JP7207050B2 - Moving object state quantity estimation device and program - Google Patents
Moving object state quantity estimation device and program Download PDFInfo
- Publication number
- JP7207050B2 JP7207050B2 JP2019051017A JP2019051017A JP7207050B2 JP 7207050 B2 JP7207050 B2 JP 7207050B2 JP 2019051017 A JP2019051017 A JP 2019051017A JP 2019051017 A JP2019051017 A JP 2019051017A JP 7207050 B2 JP7207050 B2 JP 7207050B2
- Authority
- JP
- Japan
- Prior art keywords
- moving object
- state quantity
- detection
- unit
- moving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Image Analysis (AREA)
- Traffic Control Systems (AREA)
Description
本発明は、移動物状態量推定装置及びプログラムに関する。 The present invention relates to a moving object state quantity estimation device and program.
従来より、各々非同期でありセンサ数が不定の複数のセンサによって歩行者の動きを捉えるために、特定のセンサからの検出結果を得る毎に、検出結果と歩行者の位置及び速度などを示す移動物の状態量とを対応付け、該状態量と最後に観測した時刻を更新して、検出結果と一定時間以上対応付けられなかった移動物の状態量を消去する技術が知られている(特許文献1)。 Conventionally, in order to capture the movement of pedestrians with multiple sensors, each of which is asynchronous and the number of sensors is indefinite, each time a detection result from a specific sensor is obtained, the movement that indicates the detection result, the pedestrian's position and speed, etc. is obtained. There is known a technique of associating the state quantity of an object, updating the state quantity and the last observed time, and erasing the state quantity of a moving object that has not been associated with the detection result for a certain period of time or more (Patent Reference 1).
また、複数のカメラ映像を用いて、各カメラの検出結果を統合して物体を検出する際に、物体と各カメラの位置関係を元にして画像中の検出範囲を予め限定することにより、物体の誤検出を抑制することで、追跡精度を向上することができる物体追跡装置が知られている(特許文献2)。 Also, when an object is detected by integrating the detection results of each camera using multiple camera images, the detection range in the image is limited in advance based on the positional relationship between the object and each camera. There is known an object tracking device capable of improving tracking accuracy by suppressing erroneous detection of (Patent Document 2).
上記特許文献1の技術では、最後に観測されてから一定時間を経過した場合に、移動物の状態量を消去することで誤検出を抑制している。
しかしながら、例えば、センサ性能に応じて観測する時間間隔が変化したり移動物の周辺の明るさ等の検出環境が変化したりする場合、誤検出される検出頻度が変化する。特に、一定時間より短い時間に誤検出される検出頻度が増加した場合、正検出と誤検出との区別が困難であり、誤検出を抑制するには、改善の余地がある。
In the technique disclosed in
However, for example, when the observation time interval changes according to the sensor performance or the detection environment such as the brightness around the moving object changes, the detection frequency of erroneous detection changes. In particular, when the frequency of erroneous detection increases in a time shorter than a certain period of time, it is difficult to distinguish between correct detection and erroneous detection, and there is room for improvement in suppressing erroneous detection.
また、上記特許文献2では、物体とカメラの位置関係を基にして検出範囲を予め制限して誤検出を抑制するが、例えばセンサ性能が異なる複数センサの各々における誤検出の検出頻度は異なるので、物体とカメラの位置関係を基にして検出範囲を制限しても、誤検出を抑制することが困難な場合がある。
Further, in
本発明は、上記の事情に鑑みてなされたもので、非同期の複数センサのセンサ数が不定であっても、検出頻度を考慮して複数センサの結果を統合して、移動物の状態量を精度良く求めることができる移動物状態量推定装置及びプログラムを提供することを目的とする。 The present invention has been made in view of the above circumstances, and even if the number of asynchronous multiple sensors is not fixed, the results of the multiple sensors are integrated in consideration of the detection frequency to obtain the state quantity of the moving object. It is an object of the present invention to provide a moving object state quantity estimating device and a program capable of accurately obtaining the moving object state quantity.
上記の目的を達成するために第1態様に係る移動物状態量推定装置は、複数の移動物それぞれの、状態量及び最後に観測した時刻を記憶する移動物状態量記憶部と、前記複数の移動物それぞれについて、前記移動物状態量記憶部に記憶された状態量を用いて次の時刻の前記移動物の状態量を予測する移動物状態量予測部と、数不定の複数センサの何れかから、複数の移動物を検出した検出結果、及び検出性能情報を受け取るセンシング結果獲得部と、前記センシング結果獲得部によって前記検出結果を受け取る毎に、前記検出結果の時刻に対応して前記移動物状態量予測部によって前記複数の移動物それぞれについて予測された前記移動物の状態量と、複数の移動物それぞれの前記検出結果との対応付けを行い、前記移動物状態量記憶部に格納された、前記複数の移動物それぞれの、状態量及び最後に観測した時刻を更新する移動物状態量整合部と、前記複数センサそれぞれの検出性能情報に基づいて、前記複数の移動物それぞれについて前記複数のセンサのうち検出可能なセンサによって検出される検出頻度を予測する移動物検出頻度予測部と、前記移動物状態量整合部によって前記検出結果と対応付かなかった前記移動物の状態量であって、複数の移動物を検出した検出結果により定まる検出頻度が前記移動物検出頻度予測部によって予測された検出頻度より小さい前記移動物の状態量を、前記移動物状態量記憶部から消去する移動物状態量消去部と、を含む移動物状態量推定装置である。 In order to achieve the above object, a moving object state quantity estimation apparatus according to a first aspect includes a moving object state quantity storage unit that stores the state quantity and the last observation time of each of a plurality of moving objects; For each moving object, either a moving object state quantity prediction unit for predicting the state quantity of the moving object at the next time using the state quantity stored in the moving object state quantity storage unit, or an indefinite number of sensors. a sensing result acquisition unit that receives a detection result of detecting a plurality of moving objects and detection performance information from the moving object, each time the detection result is received by the sensing result acquisition unit, the moving object corresponding to the time of the detection result The state quantity of the moving object predicted for each of the plurality of moving objects by the state quantity prediction unit is associated with the detection result of each of the plurality of moving objects, and stored in the moving object state quantity storage unit. , a moving object state quantity matching unit that updates the state quantity and the last observed time of each of the plurality of moving objects; A moving object detection frequency prediction unit that predicts a detection frequency detected by a detectable sensor among sensors, and a state quantity of the moving object that is not associated with the detection result by the moving object state quantity matching unit, The state quantity of the moving object whose detection frequency determined by the detection result of detecting a plurality of moving objects is smaller than the detection frequency predicted by the moving object detection frequency prediction unit is deleted from the moving object state quantity storage unit. and a moving object state quantity estimating device.
第2態様は、第1態様に記載の移動物状態量推定装置において、前記複数センサは、各々異なる移動体に搭載されたセンサを含む。 A second aspect is the moving object state quantity estimation apparatus according to the first aspect, wherein the plurality of sensors include sensors mounted on different moving bodies.
第3態様は、第1態様又は第2態様に記載の移動物状態量推定装置において、前記複数の移動物それぞれの存在確率を記憶する移動物存在確率記憶部と、前記移動物状態量整合部による前記検出結果との対応付けの結果、又は前記センサについて予め定められた検出精度に応じて、前記移動物の存在確率を、前記移動物存在確率記憶部に設定し、又は前記移動物存在確率記憶部に記憶されている前記複数の移動物それぞれの存在確率を、前記移動物状態量整合部による前記検出結果との対応付けの結果、前記最後に観測した時刻からの経過時間、又は前記センサについて予め定められた検出精度若しくは前記移動物検出頻度予測部による前記検出頻度に応じて増減させる移動物存在確率更新部と、を更に含み、前記移動物状態量消去部は、前記移動物存在確率記憶部に記憶されている前記複数の移動物それぞれの存在確率に基づいて、前記移動物の状態量を、前記移動物状態量記憶部から消去する。 A third aspect is the moving object state quantity estimation device according to the first aspect or the second aspect, wherein the moving object existence probability storage unit stores the existence probability of each of the plurality of moving objects, and the moving object state quantity matching unit. setting the existence probability of the moving object in the moving object existence probability storage unit according to the result of association with the detection result by or the detection accuracy predetermined for the sensor, or the moving object existence probability As a result of associating the existence probability of each of the plurality of moving objects stored in the storage unit with the detection result by the moving object state quantity matching unit, the elapsed time from the last observation time, or the sensor a moving object existence probability updating unit that increases or decreases according to a predetermined detection accuracy or the detection frequency by the moving object detection frequency prediction unit, and the moving object state quantity erasing unit updates the moving object existence probability Based on the existence probability of each of the plurality of moving objects stored in the storage unit, the state quantity of the moving object is erased from the moving object state quantity storage unit.
第4態様は、請求項3に記載の移動物状態量推定装置において、前記移動物検出頻度予測部は、前記複数センサそれぞれの前記検出性能情報を記憶する検出性能情報記憶部と、前記検出性能情報記憶部に記憶された前記複数センサそれぞれの前記検出性能情報、移動物の検出可能範囲が記録されている移動物検出可能範囲情報、及び前記移動物状態量整合部によって更新された前記移動物の状態量に基づいて、前記検出頻度を算出する検出頻度算出部と、を含む。 A fourth aspect is the moving object state quantity estimation device according to claim 3, wherein the moving object detection frequency prediction unit includes a detection performance information storage unit that stores the detection performance information of each of the plurality of sensors, and the detection performance The detection performance information of each of the plurality of sensors stored in the information storage unit, the moving object detectable range information in which the detectable range of the moving object is recorded, and the moving object updated by the moving object state quantity matching unit and a detection frequency calculation unit that calculates the detection frequency based on the state quantity.
第5態様は、請求項3に記載の移動物状態量推定装置において、前記移動物検出頻度予測部は、前記移動物検出頻度予測部によって予測された移動物の検出位置毎の検出頻度を示す情報を記憶する検出頻度記憶部と、前記センシング結果獲得部によって受け取った前記検出性能情報、及び移動物の検出可能範囲が記録されている移動物検出可能範囲情報に基づいて、前記検出頻度記憶部に記憶された前記移動物の検出位置毎の検出頻度を更新する検出頻度更新部と、前記検出頻度記憶部から、前記移動物の状態量に対応する検出頻度を抽出する検出頻度抽出部と、を含む。 A fifth aspect is the moving object state quantity estimation device according to claim 3, wherein the moving object detection frequency prediction unit indicates the detection frequency for each detection position of the moving object predicted by the moving object detection frequency prediction unit. a detection frequency storage unit that stores information; and based on the detection performance information received by the sensing result acquisition unit and the moving object detectable range information in which the detectable range of the moving object is recorded, the detection frequency storage unit a detection frequency update unit for updating the detection frequency for each detection position of the moving object stored in the detection frequency storage unit; a detection frequency extraction unit for extracting the detection frequency corresponding to the state quantity of the moving object from the detection frequency storage unit; including.
第6態様は、第4態様又は第5態様に記載の移動物状態量推定装置において、前記複数センサは、複数の車両に搭載された、又はインフラセンサに用いられた、歩行者又は車両を検出する複数の検出器であって、前記移動物の状態量は、歩行者又は車両の位置及び速度であって、前記移動物検出可能範囲情報は、センサ検出可能範囲を削減する構造物の位置を示す地図である。 A sixth aspect is the moving object state quantity estimation device according to the fourth aspect or the fifth aspect, wherein the plurality of sensors detect pedestrians or vehicles mounted on a plurality of vehicles or used as infrastructure sensors. wherein the moving object state quantity is the position and speed of a pedestrian or vehicle, and the moving object detectable range information is the position of a structure that reduces the sensor detectable range. It is a map showing.
第7態様は、複数の移動物それぞれの、状態量及び最後に観測した時刻を記憶する移動物状態量記憶部を含むコンピュータを、前記複数の移動物それぞれについて、前記移動物状態量記憶部に記憶された状態量を用いて次の時刻の前記移動物の状態量を予測する移動物状態量予測部、数不定の複数センサの何れかから、複数の移動物を検出した検出結果を受け取るセンシング結果獲得部、前記センシング結果獲得部によって前記検出結果を受け取る毎に、前記検出結果の時刻に対応して前記移動物状態量予測部によって前記複数の移動物それぞれについて予測された前記移動物の状態量と、複数の移動物それぞれの前記検出結果との対応付けを行い、前記移動物状態量記憶部に格納された、前記複数の移動物それぞれの、状態量及び最後に観測した時刻を更新する移動物状態量整合部、前記複数センサそれぞれの検出性能情報に基づいて、前記複数の移動物それぞれについて前記複数のセンサのうち検出可能なセンサによって検出される検出頻度を予測する移動物検出頻度予測部、および前記移動物状態量整合部によって前記検出結果と対応付かなかった前記移動物の状態量であって、複数の移動物を検出した検出結果により定まる検出頻度が前記移動物検出頻度予測部によって予測された検出頻度より小さい前記移動物の状態量を、前記移動物状態量記憶部から消去する移動物状態量消去部、として機能させるためのプログラムである。 In a seventh aspect, a computer including a moving object state quantity storage unit for storing the state quantity and the last observed time of each of a plurality of moving objects is stored in the moving object state quantity storage unit for each of the plurality of moving objects. a moving object state quantity prediction unit that predicts the state quantity of the moving object at the next time using the stored state quantity; a state of the moving object predicted for each of the plurality of moving objects by the moving object state quantity prediction unit corresponding to the time of the detection result each time the result acquisition unit receives the detection result by the sensing result acquisition unit; Associate the amount with the detection result of each of the plurality of moving objects, and update the state quantity and the last observed time of each of the plurality of moving objects stored in the moving object state quantity storage unit. a moving object state quantity matching unit for predicting a frequency of detection of each of said plurality of moving objects by sensors detectable among said plurality of sensors based on detection performance information of each of said plurality of sensors; and said moving object state quantity matching unit, said moving object state quantity not associated with said detection result, said moving object detection frequency predicting unit estimating a detection frequency determined by a detection result of detecting a plurality of moving objects. a moving object state quantity erasing unit for erasing from the moving object state quantity storage unit the state quantity of the moving object whose detection frequency is smaller than that predicted by the moving object state quantity erasing unit.
また、本開示のプログラムは、記録媒体に格納して提供することも可能である。 Also, the program of the present disclosure can be stored in a recording medium and provided.
以上説明したように、本開示によれば、非同期の複数センサのセンサ数が不定であっても、検出頻度を考慮して複数センサの結果を統合して、移動物の状態量を精度良く求めることができる、という効果が得られる。 As described above, according to the present disclosure, even if the number of asynchronous multiple sensors is indefinite, the results of the multiple sensors are integrated in consideration of the detection frequency, and the state quantity of the moving object is obtained with high accuracy. The effect of being able to
以下、図面を参照して本開示の技術を実現する実施形態を詳細に説明する。 Hereinafter, embodiments for implementing the technology of the present disclosure will be described in detail with reference to the drawings.
<実施形態の概要>
本開示の技術を実現する実施形態は、複数のセンサ間でフレーム同期をしないアプローチをとっている。或るセンサからのセンシング結果を受け取ったタイミングで、歩行者位置の状態量(仮説)と受け取ったセンシング結果とを対応付けて、誤差を計算し、仮説の歩行者位置を補正しながら、歩行者を検出・追従する。この処理を各センサからセンシング結果が統合処理装置に届く毎に行う。
<Overview of Embodiment>
Embodiments implementing the techniques of this disclosure take the approach of not synchronizing frames between multiple sensors. At the timing when the sensing result from a certain sensor is received, the state quantity (hypothesis) of the pedestrian's position is associated with the received sensing result, the error is calculated, and the pedestrian's position is corrected while correcting the hypothetical position of the pedestrian. is detected and tracked. This processing is performed each time a sensing result from each sensor reaches the integrated processing device.
しかしながら、本アプローチは、1台のセンサの結果だけを使って逐次上記処理を行うため、例えば、センサの検出精度等の検出性能が低い場合(歩行者が存在しない所に誤って歩行者が存在すると結果を出す頻度が高い場合)には、誤検出による存在しない歩行者の仮説が増えてしまい、歩行者数を誤って推定する場合がある。 However, in this approach, the above process is performed sequentially using only the results of one sensor. Then, when the frequency of outputting results is high), the number of non-existent pedestrian hypotheses increases due to false detection, and the number of pedestrians may be erroneously estimated.
このために、各センサの検出頻度を考慮して、誤検出の可能性が高い歩行者の検出結果を棄却する。 For this reason, the detection frequency of each sensor is considered, and pedestrian detection results that are highly likely to be falsely detected are discarded.
[第1実施形態] [First embodiment]
第1実施形態では、車両に搭載された歩行者の検出器やインフラセンサとしての歩行者の検出器の検出結果を統合して歩行者の状態量を推定する歩行者状態量推定装置に本開示の技術を適用した場合を例に説明する。 In the first embodiment, the pedestrian state quantity estimation device for estimating the state quantity of the pedestrian by integrating the detection results of the pedestrian detector mounted on the vehicle and the pedestrian detector as an infrastructure sensor. A case where the technique of (1) is applied will be described as an example.
<歩行者状態量推定システムのシステム構成>
図1に示すように、第1実施形態に係る歩行者状態量推定システム100は、歩行者状態量推定装置10と、基地局50と、複数の車両に搭載された複数の検出器60と、インフラセンサとしての検出器62とを備え、基地局50と歩行者状態量推定装置10とは、インターネットなどのネットワーク70で接続されており、基地局50と検出器60、62とは、無線通信により接続されている。
<System configuration of pedestrian state quantity estimation system>
As shown in FIG. 1, the pedestrian state
検出器60、62は、カメラやレーダを用いて歩行者を随時検出し、検出する度に、検出結果を、基地局50を介して、歩行者状態量推定装置10へ送信する。
例えば、検出器60は、自車両の前方を撮像するカメラによって撮像された前方の道路画像から、スライディングウィンドウ毎に、画像特徴量(SIFT,FIND、HOGなど)を抽出し、スライディングウィンドウ毎の画像特徴量と、歩行者検出モデル(SVM、AdaBoost)とを用いて、歩行者を検出し、検出された歩行者位置を表す画像座標を求める。また、検出器60は、歩行者位置を表す画像座標を、3次元位置に変換する。この際に、検出された歩行者の高さに応じて誤差分散行列を求める。また、検出器60は、自車両に搭載されたGPSにより計測された自車両の絶対座標と、求められた3次元位置とに基づいて、歩行者の絶対的な3次元位置を求める。
For example, the
上記の歩行者の3次元位置及び誤差分散行列を、検出された歩行者毎に求め、車両Ciの検出器60において検出した歩行者の3次元位置のセットYi={yi,1,…yi,m}と、観測誤差分散行列のセットRi={ri,1,…,ri,m}とを、観測毎に、歩行者状態量推定装置10へ送信する。また、検出器60は、検出性能情報を含むセンサ情報を送信可能になっている。センサ情報の検出性能情報の一例には、検出時刻、検出器60の検出範囲(検出時点における検出器の位置を含む)、動作周期、及び移動物の未検出率を示す情報が挙げられる。
The three-dimensional position of the pedestrian and the error variance matrix are obtained for each detected pedestrian, and the set Y i of the three-dimensional position of the pedestrian detected by the detector 60 of the vehicle C i = {y i,1 , y i , m } and a set of observation error variance matrices R i ={r i,1 , . In addition, the
検出器62は、検出器60と同様に、検出した歩行者の3次元位置のセットと、観測誤差分散行列のセットとを、観測毎に、歩行者状態量推定装置10へ送信する。
複数の検出器60、62は、非同期に、歩行者を検出している。また、複数の検出器60は、各々異なる車両に搭載されているため、歩行者状態量推定装置10へ検出結果を送信する検出器60、62の数は、不定となる。
A plurality of
歩行者状態量推定装置10は、例えば、サーバで構成され、歩行者状態量推定装置10は、CPUと、RAMと、後述する歩行者状態量推定処理ルーチンを実行するためのプログラムを記憶したROMとを備え、機能的には次に示すように構成されている。図2に示すように、歩行者状態量推定装置10は、通信部12と、センシング結果獲得部14と、移動物状態量記憶部16と、移動物状態量予測部18と、移動物状態量整合部20と、移動物検出頻度予測部21と、移動物状態量消去部22と、移動物状態量更新部24とを備えている。
The pedestrian state
センシング結果獲得部14は、検出器60、62の何れかから送信された歩行者の座標のセット及び観測誤差分散行列のセットを、通信部12により受信する毎に、歩行者の座標のセット及び観測誤差分散行列のセットを取得する。また、センシング結果獲得部14は、検出器60、62それぞれのセンサ情報を取得可能になっている。
Each time the
移動物状態量記憶部16は、観測された複数の歩行者それぞれの、移動物状態量更新部24により更新された状態量(歩行者の位置及び速度)、及び最後に観測した時刻を記憶する。
The moving object state
移動物状態量予測部18は、センシング結果獲得部14により取得した最新のデータの時刻に合わせて、複数の歩行者それぞれについて、カルマンフィルタの予測ステップにより、移動物状態量記憶部16に記憶された状態量を用いて次の時刻の歩行者の状態量を予測することを繰り返し、当該最新のデータの時刻における歩行者の状態量のセットX={x1,…xn}、および、状態量の分散共分散行列V={v1,…,vn}を求める。例えば、等速予測などにより、次の時刻の歩行者の状態量を予測する。
The moving object state
移動物状態量整合部20は、センシング結果獲得部14により最新のデータを受け取る毎に、当該最新のデータの時刻に対応して移動物状態量予測部18によって複数の歩行者それぞれについて予測された状態量と、当該最新のデータが表す複数の歩行者それぞれの検出結果との対応付けを行う。
Each time the moving object state
具体的には、当該最新のデータの時刻における歩行者の状態量のセットX={x1,…xn}と、当該最新のデータにおいて検出した歩行者の3次元位置のセットYi={yi,1,…yi,m}との対応付けを行う。例えば、対応付けられた状態量xkと検出された歩行者の3次元位置yi,jとの組み合わせの確率p(yi,j|xk)の積を最大にする対応付けを、ハンガリアン法などの手法により高速に計算する。 Specifically, a set X = { x 1 , . y i,1 , . . . y i,m }. For example, the correspondence that maximizes the product of the probability p(y i,j |x k ) of the combination of the associated state quantity x k and the detected three-dimensional position y i,j of the pedestrian is defined as Hungarian Calculation at high speed by methods such as
なお、状態量xkと検出された歩行者の3次元位置yi,jとの組み合わせの確率p(yi,j|xk)は、状態量xkを中心とし、対応するカルマンフィルタの分散vkと、3次元位置yi,jに対応する観測誤差分散行列ri,jとの和を、分散とした多次元正規分布における、3次元位置yi,jの確率に基づいて、確率p(yi,j|xk)を求めればよい。 Note that the probability p(y i,j |x k ) of the combination of the state quantity x k and the detected three-dimensional position y i,j of the pedestrian is centered on the state quantity x k and the variance of the corresponding Kalman filter Probability _ _ _ It suffices to find p(y i,j |x k ).
また、対応付けない確率を設定値として与え、この設定値より小さい確率の組み合わせは、対応付けられないようにする。 Also, a probability of not being associated is given as a set value, and combinations with probabilities smaller than this set value are not associated.
移動物状態量更新部24は、移動物状態量整合部20により最新のデータの検出結果と対応付けられた状態量の各々について、対応する3次元位置yi,jを観測値として、その誤差分散行列ri,jと、予測ステップで得られた歩行者の状態量及び分散共分散行列と用いて、カルマンフィルタのフィルタリングステップにより、状態量を更新すると共に、最後に観測した時刻を更新する。
The moving object state
また、移動物状態量更新部24は、移動物状態量整合部20による検出結果との対応付けの結果に基づいて、最新のデータの検出結果のうち、状態量と対応付かなかった歩行者の検出結果から、新たな状態量xを生成し、最後に観測した時刻として、現在時刻を、移動物状態量記憶部16に格納する。なお、新たな状態量xは観測された歩行者の3次元位置yと同じ座標、誤差分散行列を持つこととする。
In addition, based on the result of association with the detection result by the moving object state
移動物検出頻度予測部21は、複数の歩行者それぞれについて、共通する時刻間の所定時間内において、複数の検出器60、62のうち検出可能な検出器により検出される検出頻度を予測する。すなわち、複数の検出器60、62それぞれのセンサ情報である検出時刻、検出範囲(検出時点における検出器の位置を含む)、動作周期、及び移動物の未検出率を用いて、複数の歩行者それぞれについて共通する時刻間の所定時間内における検出頻度を求めることにより、検出頻度を予測する。
The moving object detection
具体的には、センシング結果獲得部14により取得した検出器60、62それぞれのセンサ情報を用いて、共通する時刻間の所定時間内において或る歩行者を共通に検出可能な検出器60、62を特定し、特定された検出器それぞれの検出頻度の総和を、予測検出頻度とする。この場合、観測された歩行者の3次元位置yと同じ座標を検出範囲とする検出器を特定すればよい。例えば、図3に示すように、複数の検出器60、62として、カメラを利用し、歩行者を検出する状況を考える。図3に示す例では、全てのカメラについて、検出性能として、未検出率が5%(0.05)であり、カメラ1の動作周期が10Hzであり、カメラ2の動作周期が1Hzであるとすると、カメラ1により1度の観測によって歩行者を検出する場合、9.5回/秒の頻度で歩行者が検出されると予測し、カメラ2により1度の観測によって歩行者を検出する場合、0.95回/秒の頻度で歩行者が検出されると予測する。2台のカメラ1及びカメラ2の観測では、検出タイミングが異なるが、共通する時刻間の所定時間内に検出された検出頻度の合計、この場合、10.45回/秒の頻度で歩行者が検出されると予測する。換言すれば、或る位置に存在する歩行者を複数台のカメラで観測した場合、共通する時刻間の所定時間内では、複数台のカメラそれぞれの検出頻度の合計した検出頻度で歩行者が検出される。
Specifically, using the sensor information of the
移動物状態量消去部22は、移動物状態量整合部20によって検出結果と対応付かなった歩行者の状態量のうち、観測された検出頻度が移動物検出頻度予測部21によって予測された検出頻度より小さい検出頻度の移動物の状態量を、移動物状態量記憶部16から消去する。移動物状態量消去部22は、移動物検出頻度予測部21によって予測された検出頻度により定まる閾値を、移動物として存在する可能性が低い検出頻度として設定する。従って、移動物状態量消去部22は、移動物状態量整合部20によって検出結果と対応付かなった歩行者の状態量のうち、移動物検出頻度予測部21によって予測された検出頻度が閾値より小さい移動物の状態量を、移動物状態量記憶部16から消去する。例えば、閾値を、予測した検出頻度の例えば50%の検出頻度と設定した場合、図3に示す例では、カメラ1により観測された検出頻度が1回/秒の歩行者は、予測された検出頻度が9.5回/秒より定まる閾値より小さい歩行者の状態量を消去する。なお、閾値は、検出性能情報を含むセンサ情報によって適宜設定すればよい。
The moving object state
なお、移動物状態量消去部22は、簡易的な処理として、移動物状態量整合部20によって検出結果と対応付かなった歩行者の状態量のうち、最後に観測した時刻から一定時間以上経過している歩行者の状態量を、移動物状態量記憶部16から消去する機能を有することも可能である。
As a simple process, the moving object state
歩行者状態量推定装置10は、上記の一連の処理により更新された状態量のセットXを、歩行者の検出結果の統合結果として出力する。
The pedestrian state
<歩行者状態量推定システム100の動作>
次に、第1実施形態に係る歩行者状態量推定システム100の動作について説明する。まず、複数の車両に搭載された複数の検出器60、及びインフラセンサとしての検出器62の各々によって、歩行者が逐次検出され、検出される毎に、検出結果が、基地局50を介して、歩行者状態量推定装置10に送信されているときに、歩行者状態量推定装置10において、図4に示す歩行者状態量推定処理ルーチンが実行される。
<Operation of pedestrian state
Next, the operation of the pedestrian state
ステップS100において、複数の検出器60及び検出器62の何れかから、歩行者の検出結果として、歩行者の3次元位置のセットYi={yi,1,…yi,m}と、観測誤差分散行列のセットRi={ri,1,…,ri,m}とを受信すると、ステップS102へ進む。 In step S100, a set Y i ={y i ,1 , . Upon receiving the set of observation error variance matrices R i ={r i ,1 , .
ステップS102では、上記ステップS100で受信した検出結果の時刻に合わせて、複数の歩行者それぞれについて、カルマンフィルタの予測ステップにより、移動物状態量記憶部16に記憶された状態量を用いて次の時刻の歩行者の状態量を予測することを繰り返し、上記ステップS100で受信した検出結果の時刻における歩行者の状態量のセットX={x1,…xn}、および、その分散共分散行列V={v1,…,vn}を求める。
In step S102, in accordance with the time of the detection result received in step S100, the prediction step of the Kalman filter is performed for each of the plurality of pedestrians, using the state quantity stored in the moving object state
ステップS104では、上記ステップS100で受信した検出結果の時刻に対応して上記ステップS102で複数の歩行者それぞれについて予測された状態量と、上記ステップS100で受信した検出結果が表す複数の歩行者それぞれの3次元位置との対応付けを行う。 In step S104, the state quantity predicted for each of the plurality of pedestrians in step S102 corresponding to the time of the detection result received in step S100, and the plurality of pedestrians represented by the detection result received in step S100 are calculated. is associated with the three-dimensional position of .
ステップS105では、上記ステップS100で受信した検出結果の時刻に対応して上記ステップS102で複数の歩行者それぞれについて、共通する時刻間の所定時間内において、複数の検出器のうち検出可能な検出器により検出される検出頻度を予測する。 In step S105, for each of the plurality of pedestrians in step S102 corresponding to the time of the detection result received in step S100, within a predetermined time between common times, a detector that can be detected among a plurality of detectors Predict the frequency of detection detected by
ステップS106では、上記ステップS104で検出結果と対応付かなった歩行者の状態量のうち、観測した検出頻度が上記ステップS105で予測した検出頻度が閾値より小さい歩行者の状態量を、移動物状態量記憶部16から消去する。
In step S106, among the state quantities of pedestrians that are not associated with the detection result in step S104, state quantities of pedestrians whose observed detection frequency is smaller than a threshold value predicted in step S105 are treated as moving object state quantities. Erased from the
ステップS108では、上記ステップS104で検出結果と対応付けられた状態量の各々について、対応する3次元位置yi,jを観測値として、その誤差分散行列ri,jと上記ステップS102で得られた歩行者の状態量及び分散共分散行列とを用いて、カルマンフィルタのフィルタリングステップにより、状態量を更新すると共に、最後に観測した時刻を更新する。また、上記ステップS100で受信した検出結果のうち、状態量と対応付かなかった歩行者の検出結果に基づき、新たな状態量xを生成し、最後に観測した時刻として、現在時刻を、移動物状態量記憶部16に格納する。
In step S108, for each state quantity associated with the detection result in step S104, the corresponding three-dimensional position y i,j is set as an observed value, and the error variance matrix r i,j obtained in step S102 is Using the state quantity of the pedestrian and the variance-covariance matrix, the state quantity and the last observed time are updated by the filtering step of the Kalman filter. Further, among the detection results received in step S100, a new state quantity x is generated based on the detection result of the pedestrian that is not associated with the state quantity, and the current time is used as the time of the last observation of the moving object. Stored in the state
そして、ステップS110では、更新された状態量のセットXを、歩行者の検出結果の統合結果として出力し、上記ステップS100へ戻る。 Then, in step S110, the updated state quantity set X is output as a result of integration of the pedestrian detection results, and the process returns to step S100.
以上説明したように、第1実施形態に係る歩行者状態量推定システムによれば、非同期の複数センサのセンサ数が不定であっても、検出頻度を考慮して複数センサの結果を統合して、歩行者の状態量を精度良く求めることができる。 As described above, according to the pedestrian state quantity estimation system according to the first embodiment, even if the number of asynchronous multiple sensors is indefinite, the results of the multiple sensors are integrated in consideration of the detection frequency. , the state quantity of the pedestrian can be obtained with high accuracy.
また、非同期に不特定の複数センサからセンシング結果が来る場合に、検出頻度を考慮して削除することにより、信頼できない検出結果の影響が状態量として残らないようにすることで、各センサの誤検出にロバストになる。このように、非同期に来る複数センサからのセンシング結果をリアルタイムに統合処理をする場合に、各センサの誤検出にロバストになる。 In addition, when sensing results are received asynchronously from unspecified multiple sensors, it is possible to eliminate the effects of unreliable detection results by taking into consideration the detection frequency, thereby preventing the effects of unreliable detection results from remaining as state quantities. Be robust to detection. In this way, when the sensing results from a plurality of sensors coming asynchronously are integrated in real time, it becomes robust against erroneous detection of each sensor.
[第2実施形態]
<歩行者状態量推定システムのシステム構成>
次に、第2実施形態に係る歩行者状態量推定システムについて説明する。なお、第1実施形態と同様の構成となる部分については、同一符号を付して説明を省略する。
[Second embodiment]
<System configuration of pedestrian state quantity estimation system>
Next, a pedestrian state quantity estimation system according to the second embodiment will be described. Parts having the same configuration as in the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
第2実施形態では、複数の歩行者それぞれの存在確率を保持し、検出結果と状態量との対応付けに基づいて、複数の歩行者それぞれの存在確率を更新している点と、状態量を消去する際に、予測された検出頻度に応じて変化する存在確率を考慮している点とが第1実施形態と異なっている。 In the second embodiment, the presence probability of each of a plurality of pedestrians is held, and based on the correspondence between the detection result and the state quantity, the presence probability of each of the plurality of pedestrians is updated. The difference from the first embodiment is that when erasing, the presence probability that changes according to the predicted detection frequency is considered.
図5に示すように、第2実施形態に係る歩行者状態量推定装置210は、通信部12と、センシング結果獲得部14と、移動物状態量記憶部16と、移動物状態量予測部18と、移動物状態量整合部20と、移動物検出頻度予測部21と、移動物状態量消去部22と、移動物状態量更新部24と、移動物存在確率更新部220と、移動物存在確率記憶部222と、を備えている。
As shown in FIG. 5, the pedestrian state
移動物存在確率記憶部222は、移動物状態量記憶部16に記憶されている複数の歩行者それぞれの存在確率を記憶する。
The moving object existence
移動物存在確率更新部220は、移動物状態量整合部20による検出結果との対応付けの結果に基づいて、最新のデータの検出結果のうち、状態量と対応付かなかった歩行者の検出結果に対し、当該歩行者の存在確率として、設定値を移動物存在確率記憶部222に格納する。設定値は、検出器60、62について予め定められた検出精度に応じて定めればよい。
Based on the result of association with the detection result by the moving object state
また、移動物存在確率更新部220は、移動物存在確率記憶部222に記憶されている複数の歩行者それぞれの存在確率のうち、移動物状態量整合部20により最新のデータの検出結果と対応付けられた歩行者の存在確率の各々について、検出器60、62について検出頻度に応じて増加させるように更新する(図6参照)。
In addition, the moving object existence
また、移動物存在確率更新部220は、移動物存在確率記憶部222に記憶されている複数の歩行者それぞれの存在確率のうち、移動物状態量整合部20により最新のデータの検出結果と対応付けられなかった歩行者の存在確率の各々について、検出頻度に応じた存在確率となるように減衰させて更新する(図6参照)。
In addition, the moving object existence
移動物状態量消去部22は、移動物状態量整合部20によって検出結果と対応付かなった歩行者の状態量のうち、移動物検出頻度予測部21によって予測された検出頻度が第1閾値(第1実施形態における閾値)より小さい歩行者の状態量に対応する、移動物存在確率記憶部222に記憶されている存在確率が第2閾値より小さい歩行者の状態量を消去する。なお、第2閾値は、移動物として存在する可能性が低い確率として予め定めた歩行者の存在確率に対応した値とする。
The moving object state
ここで、移動物存在確率更新部220で、存在確率を検出頻度に応じて更新することについてさらに説明する。ここでは、複数の検出器60、62として、カメラを利用し、歩行者を検出する場合を考える。
Here, updating of the existence probability according to the detection frequency by the moving object existence
或る移動物の状態量について、前回時刻からの経過時間をΔtで表し、存在確率の減少速度をνで表すと、存在確率の変化量Δpは、次の式で表すことができる。
Δp=-νΔt
Regarding the state quantity of a certain moving object, if the elapsed time from the previous time is represented by Δt, and the decreasing speed of the existence probability is represented by ν, the change amount Δp of the existence probability can be expressed by the following equation.
Δp=−νΔt
歩行者状態量推定装置210としてN台のカメラが存在する場合、i番目のカメラ(i=1、2、・・・、N)の時刻tにおける動作周波数をfi、カメラの撮影可能範囲を削減する構造物により不可視の予め定めた領域(例えば、壁などによる死角)を考慮したカメラiの視野をRi(t)とする。さらに、或る場所xがカメラiの視野内に含まれるか否かを示す関数σi(x、t)を、次の式で表す。
また、場所xにおけるカメラiによる物体の未検出率をpFN,i(x、t)と表す。移動物の未検出率は検出器からの距離、日照条件、などから導出すればよい。すると、位置xに移動物が存在した場合、N台のカメラによる総検出頻度f(x、t)は、次の式により計算可能である。
従って、時刻tで場所xj、j番目の移動物の存在確率の減少量νj(t)を、次の式で表すことが可能である。
νj(t)=ν0・f(x、t)
このようにすることで、存在確率を検出頻度に応じて更新することが可能である。
Therefore, the decrease amount ν j (t) of the existence probability of the j-th moving object at the location x j at the time t can be expressed by the following equation.
ν j (t)=ν 0 ·f(x, t)
By doing so, it is possible to update the existence probability according to the detection frequency.
また、各センサの検出頻度を各移動物の存在確率の更新のたびに計算する代わりに、各検出器について算出した検出頻度を予め格納しておき、移動物の位置に応じた値を抽出してもよい。検出頻度の分布に変化があった検出器のみ格納した情報を更新することで、検出器及び移動物の数が増加した場合に効率よく算出可能となる。 Further, instead of calculating the detection frequency of each sensor each time the existence probability of each moving object is updated, the detection frequency calculated for each detector is stored in advance, and a value corresponding to the position of the moving object is extracted. may By updating the information stored only in the detectors whose detection frequency distribution has changed, it is possible to efficiently calculate when the number of detectors and moving objects increases.
なお、第2実施形態に係る歩行者状態量推定システムの他の構成は、第1実施形態と同様であるため、説明を省略する。 In addition, since other configurations of the pedestrian state quantity estimation system according to the second embodiment are the same as those of the first embodiment, description thereof will be omitted.
<歩行者状態量推定システムの動作>
次に、第2実施形態に係る歩行者状態量推定システムの動作について説明する。まず、複数の車両に搭載された複数の検出器60、及びインフラセンサとしての検出器62の各々によって、歩行者が逐次検出され、検出結果が、基地局50を介して、歩行者状態量推定装置10に送信されているときに、歩行者状態量推定装置210において、図7に示す歩行者状態量推定処理ルーチンが実行される。なお、第1実施形態と同様の処理については、同一符号を付して詳細な説明を省略する。
<Operation of pedestrian state quantity estimation system>
Next, the operation of the pedestrian state quantity estimation system according to the second embodiment will be described. First, pedestrians are sequentially detected by each of a plurality of
ステップS100において、複数の検出器60及び検出器62の何れかから、歩行者の検出結果として、歩行者の3次元位置のセットYi={yi,1,…yi,m}と、観測誤差分散行列のセットRi={ri,1,…,ri,m}とを受信すると、ステップS200へ進む。 In step S100, a set Y i ={y i ,1 , . Upon receiving the set of observation error variance matrices R i ={r i ,1 , .
ステップS102では、上記ステップS100で受信した検出結果の時刻に合わせて、複数の歩行者それぞれについて、カルマンフィルタの予測ステップにより、移動物状態量記憶部16に記憶された状態量を用いて次の時刻の歩行者の状態量を予測することを繰り返し、上記ステップS100で受信した検出結果の時刻における歩行者の状態量のセットX={x1,…xn}、および、その分散共分散行列V={v1,…,vn}を求める。
In step S102, in accordance with the time of the detection result received in step S100, the prediction step of the Kalman filter is performed for each of the plurality of pedestrians, using the state quantity stored in the moving object state
ステップS104では、上記ステップS100で受信した検出結果の時刻に対応して上記ステップS102で複数の歩行者それぞれについて予測された状態量と、上記ステップS100で受信した検出結果が表す複数の歩行者それぞれの3次元位置との対応付けを行う。 In step S104, the state quantity predicted for each of the plurality of pedestrians in step S102 corresponding to the time of the detection result received in step S100, and the plurality of pedestrians represented by the detection result received in step S100 are calculated. is associated with the three-dimensional position of
ステップS105では、上記ステップS100で受信した検出結果の時刻に対応して上記ステップS102で複数の歩行者それぞれについて、共通する時刻間の所定時間内において、複数の検出器のうち検出可能な検出器により検出される検出頻度を予測する。 In step S105, for each of the plurality of pedestrians in step S102 corresponding to the time of the detection result received in step S100, within a predetermined time between common times, a detector that can be detected among a plurality of detectors Predict the frequency of detection detected by
ステップS106では、上記ステップS104で検出結果と対応付かなった歩行者の状態量のうち、観測した検出頻度が上記ステップS105で予測した検出頻度が閾値より小さい歩行者の状態量を、移動物状態量記憶部16から消去する。
In step S106, among the state quantities of pedestrians that are not associated with the detection result in step S104, state quantities of pedestrians whose observed detection frequency is smaller than a threshold value predicted in step S105 are treated as moving object state quantities. Erased from the
ステップS202では、移動物存在確率記憶部222に記憶されている複数の歩行者それぞれの存在確率のうち、上記ステップS104により最新のデータの検出結果と対応付けられた歩行者の存在確率の各々について、検出器60、62についてステップS105で予測した検出頻度に応じて増加させるように更新する。また、移動物存在確率記憶部222に記憶されている複数の歩行者それぞれの存在確率のうち、上記ステップS104により最新のデータの検出結果と対応付けられなかった歩行者の存在確率の各々について、ステップS105で予測した検出頻度に応じた存在確率となるように減衰させて更新する。
In step S202, among the existence probabilities of each of the plurality of pedestrians stored in the moving object existence
ステップS204では、上記ステップS104で検出結果と対応付かなった歩行者の状態量のうち、移動物存在確率記憶部222に記憶されている存在確率が第2閾値より小さい歩行者の状態量を消去する。
In step S204, among the state quantities of pedestrians that are not associated with the detection result in step S104, the state quantities of pedestrians whose existence probability stored in the moving object existence
ステップS108では、上記ステップS104で検出結果と対応付けられた状態量の各々について、対応する3次元位置yi,jを観測値として、その誤差分散行列ri,jと上記ステップS200で得られた歩行者の状態量及び分散共分散行列とを用いて、カルマンフィルタのフィルタリングステップにより、状態量を更新すると共に、最後に観測した時刻を更新する。また、上記ステップS100で受信した検出結果のうち、状態量と対応付かなかった歩行者の検出結果に基づき、新たな状態量xを生成し、最後に観測した時刻として、現在時刻を、移動物状態量記憶部16に格納する。また、所定の存在確率を、移動物存在確率記憶部222に格納する。
In step S108, for each state quantity associated with the detection result in step S104, the corresponding three-dimensional position y i,j is set as an observed value, and the error variance matrix r i,j obtained in step S200 is Using the state quantity of the pedestrian and the variance-covariance matrix, the state quantity and the last observed time are updated by the filtering step of the Kalman filter. Further, among the detection results received in step S100, a new state quantity x is generated based on the detection result of the pedestrian that was not associated with the state quantity, and the current time is used as the time of the last observation of the moving object. Stored in the state
そして、ステップS110では、更新された状態量のセットXを、歩行者の検出結果の統合結果として出力し、上記ステップS100へ戻る。 Then, in step S110, the updated state quantity set X is output as a result of integration of the pedestrian detection results, and the process returns to step S100.
以上説明したように、第2実施形態に係る歩行者状態量推定システムによれば、非同期に不特定の複数センサからセンシング結果が来る場合に、検出された状態量を、検出頻度から定まる存在確率に基づいて削除することにより、信頼できない検出結果の影響が状態量として残らないようにすることで、各センサの誤検出にロバストになる。 As described above, according to the pedestrian state quantity estimation system according to the second embodiment, when sensing results are asynchronously received from a plurality of unspecified sensors, the detected state quantity is determined by the presence probability determined from the detection frequency. , the influence of unreliable detection results does not remain as state quantities, making it robust against false detections of each sensor.
[第3実施形態]
<歩行者状態量推定システムのシステム構成>
次に、第3実施形態に係る歩行者状態量推定システムについて説明する。なお、第1実施形態及び第2実施形態と同様の構成となる部分については、同一符号を付して説明を省略する。
[Third Embodiment]
<System configuration of pedestrian state quantity estimation system>
Next, a pedestrian state quantity estimation system according to the third embodiment will be described. In addition, the same reference numerals are given to the parts having the same configuration as those of the first embodiment and the second embodiment, and the description thereof is omitted.
第3実施形態は、移動物の検出頻度を予測した結果から歩行者の存在確率を更新する際に、予め記憶されている検出器60、62それぞれの最新のセンサ情報、及び壁などの構造物の位置を示す地図を用いて、移動物の検出頻度を予測する点が第2実施形態と異なっている。
In the third embodiment, when updating the presence probability of pedestrians from the result of predicting the detection frequency of moving objects, the latest sensor information of each of the
図8に示すように、第3実施形態に係る歩行者状態量推定装置における移動物検出頻度予測部321は、センサログ記憶部322と、地図323と、検出頻度算出部324と、を備えている。
As shown in FIG. 8, the moving object detection
センサログ記憶部322は、検出器60、62それぞれの最新のセンサ情報を記憶する。また、地図323は、検出器60、62の検出可能範囲を削減する壁などの構造物の位置を示す地図情報を記憶する。
The sensor
検出頻度算出部324は、センサログ記憶部322は、検出器60、62それぞれの最新のセンサ情報と、地図323は、検出器60、62の検出可能範囲を削減する壁などの構造物の位置を示す地図情報とを用いて検出頻度を算出する。
The detection
具体的には、例えば、複数の検出器60、62として、カメラを利用し、歩行者を検出する場合、検出頻度算出部324は、カメラそれぞれの検出位置(検出方向を含む)及び検出範囲と、壁などの構造物の位置とから、壁などの構造物により生じる死角または検出不可領域(構造物により検出器では検出不可の領域)を求める。この検出不可領域を除く領域を、カメラiの視野Ri(t)とし、或る場所xがカメラiの視野内に含まれるか否かを示す関数σi(x、t)を定める。
Specifically, for example, when cameras are used as the plurality of
また、センサ情報による最新の未検出率pFN,i(x、t)用いて、N台のカメラによる総検出頻度f(x、t)を算出する。従って、時刻tで場所xj、j番目の移動物の存在確率の減少量νj(t)を、上記の式により求めることで、存在確率を検出頻度に応じて更新することが可能である。 Also, the latest non-detection rate p FN,i (x, t) based on sensor information is used to calculate the total detection frequency f(x, t) by the N cameras. Therefore, by obtaining the reduction amount ν j (t) of the existence probability of the j-th moving object at the location x j at the time t using the above formula, it is possible to update the existence probability according to the detection frequency. .
なお、第3実施形態に係る歩行者状態量推定システムの他の構成及び作用は、第2実施形態と同様であるため、説明を省略する。 The rest of the configuration and action of the pedestrian state quantity estimation system according to the third embodiment are the same as those of the second embodiment, so description thereof will be omitted.
このように、地図により定まる検出器により検出が不可能な範囲を制約として用いて、歩行者の存在確率を更新することにより、存在しない歩行者の状態量を適切に消去することができる。 In this way, by updating the presence probability of pedestrians using the range in which detection is impossible by the detector determined by the map as a constraint, it is possible to appropriately eliminate the state quantity of non-existing pedestrians.
[第4実施形態]
<歩行者状態量推定システムのシステム構成>
次に、第4実施形態に係る歩行者状態量推定システムについて説明する。なお、第1実施形態及び第2実施形態と同様の構成となる部分については、同一符号を付して説明を省略する。
[Fourth Embodiment]
<System configuration of pedestrian state quantity estimation system>
Next, a pedestrian state quantity estimation system according to a fourth embodiment will be described. In addition, the same reference numerals are given to the parts having the same configuration as those of the first embodiment and the second embodiment, and the description thereof is omitted.
第4実施形態は、位置毎に予測された移動物の検出頻度を記憶しておき、記憶されている検出頻度を用いて、移動物の検出頻度を予測する点が第2実施形態と異なっている。 The fourth embodiment differs from the second embodiment in that the moving object detection frequency predicted for each position is stored, and the stored detection frequency is used to predict the moving object detection frequency. there is
図9に示すように、第4実施形態に係る歩行者状態量推定装置における移動物検出頻度予測部421は、頻度マップ更新部422と、地図323と、頻度マップ423と、検出頻度算出部424と、を備えている。
As shown in FIG. 9, the moving object detection
頻度マップ423は、地図323に記憶されている地図情報、及び検出器60、62それぞれの最新のセンサ情報を用いて、歩行者の検出可能範囲における位置毎の検出頻度を記憶する。具体的には、例えば、複数の検出器60、62を、2台のカメラ1及びカメラ2とした場合、図10に示すように、カメラ1及びカメラ2それぞれのカメラ位置で、センサ情報による検出可能範囲とする。また、地図情報により壁が検出可能範囲に存在するとする。この場合、歩行者が存在する可能性のある全体領域は、カメラ1及びカメラ2により歩行者を検出不可能な領域(カメラ台数Nc=0)、カメラ1またはカメラ2でのみ歩行者を検出可能な領域(カメラ台数Nc=1)、及びカメラ1及びカメラ2の両方で歩行者を検出可能な領域(カメラ台数Nc=2)に分類される。従って、歩行者の位置に応じて、検出可能なカメラの台数が異なり、検出可能なカメラの台数に応じて検出頻度が変化する。従って、図10に示すように位置毎にカメラ台数を示す領域を頻度マップとする。この頻度マップは、各領域に該当するカメラの動作周期からカメラそれぞれの検出頻度を算出可能であり、台数分を加算することで、該当領域の検出頻度を導出可能である。従って、頻度マップ更新部422は、センサ情報及び地図323に記憶された地図情報を用いて、頻度マップを最新の状態に更新する。
The
検出頻度算出部424は、頻度マップ423に記憶されている検出頻度のうち歩行者の状態量で示される位置の検出頻度を抽出することで、検出頻度を算出して出力する。
The detection
なお、第4実施形態に係る歩行者状態量推定システムの他の構成及び作用は、第2実施形態と同様であるため、説明を省略する。 Other configurations and actions of the pedestrian state quantity estimation system according to the fourth embodiment are the same as those of the second embodiment, and therefore description thereof is omitted.
このように、地図により定まる検出器により検出が不可能な範囲を制約として用いて、センサ情報から頻度マップを更新することにより、歩行者の状態量による位置に対応する検出頻度を迅速に求めることが可能になり、存在しない歩行者の状態量を適切に消去することができる。 In this way, by updating the frequency map from the sensor information using the range where detection is impossible by the detector determined by the map as a constraint, the detection frequency corresponding to the position of the pedestrian's state quantity can be quickly obtained. is possible, and the state quantity of non-existent pedestrians can be appropriately eliminated.
なお、上記の実施の形態では、検出対象となる移動物として歩行者を対象とする場合を例に説明したが、これに限定されるものではなく、例えば車両などの他の移動体を検出対象としてもよい。 In the above-described embodiment, a case where a pedestrian is targeted as a moving object to be detected has been described as an example, but the object is not limited to this. may be
また、複数の車両に搭載された複数の検出器及びインフラセンサとしての検出器を、非同期の複数センサとする場合を例に説明したが、これに限定されるものではなく、インフラセンサとしての検出器を用いないように構成してもよい。 In addition, the case where a plurality of detectors mounted on a plurality of vehicles and a detector as an infrastructure sensor are asynchronous sensors has been described as an example. It may be configured so as not to use a device.
また、単一の車両に搭載され、かつ、カメラ及びレーダを含む複数の計測器を用いた、複数の検出器を、非同期の複数センサとしてもよい。例えば、異なる計測器を用いた検出器が、後付けで当該車両に追加される場合には、複数センサの数が不定になることが想定される。 Also, multiple detectors mounted on a single vehicle and using multiple instruments, including cameras and radar, may be asynchronous multiple sensors. For example, if a detector using a different measuring instrument is retrofitted to the vehicle, it is assumed that the number of multiple sensors will be indefinite.
なお、本開示のプログラムは、記録媒体に格納して提供することができる。 Note that the program of the present disclosure can be provided by being stored in a recording medium.
10、210 歩行者状態量推定装置
12 通信部
14 センシング結果獲得部
16 移動物状態量記憶部
18 移動物状態量予測部
20 移動物状態量整合部
21 移動物検出頻度予測部
22 移動物状態量消去部
24 移動物状態量更新部
50 基地局
60、62 検出器
70 ネットワーク
100 歩行者状態量推定システム
210 歩行者状態量推定装置
220 移動物存在確率更新部
222 移動物存在確率記憶部
321 移動物検出頻度予測部
322 センサログ記憶部
323 地図
324 検出頻度算出部
421 移動物検出頻度予測部
422 頻度マップ更新部
423 頻度マップ
424 検出頻度算出部
10, 210 Pedestrian state
Claims (7)
前記複数の移動物それぞれについて、前記移動物状態量記憶部に記憶された状態量を用いて次の時刻の前記移動物の状態量を予測する移動物状態量予測部と、
数不定の複数センサの何れかから、複数の移動物を検出した検出結果、及び検出性能情報を受け取るセンシング結果獲得部と、
前記センシング結果獲得部によって前記検出結果を受け取る毎に、前記検出結果の時刻に対応して前記移動物状態量予測部によって前記複数の移動物それぞれについて予測された前記移動物の状態量と、複数の移動物それぞれの前記検出結果との対応付けを行い、前記移動物状態量記憶部に格納された、前記複数の移動物それぞれの、状態量及び最後に観測した時刻を更新する移動物状態量整合部と、
前記複数センサそれぞれの検出性能情報に基づいて、前記複数の移動物それぞれについて前記複数のセンサのうち検出可能なセンサによって検出される検出頻度を予測する移動物検出頻度予測部と、
前記移動物状態量整合部によって前記検出結果と対応付かなかった前記移動物の状態量であって、複数の移動物を検出した検出結果により定まる検出頻度が前記移動物検出頻度予測部によって予測された検出頻度より小さい前記移動物の状態量を、前記移動物状態量記憶部から消去する移動物状態量消去部と、
を含む移動物状態量推定装置。 a moving object state quantity storage unit that stores the state quantity and the last observed time of each of a plurality of moving objects;
a moving object state quantity prediction unit that predicts the state quantity of the moving object at the next time using the state quantity stored in the moving object state quantity storage unit for each of the plurality of moving objects;
a sensing result acquisition unit that receives detection results of detecting a plurality of moving objects and detection performance information from any of an indefinite number of multiple sensors;
Each time the sensing result acquisition unit receives the detection result, the state quantity of the moving object predicted for each of the plurality of moving objects by the moving object state quantity prediction unit corresponding to the time of the detection result; and the moving object state quantity for updating the state quantity and the last observed time of each of the plurality of moving objects stored in the moving object state quantity storage unit. a matching unit;
a moving object detection frequency prediction unit that predicts, based on detection performance information of each of the plurality of sensors, a frequency of detection of each of the plurality of moving objects by sensors that can be detected among the plurality of sensors;
The state quantity of the moving object which is not associated with the detection result by the moving object state quantity matching unit, and the detection frequency determined by the detection result of detecting a plurality of moving objects is predicted by the moving object detection frequency prediction unit. a moving object state quantity erasing unit for erasing from the moving object state quantity storage unit the state quantity of the moving object smaller than the detection frequency;
A moving object state quantity estimator including
前記移動物状態量整合部による前記検出結果との対応付けの結果、又は前記センサについて予め定められた検出精度に応じて、前記移動物の存在確率を、前記移動物存在確率記憶部に設定し、又は
前記移動物存在確率記憶部に記憶されている前記複数の移動物それぞれの存在確率を、前記移動物状態量整合部による前記検出結果との対応付けの結果、前記最後に観測した時刻からの経過時間、又は前記センサについて予め定められた検出精度若しくは前記移動物検出頻度予測部による前記検出頻度に応じて増減させる移動物存在確率更新部と、
を更に含み、
前記移動物状態量消去部は、前記移動物存在確率記憶部に記憶されている前記複数の移動物それぞれの存在確率に基づいて、前記移動物の状態量を、前記移動物状態量記憶部から消去する請求項1又は請求項2に記載の移動物状態量推定装置。 a moving object existence probability storage unit that stores the existence probability of each of the plurality of moving objects;
The moving object existence probability is set in the moving object existence probability storage unit according to the result of association with the detection result by the moving object state quantity matching unit or according to the predetermined detection accuracy of the sensor. or, as a result of associating the existence probability of each of the plurality of moving objects stored in the moving object existence probability storage unit with the detection result by the moving object state quantity matching unit, from the last observation time a moving object existence probability updating unit that increases or decreases according to the elapsed time of the sensor, or the predetermined detection accuracy of the sensor or the detection frequency by the moving object detection frequency prediction unit;
further comprising
The moving object state quantity erasing unit removes the state quantity of the moving object from the moving object state quantity storage unit based on the existence probability of each of the plurality of moving objects stored in the moving object existence probability storage unit. 3. A moving object state quantity estimating device according to claim 1 or 2, wherein the moving object state quantity estimating device is erased.
前記複数センサそれぞれの前記検出性能情報を記憶する検出性能情報記憶部と、
前記検出性能情報記憶部に記憶された前記複数センサそれぞれの前記検出性能情報、移動物の検出可能範囲が記録されている移動物検出可能範囲情報、及び前記移動物状態量整合部によって更新された前記移動物の状態量に基づいて、前記検出頻度を算出する検出頻度算出部と、
を含む請求項3に記載の移動物状態量推定装置。 The moving object detection frequency prediction unit,
a detection performance information storage unit that stores the detection performance information of each of the plurality of sensors;
The detection performance information of each of the plurality of sensors stored in the detection performance information storage unit, the moving object detectable range information in which the detectable range of the moving object is recorded, and updated by the moving object state quantity matching unit a detection frequency calculation unit that calculates the detection frequency based on the state quantity of the moving object;
The moving object state quantity estimation device according to claim 3, comprising:
前記移動物検出頻度予測部によって予測された移動物の検出位置毎の検出頻度を示す情報を記憶する検出頻度記憶部と、
前記センシング結果獲得部によって受け取った前記検出性能情報、及び移動物の検出可能範囲が記録されている移動物検出可能範囲情報に基づいて、前記検出頻度記憶部に記憶された前記移動物の検出位置毎の検出頻度を更新する検出頻度更新部と、
前記検出頻度記憶部から、前記移動物の状態量に対応する検出頻度を抽出する検出頻度抽出部と、
を含む請求項3に記載の移動物状態量推定装置。 The moving object detection frequency prediction unit,
a detection frequency storage unit that stores information indicating a detection frequency for each detection position of a moving object predicted by the moving object detection frequency prediction unit;
The detection position of the moving object stored in the detection frequency storage unit based on the detection performance information received by the sensing result acquisition unit and the moving object detectable range information in which the detectable range of the moving object is recorded. a detection frequency update unit that updates the detection frequency for each
a detection frequency extraction unit that extracts a detection frequency corresponding to the state quantity of the moving object from the detection frequency storage unit;
The moving object state quantity estimation device according to claim 3, comprising:
前記移動物の状態量は、歩行者又は車両の位置及び速度であって、
前記移動物検出可能範囲情報は、センサ検出可能範囲を削減する構造物の位置を示す地図である請求項4又は請求項5に記載の移動物状態量推定装置。 The plurality of sensors is a plurality of detectors that detect pedestrians or vehicles mounted on a plurality of vehicles or used as infrastructure sensors,
The state quantity of the moving object is the position and speed of the pedestrian or vehicle,
6. A moving object state quantity estimating apparatus according to claim 4, wherein said moving object detectable range information is a map indicating the position of a structure for reducing the sensor detectable range.
前記複数の移動物それぞれについて、前記移動物状態量記憶部に記憶された状態量を用いて次の時刻の前記移動物の状態量を予測する移動物状態量予測部、
数不定の複数センサの何れかから、複数の移動物を検出した検出結果を受け取るセンシング結果獲得部、
前記センシング結果獲得部によって前記検出結果を受け取る毎に、前記検出結果の時刻に対応して前記移動物状態量予測部によって前記複数の移動物それぞれについて予測された前記移動物の状態量と、複数の移動物それぞれの前記検出結果との対応付けを行い、前記移動物状態量記憶部に格納された、前記複数の移動物それぞれの、状態量及び最後に観測した時刻を更新する移動物状態量整合部、
前記複数センサそれぞれの検出性能情報に基づいて、前記複数の移動物それぞれについて前記複数のセンサのうち検出可能なセンサによって検出される検出頻度を予測する移動物検出頻度予測部、および
前記移動物状態量整合部によって前記検出結果と対応付かなかった前記移動物の状態量であって、複数の移動物を検出した検出結果により定まる検出頻度が前記移動物検出頻度予測部によって予測された検出頻度より小さい前記移動物の状態量を、前記移動物状態量記憶部から消去する移動物状態量消去部、
として機能させるためのプログラム。 a computer including a moving object state quantity storage unit that stores the state quantity and the last observed time of each of a plurality of moving objects,
a moving object state quantity prediction unit that predicts the state quantity of the moving object at the next time using the state quantity stored in the moving object state quantity storage unit for each of the plurality of moving objects;
A sensing result acquisition unit that receives detection results of detecting a plurality of moving objects from any of an indefinite number of multiple sensors;
Each time the sensing result acquisition unit receives the detection result, the state quantity of the moving object predicted for each of the plurality of moving objects by the moving object state quantity prediction unit corresponding to the time of the detection result; and the moving object state quantity for updating the state quantity and the last observed time of each of the plurality of moving objects stored in the moving object state quantity storage unit. matching unit,
a moving object detection frequency prediction unit that predicts a frequency of detection of each of the plurality of moving objects by sensors capable of detecting the plurality of sensors based on detection performance information of each of the plurality of sensors; and the state of the moving object. The state quantity of the moving object that is not associated with the detection result by the quantity matching unit, and the detection frequency determined by the detection result of detecting a plurality of moving objects is higher than the detection frequency predicted by the moving object detection frequency prediction unit. a moving object state quantity erasing unit for erasing the small state quantity of the moving object from the moving object state quantity storage unit;
A program to function as
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019051017A JP7207050B2 (en) | 2019-03-19 | 2019-03-19 | Moving object state quantity estimation device and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019051017A JP7207050B2 (en) | 2019-03-19 | 2019-03-19 | Moving object state quantity estimation device and program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020154526A JP2020154526A (en) | 2020-09-24 |
JP7207050B2 true JP7207050B2 (en) | 2023-01-18 |
Family
ID=72559117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019051017A Active JP7207050B2 (en) | 2019-03-19 | 2019-03-19 | Moving object state quantity estimation device and program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7207050B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018092368A (en) | 2016-12-02 | 2018-06-14 | 株式会社豊田中央研究所 | Moving object state amount estimation device and program |
JP2018147157A (en) | 2017-03-03 | 2018-09-20 | 株式会社豊田中央研究所 | Movable matter quantity-of-state prediction unit and program |
-
2019
- 2019-03-19 JP JP2019051017A patent/JP7207050B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018092368A (en) | 2016-12-02 | 2018-06-14 | 株式会社豊田中央研究所 | Moving object state amount estimation device and program |
JP2018147157A (en) | 2017-03-03 | 2018-09-20 | 株式会社豊田中央研究所 | Movable matter quantity-of-state prediction unit and program |
Non-Patent Citations (1)
Title |
---|
中村 亮裕 他,ローカルダイナミックマップ生成のための複数カメラを用いたリアルタイム多物体追跡システム,FIT2018 第17回情報科学技術フォーラム 講演論文集 第4分冊 選奨論文・一般論文・既発表論文紹介 ネットワーク・セキュリティ ユビキタス・モバイルコンピューティング 教育・人文科学 情報システム Forum on Information Technology 2018,2018年09月12日 |
Also Published As
Publication number | Publication date |
---|---|
JP2020154526A (en) | 2020-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210144340A1 (en) | Information processing system, information processing method, and program | |
CN109298389B (en) | Indoor pedestrian combination pose estimation method based on multi-particle swarm optimization | |
US9794519B2 (en) | Positioning apparatus and positioning method regarding a position of mobile object | |
EP3878701A1 (en) | System and method for sensing passengers in vehicle by using ultra-wide band radar | |
KR101804681B1 (en) | A human detecting apparatus and method using a low-resolution 2d lidar sensor | |
JP2009074859A (en) | Motion measuring device and position measuring device | |
JP7056842B2 (en) | State estimator and program | |
US11061102B2 (en) | Position estimating apparatus, position estimating method, and terminal apparatus | |
CN113959457A (en) | Positioning method and device for automatic driving vehicle, vehicle and medium | |
JP6349272B2 (en) | Moving object tracking device | |
CN112598715A (en) | Multi-sensor-based multi-target tracking method, system and computer readable medium | |
JP4600929B2 (en) | Stop low-speed vehicle detection device | |
CN113077495B (en) | Online multi-target tracking method, system, computer equipment and readable storage medium | |
JP6169146B2 (en) | Object recognition integration apparatus and object recognition integration method | |
JP7207050B2 (en) | Moving object state quantity estimation device and program | |
JP6866621B2 (en) | Moving object state quantity estimation device and program | |
CN113988228B (en) | Indoor monitoring method and system based on RFID and vision fusion | |
EP3598175B1 (en) | Object detection system | |
JP6903955B2 (en) | Moving object state quantity estimation device and program | |
JP2019144900A (en) | State estimation device and program | |
WO2022264533A1 (en) | Detection-frame position-accuracy improving system and detection-frame position correction method | |
KR101280348B1 (en) | Multiple target tracking method | |
KR102211844B1 (en) | Method and apparatus for estimating behind wall Multi-target in an IR-UWB Radar system | |
JP7020028B2 (en) | State quantity integrated device and program | |
KR101962933B1 (en) | Detection and tracking method for sea-surface moving object |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7207050 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |