en) | 2016-11-29 | 2022-06-23 | User controller with user presence detection function, related system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023164870A JP2023164870A (en) | 2023-11-14 |
JP7575131B2 true JP7575131B2 (en) | 2024-10-29 |
Family
ID=62193375
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019528915A Active JP7099728B2 (en) | 2016-11-29 | 2017-11-29 | User controller with user presence detection, related systems and methods |
JP2022101089A Active JP7343229B2 (en) | 2016-11-29 | 2022-06-23 | User controller with user presence detection function, related system and method |
JP2023136252A Active JP7575131B2 (en) | 2016-11-29 | 2023-08-24 | USER CONTROLLER WITH USER PRESENCE DETECTION, ASSOCIATED SYSTEMS AND METHODS - Patent application |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019528915A Active JP7099728B2 (en) | 2016-11-29 | 2017-11-29 | User controller with user presence detection, related systems and methods |
JP2022101089A Active JP7343229B2 (en) | 2016-11-29 | 2022-06-23 | User controller with user presence detection function, related system and method |
Country Status (6)
Country | Link |
---|---|
US (4) | US10675110B2 (en) |
EP (1) | EP3548773A4 (en) |
JP (3) | JP7099728B2 (en) |
CN (2) | CN110462259B (en) |
CA (1) | CA3045462A1 (en) |
WO (1) | WO2018102430A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013048595A1 (en) | 2011-06-10 | 2013-04-04 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to surgical end effectors |
JP7099728B2 (en) * | 2016-11-29 | 2022-07-12 | バーチャル インシジョン コーポレイション | User controller with user presence detection, related systems and methods |
CN111417333B (en) | 2017-09-27 | 2023-08-29 | 虚拟切割有限公司 | Robotic surgical device with tracking camera technology and related systems and methods |
CN110772327A (en) * | 2019-02-21 | 2020-02-11 | 深圳市精锋医疗科技有限公司 | Handle and main operating platform |
US11992282B2 (en) | 2019-03-15 | 2024-05-28 | Cilag Gmbh International | Motion capture controls for robotic surgery |
US11690690B2 (en) * | 2019-03-15 | 2023-07-04 | Cilag Gmbh International | Segmented control inputs for surgical robotic systems |
US11666401B2 (en) | 2019-03-15 | 2023-06-06 | Cilag Gmbh International | Input controls for robotic surgery |
US11701190B2 (en) | 2019-03-15 | 2023-07-18 | Cilag Gmbh International | Selectable variable response of shaft motion of surgical robotic systems |
EP4042263A1 (en) * | 2019-10-08 | 2022-08-17 | Intuitive Surgical Operations, Inc. | Hand presence sensing at control input device |
CN111687866A (en) * | 2019-12-17 | 2020-09-22 | 成都博恩思医学机器人有限公司 | Induction handle and detection method of using state of handle |
CN113040923A (en) * | 2019-12-27 | 2021-06-29 | 重庆海扶医疗科技股份有限公司 | Operation controller and hovering control method thereof |
JP7063501B1 (en) * | 2020-07-08 | 2022-05-09 | リバーフィールド株式会社 | Medical operation equipment |
US12059170B2 (en) | 2020-12-30 | 2024-08-13 | Cilag Gmbh International | Surgical tool with tool-based translation and lock for the same |
US12070287B2 (en) | 2020-12-30 | 2024-08-27 | Cilag Gmbh International | Robotic surgical tools having dual articulation drives |
US11813746B2 (en) | 2020-12-30 | 2023-11-14 | Cilag Gmbh International | Dual driving pinion crosscheck |
CN112621790B (en) * | 2020-12-31 | 2022-03-25 | 东南大学 | Two-degree-of-freedom rope transmission type finger force feedback device |
US11919622B1 (en) | 2022-08-22 | 2024-03-05 | BETA Technologies, Inc. | Cockpit assembly and a method for adjusting a cockpit |
WO2024042651A1 (en) * | 2022-08-24 | 2024-02-29 | リバーフィールド株式会社 | Operation device for surgical assist device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000350735A (en) | 1999-06-11 | 2000-12-19 | Toshiba Corp | Medical manipulator |
JP2001310280A (en) | 2000-04-26 | 2001-11-06 | Natl Inst Of Advanced Industrial Science & Technology Meti | Grasp data input device |
JP2008529153A (en) | 2005-01-30 | 2008-07-31 | シムトリックス リミテッド | Computer mouse peripherals |
US20120041595A1 (en) | 2010-08-11 | 2012-02-16 | Daniel Greeley | Pistol-grip for intuitive control of a robotic or virtual hand |
US20130293362A1 (en) | 2012-05-03 | 2013-11-07 | The Methodist Hospital Research Institute | Multi-degrees-of-freedom hand controller |
WO2016114090A1 (en) | 2015-01-16 | 2016-07-21 | オリンパス株式会社 | Operation input device and medical manipulator system |
WO2016126334A1 (en) | 2015-02-05 | 2016-08-11 | Symbol Technologies, Llc | Predictive triggering in an electronic device |
WO2017149888A1 (en) | 2016-03-04 | 2017-09-08 | 株式会社ソニー・インタラクティブエンタテインメント | Operation apparatus |
Family Cites Families (421)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3870264A (en) | 1973-03-26 | 1975-03-11 | William I Robinson | Stand |
DE2339827B2 (en) | 1973-08-06 | 1977-02-24 | A6 In 3-02 | DENTAL EQUIPMENT |
US4258716A (en) | 1978-02-06 | 1981-03-31 | The University Of Melbourne | Microsurgical instruments |
JPS5519124A (en) | 1978-07-27 | 1980-02-09 | Olympus Optical Co | Camera system for medical treatment |
JPS58132490A (en) | 1982-01-29 | 1983-08-06 | 株式会社日立製作所 | Transmitting mechanism of angle |
JPS5959371A (en) | 1982-09-30 | 1984-04-05 | フアナツク株式会社 | Industrial robot |
US5307447A (en) | 1982-10-29 | 1994-04-26 | Kabushiki Kaisha Toshiba | Control system of multi-joint arm robot apparatus |
GB2130889B (en) | 1982-11-26 | 1986-06-18 | Wolf Gmbh Richard | Rectoscope |
JPS60217073A (en) * | 1984-04-13 | 1985-10-30 | 三菱重工業株式会社 | Multi-finger manipulator |
DE3536747A1 (en) | 1984-10-15 | 1986-04-24 | Tokico Ltd., Kawasaki, Kanagawa | Joint mechanism |
DE3525806A1 (en) | 1985-07-19 | 1987-01-29 | Kuka Schweissanlagen & Roboter | TRANSMISSION HEAD FOR MANIPULATORS |
JPS6268293A (en) | 1985-09-20 | 1987-03-28 | 株式会社明電舎 | Manipulator shoulder mechanism |
DE3545068A1 (en) | 1985-12-19 | 1987-06-25 | Kuka Schweissanlagen & Roboter | TRANSMISSION HEAD FOR MANIPULATORS |
DE3612498A1 (en) | 1986-04-14 | 1987-10-29 | Norske Stats Oljeselskap | SELF-DRIVING VEHICLE FOR PIPELINES |
US4787270A (en) | 1987-02-11 | 1988-11-29 | Cincinnati Milacron Inc. | Robotic manipulator |
JPS63241626A (en) * | 1987-03-30 | 1988-10-06 | Toshiba Corp | Mouse |
JP2591968B2 (en) | 1987-12-28 | 1997-03-19 | 株式会社日立製作所 | Industrial robot wrist |
US5019968A (en) | 1988-03-29 | 1991-05-28 | Yulan Wang | Three-dimensional vector processor |
US4896015A (en) | 1988-07-29 | 1990-01-23 | Refractive Laser Research & Development Program, Ltd. | Laser delivery system |
US5004391A (en) * | 1989-08-21 | 1991-04-02 | Rutgers University | Portable dextrous force feedback master for robot telemanipulation |
US5271384A (en) | 1989-09-01 | 1993-12-21 | Mcewen James A | Powered surgical retractor |
US5201325A (en) | 1989-09-01 | 1993-04-13 | Andronic Devices Ltd. | Advanced surgical retractor |
US5562448A (en) | 1990-04-10 | 1996-10-08 | Mushabac; David R. | Method for facilitating dental diagnosis and treatment |
IT1241621B (en) | 1990-10-04 | 1994-01-25 | Comau Spa | ARTICULATED ROBOT |
US5172639A (en) | 1991-03-26 | 1992-12-22 | Gas Research Institute | Cornering pipe traveler |
US5632761A (en) | 1991-05-29 | 1997-05-27 | Origin Medsystems, Inc. | Inflatable devices for separating layers of tissue, and methods of using |
US5370134A (en) | 1991-05-29 | 1994-12-06 | Orgin Medsystems, Inc. | Method and apparatus for body structure manipulation and dissection |
US5417210A (en) | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
