JP6926169B2 - Organic EL display device and its manufacturing method - Google Patents

Organic EL display device and its manufacturing method Download PDF

Info

Publication number
JP6926169B2
JP6926169B2 JP2019188070A JP2019188070A JP6926169B2 JP 6926169 B2 JP6926169 B2 JP 6926169B2 JP 2019188070 A JP2019188070 A JP 2019188070A JP 2019188070 A JP2019188070 A JP 2019188070A JP 6926169 B2 JP6926169 B2 JP 6926169B2
Authority
JP
Japan
Prior art keywords
organic
insulating film
light emitting
electrode
organic light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019188070A
Other languages
Japanese (ja)
Other versions
JP2020024930A (en
Inventor
克彦 岸本
克彦 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Display Products Corp
Original Assignee
Sakai Display Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019516721A external-priority patent/JP6603826B1/en
Application filed by Sakai Display Products Corp filed Critical Sakai Display Products Corp
Priority to JP2019188070A priority Critical patent/JP6926169B2/en
Publication of JP2020024930A publication Critical patent/JP2020024930A/en
Priority to JP2021128133A priority patent/JP7139504B2/en
Application granted granted Critical
Publication of JP6926169B2 publication Critical patent/JP6926169B2/en
Priority to JP2022142515A priority patent/JP7410242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、有機EL表示装置及びその製造方法に関する。 The present invention relates to an organic EL display device and a method for manufacturing the same.

近年、大形のテレビジョン、携帯機器などで、有機EL表示装置が採用される傾向にある。有機EL表示装置は、絶縁基板の上に、各画素の領域にスイッチング素子、駆動素子などの能動素子としての薄膜トランジスタ(以下、TFTともいう)を用いた駆動回路が形成され、その上に各画素の有機発光素子がTFTと接続するように形成されることによって構成されている。有機EL表示装置としては、発光素子の正面を表示面とするトップエミッション型と、絶縁基板の裏面を表示面とするボトムエミッション型とがあり、トップエミッション型では、有機発光素子の表示領域によらず、その下方に前述の駆動回路が形成される。一方、ボトムエミッション型では、表示領域の周縁部に駆動回路が形成される。そのため、駆動回路を形成するスペースが少ない携帯機器などの小型の有機EL表示装置では、トップエミッション型、すなわち、表示領域のほぼ全面の下方にTFTなどの駆動回路が形成されるような構成が多用される。一方、ボトムエミッション型では、画素間のスペースに多少余裕のある大形のテレビジョンなどに適している。 In recent years, organic EL display devices have tended to be adopted in large-sized televisions, portable devices, and the like. In the organic EL display device, a drive circuit using a thin film transistor (hereinafter, also referred to as TFT) as an active element such as a switching element or a drive element is formed in a region of each pixel on an insulating substrate, and each pixel is formed on the thin film transistor (hereinafter, also referred to as TFT). The organic light emitting element of the above is formed so as to be connected to the TFT. The organic EL display device includes a top emission type in which the front surface of the light emitting element is the display surface and a bottom emission type in which the back surface of the insulating substrate is the display surface. Instead, the drive circuit described above is formed below it. On the other hand, in the bottom emission type, a drive circuit is formed at the peripheral edge of the display area. Therefore, in a small organic EL display device such as a mobile device in which a space for forming a drive circuit is small, a top emission type, that is, a configuration in which a drive circuit such as a TFT is formed below almost the entire display area is often used. Will be done. On the other hand, the bottom emission type is suitable for large-sized televisions with a little space between pixels.

TFTなどによって駆動回路が形成されるとその表面が凸凹になる。その上に有機発光素子が形成されるので、駆動回路の上を、樹脂材料などで被覆することによって平坦化膜を形成している。そうすることによって、表面の平坦化が行われている。この平坦化膜は、従来、TFTが形成された後に、バリア層とする第1無機絶縁膜が形成され、前述の有機発光素子とTFTとを接続するコンタクト孔をフォトリソグラフィ工程によって形成し、その上に感光性の有機絶縁膜を成膜して、フォトリソグラフィ工程と、ウェット現像によるコンタクト孔の形成によって得られていた。このように有機絶縁膜を形成することによって、TFTなどの形成による表面の凸凹が平坦化されている。 When a drive circuit is formed by a TFT or the like, its surface becomes uneven. Since the organic light emitting element is formed on the organic light emitting element, the flattening film is formed by covering the drive circuit with a resin material or the like. By doing so, the surface is flattened. Conventionally, in this flattening film, a first inorganic insulating film as a barrier layer is formed after the TFT is formed, and a contact hole connecting the above-mentioned organic light emitting element and the TFT is formed by a photolithography step. It was obtained by forming a photosensitive organic insulating film on top of it, performing a photolithography process, and forming contact holes by wet development. By forming the organic insulating film in this way, the unevenness of the surface due to the formation of the TFT or the like is flattened.

特許文献1には、アクティブマトリクス型表示装置のピクセルごとのスイッチング素子などに好適な、小さな専有面積と優れたトランジスタ特性とを両立したTFT及びその製造方法が開示されている。これは、同一構成のTFTをCMP処理によって表面の凹凸を20nm以下とされた層間絶縁膜を介して、垂直に複数層のTFTを一体的に形成するものである。すなわち、微細なTFTを形成する際に、浅い焦点深度に対応するために層間絶縁膜の表面の平坦度を20nm以下にするもので、TFTの上に有機発光素子を形成するための平坦化ではない。 Patent Document 1 discloses a TFT having both a small occupied area and excellent transistor characteristics, which is suitable for a pixel-by-pixel switching element of an active matrix type display device, and a method for manufacturing the TFT. In this method, a plurality of layers of TFTs are integrally formed vertically through an interlayer insulating film in which the surface irregularities of the TFTs having the same configuration are reduced to 20 nm or less by CMP treatment. That is, when forming a fine TFT, the flatness of the surface of the interlayer insulating film is set to 20 nm or less in order to correspond to a shallow depth of focus. No.

特開2017−11173号公報JP-A-2017-11173

一方、有機EL表示装置を視認する場合、画素によって、色ムラが生じたり、輝度ムラが発生したりして視認特性が低下する場合がある。本発明者は、この色ムラ又は輝度ムラが生じる原因について鋭意検討を重ねて調べた結果、有機発光層の表面の平坦性の欠如に起因していることを見出した。すなわち、有機発光素子は、前述のように、駆動回路が形成されたTFTなどの上に、表面を平坦にする平坦化膜の上に形成される。この有機絶縁膜の表面は、一応平坦になっており、従来は、これで問題はないと考えられていた。しかし、本発明者が鋭意検討を重ねて調べた結果、有機絶縁膜表面は、非感光性の樹脂を用いても、算術平均粗さのRaで、100〜300nm程度であり、従来一般的に用いられている感光性樹脂では、これよりもさらに凹凸が生じていることが分り、この表面に有機発光素子の電極及び有機発光層を形成すると、有機発光層の表面も同程度の表面粗さになっていた。有機発光層の表面に凸凹が生じると、微視的に見た光の進む向きは区々になる。そのため、正面から表示画面を見ると、斜め方向に進む光は視認され難くなり、色ムラ及び/又は輝度ムラになることを見出した。 On the other hand, when visually recognizing an organic EL display device, the visibility may be deteriorated due to color unevenness or luminance unevenness depending on the pixels. As a result of repeated studies on the cause of this color unevenness or brightness unevenness, the present inventor has found that it is caused by the lack of flatness of the surface of the organic light emitting layer. That is, as described above, the organic light emitting element is formed on a TFT or the like on which a drive circuit is formed, and on a flattening film that flattens the surface. The surface of this organic insulating film is flat for the time being, and conventionally, it was considered that there was no problem with this. However, as a result of repeated studies by the present inventor, the surface of the organic insulating film has an arithmetic average roughness Ra of about 100 to 300 nm even when a non-photosensitive resin is used, which has been generally used in the past. It was found that the photosensitive resin used had more irregularities than this, and when the electrodes of the organic light emitting element and the organic light emitting layer were formed on the surface, the surface of the organic light emitting layer also had the same surface roughness. It was. When the surface of the organic light emitting layer becomes uneven, the direction in which the light travels microscopically becomes different. Therefore, when the display screen is viewed from the front, it is difficult to visually recognize the light traveling in the oblique direction, and it has been found that the color unevenness and / or the luminance unevenness occurs.

表示装置の表示画面で、たとえ、不点灯領域、常時点灯領域又は輝線といった明確な表示上の欠陥が無くても、前述したような輝度ムラ及び/又は色ムラに起因する表示ムラが生じると、表示品位が低下するという問題がある。 Even if there is no clear display defect such as a non-lighting area, a constantly lit area, or a bright line on the display screen of the display device, if display unevenness due to the above-mentioned luminance unevenness and / or color unevenness occurs, There is a problem that the display quality deteriorates.

さらに、有機発光層の表面に反射率の大きい層を設けてマイクロキャビティにすることによって発光出力を高めることも行われるが、有機発光層の表面に凹凸があると、反射層にも凹凸が形成され、乱反射して完全な共振器とすることができず、出力の増大を得ることができなくなるという問題もある。 Further, it is also possible to increase the light emission output by providing a layer having a high reflectance on the surface of the organic light emitting layer to form a microcavity. However, if the surface of the organic light emitting layer has irregularities, the reflective layer also has irregularities. There is also a problem that it is not possible to obtain a perfect resonator due to diffuse reflection, and it is not possible to obtain an increase in output.

一方、微細なTFTを製造するための平坦性を必要とするものではないので、前述の特許文献1に記載されているような表面平坦度が20nm以下という厳しい平坦度でなくても、有機発光層で発光する光が、ほぼ正面を中心に発光する程度に平坦になっていればよい。 On the other hand, since flatness for manufacturing a fine TFT is not required, organic light emission is not required even if the surface flatness is not as severe as 20 nm or less as described in Patent Document 1 described above. It suffices if the light emitted by the layer is flat enough to emit light centered on the front surface.

本発明は、このような状況に鑑みてなされたもので、有機EL表示装置の色ムラ及び/又は輝度ムラを抑制することで表示品位を向上させた有機EL表示装置及びその製造方法を提供することを目的とする。 The present invention has been made in view of such a situation, and provides an organic EL display device having improved display quality by suppressing color unevenness and / or luminance unevenness of the organic EL display device, and a method for manufacturing the same. The purpose is.

本発明の一実施形態の有機EL表示装置は、薄膜トランジスタを含む駆動回路が形成された表面を有する基板と、前記駆動回路を覆うことによって前記基板の前記表面を平坦化する平坦化膜と、前記平坦化膜の表面上に形成され、前記駆動回路と接続された第1電極、前記第1電極の上に形成された有機発光層、及び前記有機発光層の上に形成された第2電極を有する有機発光素子と、を備え、前記平坦化膜は、前記駆動回路の上に積層された第1無機絶縁膜及び有機絶縁膜を含んでおり、前記有機絶縁膜の表面が、算術平面粗さRaで50nm以下に形成されている。 The organic EL display device according to the embodiment of the present invention includes a substrate having a surface on which a drive circuit including a thin film transistor is formed, a flattening film that flattens the surface of the substrate by covering the drive circuit, and the flattening film. A first electrode formed on the surface of the flattening film and connected to the drive circuit, an organic light emitting layer formed on the first electrode, and a second electrode formed on the organic light emitting layer. The flattening film includes a first inorganic insulating film and an organic insulating film laminated on the drive circuit, and the surface of the organic insulating film has an arithmetic plane roughness. It is formed to be 50 nm or less in Ra.

本発明の他の実施形態の有機EL表示装置の製造方法は、基板の上に、薄膜トランジスタを含む駆動回路を形成する工程と、前記駆動回路の表面に第1無機絶縁膜及び有機絶縁膜を形成する工程と、前記有機絶縁膜の表面をCMP研磨する工程と、前記有機絶縁膜及び前記第1無機絶縁膜に、前記TFTに達するコンタクト孔を形成する工程と、前記コンタクト孔の内部に金属を埋め込むと共に、所定の領域に第1電極を形成する工程と、前記第1電極の上に有機発光層を形成する工程と、前記有機発光層の上に第2電極を形成する工程と、を含んでいる。 The method for manufacturing an organic EL display device according to another embodiment of the present invention includes a step of forming a drive circuit including a thin film transistor on a substrate and forming a first inorganic insulating film and an organic insulating film on the surface of the drive circuit. Steps, a step of CMP polishing the surface of the organic insulating film, a step of forming contact holes reaching the TFT in the organic insulating film and the first inorganic insulating film, and a step of forming a metal inside the contact holes. It includes a step of forming a first electrode in a predetermined region while embedding, a step of forming an organic light emitting layer on the first electrode, and a step of forming a second electrode on the organic light emitting layer. I'm out.

本発明の実施形態によれば、TFTを含む駆動回路の凸凹の表面に有機絶縁膜が形成され、その表面がCMPによって研磨されることで、その表面が算術平均粗さRaで50nm以下の平坦度になるように平坦化されている。その結果、微視的に斜め方向に進む光が大幅に抑制され、色ムラ及び/又は輝度ムラの発生を抑制し、有機EL表示装置の表示品位を大幅に向上させることができる。 According to the embodiment of the present invention, an organic insulating film is formed on the uneven surface of the drive circuit including the TFT, and the surface is polished by CMP so that the surface is flat with an arithmetic average roughness Ra of 50 nm or less. It is flattened so that it becomes a degree. As a result, the light traveling in the oblique direction microscopically is significantly suppressed, the occurrence of color unevenness and / or luminance unevenness is suppressed, and the display quality of the organic EL display device can be significantly improved.

本発明の一実施形態の有機EL表示装置の断面図である。It is sectional drawing of the organic EL display device of one Embodiment of this invention. 図1の第2無機絶縁膜のない実施例1の有機EL表示装置の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the organic EL display device of Example 1 without the 2nd inorganic insulating film of FIG. 図2Aの工程をさらに詳細に説明するフローチャートである。It is a flowchart explaining the process of FIG. 2A in more detail. 図1の第2無機絶縁膜のない実施例1の有機EL表示装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the organic EL display device of Example 1 without the 2nd inorganic insulating film of FIG. 図1の第2無機絶縁膜のない実施例1の有機EL表示装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the organic EL display device of Example 1 without the 2nd inorganic insulating film of FIG. 図1の第2無機絶縁膜のない実施例1の有機EL表示装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the organic EL display device of Example 1 without the 2nd inorganic insulating film of FIG. 図1の第2無機絶縁膜のない実施例1の有機EL表示装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the organic EL display device of Example 1 without the 2nd inorganic insulating film of FIG. 図1の第2無機絶縁膜のない実施例1の有機EL表示装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the organic EL display device of Example 1 without the 2nd inorganic insulating film of FIG. 図1の第2無機絶縁膜のない実施例1の有機EL表示装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the organic EL display device of Example 1 without the 2nd inorganic insulating film of FIG. 図1の第2無機絶縁膜のない実施例1の有機EL表示装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the organic EL display device of Example 1 without the 2nd inorganic insulating film of FIG. 図1の有機EL表示装置の実施例2の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of Example 2 of the organic EL display device of FIG. 図1の有機EL表示装置の実施例2の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of Example 2 of the organic EL display device of FIG. 図1の有機EL表示装置の実施例2の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of Example 2 of the organic EL display device of FIG. 図1の有機EL表示装置の実施例2の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of Example 2 of the organic EL display device of FIG. 図1の有機EL表示装置の実施例2の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of Example 2 of the organic EL display device of FIG.

次に、図面を参照しながら本発明の一実施形態である有機EL表示装置が説明される。図1に一実施形態の有機EL表示装置の一画素(厳密には、一画素中の赤、緑、青のサブ画素であるが、本明細書では、これらのサブ画素も含めて一画素ということもある)分の概略の断面図が示されている。 Next, an organic EL display device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows one pixel of the organic EL display device of one embodiment (strictly speaking, it is a sub-pixel of red, green, and blue in one pixel, but in the present specification, it is referred to as one pixel including these sub-pixels. A schematic cross-sectional view of the minutes (sometimes) is shown.

本発明の一実施形態の有機EL表示装置は、図1にその断面の説明図が示されるように、TFT20を含む駆動回路が形成された表面を有する基板10と、駆動回路を覆うことによって基板10の表面を平坦化する平坦化膜30と、平坦化膜30の表面上に形成され、駆動回路と接続された第1電極41、第1電極41の上に形成された有機発光層43、及び有機発光層43の上に形成された第2電極44を有する有機発光素子40と、を備えている。そして、平坦化膜30は、駆動回路の上に積層された第1無機絶縁膜31及び有機絶縁膜32を含んでおり、有機絶縁膜32の表面が、算術平面粗さRaで50nm以下に形成されている。さらに、有機発光層43がコンタクト孔30aの直上を避けて形成されている。 The organic EL display device according to the embodiment of the present invention has a substrate 10 having a surface on which a drive circuit including a TFT 20 is formed, and a substrate by covering the drive circuit, as shown in FIG. A flattening film 30 that flattens the surface of 10, a first electrode 41 formed on the surface of the flattening film 30 and connected to a drive circuit, and an organic light emitting layer 43 formed on the first electrode 41. And an organic light emitting element 40 having a second electrode 44 formed on the organic light emitting layer 43. The flattening film 30 includes a first inorganic insulating film 31 and an organic insulating film 32 laminated on the drive circuit, and the surface of the organic insulating film 32 is formed to have an arithmetic plane roughness Ra of 50 nm or less. Has been done. Further, the organic light emitting layer 43 is formed so as to avoid directly above the contact hole 30a.

すなわち、本実施形態の有機EL表示装置では、駆動回路が形成されることによって、基板10の表面が凸凹にされたのを無機絶縁膜31と有機絶縁膜32との積層による平坦化膜30を形成し、さらにその表面がCMP研磨されることによって、算術平面粗さRaで50nm以下の平坦度に形成されていることに一つの特徴がある。なお、この有機絶縁膜32の表面にさらに第2無機絶縁膜33を形成することによって平坦化膜30とすることができ、図1に示される例では、この第2無機絶縁膜33も形成されている。さらには、本実施形態の有機EL表示装置では、駆動回路と第1電極41とを接続するコンタクト孔30aの直上ではない領域に有機発光層43が形成されていることにもう一つの特徴がある。 That is, in the organic EL display device of the present embodiment, the surface of the substrate 10 is made uneven by forming the drive circuit, and the flattening film 30 is formed by laminating the inorganic insulating film 31 and the organic insulating film 32. One of the characteristics is that the surface is formed with a flatness of 50 nm or less in terms of arithmetic plane roughness Ra by CMP polishing of the surface. The flattening film 30 can be formed by further forming the second inorganic insulating film 33 on the surface of the organic insulating film 32, and in the example shown in FIG. 1, the second inorganic insulating film 33 is also formed. ing. Further, the organic EL display device of the present embodiment has another feature that the organic light emitting layer 43 is formed in a region not directly above the contact hole 30a connecting the drive circuit and the first electrode 41. ..

前述したように、本発明者は、有機EL表示装置の色ムラ及び/又は輝度ムラが生じる原因について鋭意検討を重ねて調べた結果、有機発光素子40の有機発光層43の面に凹凸があり、微視的には、有機発光層43の表面が完全な平坦ではなく、微視的にみると傾いている部分があり、傾いていると、有機発光層43の表面の法線方向が表示面の法線方向に対して傾くことになる。そうすると、表示面と垂直方向から視認する場合、発光した光が斜め方向に進む画素の光は認識し難くなり、輝度の低下又は混色の色が変化することになる。すなわち、発光する光は、その法線方向に最も輝度が大きく法線方向から傾くにつれてその輝度は低下する。スマートフォンなどの小型の表示装置では、このサブ画素の大きさは、一辺が数十μm程度と非常に小さい。そのため、僅かな凹凸があっても有機発光層43の表面に凸凹のあるサブ画素では、正面に対する発光が非常に弱くなる。 As described above, as a result of repeated studies on the cause of color unevenness and / or brightness unevenness of the organic EL display device, the present inventor has unevenness on the surface of the organic light emitting layer 43 of the organic light emitting element 40. Microscopically, the surface of the organic light emitting layer 43 is not completely flat, and there is a part that is tilted when viewed microscopically. When it is tilted, the normal direction of the surface of the organic light emitting layer 43 is displayed. It will tilt with respect to the normal direction of the surface. Then, when visually recognizing from the direction perpendicular to the display surface, it becomes difficult to recognize the light of the pixel in which the emitted light travels in the oblique direction, and the brightness is lowered or the color of the mixed color is changed. That is, the light emitted has the highest brightness in the normal direction, and the brightness decreases as the light is inclined from the normal direction. In a small display device such as a smartphone, the size of this sub-pixel is very small, about several tens of μm on each side. Therefore, even if there are slight irregularities, the light emission to the front surface is very weak in the sub-pixels having irregularities on the surface of the organic light emitting layer 43.

従来は、このような色ムラ及び/又は輝度ムラの対策としては、表示パネルの外縁にTFTを作り込んでおいて、製品になった後の検査で色ムラ及び/又は輝度ムラがある画素の輝度を回路によって調整することが行われている。そのため、駆動回路が複雑になるという問題もある。 Conventionally, as a countermeasure against such color unevenness and / or luminance unevenness, a TFT is built in the outer edge of the display panel, and a pixel having color unevenness and / or luminance unevenness is inspected after the product is manufactured. The brightness is adjusted by a circuit. Therefore, there is also a problem that the drive circuit becomes complicated.

本実施形態では、前述したように、色ムラ及び/又は輝度ムラの原因を突き止めたため、その有機発光層43の表面の平坦度を向上させるため、その下地となる平坦化膜30の表面を50nm以下にすると共に、コンタクト孔30aの直上を避けて、有機発光層43を形成することで、殆ど色ムラ及び/又は輝度ムラが発生しないことを見出した。表面粗さは、小さいほど好ましいが、前述した特許文献1に示されるように、20nm以下という平坦度にする必要はなく、算術平均粗さRaで20nm以上であっても、色ムラ又は輝度ムラが殆ど現れないことを見出した。すなわち、表面粗さは小さいほど好ましいので下限は設定されないが、表面粗さを小さくするには、研磨作業が大変になるので、20nm以上で、50nm以下の表面粗さにすることが好ましい。 In the present embodiment, as described above, since the cause of color unevenness and / or luminance unevenness has been identified, in order to improve the flatness of the surface of the organic light emitting layer 43, the surface of the flattening film 30 as the base thereof is set to 50 nm. It was found that by forming the organic light emitting layer 43 while avoiding directly above the contact hole 30a, almost no color unevenness and / or luminance unevenness occurs. The smaller the surface roughness is, the more preferable it is. However, as shown in Patent Document 1 described above, it is not necessary to set the flatness to 20 nm or less, and even if the arithmetic average roughness Ra is 20 nm or more, color unevenness or brightness unevenness is required. I found that almost never appeared. That is, the smaller the surface roughness is, the more preferable it is, so the lower limit is not set. However, in order to reduce the surface roughness, the polishing operation becomes difficult, so it is preferable to set the surface roughness to 20 nm or more and 50 nm or less.

具体的には、従来の方法では、この平坦化膜は、無機バリア膜を形成してからドライエッチングによってコンタクト孔を形成し、その上に有機絶縁膜(感光性樹脂)を成膜してウェットエッチングによってコンタクト孔の形成が行われていた。すなわち、前述したように、有機絶縁膜は液状の樹脂を塗布して形成されるため、表面は平坦になり、問題ないと考えられていた。しかし、この有機絶縁膜の表面の平坦度は、非感光性樹脂を用いても、算術平均粗さRaで100〜300nm程度あり、感光性樹脂ではこれよりもさらに大きくなり、本発明者は、この程度の平坦化では十分でないことを突き止めた。この場合、感光性樹脂が用いられると、混入される光重合開始剤の影響によって、さらに表面粗さが大きくなる。そして、前述したように、有機絶縁膜32の表面をCMP研磨することによって、表面粗さを算術平均粗さRaで20nm以上、50nm以下にすることによって、色ムラ及び/又は輝度ムラの発生を殆ど抑制し得ることを見出した。すなわち、前述の特許文献1に記載されているような20nm以下の平坦度にする必要はないが、50nm程度以下にする必要がある。 Specifically, in the conventional method, the flattening film is wet by forming an inorganic barrier film, forming contact holes by dry etching, and forming an organic insulating film (photosensitive resin) on the contact holes. Contact holes were formed by etching. That is, as described above, since the organic insulating film is formed by applying a liquid resin, the surface becomes flat and it is considered that there is no problem. However, the flatness of the surface of this organic insulating film is about 100 to 300 nm in arithmetic average roughness Ra even when a non-photosensitive resin is used, and is even larger with a photosensitive resin. We found that this level of flattening was not sufficient. In this case, when a photosensitive resin is used, the surface roughness is further increased due to the influence of the photopolymerization initiator mixed in. Then, as described above, by CMP polishing the surface of the organic insulating film 32, the surface roughness is set to 20 nm or more and 50 nm or less in the arithmetic average roughness Ra, thereby causing color unevenness and / or luminance unevenness. It was found that it can be almost suppressed. That is, it is not necessary to make the flatness of 20 nm or less as described in Patent Document 1 described above, but it is necessary to make it about 50 nm or less.

(有機EL表示装置の構造)
次に、図1に示される有機EL表示装置及びその製造方法について具体的に説明がされる。
(Structure of organic EL display device)
Next, the organic EL display device shown in FIG. 1 and a method for manufacturing the same will be specifically described.

基板10は、基板面を表示面として表示画像を視認するボトムエミッション型の場合には、有機発光層43で発光した光を透過させる必要があり、透光性の材料で、絶縁性の基板が用いられる。具体的には、ガラス基板又は、ポリイミドなどの樹脂フィルムが用いられる。樹脂フィルムが用いられることによって、有機EL表示装置を可撓性にすることができ、曲面などに貼り付けることも可能になる。 In the case of the bottom emission type in which the display image is visually recognized with the substrate surface as the display surface, the substrate 10 needs to transmit the light emitted by the organic light emitting layer 43, and is made of a translucent material and has an insulating substrate. Used. Specifically, a glass substrate or a resin film such as polyimide is used. By using a resin film, the organic EL display device can be made flexible and can be attached to a curved surface or the like.

基板10がガラス基板の場合は必要ないが、基板10がポリイミドのような樹脂フィルムの場合には、表面が結晶性でなく、半導体層を直接形成し難いため、ベースコート層11が形成される。ベースコート層11としては、例えばプラズマCVD法によってSiO2を500nm厚/SiNxを50nm厚/SiO2を250nm厚程度の積層体が形成される。 It is not necessary when the substrate 10 is a glass substrate, but when the substrate 10 is a resin film such as polyimide, the surface is not crystalline and it is difficult to directly form the semiconductor layer, so that the base coat layer 11 is formed. The base coat layer 11, for example, 500nm thick / a SiN x 50 nm thickness / SiO 2 of 250nm thickness of about laminate SiO 2 by plasma CVD is formed.

ベースコート層11の上にTFT20を含む駆動回路が形成されている。図1では、陰極配線27のみが示されているが、その他のゲート配線及び信号配線なども同様に形成されている。そして、その上にTFT20が形成されている。図1では、発光素子40を駆動するTFT20のみが示されているが、その他のスイッチングTFTなど、他のTFTも同様に形成されている。この駆動回路は、有機EL表示装置が基板10と反対面を表示面とするトップエミッション型の場合は、有機発光素子40の発光領域の下方の全面に亘って形成され得る。しかし、基板10側を表示面とするボトムエミッション型では、有機発光素子40の発光領域の下方にTFTなどを形成することはできない。そのため、TFTなどは発光領域と平面的に重なる部分の周囲に形成される必要がある。この場合、周囲のTFT又は配線が形成される領域と発光領域の下のTFTなどが形成されない領域との境界部に傾斜面ができるため、発光領域の周縁部で凹凸ができ、表示品位を低下させる原因になる。従って、ボトムエミッション型でも、同様の平坦度が求められる。なお、キャパシタも各画素に形成されるが、広い面積で厚さは薄く発光領域の下に形成されても殆ど微細な凸凹の原因にはならない。 A drive circuit including the TFT 20 is formed on the base coat layer 11. In FIG. 1, only the cathode wiring 27 is shown, but other gate wiring, signal wiring, and the like are also formed in the same manner. Then, the TFT 20 is formed on the TFT 20. Although only the TFT 20 that drives the light emitting element 40 is shown in FIG. 1, other TFTs such as other switching TFTs are formed in the same manner. When the organic EL display device is of the top emission type having the surface opposite to the substrate 10 as the display surface, this drive circuit can be formed over the entire surface below the light emitting region of the organic light emitting element 40. However, in the bottom emission type having the substrate 10 side as the display surface, it is not possible to form a TFT or the like below the light emitting region of the organic light emitting element 40. Therefore, the TFT or the like needs to be formed around a portion that partially overlaps the light emitting region. In this case, since an inclined surface is formed at the boundary between the surrounding area where the TFT or wiring is formed and the area under the light emitting area where the TFT or the like is not formed, unevenness is formed at the peripheral edge of the light emitting area, and the display quality is deteriorated. It causes to make. Therefore, the same flatness is required for the bottom emission type. A capacitor is also formed in each pixel, but even if it is formed under a light emitting region with a large area and a thin thickness, it hardly causes fine irregularities.

TFT20は、ソース21s、チャネル21c、及びドレイン21dを有する半導体層21と、ゲート絶縁膜22とゲート電極23と層間絶縁膜24とソース電極25とドレイン電極26とで形成されている。ゲート絶縁膜22は、50nm厚程度のSiO2などからなり、ゲート電極23は、250nm厚程度のMoなどの成膜後のパターニングなどによって形成されている。その上には300nm厚程度のSiO2膜と300nm厚程度のSiNx膜からなる層間絶縁膜24が形成され、ソース21s及びドレイン21dと接続するようにソース電極25及びドレイン電極26が形成されることによってTFT20を含む駆動回路が形成されている。なお、層間絶縁膜24が形成される前に、ソース21s及びドレイン21dの電極接続部には、ボロンがドーピングされてp+化され、アニールによって活性化されている。さらに具体的な構造に関しては、後述される製造方法の具体例で説明される。なお、図1に示される例では、ゲート電極23が半導体層21の基板10と反対側に形成されるトップゲートの構造であるが、基板10上にゲート電極23が形成されるボトムゲートの構造でも同様である。 The TFT 20 is formed of a semiconductor layer 21 having a source 21s, a channel 21c, and a drain 21d, a gate insulating film 22, a gate electrode 23, an interlayer insulating film 24, a source electrode 25, and a drain electrode 26. The gate insulating film 22 is made of SiO 2 or the like having a thickness of about 50 nm, and the gate electrode 23 is formed by patterning or the like after film formation of Mo or the like having a thickness of about 250 nm. An interlayer insulating film 24 composed of a SiO 2 film having a thickness of about 300 nm and a SiN x film having a thickness of about 300 nm is formed on the interlayer insulating film 24, and a source electrode 25 and a drain electrode 26 are formed so as to be connected to the source 21s and the drain 21d. As a result, a drive circuit including the TFT 20 is formed. Before the interlayer insulating film 24 is formed, the electrode connection portions of the source 21s and the drain 21d are doped with boron to be p + and activated by annealing. A more specific structure will be described in a specific example of the manufacturing method described later. In the example shown in FIG. 1, the gate electrode 23 has a top gate structure formed on the opposite side of the semiconductor layer 21 to the substrate 10, but the bottom gate structure has the gate electrode 23 formed on the substrate 10. But the same is true.

このTFT20を含む駆動回路の表面にバリア層としての200nm厚程度のSiNxなどからなる第1無機絶縁膜31と、例えばポリイミド又はアクリル樹脂からなる有機絶縁膜32を2μm程度成膜して表面がCMP研磨されることによって、表面粗さが算術平均粗さRaで50nm以下にされている。この有機絶縁膜は、光重合開始剤を混入した感光性の有機絶縁膜でもよい。感光性の有機絶縁膜であれば、第1無機絶縁膜31の形成後に有機絶縁膜32が形成され、フォトリソグラフィ工程による露光と現像でコンタクト孔30aが形成される。この場合、コンタクト孔30aが形成された後にCMP研磨がなされてもよい。有機絶縁膜32をCMP研磨する際に、コンタクト孔30a内にCMPの研磨剤入り込んでも、コンタクト孔の大きさは、研磨剤の粒径より遥かに大きい(例えば50倍程度)ので、洗浄で除去することができ、特に問題は生じない。有機絶縁膜32が非感光性の場合には、第1無機絶縁膜31と一括してコンタクト孔30aが形成される。この際、有機EL表示装置の陰極(第2電極)を陰極配線27と接続するための第2コンタクト45を形成するためのコンタクト孔30bも同時に平坦化膜30に形成されている。 A first inorganic insulating film 31 made of SiN x or the like having a thickness of about 200 nm as a barrier layer and an organic insulating film 32 made of, for example, polyimide or an acrylic resin are formed on the surface of the drive circuit including the TFT 20 by about 2 μm to form a surface. By CMP polishing, the surface roughness is reduced to 50 nm or less in arithmetic average roughness Ra. The organic insulating film may be a photosensitive organic insulating film mixed with a photopolymerization initiator. In the case of a photosensitive organic insulating film, the organic insulating film 32 is formed after the formation of the first inorganic insulating film 31, and the contact holes 30a are formed by exposure and development by a photolithography step. In this case, CMP polishing may be performed after the contact holes 30a are formed. When CMP polishing the organic insulating film 32, even if the CMP abrasive enters the contact hole 30a, the size of the contact hole is much larger than the particle size of the abrasive (for example, about 50 times), so it can be removed by cleaning. It can be done, and no particular problem occurs. When the organic insulating film 32 is non-photosensitive, the contact hole 30a is formed together with the first inorganic insulating film 31. At this time, a contact hole 30b for forming a second contact 45 for connecting the cathode (second electrode) of the organic EL display device to the cathode wiring 27 is also formed in the flattening film 30 at the same time.

図1に示される例では、この有機絶縁膜32の上に例えばSiNxなどからなる400nm厚程度の第2無機絶縁膜33が形成されている。この第2無機絶縁膜33が形成されることによって、コンタクト孔30aを形成するエッチングの際に、エッチャントによる有機絶縁膜の腐食を防止することができるので好ましい。また、無機絶縁膜は、その下地の平坦性をそのまま維持するので、研磨をする必要もない。この第2無機絶縁膜33の形成後に、3層を一括してエッチングすることによってコンタクト孔30aが形成されている。 In the example shown in FIG. 1, a second inorganic insulating film 33 having a thickness of about 400 nm, made of , for example, SiN x, is formed on the organic insulating film 32. The formation of the second inorganic insulating film 33 is preferable because it is possible to prevent corrosion of the organic insulating film by the etchant during etching for forming the contact hole 30a. Further, since the inorganic insulating film maintains the flatness of its base as it is, it does not need to be polished. After the formation of the second inorganic insulating film 33, the contact holes 30a are formed by etching the three layers at once.

そして、例えばITOとAg又はAPCなどの金属とITOがスパッタリングなどによって成膜されることによって、コンタクト孔30a内にAgなどの金属が埋め込まれると共に、有機絶縁膜32又は第2無機絶縁膜33(第2無機絶縁膜33が形成される場合)、すなわち平坦化膜30の表面に同じAg又はAPCなどの金属とITOの導電層が形成された後にパターニングによって、表面と最下層がITO膜で、その間にAg又はAPCがサンドイッチされたITO/Ag又はAPC/ITOの積層膜などにより第1電極(陽極)41が形成される。この第1電極41は、コンタクト孔30aの内部に埋め込まれた導体層と連続して形成されるが、コンタクト孔30aの上の凹みが生じやすい場所を避けて、表面が平坦にされた平坦化膜30の表面に位置するようにパターニングして形成されている。これによって第1電極41の表面も平坦化膜30の表面と同程度の平坦度にされ、その上の有機発光層43の表面も同程度の平坦になる。 Then, for example, when a metal such as ITO and Ag or APC and ITO are formed by sputtering or the like, a metal such as Ag is embedded in the contact hole 30a, and the organic insulating film 32 or the second inorganic insulating film 33 ( When the second inorganic insulating film 33 is formed), that is, after the same metal such as Ag or APC and the conductive layer of ITO are formed on the surface of the flattening film 30, patterning is performed so that the surface and the bottom layer are ITO films. In the meantime, the first electrode (anode) 41 is formed by an ITO / Ag or APC / ITO laminated film in which Ag or APC is sandwiched. The first electrode 41 is formed continuously with the conductor layer embedded inside the contact hole 30a, but the surface of the first electrode 41 is flattened so as to avoid a place where a dent is likely to occur on the contact hole 30a. It is formed by patterning so as to be located on the surface of the film 30. As a result, the surface of the first electrode 41 is made as flat as the surface of the flattening film 30, and the surface of the organic light emitting layer 43 on it is also made as flat as the surface of the flattening film 30.

第1電極(陽極)41は、有機発光層43との関係で、仕事関数が5eV程度のものが好ましく、トップエミッション型の場合、上記材料が用いられる。ITO膜は10nm程度の厚さに形成され、Ag又はAPCは100nm程度の厚さに形成される。ボトムエミッション型の場合には、ITO膜が300nm〜1μm程度の厚さに形成される。その第1電極41の周縁部に各画素を区画すると共に、陽極と陰極の絶縁を図るための絶縁材料からなる絶縁バンク42が形成されており、その絶縁バンク42によって囲まれる第1電極41の上に有機発光層43が積層されている。 The first electrode (anode) 41 preferably has a work function of about 5 eV in relation to the organic light emitting layer 43, and in the case of the top emission type, the above material is used. The ITO film is formed to a thickness of about 10 nm, and Ag or APC is formed to a thickness of about 100 nm. In the case of the bottom emission type, the ITO film is formed to a thickness of about 300 nm to 1 μm. Each pixel is partitioned on the peripheral edge of the first electrode 41, and an insulating bank 42 made of an insulating material for insulating the anode and the cathode is formed, and the first electrode 41 surrounded by the insulating bank 42 is formed. The organic light emitting layer 43 is laminated on the top.

有機発光層43は、絶縁バンク42に囲われて露出する第1電極41の上に積層される。この有機発光層43は、図1などでは一層で示されているが、種々の材料が積層されて複数層で形成される。また、この有機発光層43は水分に弱く全面に形成してからパターニングをすることができないため、蒸着マスクを用いて、蒸発又は昇華させた有機材料を選択的に必要な部分のみに蒸着することによって形成される。又は印刷によって有機発光層43が形成されてもよい。 The organic light emitting layer 43 is laminated on the exposed first electrode 41 surrounded by the insulating bank 42. Although the organic light emitting layer 43 is shown as a single layer in FIG. 1 and the like, various materials are laminated to form a plurality of layers. Further, since the organic light emitting layer 43 is vulnerable to moisture and cannot be patterned after being formed on the entire surface, the evaporated or sublimated organic material is selectively deposited only on a necessary portion by using a vapor deposition mask. Formed by. Alternatively, the organic light emitting layer 43 may be formed by printing.

具体的には、例えば第1電極(陽極電極)41に接する層として、正孔の注入性を向上させるイオン化エネルギーの整合性の良い材料からなる正孔注入層が設けられる場合がある。この正孔注入層上に、正孔の安定な輸送を向上させると共に、発光層への電子の閉じ込め(エネルギー障壁)が可能な正孔輸送層が、例えばアミン系材料により形成される。さらに、その上に発光波長に応じて選択される発光層が、例えば赤色、緑色に対してはAlq3に赤色又は緑色の有機物蛍光材料がドーピングされて形成される。また、青色系の材料としては、DSA系の有機材料が用いられる。一方、図示しないカラーフィルタで着色される場合には、発光層は全てドーピングすることなく同じ材料で形成され得る。発光層の上には、さらに電子の注入性を向上させると共に、電子を安定に輸送する電子輸送層が、Alq3などにより形成される。これらの各層がそれぞれ数十nm程度ずつ積層されることにより有機発光層43の積層膜が形成されている。なお、この有機発光層43と第2電極44との間にLiFやLiqなどの電子の注入性を向上させる電子注入層が設けられることもある。これは有機層ではないが、本明細書では、有機層によって発光させるものとして、有機発光層43内に含めている。 Specifically, for example, as a layer in contact with the first electrode (anode electrode) 41, a hole injection layer made of a material having good ionization energy consistency that improves hole injection may be provided. On the hole injection layer, for example, an amine-based material is formed to improve the stable transport of holes and to confine electrons (energy barrier) to the light emitting layer. Further, a light emitting layer selected according to the emission wavelength is formed on the light emitting layer, for example, by doping Alq 3 with a red or green organic fluorescent material for red and green. Further, as the blue-based material, a DSA-based organic material is used. On the other hand, when colored with a color filter (not shown), the light emitting layers can all be formed of the same material without doping. On the light emitting layer, an electron transporting layer that further improves the electron injectability and stably transports electrons is formed by Alq 3 or the like. A laminated film of the organic light emitting layer 43 is formed by laminating each of these layers by about several tens of nm. An electron injection layer for improving the injection property of electrons such as LiF and Liq may be provided between the organic light emitting layer 43 and the second electrode 44. Although this is not an organic layer, it is included in the organic light emitting layer 43 in the present specification as being emitted by the organic layer.

前述したように、有機発光層43の積層膜のうち、発光層は、R、G、Bの各色に応じた材料の有機材料が堆積されないで、カラーフィルタによってカラーの表示装置にされてもよい。すなわち、発光層が同じ有機材料で形成され、図示しないカラーフィルタにより発光色が特定されてもよい。また、正孔輸送層、電子輸送層などは、発光性能を重視すれば、発光層に適した材料で別々に堆積されることが好ましい。しかし、材料コストの面を勘案して、R、G、Bの2色又は3色に共通して同じ材料で積層される場合もある。 As described above, among the laminated films of the organic light emitting layer 43, the light emitting layer may be made into a color display device by a color filter without depositing organic materials of materials corresponding to each color of R, G, and B. .. That is, the light emitting layer may be formed of the same organic material, and the light emitting color may be specified by a color filter (not shown). Further, the hole transport layer, the electron transport layer, and the like are preferably deposited separately with a material suitable for the light emitting layer, if the light emitting performance is emphasized. However, in consideration of material cost, the same material may be laminated in common for two or three colors of R, G, and B.

LiF層などの電子注入層などを含む全ての有機発光層43の積層膜が形成された後に、その表面に第2電極44が形成されている。具体的には、第2電極(例えば陰極)44が有機発光層43の上に形成される。この第2電極(陰極)44は、全画素に亘って、共通で連続して形成されている。この陰極44は、平坦化膜30に形成された第2コンタクト45及びTFT20の絶縁膜22、24に形成された第1コンタクト28を介して、陰極配線27に接続されている。第2電極44は透光性の材料、例えば、薄膜のMg-Ag共晶膜により形成され、水分で腐食しやすいので、その表面に設けられる被覆層46によって被覆されている。陰極材料は仕事関数の小さい材料が好ましく、アルカリ金属又はアルカリ土類金属などが用いられ得る。Mgは仕事関数が3.6eVと小さいので好ましいが、活性で安定しないので、仕事関数が4.25eVのAgが10質量%程度の割合で共蒸着されている。Alも仕事関数は4.25eV程度と小さく、下地にLiFが用いられることによって陰極材料として十分に使用し得る。そのため、ボトムエミッション型では、この第2電極44にAlを厚く形成し得る。 After the laminated film of all the organic light emitting layers 43 including the electron injection layer such as the LiF layer is formed, the second electrode 44 is formed on the surface thereof. Specifically, a second electrode (for example, a cathode) 44 is formed on the organic light emitting layer 43. The second electrode (cathode) 44 is commonly and continuously formed over all pixels. The cathode 44 is connected to the cathode wiring 27 via a second contact 45 formed on the flattening film 30 and a first contact 28 formed on the insulating films 22 and 24 of the TFT 20. The second electrode 44 is formed of a translucent material, for example, a thin Mg-Ag eutectic film, and is easily corroded by moisture. Therefore, the second electrode 44 is covered with a coating layer 46 provided on the surface thereof. The cathode material is preferably a material having a small work function, and an alkali metal, an alkaline earth metal, or the like can be used. Mg is preferable because it has a small work function of 3.6 eV, but it is not stable due to its activity. Therefore, Ag having a work function of 4.25 eV is co-deposited at a ratio of about 10% by mass. Al also has a small work function of about 4.25 eV, and can be sufficiently used as a cathode material by using LiF as a base material. Therefore, in the bottom emission type, Al can be formed thickly on the second electrode 44.

被覆層(TFE:Thin Film Encapsulation)46は、例えばSiNx、SiO2などの無機絶縁膜からなり、一層、又は二層以上の積層膜によって形成され得る。例えば一層の厚さが0.1μmから0.5μm程度で、好ましくは二層程度の積層膜で形成される。この被覆層46は、異なる材料で多層に形成されるのが好ましい。被覆層46は、複数層で形成されることによって、ピンホールなどができても、複数層でピンホールが完全に一致することは殆ど無く、外気から完全に遮断する。前述のように、この被覆層46は、有機発光層43及び第2電極44を完全に被覆するように形成される。なお、二層の無機絶縁膜の間に有機絶縁材料を備えていてもよい。 The coating layer (TFE: Thin Film Encapsulation) 46 is made of an inorganic insulating film such as SiN x or SiO 2 , and can be formed by one layer or two or more laminated films. For example, the thickness of one layer is about 0.1 μm to 0.5 μm, and it is preferably formed by a laminated film of about two layers. The coating layer 46 is preferably formed in multiple layers with different materials. Since the coating layer 46 is formed of a plurality of layers, even if pinholes or the like are formed, the pinholes rarely completely coincide with each other in the plurality of layers, and the coating layer 46 is completely shielded from the outside air. As described above, the coating layer 46 is formed so as to completely cover the organic light emitting layer 43 and the second electrode 44. An organic insulating material may be provided between the two layers of the inorganic insulating film.

(有機EL表示装置の製造方法)
実施例1
次に、図1に示される有機EL表示装置の第2無機絶縁膜33のない有機EL表示装置の製造方法が、図2A〜2Bのフローチャート及び図3A〜3Gの製造工程の図を参照しながら説明される。
(Manufacturing method of organic EL display device)
Example 1
Next, the method for manufacturing the organic EL display device without the second inorganic insulating film 33 of the organic EL display device shown in FIG. 1 is described with reference to the flowcharts of FIGS. 2A to 2B and the manufacturing process of FIGS. 3A to 3G. Explained.

まず、図3Aに示されるように、基板10の上に、TFT20を含む駆動回路が形成される(図2AのS1)。具体的には、図2Bにフローチャートが示されるように、基板10の上にベースコート層11が形成される(S11)。ベースコート層11は、例えばプラズマCVD法によって、SiO2層を500nm程度の厚さに形成し、その上にSiNx層を50nm程度の厚さに形成することによって下層を積層し、さらにその上層としてSiO2層を250nm程度の厚さに積層することによって形成される。 First, as shown in FIG. 3A, a drive circuit including the TFT 20 is formed on the substrate 10 (S1 in FIG. 2A). Specifically, as shown in the flowchart in FIG. 2B, the base coat layer 11 is formed on the substrate 10 (S11). In the base coat layer 11, for example, a SiO 2 layer is formed to a thickness of about 500 nm by a plasma CVD method, and a SiN x layer is formed to a thickness of about 50 nm, thereby laminating a lower layer, and further as an upper layer thereof. It is formed by laminating two SiO layers to a thickness of about 250 nm.

その後、ベースコート層11の上に、例えば減圧プラズマCVD法によってアモルファスシリコン(a-Si)層からなる半導体層21が形成される(S12)。その後、例えば窒素雰囲気下、450℃程度で45分間程度のアニール処理行うことによって、ポリシリコン化(LTPS:Low Temperature Poly Silicon)が行われる(S13)。 After that, a semiconductor layer 21 made of an amorphous silicon (a-Si) layer is formed on the base coat layer 11 by, for example, a reduced pressure plasma CVD method (S12). Then, for example, under a nitrogen atmosphere, an annealing treatment is performed at about 450 ° C. for about 45 minutes to perform polysilicon (LTPS: Low Temperature Poly Silicon) (S13).

次に、フォトリソグラフィ工程によって、レジストマスクが形成され、ドライエッチングなどによって半導体層21がパターニングされ、TFT20となる部分の半導体層21と陰極配線27などの配線が形成される(S14)。その後にゲート絶縁膜22が成膜される(S15)。ゲート絶縁膜22は、プラズマCVD法によって、SiO2を50nm程度成膜することで形成される。 Next, the resist mask is formed by the photolithography step, the semiconductor layer 21 is patterned by dry etching or the like, and the semiconductor layer 21 of the portion to be the TFT 20 and the wiring such as the cathode wiring 27 are formed (S14). After that, the gate insulating film 22 is formed (S15). The gate insulating film 22 is formed by forming a film of SiO 2 at about 50 nm by a plasma CVD method.

その後、例えばスパッタ法によって、モリブデン(Mo)などの金属膜が250nm程度の厚さに成膜され、フォトリソグラフィ工程によって、レジストマスクの形成後にドライエッチングがなされることによって、パターニングされることでゲート電極23が形成される(S16)。 After that, for example, a metal film such as molybdenum (Mo) is formed to a thickness of about 250 nm by a sputtering method, and dry etching is performed after the resist mask is formed by a photolithography step to pattern the gate. The electrode 23 is formed (S16).

その後、半導体層21にソース21s、ドレイン21dが形成される。具体的には、例えばボロン(B+)をドーピングした後、400℃程度で1時間程度のアニール処理をすることによって活性化することで、ソース21s、ドレイン21dの低抵抗化が図られて形成される(S17)。ゲート電極23がマスクになるので、チャネル21cにはボロンイオンは打ち込まれず、ソース21s、ドレイン21dのみに打ち込まれて低抵抗化される。 After that, the source 21s and the drain 21d are formed on the semiconductor layer 21. Specifically, for example , after doping with boron (B + ), it is activated by annealing at about 400 ° C. for about 1 hour to reduce the resistance of the source 21s and the drain 21d. Is done (S17). Since the gate electrode 23 serves as a mask, boron ions are not driven into the channel 21c, but are driven only into the source 21s and the drain 21d to reduce the resistance.

その後、全面に層間絶縁膜24が形成され、ソース21s、ドレイン21dの一部を露出させるコンタクト孔24aが形成される(S18)。層間絶縁膜24は、例えば減圧プラズマCVD法によって、主にSiO2からなる300nm程度の厚さの下層と、主にSiNxからなる300nm程度の厚さの上層との積層膜によって形成される。コンタクト孔24aは、レジスト膜の形成とフォトリソグラフィ工程によってマスクを形成し、ウェットエッチングを行うことで形成される。 After that, the interlayer insulating film 24 is formed on the entire surface, and the contact holes 24a that expose a part of the source 21s and the drain 21d are formed (S18). The interlayer insulating film 24 is formed by, for example, a vacuum plasma CVD method, in which a lower layer mainly composed of SiO 2 and having a thickness of about 300 nm and an upper layer mainly composed of SiN x and a thickness of about 300 nm are laminated. The contact holes 24a are formed by forming a resist film, forming a mask by a photolithography step, and performing wet etching.

その後、金属を成膜することで、コンタクト孔24a内に金属が埋め込まれると共に、層間絶縁膜24の表面にソース電極25及びドレイン電極26の金属膜が形成される(S19)。ソース電極25及びドレイン電極26の形成は、例えばスパッタリングなどによって、Ti膜を300nm程度と、Al膜を300nm程度積層し、その上にTiを100nm程度積層することによって形成される。層間絶縁膜24の上に形成された金属膜を前述と同様のフォトリソグラフィ工程とウェットエッチングによってパターニングすることによって、半導体層21のソース21s、ドレイン21dにそれぞれ接続されたソース電極25及びドレイン電極26が形成される。なお、このソース電極25及びドレイン電極26の形成と同じ工程で全く同様の方法によって、陰極配線27に接続される第1コンタクト28が形成される。 After that, by forming a metal film, the metal is embedded in the contact hole 24a, and the metal films of the source electrode 25 and the drain electrode 26 are formed on the surface of the interlayer insulating film 24 (S19). The source electrode 25 and the drain electrode 26 are formed by laminating a Ti film of about 300 nm and an Al film of about 300 nm and Ti on the Ti film of about 100 nm, for example, by sputtering or the like. By patterning the metal film formed on the interlayer insulating film 24 by the same photolithography process and wet etching as described above, the source electrode 25 and the drain electrode 26 connected to the source 21s and the drain 21d of the semiconductor layer 21, respectively. Is formed. The first contact 28 connected to the cathode wiring 27 is formed by the same process as the formation of the source electrode 25 and the drain electrode 26 in exactly the same manner.

以上の工程によって、トップゲート型で、トップコンタクト型のLTPSを用いたTFT20を含む駆動回路、すなわちバックプレーンと呼ばれる部分が形成される。しかし、TFT20はこの構造に限定されず、トップゲートでボトムコンタクト構造、ボトムゲートでトップコンタクト構造、又はボトムゲートでボトムコンタクト構造などの他の構造でも用いられ得る。 Through the above steps, a drive circuit including a TFT 20 using a top-gate type LTPS, that is, a portion called a backplane is formed. However, the TFT 20 is not limited to this structure, and may be used in other structures such as a top gate having a bottom contact structure, a bottom gate having a top contact structure, or a bottom gate having a bottom contact structure.

その後、図3Bに示されるように、駆動回路の表面に第1無機絶縁膜31と有機絶縁膜32とが形成される(図2Aに戻りS2)。第1無機絶縁膜31は、例えばプラズマCVD法によって、SiNxを200nm程度の厚さに形成される。これは、有機絶縁膜32の成分がTFT20の方に侵入するのを防止するバリア層として機能する。また、有機絶縁膜32は、TFT20などの形成によって表面に凹凸のある部分に埋め込むもので、液状の樹脂を塗布することで有機絶縁膜32の表面が平坦化しやすい。塗布法としては、スリットコートやスピンコートなどの方法があるが、両方を合せたスリット・アンド・スピンコート法であってもよい。この有機絶縁膜32は2μm程度の厚さになるように形成され、例えばポリイミド樹脂又はや、アクリル樹脂が用いられ得る。これらの樹脂に光重合開始剤を混入させた感光性樹脂でもよい。しかし、光重合開始剤を含まない非感光性樹脂であれば、純度が高く、しかも表面平滑性が高いので好ましい。特に、アクリル樹脂が好ましい。 After that, as shown in FIG. 3B, the first inorganic insulating film 31 and the organic insulating film 32 are formed on the surface of the drive circuit (returning to FIG. 2A and S2). The first inorganic insulating film 31 is formed with SiN x having a thickness of about 200 nm by, for example, a plasma CVD method. This functions as a barrier layer that prevents the components of the organic insulating film 32 from invading the TFT 20. Further, the organic insulating film 32 is embedded in a portion having irregularities on the surface by forming a TFT 20 or the like, and the surface of the organic insulating film 32 is easily flattened by applying a liquid resin. As a coating method, there are methods such as slit coating and spin coating, but a slit and spin coating method in which both are combined may be used. The organic insulating film 32 is formed to have a thickness of about 2 μm, and for example, a polyimide resin or an acrylic resin can be used. A photosensitive resin in which a photopolymerization initiator is mixed with these resins may be used. However, a non-photosensitive resin containing no photopolymerization initiator is preferable because it has high purity and high surface smoothness. In particular, an acrylic resin is preferable.

次に、図3Cに示されるように、この有機絶縁膜32の表面がCMP研磨される(S3)。有機絶縁膜32は、液状の樹脂を塗布して乾燥させるため、表面が平坦になりやすく、前述したように、この表面は、算術平均の表面粗さRaで100〜300nm程度に形成されている。しかし、前述したように、この有機絶縁膜32の塗布だけの平坦度では、色ムラ及び/又は輝度ムラが現れ、発光特性を十分に満足し得ないことを本発明者は見出した。そのため、CMP研磨によって、その表面の平坦度を算術平均粗さRaで50nm以下になるように研磨している。この平坦度は小さいほど好ましいが、特許文献1に示されるような20nm以下という非常に平坦性を要求されるものではない。50nm程度以下であれば、色ムラ及び/又は輝度ムラが問題になるほどには現れなかった。このCMP研磨は、例えばセリア(CeO2)系のスラリー又はヒュームドシリカ系スラリーを水とアルコールと共に供給しながら、有機絶縁膜32の表面を研磨することによってなされる。 Next, as shown in FIG. 3C, the surface of the organic insulating film 32 is CMP polished (S3). Since the organic insulating film 32 is coated with a liquid resin and dried, the surface tends to be flat, and as described above, this surface is formed to have an arithmetic average surface roughness Ra of about 100 to 300 nm. .. However, as described above, the present inventor has found that the flatness of the organic insulating film 32 alone causes color unevenness and / or luminance unevenness, and the light emission characteristics cannot be sufficiently satisfied. Therefore, by CMP polishing, the flatness of the surface is polished so that the arithmetic average roughness Ra is 50 nm or less. The smaller the flatness is, the more preferable it is, but the very flatness of 20 nm or less as shown in Patent Document 1 is not required. If it was about 50 nm or less, color unevenness and / or luminance unevenness did not appear to the extent that it became a problem. This CMP polishing is performed by polishing the surface of the organic insulating film 32 while supplying, for example, a ceria (CeO 2 ) -based slurry or a fumed silica-based slurry together with water and alcohol.

その後、図3Dに示されるように、この平坦化膜30にTFT20に達するコンタクト孔30aが形成される(S4)。このコンタクト孔30aの形成は、前述したコンタクト孔24aなどと同様に、レジストマスクを形成して、ドライエッチングなどのエッチングによって行われる。なお、この平坦化膜30のように、無機絶縁膜と有機絶縁膜とが混在する層を纏めてエッチングをする場合には、両者のエッチングレートが異なるので、特にドライエッチングによってエッチングすることで、両者の界面に段差が生じ難いので好ましい。段差が生じると、コンタクト孔30a内に埋め込む金属が完全に埋め込まれず、ソース電極25などとの接触抵抗が増大するという問題を発生しやすい。 After that, as shown in FIG. 3D, a contact hole 30a reaching the TFT 20 is formed in the flattening film 30 (S4). The contact hole 30a is formed by forming a resist mask and etching such as dry etching in the same manner as the contact hole 24a described above. When etching layers in which an inorganic insulating film and an organic insulating film coexist, such as the flattening film 30, the etching rates of the two are different. It is preferable because a step is unlikely to occur at the interface between the two. When a step is generated, the metal to be embedded in the contact hole 30a is not completely embedded, and a problem that the contact resistance with the source electrode 25 or the like increases tends to occur.

その後、図3Eに示されるように、コンタクト孔30aの内部に金属が埋め込まれると共に、所定の領域に有機発光素子40用の第1電極41が形成される(S5)。具体的には、例えばスパッタリングなどによって、ITO膜を10nm程度とAg膜又はAPC膜を100nm程度積層した下層と、10nm厚程度のITO膜からなる上層が成膜される。その結果、コンタクト孔30aの内部にITOと金属が埋め込まれると共に、平坦化膜30の表面にITOと金属膜とITO膜の積層膜が形成される。その後、そのITOと金属の積層膜をパターニングすることによって、第1電極41が形成される。 After that, as shown in FIG. 3E, the metal is embedded in the contact hole 30a, and the first electrode 41 for the organic light emitting element 40 is formed in a predetermined region (S5). Specifically, for example, by sputtering or the like, a lower layer in which an ITO film is laminated with an ITO film of about 10 nm and an Ag film or an APC film of about 100 nm is formed, and an upper layer composed of an ITO film having a thickness of about 10 nm is formed. As a result, ITO and metal are embedded in the contact hole 30a, and a laminated film of ITO, a metal film, and an ITO film is formed on the surface of the flattening film 30. After that, the first electrode 41 is formed by patterning the laminated film of ITO and metal.

その後、図3Fに示されるように、第1電極41の上に有機発光層43が形成される(S6)。具体的には、第1電極41の周縁部に各画素を区画すると共に、陰極と陽極の接触を防止するための絶縁バンク42が形成される。絶縁バンク42は、SiO2などの無機絶縁膜でもよいし、ポリイミド又はアクリル樹脂などの有機絶縁膜でもよい。全面に成膜され、第1電極41の所定の場所が露出するように形成される。絶縁バンク42の高さは、1μm程度に形成される。前述したように、有機発光層43は、各種の有機材料が積層されるが、有機材料の積層は、例えば真空蒸着によって行われ、その場合には、蒸着マスクの開口を通してR、G、Bなどの所望のサブ画素を開口した蒸着マスクを介して形成される。有機発光層43の表面には、電子の注入性を向上させるLiFなどの層が形成され得る。なお、蒸着によらないで、インクジェット法などによる印刷によっても形成され得る。第1電極41にAg又はAPCを用いるのは、有機発光層43で発光した光を反射させてトップエミッション型として使用するためである。 After that, as shown in FIG. 3F, the organic light emitting layer 43 is formed on the first electrode 41 (S6). Specifically, each pixel is partitioned on the peripheral edge of the first electrode 41, and an insulating bank 42 for preventing contact between the cathode and the anode is formed. The insulating bank 42 may be an inorganic insulating film such as SiO 2 or an organic insulating film such as polyimide or acrylic resin. A film is formed on the entire surface so that a predetermined location of the first electrode 41 is exposed. The height of the insulation bank 42 is formed to be about 1 μm. As described above, various organic materials are laminated on the organic light emitting layer 43, and the organic materials are laminated by, for example, vacuum deposition. In that case, R, G, B, etc. are laminated through the opening of the vapor deposition mask. It is formed through a vapor deposition mask in which the desired sub-pixels of the above are opened. On the surface of the organic light emitting layer 43, a layer such as LiF that improves the injectability of electrons can be formed. It should be noted that it can be formed not by vapor deposition but also by printing by an inkjet method or the like. The reason why Ag or APC is used for the first electrode 41 is to reflect the light emitted by the organic light emitting layer 43 and use it as a top emission type.

その後、図3Gに示されるように、有機発光層43の上に、第2電極(陰極)44が形成される(S7)。第2電極44は、薄膜のMg-Ag共晶膜を蒸着などによって全面に形成して陰極とされる。なお、この第2電極44は、第2コンタクト45上にも形成されることで第2コンタクト45、第1コンタクト28を介して陰極配線27に接続されている。このMg-Ag共晶膜は、MgとAgの融点が異なるので、別々のるつぼから蒸発させて成膜時に共晶化する。Mgが90質量%程度でAgが10質量%程度の割合で、10〜20nm程度の厚さに形成される。 Then, as shown in FIG. 3G, a second electrode (cathode) 44 is formed on the organic light emitting layer 43 (S7). The second electrode 44 is used as a cathode by forming a thin Mg-Ag eutectic film on the entire surface by vapor deposition or the like. The second electrode 44 is also formed on the second contact 45 and is connected to the cathode wiring 27 via the second contact 45 and the first contact 28. Since this Mg-Ag eutectic film has different melting points of Mg and Ag, it is evaporated from different crucibles and eutecticized at the time of film formation. Mg is formed in a ratio of about 90% by mass and Ag in a ratio of about 10% by mass to a thickness of about 10 to 20 nm.

この第2電極44の上には、第2電極44及び有機発光層43を水分又は酸素などから護る被覆層46が形成される。この被覆層46は、水分又は酸素に弱い第2電極44及び有機発光層43を保護するため、水分などを吸収し難い、SiO2、SiNxなどの無機絶縁膜がCVD法などによって形成される。しかも、この被覆層46は、その端部が第2無機絶縁膜33などの無機膜と密着するように形成される。無機膜同士の接合であれば、密着性良く接合されるが、有機膜とでは、完全な密着性のよい接合を得にくいからである。従って、図1に示される第2無機絶縁膜33が無い場合には、有機絶縁膜32の一部を除去して、その下層の第1無機絶縁膜と接合させることが好ましい。そうすることによって、水分などの浸入を完全に防止し得る。 A coating layer 46 that protects the second electrode 44 and the organic light emitting layer 43 from moisture, oxygen, or the like is formed on the second electrode 44. Since the coating layer 46 protects the second electrode 44 and the organic light emitting layer 43, which are sensitive to moisture or oxygen, an inorganic insulating film such as SiO 2 or SiN x , which is difficult to absorb moisture or the like, is formed by a CVD method or the like. .. Moreover, the coating layer 46 is formed so that its end is in close contact with an inorganic film such as the second inorganic insulating film 33. This is because if the inorganic films are bonded to each other, they are bonded with good adhesion, but with an organic film, it is difficult to obtain a bond with perfect adhesion. Therefore, when the second inorganic insulating film 33 shown in FIG. 1 is absent, it is preferable to remove a part of the organic insulating film 32 and bond it with the first inorganic insulating film under the organic insulating film 32. By doing so, the ingress of moisture and the like can be completely prevented.

実施例2
図2A〜2B及び図3A〜3Gに示される実施例1の製造方法は、平坦化膜30が第1無機絶縁膜31と有機絶縁膜32によって形成されていた(図1の構造の第2無機絶縁膜33が無い構造)。このような構造でも、有機絶縁膜32の表面が研磨されており、その表面に第1電極41が形成されている。そのため、平坦化膜30の表面は平坦になっていて問題はない。しかし、コンタクト孔30aを形成する際に、ウェットエッチングなどを行うと水分などが有機絶縁膜32に浸入しやすく、ドライエッチングで行っても、エッチングガスなどが浸入しやすいという問題がある。水分などが浸入すると、発光素子が形成されて動作しているときに、浸み出してくると有機発光層43又は第2電極44の材料を劣化させる恐れがある。そのため、第2無機絶縁膜33が有機絶縁膜32の表面に形成されることが好ましく、図1にはその構造が示されている。その製造方法が図4A〜4Eを参照しながら説明される。
Example 2
In the production method of Example 1 shown in FIGS. 2A to 2B and 3A to 3G, the flattening film 30 was formed by the first inorganic insulating film 31 and the organic insulating film 32 (the second inorganic film having the structure of FIG. 1). Structure without insulating film 33). Even in such a structure, the surface of the organic insulating film 32 is polished, and the first electrode 41 is formed on the surface. Therefore, the surface of the flattening film 30 is flat and there is no problem. However, when the contact hole 30a is formed, if wet etching or the like is performed, moisture or the like easily penetrates into the organic insulating film 32, and even if dry etching is performed, there is a problem that etching gas or the like easily penetrates. If water or the like infiltrates, the material of the organic light emitting layer 43 or the second electrode 44 may be deteriorated if the light emitting element exudes while the light emitting element is formed and operates. Therefore, it is preferable that the second inorganic insulating film 33 is formed on the surface of the organic insulating film 32, and the structure thereof is shown in FIG. The manufacturing method will be described with reference to FIGS. 4A-4E.

前述の図3Cに示される工程までは、実施例1と同様に行われる。すなわち、有機絶縁膜32の表面がCMP研磨によって、平坦化されている。その後、図4Aに示されるように第2無機絶縁膜33が、第1無機絶縁膜31と同様に、SiNxをプラズマCVDなどによって、200nm程度の厚さで形成される。この第2無機絶縁膜33は、前述の通りプラズマCVDなどの方法で、無機材料の堆積によって形成され、しかも非常に薄いため、有機絶縁膜32の研磨された表面の平坦度をそのまま維持する。従って、この第2無機絶縁膜33の表面も算術平均粗さRaで50nm以下の平坦度が得られる。すなわち、この第2実施例では、平坦化膜30が第1無機絶縁膜31と有機絶縁膜32と第2無機絶縁膜33とで構成されているが、その平坦化膜30の表面は、算術平均粗さRaで50nm以下の平坦面に形成されている。 The steps up to the step shown in FIG. 3C described above are carried out in the same manner as in Example 1. That is, the surface of the organic insulating film 32 is flattened by CMP polishing. After that, as shown in FIG. 4A, the second inorganic insulating film 33 is formed with SiN x having a thickness of about 200 nm by plasma CVD or the like, similarly to the first inorganic insulating film 31. Since the second inorganic insulating film 33 is formed by depositing an inorganic material by a method such as plasma CVD as described above and is very thin, the flatness of the polished surface of the organic insulating film 32 is maintained as it is. Therefore, the surface of the second inorganic insulating film 33 also has a flatness of 50 nm or less in arithmetic average roughness Ra. That is, in this second embodiment, the flattening film 30 is composed of the first inorganic insulating film 31, the organic insulating film 32, and the second inorganic insulating film 33, but the surface of the flattening film 30 is arithmetically arranged. It is formed on a flat surface having an average roughness Ra of 50 nm or less.

以下の工程は、前述の実施例1と同様であるが、図4Bに示されるように、平坦化膜30にコンタクト孔30aが形成される。形成方法は、実施例1と同じであり、その説明は省略される。 The following steps are the same as in Example 1 described above, but as shown in FIG. 4B, the contact holes 30a are formed in the flattening film 30. The forming method is the same as that of the first embodiment, and the description thereof will be omitted.

その後、図4Cに示されるように、コンタクト孔30aの内部に金属を埋め込むと共に、平坦化膜30の表面に、有機発光素子40の第1電極41を形成する。この方法も前述した図3Eの工程と同じであり、その説明は省略される。 After that, as shown in FIG. 4C, a metal is embedded in the contact hole 30a, and the first electrode 41 of the organic light emitting element 40 is formed on the surface of the flattening film 30. This method is also the same as the step of FIG. 3E described above, and the description thereof will be omitted.

その後、図4Dに示されるように、絶縁バンク42が形成された後、有機発光層43が、例えば真空蒸着などの方法によって形成される。この方法も前述した実施例1の図3Fに示される工程と同じであり、その詳細な説明は省略される。 Then, as shown in FIG. 4D, after the insulating bank 42 is formed, the organic light emitting layer 43 is formed by a method such as vacuum deposition. This method is also the same as the step shown in FIG. 3F of the first embodiment described above, and detailed description thereof will be omitted.

その後、図4Eに示されるように、全面に第2電極44が形成される。この工程も前述した実施例1の図3Gに示される工程と同じであり、同様の方法で形成することができる。その後、この表面に被覆層46が形成されることによって、図1に示される有機EL表示装置が得られる。 After that, as shown in FIG. 4E, the second electrode 44 is formed on the entire surface. This step is also the same as the step shown in FIG. 3G of Example 1 described above, and can be formed by the same method. After that, by forming the coating layer 46 on this surface, the organic EL display device shown in FIG. 1 is obtained.

(まとめ)
(1)本発明の一実施形態に係る有機EL表示装置は、薄膜トランジスタを含む駆動回路が形成された表面を有する基板と、前記駆動回路を覆うことによって前記基板の前記表面を平坦化する平坦化膜と、前記平坦化膜の表面上に形成され、前記駆動回路と接続された第1電極、前記第1電極の上に形成された有機発光層、及び前記有機発光層の上に形成された第2電極を有する有機発光素子と、を備え、前記平坦化膜は、前記駆動回路の上に積層された第1無機絶縁膜及び有機絶縁膜を含んでおり、前記有機絶縁膜の表面が、算術平面粗さRaで50nm以下に形成されている。
(summary)
(1) The organic EL display device according to an embodiment of the present invention flattens a substrate having a surface on which a drive circuit including a thin film transistor is formed, and flattens the surface of the substrate by covering the drive circuit. A film, a first electrode formed on the surface of the flattening film and connected to the drive circuit, an organic light emitting layer formed on the first electrode, and an organic light emitting layer formed on the organic light emitting layer. The flattening film includes an organic light emitting element having a second electrode, and the first inorganic insulating film and the organic insulating film laminated on the drive circuit, and the surface of the organic insulating film is formed. It is formed to have an arithmetic plane roughness Ra of 50 nm or less.

本実施形態によれば、平坦化膜の表面を有機絶縁膜で形成された表面のまま、有機発光素子の第1電極を形成するのではなく、有機絶縁膜の表面がCMP研磨によって、表面が算術平面粗さRaで50nm以下に形成され、さらに、有機発光層がコンタクト孔の直上を避けて形成されている。その結果、微視的な平面状態でも、凹凸が無く、小さなサブ画素の有機発光層の表面の法線方向が表示面の法線方向と一致する。その結果、小さなサブ画素の一部の光が斜め方向に進むという問題は無くなり、輝度ムラ、色ムラなどの表示品位を低下させる要因が無くなる。その結果、非常に表示品位の優れた有機EL表示装置が得られる。 According to the present embodiment, the surface of the organic insulating film is polished by CMP polishing instead of forming the first electrode of the organic light emitting element while the surface of the flattening film is the surface formed of the organic insulating film. The arithmetic plane roughness Ra is formed to be 50 nm or less, and the organic light emitting layer is formed so as to avoid directly above the contact hole. As a result, even in the microscopic flat state, there is no unevenness, and the normal direction of the surface of the organic light emitting layer of the small sub-pixels coincides with the normal direction of the display surface. As a result, the problem that a part of the light of the small sub-pixels travels in the oblique direction is eliminated, and the factors such as luminance unevenness and color unevenness that deteriorate the display quality are eliminated. As a result, an organic EL display device having very excellent display quality can be obtained.

(2)前記有機絶縁膜が、アクリル樹脂、又はポリイミド樹脂であることが、耐熱性もあり、安定した絶縁膜になるので好ましい。 (2) It is preferable that the organic insulating film is an acrylic resin or a polyimide resin because it has heat resistance and provides a stable insulating film.

(3)前記有機絶縁膜が非感光性樹脂であることが、表面を凸凹にしやすい光重合開始剤を含まないので、表面の平坦性が十分に得られやすく好ましい。 (3) It is preferable that the organic insulating film is a non-photosensitive resin because it does not contain a photopolymerization initiator that tends to make the surface uneven, so that sufficient surface flatness can be easily obtained.

(4)前記平坦化膜が、前記有機絶縁膜の上に第2無機絶縁膜が形成されることによって3層構造であることが、コンタクト孔の形成の際などにも、水分などが有機絶縁膜に侵入することを阻止しやすいので好ましい。 (4) The flattening film has a three-layer structure by forming a second inorganic insulating film on the organic insulating film, so that moisture and the like are organically insulated even when forming contact holes. It is preferable because it easily prevents the invasion of the membrane.

(5)前記コンタクト孔が、前記3層構造に一括して形成されていることによって、有機絶縁膜がエッチング雰囲気に晒されることが無く、有機絶縁膜への水分などの侵入を抑制し得る点で好ましい。 (5) Since the contact holes are collectively formed in the three-layer structure, the organic insulating film is not exposed to the etching atmosphere, and the invasion of moisture or the like into the organic insulating film can be suppressed. Is preferable.

(6)前記有機発光素子は、前記薄膜トランジスタが前記有機発光層の投影領域には形成されないで、前記基板側から光を取り出すボトムエミッション型の発光素子、又は前記薄膜トランジスタが前記有機発光層の投影領域にも形成され、前記第2電極から光を取り出すトップエミッション型の発光素子でのいずれの構造にもすることができる。すなわち、いずれの構造にしても、平坦化膜の平坦性によって、輝度ムラ、色ムラなどの表示品位を低下させる要因が無くなり、非常に表示品位の優れた有機EL表示装置が得られる。 (6) The organic light emitting device is a bottom emission type light emitting device in which the thin film transistor is not formed in the projection region of the organic light emitting layer and extracts light from the substrate side, or the thin film transistor is a projection region of the organic light emitting layer. It can be any structure of a top emission type light emitting element that extracts light from the second electrode. That is, in any structure, the flatness of the flattening film eliminates factors that deteriorate the display quality such as luminance unevenness and color unevenness, and an organic EL display device having extremely excellent display quality can be obtained.

(7)本発明の他の実施形態の有機EL表示装置の製造方法は、基板の上に、薄膜トランジスタを含む駆動回路を形成する工程と、前記駆動回路の表面に第1無機絶縁膜及び有機絶縁膜を形成する工程と、前記有機絶縁膜の表面をCMP研磨する工程と、前記有機絶縁膜及び前記第1無機絶縁膜に、前記TFTに達するコンタクト孔を形成する工程と、前記コンタクト孔の内部に金属を埋め込むと共に、所定の領域に第1電極を形成する工程と、前記第1電極の上に有機発光層を形成する工程と、前記有機発光層の上に第2電極を形成する工程と、含んでいる。 (7) The method for manufacturing an organic EL display device according to another embodiment of the present invention includes a step of forming a drive circuit including a thin film transistor on a substrate, and a first inorganic insulating film and organic insulation on the surface of the drive circuit. A step of forming a film, a step of CMP polishing the surface of the organic insulating film, a step of forming a contact hole reaching the TFT in the organic insulating film and the first inorganic insulating film, and a step of forming a contact hole reaching the TFT, and an inside of the contact hole. A step of embedding a metal in a predetermined region and forming a first electrode in a predetermined region, a step of forming an organic light emitting layer on the first electrode, and a step of forming a second electrode on the organic light emitting layer. , Including.

本実施形態によれば、有機絶縁膜の表面をCMP研磨しているので、平坦化膜の表面が微視的に見ても平坦になっている。そのため、有機発光層の表面の法線方向が表示面の法線方向と異なり、色ムラ、輝度ムラの原因となることが抑制される。 According to the present embodiment, since the surface of the organic insulating film is CMP-polished, the surface of the flattening film is flat even when viewed microscopically. Therefore, the normal direction of the surface of the organic light emitting layer is different from the normal direction of the display surface, and it is possible to suppress the cause of color unevenness and brightness unevenness.

(8)前記有機絶縁膜の上に第2無機絶縁膜を形成し、前記第2無機絶縁膜、前記有機絶縁膜及び前記第1絶縁膜の3層を一括して前記コンタクト孔を形成することが、コンタクト孔の形成工程が簡単であるのみならず、有機絶縁膜が無機絶縁膜で保護されているので、水分などの侵入を抑制し得る点で好ましい。 (8) A second inorganic insulating film is formed on the organic insulating film, and the contact holes are formed by collectively forming the three layers of the second inorganic insulating film, the organic insulating film and the first insulating film. However, not only the step of forming the contact hole is simple, but also the organic insulating film is protected by the inorganic insulating film, which is preferable in that the invasion of moisture and the like can be suppressed.

(9)前記平坦化の工程を、中性のセリア系研磨材、又はヒュームドシリカ系スラリーを水とアルコールと共に供給しながら研磨することによって、表面平坦度を算術平均粗さRaで20nm以上、50nm以下に研磨することが、有機絶縁膜を平坦に研磨することができるので好ましい。 (9) By polishing the flattening step while supplying a neutral ceria-based abrasive or a fumed silica-based slurry together with water and alcohol, the surface flatness is set to 20 nm or more in arithmetic average roughness Ra. Polishing to 50 nm or less is preferable because the organic insulating film can be polished flat.

(10)前記コンタクト孔の形成を、ドライエッチングによって行うことが、エッチングレートの異なる無機絶縁膜と有機絶縁膜との界面にも段差が生じることなくエッチングできるので好ましい。無機絶縁膜と有機絶縁膜の境界面に段差ができると、コンタクト孔内にきれいに金属が埋め込まれず、接触抵抗の増大などを招きやすい。 (10) It is preferable that the contact holes are formed by dry etching because etching can be performed without forming a step at the interface between the inorganic insulating film and the organic insulating film having different etching rates. If a step is formed on the interface between the inorganic insulating film and the organic insulating film, the metal is not neatly embedded in the contact hole, which tends to increase the contact resistance.

10 基板
20 TFT
21 半導体層
30 平坦化膜
31 第1無機絶縁膜
32 有機絶縁膜
33 第2無機絶縁膜
40 有機発光素子
41 第1電極(陽極)
43 有機発光層
44 第2電極(陰極)
10 substrate 20 TFT
21 Semiconductor layer 30 Flattening film 31 First inorganic insulating film 32 Organic insulating film 33 Second inorganic insulating film 40 Organic light emitting element 41 First electrode (anode)
43 Organic light emitting layer 44 Second electrode (cathode)

Claims (8)

アモルファスシリコン層を有する薄膜トランジスタを含む駆動回路が形成された表面を有する基板と、
前記駆動回路を覆うことによって前記基板の前記表面を平坦化する平坦化膜と、
前記平坦化膜に形成され、前記薄膜トランジスタに達するコンタクト孔内に埋め込まれた導体層と、
前記平坦化膜の表面上に形成され、前記導体層と接続する第1電極、前記第1電極の上に形成された有機発光層、及び前記有機発光層の上に形成された第2電極を有する有機発光素子と、
を備え、
前記平坦化膜は、第1無機絶縁膜、及び、前記第1無機絶縁膜の上に形成された有機絶縁膜を含み、
前記有機絶縁膜における前記第1無機絶縁膜と反対の表面は、算術平均粗さRaで20nm以上、50nm以下の表面粗さを有しており、
前記有機発光素子の前記第1電極及び前記有機発光層の表面が前記平坦化膜の表面形状及び表面粗さとほぼ同じ表面形状及び表面粗さになるように前記第1電極及び前記有機発光層が形成されることによって、前記有機発光層の厚さが各画素内においてほぼ均一になっており、
前記薄膜トランジスタを含む駆動回路が前記有機発光層の発光領域の下方の投影領域の全面に亘って形成され、前記有機発光素子が前記第2電極側から光を取り出すトップエミッション型の発光素子である、有機EL表示装置。
A substrate having a surface on which a drive circuit including a thin film transistor having an amorphous silicon layer is formed,
A flattening film that flattens the surface of the substrate by covering the drive circuit,
A conductor layer formed in the flattening film and embedded in a contact hole reaching the thin film transistor,
A first electrode formed on the surface of the flattening film and connected to the conductor layer, an organic light emitting layer formed on the first electrode, and a second electrode formed on the organic light emitting layer. With the organic light emitting element
With
The flattening film includes a first inorganic insulating film and an organic insulating film formed on the first inorganic insulating film.
The surface of the organic insulating film opposite to the first inorganic insulating film has a surface roughness of 20 nm or more and 50 nm or less in arithmetic average roughness Ra.
The first electrode and the organic light emitting layer are arranged so that the surfaces of the first electrode and the organic light emitting layer of the organic light emitting element have a surface shape and surface roughness substantially the same as the surface shape and surface roughness of the flattening film. By being formed, the thickness of the organic light emitting layer becomes substantially uniform in each pixel.
Driving circuit including the thin film transistor is formed over the entire surface of the projection area below the light emitting region of the organic light emitting layer, is a top emission type light emitting device wherein the organic light emitting device extracting light from the second electrode side , Organic EL display device.
前記有機絶縁膜の表面が研磨面である、請求項1に記載の有機EL表示装置。 The organic EL display device according to claim 1, wherein the surface of the organic insulating film is a polished surface. 前記有機絶縁膜が、アクリル樹脂、又はポリイミド樹脂である、請求項1又は2に記載の有機EL表示装置。 The organic EL display device according to claim 1 or 2, wherein the organic insulating film is an acrylic resin or a polyimide resin. 前記有機絶縁膜が非感光性樹脂である、請求項1〜3のいずれか1項に記載の有機EL表示装置。 The organic EL display device according to any one of claims 1 to 3, wherein the organic insulating film is a non-photosensitive resin. 前記平坦化膜が、前記有機絶縁膜の上に形成されていて前記有機絶縁膜の表面粗さとほぼ同じ表面粗さを有する第2無機絶縁膜をさらに含むことによって3層構造を有する、請求項1〜4のいずれか1項に記載の有機EL表示装置。 A claim that the flattening film has a three-layer structure by further including a second inorganic insulating film formed on the organic insulating film and having a surface roughness substantially the same as the surface roughness of the organic insulating film. The organic EL display device according to any one of 1 to 4. 基板の上に、アモルファスシリコン層を有する薄膜トランジスタを含む駆動回路を形成する工程と、
前記駆動回路の表面に第1無機絶縁膜及び有機絶縁膜を形成する工程と、
前記有機絶縁膜の表面を算術平均粗さRaで20nm以上、50nm以下になるように研磨する工程と、
前記有機絶縁膜及び前記第1無機絶縁膜に、前記薄膜トランジスタに達するコンタクト孔を形成する工程と、
前記コンタクト孔の内部に金属を埋め込むと共に、前記有機絶縁膜の表面で、かつ、前記コンタクト孔の形成されていない所定の領域に、前記コンタクト孔の内部に埋め込まれた前記金属と連続して物理的蒸着によって前記有機絶縁膜の表面形状及び表面粗さとほぼ同じ表面形状及び表面粗さを有し、各画素における厚さがほぼ均一の第1電極を形成する工程と、
前記第1電極の上に前記第1電極の表面形状及び表面粗さとほぼ同じ表面形状及び表面粗さを有する有機発光層を真空蒸着法で形成することによって、前記有機発光層の厚さを各画素においてほぼ均一にする工程と、
前記有機発光層の上に第2電極を形成することによって、前記第1電極及び前記有機発光層と共に有機発光素子を形成する工程と、を含み、
前記薄膜トランジスタを含む駆動回路が前記有機発光層の発光領域の下方の投影領域の全面に亘って形成され、前記有機発光素子が前記第2電極側から光を取り出すトップエミッション型の発光素子に形成される、有機EL表示装置の製造方法。
A process of forming a drive circuit including a thin film transistor having an amorphous silicon layer on a substrate, and
The step of forming the first inorganic insulating film and the organic insulating film on the surface of the drive circuit, and
A step of polishing the surface of the organic insulating film so that the arithmetic average roughness Ra is 20 nm or more and 50 nm or less.
A step of forming contact holes reaching the thin film transistor in the organic insulating film and the first inorganic insulating film, and
A metal is embedded in the contact hole, and the metal is continuously physically embedded in the contact hole in a predetermined region on the surface of the organic insulating film and in which the contact hole is not formed. A step of forming a first electrode having a surface shape and surface roughness substantially the same as the surface shape and surface roughness of the organic insulating film and having a substantially uniform thickness in each pixel by physical vapor deposition.
By forming an organic light emitting layer having a surface shape and surface roughness substantially the same as the surface shape and surface roughness of the first electrode on the first electrode by a vacuum deposition method, the thickness of the organic light emitting layer can be adjusted. The process of making the pixels almost uniform and
A step of forming an organic light emitting element together with the first electrode and the organic light emitting layer by forming a second electrode on the organic light emitting layer is included.
Driving circuit including the thin film transistor is formed over the entire surface of the projection area below the light emitting region of the organic light-emitting layer, formed in the top emission type light emitting device wherein the organic light emitting device extracting light from the second electrode side A method of manufacturing an organic EL display device.
前記研磨する工程において、中性のセリア系研磨材、又はヒュームドシリカ系スラリーを水とアルコールと共に供給しながらCMP研磨を行うことによって、前記有機絶縁膜の表面を算術平均粗さRaで20nm以上、50nm以下に研磨する、請求項6に記載の製造方法。 In the polishing step, CMP polishing is performed while supplying a neutral ceria-based abrasive or a fumed silica-based slurry together with water and alcohol to surface the surface of the organic insulating film with an arithmetic average roughness Ra of 20 nm or more. The production method according to claim 6, wherein the material is polished to 50 nm or less. 前記研磨する工程において、中性のセリア系研磨材を水とアルコールと共に供給しながらCMP研磨を行うことによって、前記有機絶縁膜の表面を算術平均粗さRaで20nm以上、50nm以下に研磨する、請求項6に記載の製造方法。 In the polishing step, the surface of the organic insulating film is polished to 20 nm or more and 50 nm or less with an arithmetic mean roughness Ra by performing CMP polishing while supplying a neutral ceria-based abrasive together with water and alcohol. The manufacturing method according to claim 6.
JP2019188070A 2018-03-28 2019-10-11 Organic EL display device and its manufacturing method Active JP6926169B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019188070A JP6926169B2 (en) 2018-03-28 2019-10-11 Organic EL display device and its manufacturing method
JP2021128133A JP7139504B2 (en) 2019-10-11 2021-08-04 Organic EL display device and manufacturing method thereof
JP2022142515A JP7410242B2 (en) 2019-10-11 2022-09-07 Organic EL display device and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019516721A JP6603826B1 (en) 2018-03-28 2018-03-28 Organic EL display device and manufacturing method thereof
JP2019188070A JP6926169B2 (en) 2018-03-28 2019-10-11 Organic EL display device and its manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019516721A Division JP6603826B1 (en) 2018-03-28 2018-03-28 Organic EL display device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021128133A Division JP7139504B2 (en) 2019-10-11 2021-08-04 Organic EL display device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2020024930A JP2020024930A (en) 2020-02-13
JP6926169B2 true JP6926169B2 (en) 2021-08-25

Family

ID=69619499

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019188070A Active JP6926169B2 (en) 2018-03-28 2019-10-11 Organic EL display device and its manufacturing method
JP2021128133A Active JP7139504B2 (en) 2019-10-11 2021-08-04 Organic EL display device and manufacturing method thereof
JP2022142515A Active JP7410242B2 (en) 2019-10-11 2022-09-07 Organic EL display device and its manufacturing method

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021128133A Active JP7139504B2 (en) 2019-10-11 2021-08-04 Organic EL display device and manufacturing method thereof
JP2022142515A Active JP7410242B2 (en) 2019-10-11 2022-09-07 Organic EL display device and its manufacturing method

Country Status (1)

Country Link
JP (3) JP6926169B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111769137B (en) * 2020-06-17 2024-06-14 武汉华星光电半导体显示技术有限公司 Display device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581187B2 (en) * 2000-06-13 2010-11-17 ソニー株式会社 Manufacturing method of display device
JP2003114626A (en) * 2001-06-18 2003-04-18 Semiconductor Energy Lab Co Ltd Light emitting device and method for manufacturing the same
CA2419704A1 (en) * 2003-02-24 2004-08-24 Ignis Innovation Inc. Method of manufacturing a pixel with organic light-emitting diode
JP2004303644A (en) * 2003-03-31 2004-10-28 Seiko Epson Corp Manufacturing method for electrooptical device, and electrooptical device, as well as electronic apparatus
JP4420391B2 (en) * 2004-05-28 2010-02-24 三井金属鉱業株式会社 Cerium-based abrasive
JP2006331694A (en) * 2005-05-23 2006-12-07 Matsushita Electric Works Ltd Organic light emitting element and substrate for the same
JP5090658B2 (en) * 2006-04-06 2012-12-05 三菱電機株式会社 THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND ACTIVE MATRIX DISPLAY DEVICE
WO2008035556A1 (en) * 2006-09-19 2008-03-27 Sharp Kabushiki Kaisha Organic electroluminescent display and method for manufacturing the same
KR100899426B1 (en) * 2007-09-14 2009-05-27 삼성모바일디스플레이주식회사 Fabrication method of Organic light emitting diode display
JP5007246B2 (en) * 2008-01-31 2012-08-22 三菱電機株式会社 Organic electroluminescent display device and manufacturing method thereof
JP2009238725A (en) * 2008-03-03 2009-10-15 Sony Corp Method for manufacturing display element
JP5819036B2 (en) * 2008-03-25 2015-11-18 三井金属鉱業株式会社 Cerium-based abrasive slurry
JP5854746B2 (en) * 2010-10-15 2016-02-09 日東電工株式会社 Top emission type organic electroluminescence light emitting device and manufacturing method thereof
JP2012178268A (en) * 2011-02-25 2012-09-13 Mitsubishi Chemicals Corp Organic electroluminescent element, organic electroluminescent module, organic electroluminescent display device, and organic electroluminescent illumination device
CN104982091B (en) * 2013-02-12 2018-03-13 柯尼卡美能达株式会社 Organic electroluminescent device and lighting device
KR102090710B1 (en) * 2013-06-26 2020-03-19 삼성디스플레이 주식회사 Thin film transistor substrate, organic light emitting apparatus comprising the same, method for manufacturing thin film transistor substrate, and method for manufacturing organic light emitting apparatus
JP2015230404A (en) * 2014-06-05 2015-12-21 株式会社Joled Method for manufacturing display panel

Also Published As

Publication number Publication date
JP7410242B2 (en) 2024-01-09
JP2022177093A (en) 2022-11-30
JP2020024930A (en) 2020-02-13
JP7139504B2 (en) 2022-09-20
JP2021182555A (en) 2021-11-25

Similar Documents

Publication Publication Date Title
JP6585322B1 (en) Organic EL display device and manufacturing method thereof
US11849599B2 (en) Display device having a sealing film including multiple layers
JP6603826B1 (en) Organic EL display device and manufacturing method thereof
JP6606309B1 (en) Organic EL display device and manufacturing method thereof
WO2019186806A1 (en) Organic el display device and manufacturing method for organic el display device
JP6837410B2 (en) Display device including light emitting area
JP7410242B2 (en) Organic EL display device and its manufacturing method
JP6694988B2 (en) Organic EL display device and method for manufacturing organic EL display device
KR102361967B1 (en) Organic light emitting diode display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210804

R150 Certificate of patent or registration of utility model

Ref document number: 6926169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250