US5284096A (en) | 1991-08-06 | 1994-02-08 | Osaka Gas Company, Limited | Vehicle for use in pipes |
US5674030A (en) | 1991-08-27 | 1997-10-07 | Sika Equipment Ag. | Device and method for repairing building branch lines in inacessible sewer mains |
JP2526537B2 (en) | 1991-08-30 | 1996-08-21 | 日本電装株式会社 | Pipe energy supply system |
JPH05115425A (en) | 1991-10-25 | 1993-05-14 | Olympus Optical Co Ltd | Endoscope |
US6731988B1 (en) | 1992-01-21 | 2004-05-04 | Sri International | System and method for remote endoscopic surgery |
US5631973A (en) | 1994-05-05 | 1997-05-20 | Sri International | Method for telemanipulation with telepresence |
ATE155059T1 (en) | 1992-01-21 | 1997-07-15 | Stanford Res Inst Int | TELEOPERATOR SYSTEM AND TELEPRESENCE METHOD |
US5624380A (en) | 1992-03-12 | 1997-04-29 | Olympus Optical Co., Ltd. | Multi-degree of freedom manipulator |
US5297443A (en) | 1992-07-07 | 1994-03-29 | Wentz John D | Flexible positioning appendage |
US7074179B2 (en) | 1992-08-10 | 2006-07-11 | Intuitive Surgical Inc | Method and apparatus for performing minimally invasive cardiac procedures |
US5524180A (en) | 1992-08-10 | 1996-06-04 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
US5762458A (en) | 1996-02-20 | 1998-06-09 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US5754741A (en) | 1992-08-10 | 1998-05-19 | Computer Motion, Inc. | Automated endoscope for optimal positioning |
US5657429A (en) | 1992-08-10 | 1997-08-12 | Computer Motion, Inc. | Automated endoscope system optimal positioning |
US5515478A (en) | 1992-08-10 | 1996-05-07 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
US5588442A (en) | 1992-08-12 | 1996-12-31 | Scimed Life Systems, Inc. | Shaft movement control apparatus and method |
US5458131A (en) | 1992-08-25 | 1995-10-17 | Wilk; Peter J. | Method for use in intra-abdominal surgery |
US5297536A (en) | 1992-08-25 | 1994-03-29 | Wilk Peter J | Method for use in intra-abdominal surgery |
US5769640A (en) | 1992-12-02 | 1998-06-23 | Cybernet Systems Corporation | Method and system for simulating medical procedures including virtual reality and control method and system for use therein |
US5353807A (en) | 1992-12-07 | 1994-10-11 | Demarco Thomas J | Magnetically guidable intubation device |
CA2112271A1 (en) | 1992-12-28 | 1994-06-29 | Kiichi Suyama | Intrapipe work robot apparatus and method of measuring position of intrapipe work robot |
EP0683684B1 (en) | 1993-01-07 | 2001-08-08 | Medical Innovations Corporation | Gastrostomy catheter system |
US6346074B1 (en) | 1993-02-22 | 2002-02-12 | Heartport, Inc. | Devices for less invasive intracardiac interventions |
US6832996B2 (en) | 1995-06-07 | 2004-12-21 | Arthrocare Corporation | Electrosurgical systems and methods for treating tissue |
US5363935A (en) | 1993-05-14 | 1994-11-15 | Carnegie Mellon University | Reconfigurable mobile vehicle with magnetic tracks |
US5791231A (en) | 1993-05-17 | 1998-08-11 | Endorobotics Corporation | Surgical robotic system and hydraulic actuator therefor |
JP3349197B2 (en) | 1993-06-30 | 2002-11-20 | テルモ株式会社 | Trocar tube |
US5441494A (en) | 1993-07-29 | 1995-08-15 | Ethicon, Inc. | Manipulable hand for laparoscopy |
US5382885A (en) | 1993-08-09 | 1995-01-17 | The University Of British Columbia | Motion scaling tele-operating system with force feedback suitable for microsurgery |
US5728599A (en) | 1993-10-28 | 1998-03-17 | Lsi Logic Corporation | Printable superconductive leadframes for semiconductor device assembly |
JP3476878B2 (en) | 1993-11-15 | 2003-12-10 | オリンパス株式会社 | Surgical manipulator |
US5876325A (en) | 1993-11-02 | 1999-03-02 | Olympus Optical Co., Ltd. | Surgical manipulation system |
US5458598A (en) | 1993-12-02 | 1995-10-17 | Cabot Technology Corporation | Cutting and coagulating forceps |
WO1995016396A1 (en) | 1993-12-15 | 1995-06-22 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
US5436542A (en) | 1994-01-28 | 1995-07-25 | Surgix, Inc. | Telescopic camera mount with remotely controlled positioning |
US5471515A (en) | 1994-01-28 | 1995-11-28 | California Institute Of Technology | Active pixel sensor with intra-pixel charge transfer |
JP3226710B2 (en) | 1994-05-10 | 2001-11-05 | 株式会社東芝 | Inspection image processing device and method |
US5620417A (en) | 1994-07-07 | 1997-04-15 | Cardiovascular Imaging Systems Incorporated | Rapid exchange delivery catheter |
US5623582A (en) | 1994-07-14 | 1997-04-22 | Immersion Human Interface Corporation | Computer interface or control input device for laparoscopic surgical instrument and other elongated mechanical objects |
US7053752B2 (en) | 1996-08-06 | 2006-05-30 | Intuitive Surgical | General purpose distributed operating room control system |
US6646541B1 (en) | 1996-06-24 | 2003-11-11 | Computer Motion, Inc. | General purpose distributed operating room control system |
US6463361B1 (en) | 1994-09-22 | 2002-10-08 | Computer Motion, Inc. | Speech interface for an automated endoscopic system |
US5797538A (en) | 1994-10-05 | 1998-08-25 | United States Surgical Corporation | Articulating apparatus for applying surgical fasteners to body tissue |
US5672168A (en) | 1994-10-07 | 1997-09-30 | De La Torre; Roger A. | Laparoscopic access port for surgical instruments or the hand |
US6071274A (en) | 1996-12-19 | 2000-06-06 | Ep Technologies, Inc. | Loop structures for supporting multiple electrode elements |
US5653705A (en) | 1994-10-07 | 1997-08-05 | General Surgical Innovations, Inc. | Laparoscopic access port for surgical instruments or the hand |
US5645520A (en) | 1994-10-12 | 1997-07-08 | Computer Motion, Inc. | Shape memory alloy actuated rod for endoscopic instruments |
US5814062A (en) | 1994-12-22 | 1998-09-29 | Target Therapeutics, Inc. | Implant delivery assembly with expandable coupling/decoupling mechanism |
JP3610110B2 (en) | 1995-02-23 | 2005-01-12 | オリンパス株式会社 | Medical manipulator |
US5617075A (en) * | 1995-04-28 | 1997-04-01 | Worth; Sharon I. | Personal alarm security device |
GB2301187B (en) | 1995-05-22 | 1999-04-21 | British Gas Plc | Method of and apparatus for locating an anomaly in a duct |
US5657584A (en) | 1995-07-24 | 1997-08-19 | Rensselaer Polytechnic Institute | Concentric joint mechanism |
US5894302A (en) * | 1995-08-28 | 1999-04-13 | Contour Design, Inc. | Ergonomic housing for a computer mouse |
US5825982A (en) | 1995-09-15 | 1998-10-20 | Wright; James | Head cursor control interface for an automated endoscope system for optimal positioning |
US6714841B1 (en) | 1995-09-15 | 2004-03-30 | Computer Motion, Inc. | Head cursor control interface for an automated endoscope system for optimal positioning |
US6283951B1 (en) | 1996-10-11 | 2001-09-04 | Transvascular, Inc. | Systems and methods for delivering drugs to selected locations within the body |
US5624398A (en) | 1996-02-08 | 1997-04-29 | Symbiosis Corporation | Endoscopic robotic surgical tools and methods |
US6699177B1 (en) | 1996-02-20 | 2004-03-02 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US6436107B1 (en) | 1996-02-20 | 2002-08-20 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US5971976A (en) | 1996-02-20 | 1999-10-26 | Computer Motion, Inc. | Motion minimization and compensation system for use in surgical procedures |
US5855583A (en) | 1996-02-20 | 1999-01-05 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US6063095A (en) | 1996-02-20 | 2000-05-16 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US5895417A (en) | 1996-03-06 | 1999-04-20 | Cardiac Pathways Corporation | Deflectable loop design for a linear lesion ablation apparatus |
US6544276B1 (en) | 1996-05-20 | 2003-04-08 | Medtronic Ave. Inc. | Exchange method for emboli containment |
US5792135A (en) | 1996-05-20 | 1998-08-11 | Intuitive Surgical, Inc. | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US6652480B1 (en) | 1997-03-06 | 2003-11-25 | Medtronic Ave., Inc. | Methods for reducing distal embolization |
US5797900A (en) | 1996-05-20 | 1998-08-25 | Intuitive Surgical, Inc. | Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5807377A (en) | 1996-05-20 | 1998-09-15 | Intuitive Surgical, Inc. | Force-reflecting surgical instrument and positioning mechanism for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US6911916B1 (en) | 1996-06-24 | 2005-06-28 | The Cleveland Clinic Foundation | Method and apparatus for accessing medical data over a network |
US6496099B2 (en) | 1996-06-24 | 2002-12-17 | Computer Motion, Inc. | General purpose distributed operating room control system |
US5841425A (en) * | 1996-07-31 | 1998-11-24 | International Business Machines Corporation | Ambidextrous computer input device |
US6642836B1 (en) | 1996-08-06 | 2003-11-04 | Computer Motion, Inc. | General purpose distributed operating room control system |
US6364888B1 (en) | 1996-09-09 | 2002-04-02 | Intuitive Surgical, Inc. | Alignment of master and slave in a minimally invasive surgical apparatus |
AU4337997A (en) | 1996-09-13 | 1998-04-02 | Schering Corporation | Tricyclic inhibitors of farnesyl protein transferase |
US6520951B1 (en) | 1996-09-13 | 2003-02-18 | Scimed Life Systems, Inc. | Rapid exchange catheter with detachable hood |
IT1285533B1 (en) | 1996-10-22 | 1998-06-08 | Scuola Superiore Di Studi Universitari E Di Perfezionamento Sant Anna | ENDOSCOPIC ROBOT |
US6058323A (en) | 1996-11-05 | 2000-05-02 | Lemelson; Jerome | System and method for treating select tissue in a living being |
US5845646A (en) | 1996-11-05 | 1998-12-08 | Lemelson; Jerome | System and method for treating select tissue in a living being |
US6286514B1 (en) | 1996-11-05 | 2001-09-11 | Jerome Lemelson | System and method for treating select tissue in a living being |
US6132441A (en) | 1996-11-22 | 2000-10-17 | Computer Motion, Inc. | Rigidly-linked articulating wrist with decoupled motion transmission |
US5993467A (en) | 1996-11-27 | 1999-11-30 | Yoon; Inbae | Suturing instrument with rotatably mounted spreadable needle holder |
US6331181B1 (en) | 1998-12-08 | 2001-12-18 | Intuitive Surgical, Inc. | Surgical robotic tools, data architecture, and use |
US6132368A (en) | 1996-12-12 | 2000-10-17 | Intuitive Surgical, Inc. | Multi-component telepresence system and method |
US6332880B1 (en) | 1996-12-19 | 2001-12-25 | Ep Technologies, Inc. | Loop structures for supporting multiple electrode elements |
US5910129A (en) | 1996-12-19 | 1999-06-08 | Ep Technologies, Inc. | Catheter distal assembly with pull wires |
US6086529A (en) | 1997-05-13 | 2000-07-11 | Wisconsin Medical, Inc. | Bronchoscopic manifold with compressible diaphragmatic valve for simultaneous airway instrumentation |
US6066090A (en) | 1997-06-19 | 2000-05-23 | Yoon; Inbae | Branched endoscope system |
EP1009804B1 (en) | 1997-08-20 | 2003-10-29 | The Regents of the University of California | Nucleic acid sequences encoding capsaicin receptor and capsaicin receptor-related polypeptides and uses thereof |
US6714839B2 (en) | 1998-12-08 | 2004-03-30 | Intuitive Surgical, Inc. | Master having redundant degrees of freedom |
US6139563A (en) | 1997-09-25 | 2000-10-31 | Allegiance Corporation | Surgical device with malleable shaft |
JP3342021B2 (en) | 1997-10-17 | 2002-11-05 | サーコン コーポレーション | Medical device system that penetrates tissue |
US6240312B1 (en) | 1997-10-23 | 2001-05-29 | Robert R. Alfano | Remote-controllable, micro-scale device for use in in vivo medical diagnosis and/or treatment |
FR2771280B1 (en) | 1997-11-26 | 2001-01-26 | Albert P Alby | RESILIENT VERTEBRAL CONNECTION DEVICE |
US6692485B1 (en) | 1998-02-24 | 2004-02-17 | Endovia Medical, Inc. | Articulated apparatus for telemanipulator system |
US6810281B2 (en) | 2000-12-21 | 2004-10-26 | Endovia Medical, Inc. | Medical mapping system |
US7090683B2 (en) | 1998-02-24 | 2006-08-15 | Hansen Medical, Inc. | Flexible instrument |
US7169141B2 (en) | 1998-02-24 | 2007-01-30 | Hansen Medical, Inc. | Surgical instrument |
US7214230B2 (en) | 1998-02-24 | 2007-05-08 | Hansen Medical, Inc. | Flexible instrument |
US6309403B1 (en) | 1998-06-01 | 2001-10-30 | Board Of Trustees Operating Michigan State University | Dexterous articulated linkage for surgical applications |
US6030365A (en) | 1998-06-10 | 2000-02-29 | Laufer; Michael D. | Minimally invasive sterile surgical access device and method |
US6352503B1 (en) | 1998-07-17 | 2002-03-05 | Olympus Optical Co., Ltd. | Endoscopic surgery apparatus |
WO2000007503A1 (en) | 1998-08-04 | 2000-02-17 | Intuitive Surgical, Inc. | Manipulator positioning linkage for robotic surgery |
US6951535B2 (en) | 2002-01-16 | 2005-10-04 | Intuitive Surgical, Inc. | Tele-medicine system that transmits an entire state of a subsystem |
US6398726B1 (en) | 1998-11-20 | 2002-06-04 | Intuitive Surgical, Inc. | Stabilizer for robotic beating-heart surgery |
US6554790B1 (en) | 1998-11-20 | 2003-04-29 | Intuitive Surgical, Inc. | Cardiopulmonary bypass device and method |
US6852107B2 (en) | 2002-01-16 | 2005-02-08 | Computer Motion, Inc. | Minimally invasive surgical training using robotics and tele-collaboration |
US6459926B1 (en) | 1998-11-20 | 2002-10-01 | Intuitive Surgical, Inc. | Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery |
US6659939B2 (en) | 1998-11-20 | 2003-12-09 | Intuitive Surgical, Inc. | Cooperative minimally invasive telesurgical system |
US6468265B1 (en) | 1998-11-20 | 2002-10-22 | Intuitive Surgical, Inc. | Performing cardiac surgery without cardioplegia |
US6162171A (en) | 1998-12-07 | 2000-12-19 | Wan Sing Ng | Robotic endoscope and an autonomous pipe robot for performing endoscopic procedures |
USD438617S1 (en) | 1998-12-08 | 2001-03-06 | Intuitive Surgical, Inc. | Portion of an adaptor for a medical instrument |
US6309397B1 (en) | 1999-12-02 | 2001-10-30 | Sri International | Accessories for minimally invasive robotic surgery and methods |
US6799065B1 (en) | 1998-12-08 | 2004-09-28 | Intuitive Surgical, Inc. | Image shifting apparatus and method for a telerobotic system |
US6770081B1 (en) | 2000-01-07 | 2004-08-03 | Intuitive Surgical, Inc. | In vivo accessories for minimally invasive robotic surgery and methods |
US6720988B1 (en) | 1998-12-08 | 2004-04-13 | Intuitive Surgical, Inc. | Stereo imaging system and method for use in telerobotic systems |
USD444555S1 (en) | 1998-12-08 | 2001-07-03 | Intuitive Surgical, Inc. | Interface for a medical instrument |
US6522906B1 (en) | 1998-12-08 | 2003-02-18 | Intuitive Surgical, Inc. | Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure |
US6493608B1 (en) | 1999-04-07 | 2002-12-10 | Intuitive Surgical, Inc. | Aspects of a control system of a minimally invasive surgical apparatus |
USD441862S1 (en) | 1998-12-08 | 2001-05-08 | Intuitive Surgical, Inc. | Portion of an interface for a medical instrument |
USD441076S1 (en) | 1998-12-08 | 2001-04-24 | Intuitive Surgical, Inc. | Adaptor for a medical instrument |
US7125403B2 (en) | 1998-12-08 | 2006-10-24 | Intuitive Surgical | In vivo accessories for minimally invasive robotic surgery |
US6620173B2 (en) | 1998-12-08 | 2003-09-16 | Intuitive Surgical, Inc. | Method for introducing an end effector to a surgical site in minimally invasive surgery |
US6451027B1 (en) | 1998-12-16 | 2002-09-17 | Intuitive Surgical, Inc. | Devices and methods for moving an image capture device in telesurgical systems |
US6394998B1 (en) | 1999-01-22 | 2002-05-28 | Intuitive Surgical, Inc. | Surgical tools for use in minimally invasive telesurgical applications |
US8636648B2 (en) | 1999-03-01 | 2014-01-28 | West View Research, Llc | Endoscopic smart probe |
US6159146A (en) | 1999-03-12 | 2000-12-12 | El Gazayerli; Mohamed Mounir | Method and apparatus for minimally-invasive fundoplication |
JP3596340B2 (en) | 1999-03-18 | 2004-12-02 | 株式会社日立製作所 | Surgical insertion device |
US6424885B1 (en) | 1999-04-07 | 2002-07-23 | Intuitive Surgical, Inc. | Camera referenced control in a minimally invasive surgical apparatus |
US6565554B1 (en) | 1999-04-07 | 2003-05-20 | Intuitive Surgical, Inc. | Friction compensation in a minimally invasive surgical apparatus |
US6594552B1 (en) | 1999-04-07 | 2003-07-15 | Intuitive Surgical, Inc. | Grip strength with tactile feedback for robotic surgery |
US6820653B1 (en) | 1999-04-12 | 2004-11-23 | Carnegie Mellon University | Pipe inspection and repair system |
US7637905B2 (en) | 2003-01-15 | 2009-12-29 | Usgi Medical, Inc. | Endoluminal tool deployment system |
US6788018B1 (en) | 1999-08-03 | 2004-09-07 | Intuitive Surgical, Inc. | Ceiling and floor mounted surgical robot set-up arms |
US6454775B1 (en) | 1999-12-06 | 2002-09-24 | Bacchus Vascular Inc. | Systems and methods for clot disruption and retrieval |
US6661571B1 (en) | 1999-09-21 | 2003-12-09 | Olympus Optical Co., Ltd. | Surgical microscopic system |
US7217240B2 (en) | 1999-10-01 | 2007-05-15 | Intuitive Surgical, Inc. | Heart stabilizer |
US6817972B2 (en) | 1999-10-01 | 2004-11-16 | Computer Motion, Inc. | Heart stabilizer |
US6936001B1 (en) | 1999-10-01 | 2005-08-30 | Computer Motion, Inc. | Heart stabilizer |
US6206903B1 (en) | 1999-10-08 | 2001-03-27 | Intuitive Surgical, Inc. | Surgical tool with mechanical advantage |
US6491691B1 (en) | 1999-10-08 | 2002-12-10 | Intuitive Surgical, Inc. | Minimally invasive surgical hook apparatus and method for using same |
US6312435B1 (en) | 1999-10-08 | 2001-11-06 | Intuitive Surgical, Inc. | Surgical instrument with extended reach for use in minimally invasive surgery |
JP3326472B2 (en) | 1999-11-10 | 2002-09-24 | 独立行政法人 航空宇宙技術研究所 | Articulated robot |
US6702805B1 (en) | 1999-11-12 | 2004-03-09 | Microdexterity Systems, Inc. | Manipulator |
US6548982B1 (en) | 1999-11-19 | 2003-04-15 | Regents Of The University Of Minnesota | Miniature robotic vehicles and methods of controlling same |
US6591239B1 (en) | 1999-12-09 | 2003-07-08 | Steris Inc. | Voice controlled surgical suite |
US6817975B1 (en) | 2000-01-14 | 2004-11-16 | Intuitive Surgical, Inc. | Endoscope |
WO2001054568A1 (en) | 2000-01-27 | 2001-08-02 | Sterilis, Inc. | Cavity enlarger method and apparatus |
US7039453B2 (en) | 2000-02-08 | 2006-05-02 | Tarun Mullick | Miniature ingestible capsule |
US6428539B1 (en) | 2000-03-09 | 2002-08-06 | Origin Medsystems, Inc. | Apparatus and method for minimally invasive surgery using rotational cutting tool |
US7098893B2 (en) * | 2000-03-17 | 2006-08-29 | Gary Rogers | Thumb and finger guide attachable to a computer mouse and a computer mouse incorporating same |
WO2001074260A1 (en) | 2000-03-24 | 2001-10-11 | Johns Hopkins University | Peritoneal cavity device and method |
US6837846B2 (en) | 2000-04-03 | 2005-01-04 | Neo Guide Systems, Inc. | Endoscope having a guide tube |
US6984203B2 (en) | 2000-04-03 | 2006-01-10 | Neoguide Systems, Inc. | Endoscope with adjacently positioned guiding apparatus |
US6610007B2 (en) | 2000-04-03 | 2003-08-26 | Neoguide Systems, Inc. | Steerable segmented endoscope and method of insertion |
US6468203B2 (en) | 2000-04-03 | 2002-10-22 | Neoguide Systems, Inc. | Steerable endoscope and improved method of insertion |
US6974411B2 (en) | 2000-04-03 | 2005-12-13 | Neoguide Systems, Inc. | Endoscope with single step guiding apparatus |
US6508413B2 (en) | 2000-04-06 | 2003-01-21 | Siemens Westinghouse Power Corporation | Remote spray coating of nuclear cross-under piping |
US6450104B1 (en) | 2000-04-28 | 2002-09-17 | North Carolina State University | Modular observation crawler and sensing instrument and method for operating same |
DE10025285A1 (en) | 2000-05-22 | 2001-12-06 | Siemens Ag | Fully automatic, robot-assisted camera guidance using position sensors for laparoscopic interventions |
US6645196B1 (en) | 2000-06-16 | 2003-11-11 | Intuitive Surgical, Inc. | Guided tool change |
FR2812067B1 (en) | 2000-07-18 | 2003-05-16 | Commissariat Energie Atomique | MOBILE ROBOT ABLE TO WORK IN PIPES OR OTHER NARROW PASSAGES |
US6746443B1 (en) | 2000-07-27 | 2004-06-08 | Intuitive Surgical Inc. | Roll-pitch-roll surgical tool |
US6902560B1 (en) | 2000-07-27 | 2005-06-07 | Intuitive Surgical, Inc. | Roll-pitch-roll surgical tool |
US6726699B1 (en) | 2000-08-15 | 2004-04-27 | Computer Motion, Inc. | Instrument guide |
US6860877B1 (en) | 2000-09-29 | 2005-03-01 | Computer Motion, Inc. | Heart stabilizer support arm |
US6475215B1 (en) | 2000-10-12 | 2002-11-05 | Naim Erturk Tanrisever | Quantum energy surgical device and method |
US6601468B2 (en) | 2000-10-24 | 2003-08-05 | Innovative Robotic Solutions | Drive system for multiple axis robot arm |
DE10055293A1 (en) | 2000-11-03 | 2002-05-29 | Storz Karl Gmbh & Co Kg | Device for holding and positioning an endoscopic instrument |
EP1339326B1 (en) | 2000-11-27 | 2013-03-06 | Covidien LP | Tissue sampling and removal apparatus |
EP2441395A3 (en) | 2000-11-28 | 2014-06-18 | Intuitive Surgical Operations, Inc. | Endoscope beating-heart stabilizer and vessel occlusion fastener |
US6913627B2 (en) | 2000-12-06 | 2005-07-05 | Honda Giken Kogyo Kabushiki Kaisha | Multi-finger hand device |
JP4655175B2 (en) | 2000-12-19 | 2011-03-23 | ソニー株式会社 | MANIPULATOR SYSTEM, MASTER MANIPULATOR, SLAVE MANIPULATOR, CONTROL METHOD THEREOF, AND RECORDING MEDIUM |
US6934589B2 (en) | 2000-12-29 | 2005-08-23 | Medtronic, Inc. | System and method for placing endocardial leads |
US6840938B1 (en) | 2000-12-29 | 2005-01-11 | Intuitive Surgical, Inc. | Bipolar cauterizing instrument |
US7519421B2 (en) | 2001-01-16 | 2009-04-14 | Kenergy, Inc. | Vagal nerve stimulation using vascular implanted devices for treatment of atrial fibrillation |
KR100380181B1 (en) | 2001-02-10 | 2003-04-11 | 한국과학기술연구원 | Micro Robot for Test the Large Intestines |
US6871563B2 (en) | 2001-02-26 | 2005-03-29 | Howie Choset | Orientation preserving angular swivel joint |
ES2249599T3 (en) | 2001-03-07 | 2006-04-01 | Carnegie Mellon University | ROBOTIZED SYSTEM TO INSPECT GAS DRIVES. |
US6774597B1 (en) | 2001-03-30 | 2004-08-10 | The Regents Of The University Of Michigan | Apparatus for obstacle traversion |
US6512345B2 (en) | 2001-03-30 | 2003-01-28 | The Regents Of The University Of Michigan | Apparatus for obstacle traversion |
US6870343B2 (en) | 2001-03-30 | 2005-03-22 | The University Of Michigan | Integrated, proportionally controlled, and naturally compliant universal joint actuator with controllable stiffness |
EP1383416A2 (en) | 2001-04-18 | 2004-01-28 | BBMS Ltd. | Navigating and maneuvering of an in vivo vechicle by extracorporeal devices |
US6783524B2 (en) | 2001-04-19 | 2004-08-31 | Intuitive Surgical, Inc. | Robotic surgical tool with ultrasound cauterizing and cutting instrument |
US6994708B2 (en) | 2001-04-19 | 2006-02-07 | Intuitive Surgical | Robotic tool with monopolar electro-surgical scissors |
KR100413058B1 (en) | 2001-04-24 | 2003-12-31 | 한국과학기술연구원 | Micro Robotic Colonoscope with Motor Locomotion |
US6687571B1 (en) | 2001-04-24 | 2004-02-03 | Sandia Corporation | Cooperating mobile robots |
KR100402920B1 (en) | 2001-05-19 | 2003-10-22 | 한국과학기술연구원 | Micro robot |
KR100426613B1 (en) | 2001-05-19 | 2004-04-08 | 한국과학기술연구원 | Micro robot driving system |
US7607440B2 (en) | 2001-06-07 | 2009-10-27 | Intuitive Surgical, Inc. | Methods and apparatus for surgical planning |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
US6440085B1 (en) | 2001-06-12 | 2002-08-27 | Jacek Krzyzanowski | Method of assembling a non-metallic biopsy forceps jaw and a non-metallic biopsy forceps jaw |
WO2003001987A2 (en) | 2001-06-29 | 2003-01-09 | Intuitive Surgical, Inc. | Platform link wrist mechanism |
US6817974B2 (en) | 2001-06-29 | 2004-11-16 | Intuitive Surgical, Inc. | Surgical tool having positively positionable tendon-actuated multi-disk wrist joint |
US20040243147A1 (en) | 2001-07-03 | 2004-12-02 | Lipow Kenneth I. | Surgical robot and robotic controller |
US7071920B2 (en) * | 2001-07-06 | 2006-07-04 | Hewlett-Packard Development Company, L.P. | Method and apparatus for indicating an operating mode of a computer-pointing device |
US20050083460A1 (en) | 2001-07-16 | 2005-04-21 | Nippon Sheet Glass Co., Ltd. | Semi-transmitting mirror-possessing substrate, and semi-transmitting type liquid crystal display apparatus |
JP4744026B2 (en) | 2001-07-30 | 2011-08-10 | オリンパス株式会社 | Capsule endoscope and capsule endoscope system |
US6676684B1 (en) | 2001-09-04 | 2004-01-13 | Intuitive Surgical, Inc. | Roll-pitch-roll-yaw surgical tool |
US6728599B2 (en) | 2001-09-07 | 2004-04-27 | Computer Motion, Inc. | Modularity system for computer assisted surgery |
US6764441B2 (en) | 2001-09-17 | 2004-07-20 | Case Western Reserve University | Peristaltically self-propelled endoscopic device |
US6587750B2 (en) | 2001-09-25 | 2003-07-01 | Intuitive Surgical, Inc. | Removable infinite roll master grip handle and touch sensor for robotic surgery |
AU2002332031A1 (en) | 2001-10-02 | 2003-04-14 | Arthrocare Corporation | Apparatus and methods for electrosurgical removal and digestion of tissue |
US6835173B2 (en) | 2001-10-05 | 2004-12-28 | Scimed Life Systems, Inc. | Robotic endoscope |
WO2003034158A2 (en) | 2001-10-17 | 2003-04-24 | William Marsh Rice University | Autonomous robotic crawler for in-pipe inspection |
US7182025B2 (en) | 2001-10-17 | 2007-02-27 | William Marsh Rice University | Autonomous robotic crawler for in-pipe inspection |
US6730021B2 (en) | 2001-11-07 | 2004-05-04 | Computer Motion, Inc. | Tissue spreader with force measurement, force indication or force limitation |
KR100417163B1 (en) | 2001-11-12 | 2004-02-05 | 한국과학기술연구원 | Micro capsule robot |
US7294146B2 (en) | 2001-12-03 | 2007-11-13 | Xtent, Inc. | Apparatus and methods for delivery of variable length stents |
US6839612B2 (en) | 2001-12-07 | 2005-01-04 | Institute Surgical, Inc. | Microwrist system for surgical procedures |
US6793653B2 (en) | 2001-12-08 | 2004-09-21 | Computer Motion, Inc. | Multifunctional handle for a medical robotic system |
US20030114731A1 (en) | 2001-12-14 | 2003-06-19 | Cadeddu Jeffrey A. | Magnetic positioning system for trocarless laparoscopic instruments |
US6780191B2 (en) | 2001-12-28 | 2004-08-24 | Yacmur Llc | Cannula system |
US6676660B2 (en) | 2002-01-23 | 2004-01-13 | Ethicon Endo-Surgery, Inc. | Feedback light apparatus and method for use with an electrosurgical instrument |
US7967816B2 (en) | 2002-01-25 | 2011-06-28 | Medtronic, Inc. | Fluid-assisted electrosurgical instrument with shapeable electrode |
US7637919B2 (en) | 2002-01-30 | 2009-12-29 | Olympus Corporation | Anastomosis system for performing anastomosis in body |
AU2003218050A1 (en) | 2002-02-11 | 2003-09-04 | Arthrocare Corporation | Electrosurgical apparatus and methods for laparoscopy |
ATE333066T1 (en) | 2002-03-05 | 2006-08-15 | Wagner Wilhelm Wiwa | DEVICE AND METHOD FOR INNER COATING OF A PIPE |
US8010180B2 (en) | 2002-03-06 | 2011-08-30 | Mako Surgical Corp. | Haptic guidance system and method |
TW200304608A (en) | 2002-03-06 | 2003-10-01 | Z Kat Inc | System and method for using a haptic device in combination with a computer-assisted surgery system |
US7831292B2 (en) | 2002-03-06 | 2010-11-09 | Mako Surgical Corp. | Guidance system and method for surgical procedures with improved feedback |
US20030179308A1 (en) | 2002-03-19 | 2003-09-25 | Lucia Zamorano | Augmented tracking using video, computed data and/or sensing technologies |
JP3869291B2 (en) | 2002-03-25 | 2007-01-17 | オリンパス株式会社 | Capsule medical device |
JP3917885B2 (en) | 2002-04-08 | 2007-05-23 | オリンパス株式会社 | Capsule endoscope system |
US6860346B2 (en) | 2002-04-19 | 2005-03-01 | Regents Of The University Of Minnesota | Adjustable diameter wheel assembly, and methods and vehicles using same |
US7674270B2 (en) | 2002-05-02 | 2010-03-09 | Laparocision, Inc | Apparatus for positioning a medical instrument |
FR2839440B1 (en) | 2002-05-13 | 2005-03-25 | Perception Raisonnement Action | POSITIONING SYSTEM ON A PATIENT OF AN OBSERVATION AND / OR INTERVENTION DEVICE |
US20030230372A1 (en) | 2002-06-13 | 2003-12-18 | Kurt Schmidt | Method for placing objects on the inner wall of a placed sewer pipe and device for carrying out said method |
US6801325B2 (en) | 2002-06-25 | 2004-10-05 | Intuitive Surgical, Inc. | Method and devices for inspecting and calibrating of stereoscopic endoscopes |
CA2495222A1 (en) | 2002-08-13 | 2004-02-19 | Wyeth | Peptides as solubilizing excipients for transforming growth factor ss proteins |
JP2006507809A (en) | 2002-08-19 | 2006-03-09 | ファルマシア・コーポレーション | Antisense modulation of VEGF co-regulated chemokine-1 expression |
US6776165B2 (en) | 2002-09-12 | 2004-08-17 | The Regents Of The University Of California | Magnetic navigation system for diagnosis, biopsy and drug delivery vehicles |
JP4133188B2 (en) | 2002-10-07 | 2008-08-13 | 株式会社ハーモニック・ドライブ・システムズ | Robot hand finger unit |
US7794494B2 (en) | 2002-10-11 | 2010-09-14 | Boston Scientific Scimed, Inc. | Implantable medical devices |
JP3700848B2 (en) | 2002-10-23 | 2005-09-28 | Necエンジニアリング株式会社 | Micro light source position measuring device |
US6936003B2 (en) | 2002-10-29 | 2005-08-30 | Given Imaging Ltd | In-vivo extendable element device and system, and method of use |
JP4148763B2 (en) | 2002-11-29 | 2008-09-10 | 学校法人慈恵大学 | Endoscopic surgery robot |
JP3686947B2 (en) | 2002-12-09 | 2005-08-24 | 国立大学法人 東京大学 | High-rigid forceps tip structure for active forceps and active forceps including the same |
DE602004015729D1 (en) | 2003-02-11 | 2008-09-25 | Olympus Corp | ABOUT TUBE |
US7083615B2 (en) | 2003-02-24 | 2006-08-01 | Intuitive Surgical Inc | Surgical tool having electrocautery energy supply conductor with inhibited current leakage |
US7105000B2 (en) | 2003-03-25 | 2006-09-12 | Ethicon Endo-Surgery, Inc. | Surgical jaw assembly with increased mechanical advantage |
JP3752494B2 (en) | 2003-03-31 | 2006-03-08 | 株式会社東芝 | Master-slave manipulator, control device and control method thereof |
JP4329394B2 (en) | 2003-04-30 | 2009-09-09 | 株式会社島津製作所 | Small photographing device |
DE10323216B3 (en) | 2003-05-22 | 2004-12-23 | Siemens Ag | Endoscope apparatus has cameras which are provided at respective ends of endoscope capsule, such that one of camera is tilted or rotated to change photography range |
US7121781B2 (en) | 2003-06-11 | 2006-10-17 | Intuitive Surgical | Surgical instrument with a universal wrist |
US7109678B2 (en) | 2003-06-30 | 2006-09-19 | Carl-Zeiss-Stiftung | Holding arrangement having an apparatus for balancing a load torque |
GB0315479D0 (en) | 2003-07-02 | 2003-08-06 | Paz Adrian | Virtual ports devices |
US7042184B2 (en) | 2003-07-08 | 2006-05-09 | Board Of Regents Of The University Of Nebraska | Microrobot for surgical applications |
US20080058989A1 (en) | 2006-04-13 | 2008-03-06 | Board Of Regents Of The University Of Nebraska | Surgical camera robot |
US7126303B2 (en) | 2003-07-08 | 2006-10-24 | Board Of Regents Of The University Of Nebraska | Robot for surgical applications |
US7960935B2 (en) | 2003-07-08 | 2011-06-14 | The Board Of Regents Of The University Of Nebraska | Robotic devices with agent delivery components and related methods |
US7066879B2 (en) | 2003-07-15 | 2006-06-27 | The Trustees Of Columbia University In The City Of New York | Insertable device and system for minimal access procedure |
US20100081875A1 (en) | 2003-07-15 | 2010-04-01 | EndoRobotics Inc. | Surgical Device For Minimal Access Surgery |
WO2009058350A1 (en) | 2007-11-02 | 2009-05-07 | The Trustees Of Columbia University In The City Of New York | Insertable surgical imaging device |
US20050021069A1 (en) | 2003-07-24 | 2005-01-27 | Gerald Feuer | Inflatable apparatus for accessing body cavity and methods of making |
JP2005074031A (en) | 2003-09-01 | 2005-03-24 | Pentax Corp | Capsule endoscope |
JP4128504B2 (en) | 2003-09-05 | 2008-07-30 | オリンパス株式会社 | Capsule endoscope |
JP4128505B2 (en) | 2003-09-05 | 2008-07-30 | オリンパス株式会社 | Capsule endoscope |
US7993384B2 (en) | 2003-09-12 | 2011-08-09 | Abbott Cardiovascular Systems Inc. | Delivery system for medical devices |
DE10343494B4 (en) | 2003-09-19 | 2006-06-14 | Siemens Ag | Magnetically navigable device for use in the field of medical endoscopy |
US7594815B2 (en) | 2003-09-24 | 2009-09-29 | Toly Christopher C | Laparoscopic and endoscopic trainer including a digital camera |
US7789825B2 (en) | 2003-09-29 | 2010-09-07 | Ethicon Endo-Surgery, Inc. | Handle for endoscopic device |
US20050096502A1 (en) | 2003-10-29 | 2005-05-05 | Khalili Theodore M. | Robotic surgical device |
US7147650B2 (en) | 2003-10-30 | 2006-12-12 | Woojin Lee | Surgical instrument |
US8162925B2 (en) | 2003-11-07 | 2012-04-24 | Carnegie Mellon University | Robot for minimally invasive interventions |
US7429259B2 (en) | 2003-12-02 | 2008-09-30 | Cadeddu Jeffrey A | Surgical anchor and system |
US7625338B2 (en) | 2003-12-31 | 2009-12-01 | Given Imaging, Ltd. | In-vivo sensing device with alterable fields of view |
EP1740084A2 (en) | 2004-04-15 | 2007-01-10 | Wilson-Cook Medical Inc. | Endoscopic surgical access devices and methods of articulating an external accessory channel |
US7857767B2 (en) | 2004-04-19 | 2010-12-28 | Invention Science Fund I, Llc | Lumen-traveling device |
US8512219B2 (en) | 2004-04-19 | 2013-08-20 | The Invention Science Fund I, Llc | Bioelectromagnetic interface system |
US7998060B2 (en) | 2004-04-19 | 2011-08-16 | The Invention Science Fund I, Llc | Lumen-traveling delivery device |
US20070244520A1 (en) | 2004-04-19 | 2007-10-18 | Searete Llc | Lumen-traveling biological interface device and method of use |
US8353897B2 (en) | 2004-06-16 | 2013-01-15 | Carefusion 2200, Inc. | Surgical tool kit |
US7241290B2 (en) | 2004-06-16 | 2007-07-10 | Kinetic Surgical, Llc | Surgical tool kit |
US7892230B2 (en) | 2004-06-24 | 2011-02-22 | Arthrocare Corporation | Electrosurgical device having planar vertical electrode and related methods |
US20060020272A1 (en) | 2004-06-24 | 2006-01-26 | Gildenberg Philip L | Semi-robotic suturing device |
US20050288555A1 (en) | 2004-06-28 | 2005-12-29 | Binmoeller Kenneth E | Methods and devices for illuminating, vievwing and monitoring a body cavity |
WO2006005075A2 (en) | 2004-06-30 | 2006-01-12 | Amir Belson | Apparatus and methods for capsule endoscopy of the esophagus |
US20060046226A1 (en) | 2004-08-27 | 2006-03-02 | Bergler Hans J | Dental imaging system and method of use |
US20090012422A1 (en) | 2004-11-08 | 2009-01-08 | Eduardo Marban | Bioptome |
US8128680B2 (en) | 2005-01-10 | 2012-03-06 | Taheri Laduca Llc | Apparatus and method for deploying an implantable device within the body |
US20060152591A1 (en) | 2005-01-13 | 2006-07-13 | Sheng-Feng Lin | Automatic focus mechanism of an image capturing device |
US7763015B2 (en) | 2005-01-24 | 2010-07-27 | Intuitive Surgical Operations, Inc. | Modular manipulator support for robotic surgery |
US8463439B2 (en) | 2009-03-31 | 2013-06-11 | Intuitive Surgical Operations, Inc. | Optic fiber connection for a force sensing instrument |
US7785251B2 (en) | 2005-04-22 | 2010-08-31 | Wilk Patent, Llc | Port extraction method for trans-organ surgery |
US20060241570A1 (en) | 2005-04-22 | 2006-10-26 | Wilk Patent, Llc | Intra-abdominal medical method |
US20110020779A1 (en) | 2005-04-25 | 2011-01-27 | University Of Washington | Skill evaluation using spherical motion mechanism |
US7762960B2 (en) | 2005-05-13 | 2010-07-27 | Boston Scientific Scimed, Inc. | Biopsy forceps assemblies |
US7708687B2 (en) | 2005-05-27 | 2010-05-04 | Bern M Jonathan | Endoscope propulsion system and method |
EP1945123A1 (en) | 2005-07-14 | 2008-07-23 | Enhanced Medical System LLC | Robot for minimally invasive interventions |
JP2009507617A (en) | 2005-09-14 | 2009-02-26 | ネオガイド システムズ, インコーポレイテッド | Method and apparatus for performing transluminal and other operations |
US20070106113A1 (en) | 2005-11-07 | 2007-05-10 | Biagio Ravo | Combination endoscopic operative delivery system |
US7761137B2 (en) | 2005-12-16 | 2010-07-20 | Suros Surgical Systems, Inc. | Biopsy site marker deployment device |
US7762825B2 (en) | 2005-12-20 | 2010-07-27 | Intuitive Surgical Operations, Inc. | Electro-mechanical interfaces to mount robotic surgical arms |
US7930065B2 (en) | 2005-12-30 | 2011-04-19 | Intuitive Surgical Operations, Inc. | Robotic surgery system including position sensors using fiber bragg gratings |
US7785333B2 (en) | 2006-02-21 | 2010-08-31 | Olympus Medical Systems Corp. | Overtube and operative procedure via bodily orifice |
EP1815949A1 (en) | 2006-02-03 | 2007-08-08 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Medical robotic system with manipulator arm of the cylindrical coordinate type |
EP1815950A1 (en) | 2006-02-03 | 2007-08-08 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Robotic surgical system for performing minimally invasive medical procedures |
US20060253109A1 (en) | 2006-02-08 | 2006-11-09 | David Chu | Surgical robotic helping hand system |
WO2007111571A1 (en) | 2006-03-27 | 2007-10-04 | Nanyang Technological University | Surgical robotic system for flexible endoscopy |
US8585733B2 (en) | 2006-04-19 | 2013-11-19 | Vibrynt, Inc | Devices, tools and methods for performing minimally invasive abdominal surgical procedures |
US7862573B2 (en) | 2006-04-21 | 2011-01-04 | Darois Roger E | Method and apparatus for surgical fastening |
EP2012650B1 (en) | 2006-04-24 | 2016-07-27 | TransEnterix Surgical, Inc. | Natural orifice surgical system |
US7731727B2 (en) | 2006-04-26 | 2010-06-08 | Lsi Solutions, Inc. | Medical instrument to place a pursestring suture, open a hole and pass a guidewire |
JP2009535161A (en) | 2006-04-29 | 2009-10-01 | ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム | Device for use in transmural and intraluminal surgery |
WO2007147232A1 (en) | 2006-06-19 | 2007-12-27 | Robarts Research Institute | Apparatus for guiding a medical tool |
US9579088B2 (en) | 2007-02-20 | 2017-02-28 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices for surgical visualization and device manipulation |
EP2397101B1 (en) | 2006-06-22 | 2018-06-13 | Board of Regents of the University of Nebraska | Magnetically coupleable robotic devices |
US8679096B2 (en) | 2007-06-21 | 2014-03-25 | Board Of Regents Of The University Of Nebraska | Multifunctional operational component for robotic devices |
WO2008008457A2 (en) | 2006-07-13 | 2008-01-17 | Bovie Medical | Surgical sealing and cutting apparatus |
US8231610B2 (en) | 2006-09-06 | 2012-07-31 | National Cancer Center | Robotic surgical system for laparoscopic surgery |
US8551114B2 (en) | 2006-11-06 | 2013-10-08 | Human Robotics S.A. De C.V. | Robotic surgical device |
WO2008076194A2 (en) | 2006-11-13 | 2008-06-26 | Raytheon Sarcos Llc | Serpentine robotic crawler |
US7935130B2 (en) | 2006-11-16 | 2011-05-03 | Intuitive Surgical Operations, Inc. | Two-piece end-effectors for robotic surgical tools |
JP2010514509A (en) | 2006-12-27 | 2010-05-06 | ボストン サイエンティフィック リミテッド | RF ablation probe array advance device |
US7655004B2 (en) | 2007-02-15 | 2010-02-02 | Ethicon Endo-Surgery, Inc. | Electroporation ablation apparatus, system, and method |
JP5327687B2 (en) | 2007-03-01 | 2013-10-30 | 国立大学法人東京工業大学 | Maneuvering system with haptic function |
US9596980B2 (en) | 2007-04-25 | 2017-03-21 | Karl Storz Endovision, Inc. | Endoscope system with pivotable arms |
US8591399B2 (en) | 2007-04-25 | 2013-11-26 | Karl Storz Endovision, Inc. | Surgical method utilizing transluminal endoscope and instruments |
US8444631B2 (en) | 2007-06-14 | 2013-05-21 | Macdonald Dettwiler & Associates Inc | Surgical manipulator |
US8702590B2 (en) | 2007-07-02 | 2014-04-22 | M.S.T. Medical Surgery Technologies Ltd | System for positioning endoscope and surgical instruments |
DE102007031957A1 (en) | 2007-07-10 | 2009-01-22 | Pierburg Gmbh | Combined non-return and control valve |
EP2170564A4 (en) | 2007-07-12 | 2015-10-07 | Univ Nebraska | Methods and systems of actuation in robotic devices |
EP2626027B1 (en) | 2007-08-14 | 2020-04-29 | Koninklijke Philips N.V. | Robotic instrument systems utilizing optical fiber sensors |
WO2009023839A1 (en) | 2007-08-15 | 2009-02-19 | Board Of Regents Of The University Of Nebraska | Medical inflation, attachment, and delivery devices and related methods |
EP2178456B1 (en) | 2007-08-15 | 2018-10-31 | Board of Regents of the University of Nebraska | Modular and cooperative medical system |
GB2454017A (en) | 2007-10-26 | 2009-04-29 | Prosurgics Ltd | A control assembly |
JP5364255B2 (en) | 2007-10-31 | 2013-12-11 | テルモ株式会社 | Medical manipulator |
US8758342B2 (en) | 2007-11-28 | 2014-06-24 | Covidien Ag | Cordless power-assisted medical cauterization and cutting device |
US20100262162A1 (en) | 2007-12-28 | 2010-10-14 | Terumo Kabushiki Kaisha | Medical manipulator and medical robot system |
US20090305210A1 (en) | 2008-03-11 | 2009-12-10 | Khurshid Guru | System For Robotic Surgery Training |
US8020741B2 (en) | 2008-03-18 | 2011-09-20 | Barosense, Inc. | Endoscopic stapling devices and methods |
US8328802B2 (en) | 2008-03-19 | 2012-12-11 | Covidien Ag | Cordless medical cauterization and cutting device |
US8727966B2 (en) | 2008-03-31 | 2014-05-20 | Intuitive Surgical Operations, Inc. | Endoscope with rotationally deployed arms |
US9895813B2 (en) | 2008-03-31 | 2018-02-20 | Intuitive Surgical Operations, Inc. | Force and torque sensing in a surgical robot setup arm |
WO2009144729A1 (en) | 2008-05-28 | 2009-12-03 | Technion Research & Development Foundation Ltd. | Laparoscopic camera array |
US20100010294A1 (en) | 2008-07-10 | 2010-01-14 | Ethicon Endo-Surgery, Inc. | Temporarily positionable medical devices |
US8771270B2 (en) | 2008-07-16 | 2014-07-08 | Intuitive Surgical Operations, Inc. | Bipolar cautery instrument |
WO2010009292A1 (en) | 2008-07-18 | 2010-01-21 | Boston Scientific Scimed, Inc. | Endoscope with guide |
WO2010022088A1 (en) | 2008-08-18 | 2010-02-25 | Encision, Inc. | Enhanced control systems including flexible shielding and support systems for electrosurgical applications |
US8332072B1 (en) * | 2008-08-22 | 2012-12-11 | Titan Medical Inc. | Robotic hand controller |
US20100069710A1 (en) | 2008-09-02 | 2010-03-18 | Ken Yamatani | treatment method |
US8834353B2 (en) | 2008-09-02 | 2014-09-16 | Olympus Medical Systems Corp. | Medical manipulator, treatment system, and treatment method |
CN102149338B (en) | 2008-09-12 | 2015-07-22 | 伊西康内外科公司 | Ultrasonic device for fingertip control |
US8073335B2 (en) * | 2008-09-30 | 2011-12-06 | Intuitive Surgical Operations, Inc. | Operator input device for a robotic surgical system |
US20110230894A1 (en) | 2008-10-07 | 2011-09-22 | The Trustees Of Columbia University In The City Of New York | Systems, devices, and methods for providing insertable robotic sensory and manipulation platforms for single port surgery |
KR101075363B1 (en) | 2008-10-31 | 2011-10-19 | 정창욱 | Surgical Robot System Having Tool for Minimally Invasive Surgery |
US8858547B2 (en) | 2009-03-05 | 2014-10-14 | Intuitive Surgical Operations, Inc. | Cut and seal instrument |
EP2286756B1 (en) | 2009-08-21 | 2013-04-03 | Novineon Healthcare Technology Partners Gmbh | Surgical manipulator means |
JP2011045500A (en) | 2009-08-26 | 2011-03-10 | Terumo Corp | Medical manipulator |
US8465476B2 (en) | 2009-09-23 | 2013-06-18 | Intuitive Surgical Operations, Inc. | Cannula mounting fixture |
US8545515B2 (en) | 2009-09-23 | 2013-10-01 | Intuitive Surgical Operations, Inc. | Curved cannula surgical system |
US8888687B2 (en) | 2009-10-28 | 2014-11-18 | Boston Scientific Scimed, Inc. | Method and apparatus related to a flexible assembly at a distal end portion of a medical device |
US8543240B2 (en) * | 2009-11-13 | 2013-09-24 | Intuitive Surgical Operations, Inc. | Master finger tracking device and method of use in a minimally invasive surgical system |
US8870759B2 (en) | 2009-12-04 | 2014-10-28 | Covidien Lp | Suspension system for minimally invasive surgery |
JP2013514835A (en) | 2009-12-17 | 2013-05-02 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | Modular and collaborative medical devices and related systems and methods |
DE102010009065B4 (en) * | 2010-02-23 | 2018-05-24 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Input device for medical minimally invasive robots or medical simulators and medical device with input device |
CN102821918A (en) | 2010-03-24 | 2012-12-12 | 株式会社安川电机 | Robot hand and robot device |
US20110238080A1 (en) | 2010-03-25 | 2011-09-29 | Date Ranjit | Robotic Surgical Instrument System |
US9498298B2 (en) | 2010-04-23 | 2016-11-22 | Kenneth I. Lipow | Ring form surgical effector |
IT1399603B1 (en) | 2010-04-26 | 2013-04-26 | Scuola Superiore Di Studi Universitari E Di Perfez | ROBOTIC SYSTEM FOR MINIMUM INVASIVE SURGERY INTERVENTIONS |
JP5311294B2 (en) | 2010-04-28 | 2013-10-09 | 株式会社安川電機 | Robot contact position detector |
US9918787B2 (en) | 2010-05-05 | 2018-03-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Monitoring, managing and/or protecting system and method for non-targeted tissue |
US20120116362A1 (en) | 2010-06-25 | 2012-05-10 | Kieturakis Maciej J | Single port laparoscopic access with laterally spaced virtual insertion points |
US8437884B2 (en) | 2010-07-28 | 2013-05-07 | GM Global Technology Operations LLC | System and method for detecting vehicle motion |
EP2600758A1 (en) | 2010-08-06 | 2013-06-12 | Board of Regents of the University of Nebraska | Methods and systems for handling or delivering materials for natural orifice surgery |
DE102010040405B4 (en) | 2010-09-08 | 2017-07-27 | Siemens Healthcare Gmbh | Instrument system for an endoscopic robot |
WO2013048595A1 (en) | 2011-06-10 | 2013-04-04 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to surgical end effectors |
US9089353B2 (en) | 2011-07-11 | 2015-07-28 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
KR20130015440A (en) * | 2011-08-03 | 2013-02-14 | 주식회사 이턴 | Master gripper of surgical robot |
US20130063351A1 (en) * | 2011-09-14 | 2013-03-14 | Raghuram Reddy Talasani | Mouse |
CA3098065C (en) | 2012-01-10 | 2023-10-31 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices for surgical access and insertion |
EP4357083A3 (en) | 2012-05-01 | 2024-08-21 | Board of Regents of the University of Nebraska | Single site robotic device and related systems and methods |
CA2876846C (en) | 2012-06-22 | 2021-04-06 | Board Of Regents Of The University Of Nebraska | Local control robotic surgical devices and related methods |
US9839480B2 (en) | 2012-07-09 | 2017-12-12 | Covidien Lp | Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors |
WO2014025399A1 (en) | 2012-08-08 | 2014-02-13 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
US9770305B2 (en) | 2012-08-08 | 2017-09-26 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
WO2014075720A1 (en) * | 2012-11-14 | 2014-05-22 | Esa - European Space Agency | Hand controller device |
US9743987B2 (en) | 2013-03-14 | 2017-08-29 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers |
CA2906672C (en) | 2013-03-14 | 2022-03-15 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to force control surgical systems |
EP2996545B1 (en) | 2013-03-15 | 2021-10-20 | Board of Regents of the University of Nebraska | Robotic surgical systems |
SE537133C2 (en) * | 2013-05-22 | 2015-02-10 | Microprop Ab | CONTROL |
US9797486B2 (en) | 2013-06-20 | 2017-10-24 | Covidien Lp | Adapter direct drive with manual retraction, lockout and connection mechanisms |
US10966700B2 (en) | 2013-07-17 | 2021-04-06 | Virtual Incision Corporation | Robotic surgical devices, systems and related methods |
US9918713B2 (en) | 2013-12-09 | 2018-03-20 | Covidien Lp | Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof |
CN105813580B (en) | 2013-12-12 | 2019-10-15 | 柯惠Lp公司 | Gear train for robotic surgical system |
US10080552B2 (en) | 2014-04-21 | 2018-09-25 | Covidien Lp | Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof |
EP3191009B1 (en) | 2014-09-12 | 2021-03-31 | Board of Regents of the University of Nebraska | Quick-release end effectors and related systems |
WO2016077478A1 (en) | 2014-11-11 | 2016-05-19 | Board Of Regents Of The University Of Nebraska | Robotic device with compact joint design and related systems and methods |
CN113017841A (en) * | 2015-06-16 | 2021-06-25 | 提坦医疗公司 | Handle apparatus for receiving operator input in a robotic surgical system |
CA2994823A1 (en) | 2015-08-03 | 2017-02-09 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems and related methods |
EP4353182A3 (en) | 2016-05-18 | 2024-07-10 | Virtual Incision Corporation | Robotic surgical devices and systems |
JP7090615B2 (en) | 2016-08-30 | 2022-06-24 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | Robot device |
JP7099728B2 (en) * | 2016-11-29 | 2022-07-12 | バーチャル インシジョン コーポレイション | User controller with user presence detection, related systems and methods |
-
2017
- 2017-11-29 JP JP2019528915A patent/JP7099728B2/en active Active
- 2017-11-29 CN CN201780081015.7A patent/CN110462259B/en active Active
- 2017-11-29 US US15/826,166 patent/US10675110B2/en active Active
- 2017-11-29 EP EP17876893.3A patent/EP3548773A4/en active Pending
- 2017-11-29 CA CA3045462A patent/CA3045462A1/en not_active Abandoned
- 2017-11-29 WO PCT/US2017/063739 patent/WO2018102430A1/en unknown
- 2017-11-29 CN CN202211271007.8A patent/CN115553922A/en active Pending
-
2020
- 2020-06-09 US US16/896,678 patent/US11284958B2/en active Active
-
2022
- 2022-03-29 US US17/706,893 patent/US11701193B2/en active Active
- 2022-06-23 JP JP2022101089A patent/JP7343229B2/en active Active
-
2023
- 2023-07-18 US US18/353,939 patent/US12114953B2/en active Active
- 2023-08-24 JP JP2023136252A patent/JP7575131B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000350735A (en) | 1999-06-11 | 2000-12-19 | Toshiba Corp | Medical manipulator |
JP2001310280A (en) | 2000-04-26 | 2001-11-06 | Natl Inst Of Advanced Industrial Science & Technology Meti | Grasp data input device |
JP2008529153A (en) | 2005-01-30 | 2008-07-31 | シムトリックス リミテッド | Computer mouse peripherals |
US20120041595A1 (en) | 2010-08-11 | 2012-02-16 | Daniel Greeley | Pistol-grip for intuitive control of a robotic or virtual hand |
US20130293362A1 (en) | 2012-05-03 | 2013-11-07 | The Methodist Hospital Research Institute | Multi-degrees-of-freedom hand controller |
WO2016114090A1 (en) | 2015-01-16 | 2016-07-21 | オリンパス株式会社 | Operation input device and medical manipulator system |
WO2016126334A1 (en) | 2015-02-05 | 2016-08-11 | Symbol Technologies, Llc | Predictive triggering in an electronic device |
WO2017149888A1 (en) | 2016-03-04 | 2017-09-08 | 株式会社ソニー・インタラクティブエンタテインメント | Operation apparatus |
Also Published As
Publication number | Publication date |
---|---|
CN110462259A (en) | 2019-11-15 |
CN110462259B (en) | 2022-10-28 |
US20220218430A1 (en) | 2022-07-14 |
US11284958B2 (en) | 2022-03-29 |
CN115553922A (en) | 2023-01-03 |
WO2018102430A1 (en) | 2018-06-07 |
US20180147019A1 (en) | 2018-05-31 |
EP3548773A1 (en) | 2019-10-09 |
US12114953B2 (en) | 2024-10-15 |
JP2020501257A (en) | 2020-01-16 |
JP2023164870A (en) | 2023-11-14 |
CA3045462A1 (en) | 2018-06-07 |
JP7343229B2 (en) | 2023-09-12 |
JP7099728B2 (en) | 2022-07-12 |
US11701193B2 (en) | 2023-07-18 |
US10675110B2 (en) | 2020-06-09 |
JP2022125095A (en) | 2022-08-26 |
US20200297448A1 (en) | 2020-09-24 |
EP3548773A4 (en) | 2020-08-05 |
US20230363844A1 (en) | 2023-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7575131B2 (en) | USER CONTROLLER WITH USER PRESENCE DETECTION, ASSOCIATED SYSTEMS AND METHODS - Patent application | |
US12114948B2 (en) | Detecting uncontrolled movement | |
US20230114137A1 (en) | Co-manipulation surgical system having a coupling mechanism removeably attachable to surgical instruments | |
US20240268912A1 (en) | User interface device having grip linkages | |
US11896331B2 (en) | Detection of user touch on controller handle | |
WO2023286066A1 (en) | Input arm for control of a surgical arm | |
JP7427815B2 (en) | User interface device with grip links | |
JP2023052783A (en) | User interface device having finger clutch | |
CN108697475B (en) | Input device handle for a robotic surgical system capable of substantial rotation about a roll axis | |
CN116761571A (en) | Haptic profiles for input controls of computer-aided devices | |
EP4066769A1 (en) | Couplers and modes of operation for robotic systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230922 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230922 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240917 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20241009 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7575131 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |