JP5235293B2 - Process gas supply mechanism, process gas supply method, and gas processing apparatus - Google Patents

Process gas supply mechanism, process gas supply method, and gas processing apparatus Download PDF

Info

Publication number
JP5235293B2
JP5235293B2 JP2006270823A JP2006270823A JP5235293B2 JP 5235293 B2 JP5235293 B2 JP 5235293B2 JP 2006270823 A JP2006270823 A JP 2006270823A JP 2006270823 A JP2006270823 A JP 2006270823A JP 5235293 B2 JP5235293 B2 JP 5235293B2
Authority
JP
Japan
Prior art keywords
processing gas
processing
gas
supply source
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006270823A
Other languages
Japanese (ja)
Other versions
JP2008091625A (en
Inventor
亮 佐藤
均 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2006270823A priority Critical patent/JP5235293B2/en
Priority to CN200710154446XA priority patent/CN101159228B/en
Priority to KR1020070098625A priority patent/KR100915740B1/en
Priority to TW096136749A priority patent/TWI416618B/en
Publication of JP2008091625A publication Critical patent/JP2008091625A/en
Application granted granted Critical
Publication of JP5235293B2 publication Critical patent/JP5235293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/38Exhausting, degassing, filling, or cleaning vessels
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/50Filling, e.g. selection of gas mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/54Means for exhausting the gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、処理容器内に収容されたフラットパネルディスプレイ(FPD)用のガラス基板等の被処理体に所定の処理が施されるように処理容器内に処理ガスを供給する処理ガス供給機構および処理ガス供給方法、ならびにこのような処理ガス供給機構を備えたガス処理装置に関する。   The present invention relates to a processing gas supply mechanism for supplying a processing gas into a processing container so that a predetermined processing is performed on an object to be processed such as a glass substrate for a flat panel display (FPD) accommodated in the processing container; The present invention relates to a processing gas supply method and a gas processing apparatus including such a processing gas supply mechanism.

FPDの製造プロセスにおいては、被処理体であるFPD用のガラス基板に対してエッチングや成膜等の所定の処理を施すために、プラズマエッチング装置やプラズマCVD成膜装置等のプラズマ処理装置が用いられている。プラズマ処理装置では一般的に、ガラス基板が、処理容器内の載置台上に載置された状態で、処理容器内に処理ガスを供給しつつ高周波電界を発生させることにより生成された処理ガスのプラズマによって処理される。   In an FPD manufacturing process, a plasma processing apparatus such as a plasma etching apparatus or a plasma CVD film forming apparatus is used to perform a predetermined process such as etching or film formation on an FPD glass substrate that is an object to be processed. It has been. Generally in a plasma processing apparatus, a glass substrate is placed on a mounting table in a processing container, and a processing gas generated by generating a high-frequency electric field while supplying the processing gas into the processing container. Processed by plasma.

処理容器内への処理ガスの供給は通常、一端を処理ガス供給源に、他端を処理容器に接続した配管等の流路を介し、マスフローコントローラ等の流量調整機構によって流量調整しながら行っている(例えば特許文献1参照)。   Supply of the processing gas into the processing container is usually performed while adjusting the flow rate by a flow rate adjusting mechanism such as a mass flow controller through a flow path such as a pipe having one end connected to the processing gas supply source and the other end connected to the processing container. (For example, refer to Patent Document 1).

しかしながら、近時、FPDの大型化が指向され、一辺が2mを超えるような巨大なガラス基板も出現するに至っており、これに伴って処理容器が大きくなってきているため、前述した従来の処理ガスの供給態様では、処理ガスの供給を開始してから処理容器内の圧力が設定圧力に達するまでに長い時間を要し、スループットが低下してしまうという問題を有している。
特開2002−313898号公報
However, recently, an increase in the size of the FPD has been aimed at, and a huge glass substrate having a side exceeding 2 m has also appeared, and accordingly, the processing container has become larger. In the gas supply mode, there is a problem that it takes a long time until the pressure in the processing container reaches the set pressure after the supply of the processing gas is started, and the throughput is lowered.
JP 2002-313898 A

本発明は、このような事情に鑑みてなされたものであって、処理容器内が設定圧力となるような処理ガスを短時間で供給することができる処理ガス供給機構および処理ガス供給方法、このような処理ガス供給機構を備えたガス処理装置、ならびにこのような処理ガス供給方法を実行させるための制御プログラムを記憶したコンピュータ読取可能な記憶媒体を提供することを目的とする。   The present invention has been made in view of such circumstances, and a processing gas supply mechanism and a processing gas supply method capable of supplying a processing gas at a set pressure in a processing container in a short time. It is an object of the present invention to provide a gas processing apparatus having such a processing gas supply mechanism and a computer-readable storage medium storing a control program for executing such a processing gas supply method.

上記課題を解決するために、本発明の第の観点では、被処理体を収容する処理容器と、前記処理容器内に処理ガスを供給する処理ガス供給機構と、前記処理容器内を排気する排気手段と、前記処理ガス供給機構を制御する制御部とを具備し、前記処理容器内に被処理体を収容した状態で、前記排気手段によって排気しつつ前記処理ガス供給機構によって処理ガスを供給して被処理体に対して所定の処理を施すガス処理装置であって、前記処理ガス供給機構は、前記処理容器内に処理ガスを供給するための処理ガス供給源と、前記処理ガス供給源からの処理ガスを一時的に貯留するための処理ガスタンクと、前記処理ガス供給源からの処理ガスを前記処理ガスタンクに送給し、前記処理ガスタンク内の処理ガスを前記処理容器内に送給する処理ガス通流部材とを備え、処理ガスが、前記処理ガス供給源から前記処理ガスタンクに一旦貯留され、前記処理ガスタンクから前記処理容器内に供給されるとともに、前記処理ガス供給源からも前記処理容器内に供給され、前記処理ガス通流部材は、前記処理ガス供給源および前記処理容器に接続された第1の処理ガス流路と、前記第1の処理ガス流路から分岐して前記処理ガスタンクに接続された第2の処理ガス流路とを有し、前記処理ガスタンクは複数設けられているとともに、前記第2の処理ガス流路は、前記処理ガスタンクの数に対応して複数設けられ、前記各第2の処理ガス流路は、処理ガスを前記処理ガスタンクに送り入れるための送入流路と、処理ガスを前記処理ガスタンクから送り出すための送出流路とを別個に有し、前記制御部は、前記複数の処理ガスタンクの一部から前記送出流路を介して前記処理容器内に処理ガスを供給させるのと並行して、前記処理ガス供給源から前記送入流路を介して前記複数の処理ガスタンクの残りの一部または全部に処理ガスを貯留させることを特徴とするガス処理装置を提供する。 In order to solve the above problems, according to a first aspect of the present invention, a processing container that accommodates an object to be processed, a processing gas supply mechanism that supplies a processing gas into the processing container, and an exhaust of the processing container. An exhaust means and a control unit for controlling the processing gas supply mechanism are provided, and the processing gas is supplied by the processing gas supply mechanism while being exhausted by the exhaust means in a state where the object to be processed is accommodated in the processing container. A gas processing apparatus for performing a predetermined process on the object to be processed, wherein the processing gas supply mechanism includes a processing gas supply source for supplying a processing gas into the processing container, and the processing gas supply source. A processing gas tank for temporarily storing the processing gas from the processing gas, a processing gas from the processing gas supply source is supplied to the processing gas tank, and a processing gas in the processing gas tank is supplied to the processing container place A gas flow member, and the processing gas is temporarily stored in the processing gas tank from the processing gas supply source and is supplied from the processing gas tank into the processing container, and also from the processing gas supply source. The process gas flow member is supplied to the process gas supply source and the process container, and the process gas tank is branched from the first process gas path. And a plurality of the processing gas tanks are provided, and a plurality of the second processing gas channels are provided corresponding to the number of the processing gas tanks, Each of the second processing gas flow paths separately has an inflow path for sending processing gas into the processing gas tank and an outflow path for sending out processing gas from the processing gas tank, The control unit is configured to supply a processing gas from a part of the plurality of processing gas tanks to the processing container through the delivery channel, and from the processing gas supply source through the delivery channel. A gas processing apparatus is provided in which a processing gas is stored in the remaining part or all of the plurality of processing gas tanks.

第1の観点において、前記第1の処理ガス流路は、前記処理ガス供給源からの処理ガスを前記処理ガスタンクに貯留させる際に通流させる貯留用流路と、前記処理ガス供給源からの処理ガスを前記処理容器内に供給する際に通流させる供給用流路とを別個に有していてもよい。 In the first aspect , the first processing gas channel includes a storage channel through which processing gas from the processing gas supply source is stored in the processing gas tank, and from the processing gas supply source. You may have separately the supply flow path made to flow when supplying process gas in the said process container.

また、第1の観点において、前記排気手段は、前記処理容器に複数接続された排気路と、前記排気路を介して前記処理容器内を排気する排気装置とを有する場合には、前記処理ガス通流部材と前記複数の排気路のうちの一部とにはバイパス流路が接続され、前記処理ガス通流部材内の処理ガスが前記バイパス流路を介して前記排気手段により排出可能に構成されており、前記バイパス流路が接続された前記排気路は、前記バイパス流路との接続部よりも上流側が開閉自在であることが好ましい。 In the first aspect , when the exhaust means includes an exhaust passage connected to the processing vessel and an exhaust device for exhausting the inside of the processing vessel through the exhaust passage, the processing gas A bypass flow path is connected to the flow member and a part of the plurality of exhaust passages, and the processing gas in the processing gas flow member can be discharged by the exhaust means through the bypass flow path. The exhaust passage connected to the bypass flow path is preferably openable and closable on the upstream side of the connection portion with the bypass flow path.

さらに、第1の観点において、前記処理容器内に、前記処理ガス供給機構によって供給された処理ガスのプラズマを生成するプラズマ生成機構を、さらに具備し、前記所定の処理は、処理ガスのプラズマを用いたプラズマ処理であることが好適である。 Furthermore , in the first aspect, the processing container further includes a plasma generation mechanism that generates plasma of the processing gas supplied by the processing gas supply mechanism, and the predetermined processing includes processing gas plasma. The plasma treatment used is preferred.

また、本発明の第の観点では、処理容器内に収容された被処理体に所定の処理が施されるように前記処理容器内に処理ガスを供給する処理ガス供給方法であって、前記処理容器内に処理ガスを供給するための処理ガス供給源と、前記処理ガス供給源からの処理ガスを一時的に貯留するための処理ガスタンクと、前記処理ガス供給源からの処理ガスを前記処理ガスタンクに送給し、前記処理ガスタンク内の処理ガスを前記処理容器内に送給する処理ガス通流部材とを準備し、処理ガスを、前記処理ガス供給源から前記処理ガスタンクに一旦貯留し、前記処理ガスタンクから前記処理容器内に供給し、前記処理ガス通流部材を、前記処理ガス供給源および前記処理容器に接続された第1の処理ガス流路と、前記第1の処理ガス流路から分岐して前記処理ガスタンクに接続された第2の処理ガス流路とから構成しておき、処理ガスを前記処理ガス供給源からも前記処理容器内に供給し、前記処理ガスタンクを複数設けるとともに、前記第2の処理ガス流路を、前記処理ガスタンクの数に対応して複数設け、前記各第2の処理ガス流路を、処理ガスを前記処理ガスタンクに送り入れるための送入流路と、処理ガスを前記処理ガスタンクから送り出すための送出流路とを別個に有して構成しておき、前記複数の処理ガスタンクの一部から前記送出流路を介して前記処理容器内に処理ガスを供給するのと並行して、前記処理ガス供給源から前記送入流路を介して前記複数の処理ガスタンクの残りの一部または全部に処理ガスを貯留することを特徴とする処理ガス供給方法を提供する。 Further, according to a second aspect of the present invention, there is provided a processing gas supply method for supplying a processing gas into the processing container such that a predetermined processing is performed on an object to be processed accommodated in the processing container, A processing gas supply source for supplying a processing gas into the processing container; a processing gas tank for temporarily storing the processing gas from the processing gas supply source; and the processing gas from the processing gas supply source. Preparing a processing gas flow member that feeds the processing gas in the processing gas tank into the processing container, and temporarily stores the processing gas in the processing gas tank from the processing gas supply source; A first processing gas flow path that is supplied from the processing gas tank into the processing container and the processing gas flow member is connected to the processing gas supply source and the processing container; and the first processing gas flow path Branch from A second processing gas flow path connected to the processing gas tank, a processing gas is also supplied from the processing gas supply source into the processing container, a plurality of the processing gas tanks are provided, and the second A plurality of processing gas flow paths corresponding to the number of the processing gas tanks, each of the second processing gas flow paths, an inflow flow path for sending the processing gas into the processing gas tank, and a processing gas. A delivery flow path for sending out from the processing gas tank is separately provided, and the processing gas is supplied into the processing container from a part of the plurality of processing gas tanks via the delivery flow path; In parallel, a process gas supply method is provided, wherein a process gas is stored in the remaining part or all of the plurality of process gas tanks from the process gas supply source through the inlet flow path.

また、本発明の第の観点では、処理容器内に収容された被処理体に所定の処理が施されるように前記処理容器内に処理ガスを供給する処理ガス供給方法であって、前記処理容器内に処理ガスを供給するための処理ガス供給源と、前記処理ガス供給源からの処理ガスを一時的に貯留するための処理ガスタンクと、前記処理ガス供給源からの処理ガスを前記処理ガスタンクに送給し、前記処理ガスタンク内の処理ガスを前記処理容器内に送給する処理ガス通流部材とを準備し、処理ガスを、前記処理ガス供給源から前記処理ガスタンクに一旦貯留し、前記処理ガスタンクから前記処理容器内に供給し、前記処理ガス通流部材を、前記処理ガス供給源および前記処理容器に接続された第1の処理ガス流路と、前記第1の処理ガス流路から分岐して前記処理ガスタンクに接続された第2の処理ガス流路とから構成しておき、処理ガスを前記処理ガス供給源からも前記処理容器内に供給し、前記第2の処理ガス流路を、処理ガスを前記処理ガスタンクに送り入れるための送入流路と、処理ガスを前記処理ガスタンクから送り出すための送出流路とを別個に有して構成し、前記処理ガス供給源を、異なる複数種類の処理ガスを供給するように複数設けるとともに、前記第1の処理ガス流路を、前記処理ガス供給源の数に対応して複数に分岐して前記各処理ガス供給源に接続された供給源接続流路を有して構成し、前記第2の処理ガス流路の前記送入流路を、前記第1の処理ガス流路の前記各供給源接続流路から分岐させておき、前記処理ガスタンクから前記送出流路を介して前記処理容器内に所定の種類および比率からなる処理ガスを供給した後、前記複数の処理ガス供給源の一部または全部から前記第1の処理ガス流路を介して前記処理容器内に前記所定の種類および比率からなる処理ガスを供給するのと並行して、前記複数の処理ガス供給源の一部または全部から前記送入流路を介して前記処理ガスタンクに前記所定の種類および比率とは異なる種類および/または比率からなる処理ガスを貯留することを特徴とする処理ガス供給方法を提供する。 According to a third aspect of the present invention, there is provided a processing gas supply method for supplying a processing gas into the processing container so that a predetermined processing is performed on an object to be processed accommodated in the processing container, A processing gas supply source for supplying a processing gas into the processing container; a processing gas tank for temporarily storing the processing gas from the processing gas supply source; and the processing gas from the processing gas supply source. Preparing a processing gas flow member that feeds the processing gas in the processing gas tank into the processing container, and temporarily stores the processing gas in the processing gas tank from the processing gas supply source; A first processing gas flow path that is supplied from the processing gas tank into the processing container and the processing gas flow member is connected to the processing gas supply source and the processing container; and the first processing gas flow path Branch from A second processing gas flow path connected to the processing gas tank, a processing gas is also supplied into the processing container from the processing gas supply source, and the second processing gas flow path is A gas flow path for feeding gas into the process gas tank and a flow path for sending process gas out of the process gas tank are separately provided, and the process gas supply source is made of a plurality of different types. A plurality of first gas supply passages are provided so as to supply process gas, and the first process gas flow path is divided into a plurality of supply gas sources corresponding to the number of the process gas supply sources and connected to the respective process gas supply sources. The process gas tank is configured such that the supply flow path of the second process gas flow path is branched from each of the supply source connection flow paths of the first process gas flow path. Through the delivery flow path into the processing vessel After supplying a processing gas having a predetermined type and ratio, the predetermined processing type and ratio are supplied from a part or all of the plurality of processing gas supply sources into the processing container through the first processing gas channel. In parallel with the supply of the processing gas, a type different from the predetermined type and / or ratio from a part or all of the plurality of processing gas supply sources to the processing gas tank via the inlet channel and / or Provided is a processing gas supply method characterized by storing a processing gas having a ratio.

また、本発明の第の観点では、処理容器内に収容された被処理体に所定の処理が施されるように前記処理容器内に処理ガスを供給する処理ガス供給方法であって、前記処理容器内に処理ガスを供給するための処理ガス供給源と、前記処理ガス供給源からの処理ガスを一時的に貯留するための処理ガスタンクと、前記処理ガス供給源からの処理ガスを前記処理ガスタンクに送給し、前記処理ガスタンク内の処理ガスを前記処理容器内に送給する処理ガス通流部材とを準備し、処理ガスを、前記処理ガス供給源から前記処理ガスタンクに一旦貯留し、前記処理ガスタンクから前記処理容器内に供給し、前記処理ガス通流部材を、前記処理ガス供給源および前記処理容器に接続された第1の処理ガス流路と、前記第1の処理ガス流路から分岐して前記処理ガスタンクに接続された第2の処理ガス流路とから構成しておき、処理ガスを前記処理ガス供給源からも前記処理容器内に供給し、前記処理ガスタンクを複数設けるとともに、前記第2の処理ガス流路を、前記処理ガスタンクの数に対応して複数設け、前記各第2の処理ガス流路を、処理ガスを前記処理ガスタンクに送り入れるための送入流路と、処理ガスを前記処理ガスタンクから送り出すための送出流路とを別個に有して構成し、前記処理ガス供給源を、異なる複数種類の処理ガスを供給するように複数設けるとともに、前記第1の処理ガス流路を、前記処理ガス供給源の数に対応して複数に分岐して前記各処理ガス供給源に接続された供給源接続流路を有して構成し、前記第2の処理ガス流路の前記送入流路を、前記第1の処理ガス流路の前記各供給源接続流路から分岐させておき、前記複数の処理ガスタンクの一部から前記送出流路を介して前記処理容器内に所定の種類および比率からなる処理ガスを供給するとともに、前記複数の処理ガス供給源の一部または全部から前記第1の処理ガス流路を介して前記処理容器内に前記所定の種類および比率からなる処理ガスを供給するのと並行して、前記複数の処理ガス供給源の一部または全部から前記送入流路を介して前記複数の処理ガスタンクの残りの一部または全部に前記所定の種類および比率とは異なる種類および/または比率からなる処理ガスを貯留することを特徴とする処理ガス供給方法を提供する。 According to a fourth aspect of the present invention, there is provided a processing gas supply method for supplying a processing gas into the processing container such that a predetermined processing is performed on an object to be processed accommodated in the processing container, A processing gas supply source for supplying a processing gas into the processing container; a processing gas tank for temporarily storing the processing gas from the processing gas supply source; and the processing gas from the processing gas supply source. Preparing a processing gas flow member that feeds the processing gas in the processing gas tank into the processing container, and temporarily stores the processing gas in the processing gas tank from the processing gas supply source; A first processing gas flow path that is supplied from the processing gas tank into the processing container and the processing gas flow member is connected to the processing gas supply source and the processing container; and the first processing gas flow path Branch from A second processing gas flow path connected to the processing gas tank, a processing gas is also supplied from the processing gas supply source into the processing container, a plurality of the processing gas tanks are provided, and the second A plurality of processing gas flow paths corresponding to the number of the processing gas tanks, each of the second processing gas flow paths, an inflow flow path for sending the processing gas into the processing gas tank, and a processing gas. The first processing gas flow path is configured to have a separate delivery flow path for delivering from the processing gas tank, and a plurality of the processing gas supply sources are provided so as to supply different types of processing gases. Having a supply source connection flow path branched into a plurality corresponding to the number of the processing gas supply sources and connected to each processing gas supply source, and the second processing gas flow path An inflow channel is connected to the first process. Branching from each supply source connection flow path of the gas flow path, a processing gas of a predetermined type and ratio is supplied into the processing container from a part of the plurality of processing gas tanks via the delivery flow path. Along with supplying the processing gas of the predetermined type and ratio into the processing container from the part or all of the plurality of processing gas supply sources through the first processing gas flow path, From a part or all of the plurality of processing gas supply sources to the remaining part or all of the plurality of processing gas tanks via the inlet flow path, the kind and / or ratio is different from the predetermined kind and ratio. A process gas supply method characterized by storing a process gas is provided.

さらに、本発明の第の観点では、コンピュータ上で動作する制御プログラムが記憶されたコンピュータ読取可能な記憶媒体であって、前記制御プログラムは、実行時に第から第の観点のいずれか一つに係る処理ガス供給方法が行われるように、コンピュータに処理装置を制御させることを特徴とするコンピュータ読取可能な記憶媒体を提供する。 Further, according to a fifth aspect of the present invention, there is provided a computer-readable storage medium storing a control program that operates on a computer, and the control program is one of the second to fourth aspects when executed. According to another aspect of the present invention, there is provided a computer-readable storage medium characterized in that a processing apparatus is controlled by a computer so that the processing gas supply method according to the above is performed.

本発明によれば、処理ガスを、処理ガス通流部材を介して、処理ガス供給源から処理ガスタンクに一旦貯留し、処理ガスタンクから処理容器内に供給するため、処理容器内が設定圧力となるような処理ガスを短時間で供給することができる。したがって、被処理体の処理時間の短縮を図ることが可能となる。   According to the present invention, the processing gas is temporarily stored in the processing gas tank from the processing gas supply source via the processing gas flow member, and is supplied from the processing gas tank into the processing container. Such a processing gas can be supplied in a short time. Therefore, it is possible to shorten the processing time of the object to be processed.

以下、添付図面を参照しながら本発明の実施の形態について説明する。
図1は本発明に係るガス処理装置の一実施形態であるプラズマエッチング装置の概略断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic sectional view of a plasma etching apparatus which is an embodiment of a gas processing apparatus according to the present invention.

このプラズマエッチング装置1は、被処理体であるFPD用のガラス基板(以下、単に「基板」と記す)Gに対してエッチングを行う容量結合型平行平板プラズマエッチング装置として構成されている。FPDとしては、液晶ディスプレイ(LCD)、エレクトロルミネセンス(Electro Luminescence;EL)ディスプレイ、プラズマディスプレイパネル(PDP)等が例示される。プラズマエッチング装置1は、基板Gを収容する処理容器としてのチャンバー2と、チャンバー2内に処理ガスを供給する処理ガス供給機構3と、チャンバー2内を排気する排気手段4と、処理ガス供給機構3によってチャンバー2内に供給された処理ガスのプラズマを生成するプラズマ生成機構5とを備えている。   The plasma etching apparatus 1 is configured as a capacitively coupled parallel plate plasma etching apparatus that performs etching on an FPD glass substrate (hereinafter simply referred to as “substrate”) G that is an object to be processed. Examples of the FPD include a liquid crystal display (LCD), an electroluminescence (EL) display, a plasma display panel (PDP), and the like. The plasma etching apparatus 1 includes a chamber 2 as a processing container that accommodates a substrate G, a processing gas supply mechanism 3 that supplies a processing gas into the chamber 2, an exhaust means 4 that exhausts the inside of the chamber 2, and a processing gas supply mechanism. 3 and a plasma generation mechanism 5 for generating plasma of the processing gas supplied into the chamber 2.

チャンバー2は、例えば、表面がアルマイト処理(陽極酸化処理)されたアルミニウムからなり、基板Gの形状に対応して四角筒形状に形成されている。チャンバー2内の底壁には、基板Gを載置する載置台としてのサセプタ20が設けられている。サセプタ20は、基板Gの形状に対応して四角板状または柱状に形成されており、金属等の導電性材料からなる基材20aと、基材20aの周縁を覆う絶縁材料からなる絶縁部材20bと、基材20aおよび絶縁部材20bの底部を覆うように設けられてこれらを支持する絶縁材料からなる絶縁部材20cとを有している。基材20aには、載置された基板Gを吸着するための静電吸着機構と、載置された基板Gの温度を調節するための冷媒流路等の冷却手段などからなる温度調節機構とが内蔵されている(いずれも図示せず)。   The chamber 2 is made of, for example, aluminum whose surface is anodized (anodized), and is formed in a square tube shape corresponding to the shape of the substrate G. A susceptor 20 as a mounting table on which the substrate G is mounted is provided on the bottom wall in the chamber 2. The susceptor 20 is formed in a square plate shape or a column shape corresponding to the shape of the substrate G, and a base material 20a made of a conductive material such as metal and an insulating member 20b made of an insulating material covering the periphery of the base material 20a. And an insulating member 20c made of an insulating material provided so as to cover the bottoms of the base member 20a and the insulating member 20b and supporting them. The base material 20a has an electrostatic adsorption mechanism for adsorbing the placed substrate G, and a temperature adjustment mechanism including a cooling means such as a refrigerant channel for adjusting the temperature of the placed substrate G, and the like. Are built in (both not shown).

チャンバー2の側壁には、基板Gを搬入出するための搬入出口21が形成されているとともに、この搬入出口21を開閉するゲートバルブ22が設けられておいる。搬入出口21の開放時には、図示しない搬送機構によって基板Gがチャンバー2内外に搬入出されるように構成されている。   On the side wall of the chamber 2, a loading / unloading port 21 for loading and unloading the substrate G is formed, and a gate valve 22 for opening and closing the loading / unloading port 21 is provided. When the loading / unloading port 21 is opened, the substrate G is loaded into and unloaded from the chamber 2 by a transfer mechanism (not shown).

チャンバー2の底壁およびサセプタ20には、これらを貫通する挿通孔23が、例えばサセプタ20の周縁部位置に間隔をあけて複数形成されている。各挿通孔23には、基板Gを下方から支持して昇降させるリフターピン24がサセプタ20の基板載置面に対して突没可能に挿入されている。各リフターピン24の下部にはフランジ25が形成されており、各フランジ25には、リフターピン24を囲繞するように設けられた伸縮可能なベローズ26の一端部(下端部)が接続され、このベローズ26の他端部(上端部)は、チャンバー2の底壁に接続されている。これにより、ベローズ26は、リフターピン24の昇降に追従して伸縮するとともに、挿通孔23とリフターピン24との隙間を密封している。   In the bottom wall of the chamber 2 and the susceptor 20, a plurality of insertion holes 23 penetrating them are formed, for example, at the peripheral edge position of the susceptor 20 with a gap. In each insertion hole 23, a lifter pin 24 that supports and lifts the substrate G from below is inserted so as to protrude and retract with respect to the substrate placement surface of the susceptor 20. A flange 25 is formed below each lifter pin 24, and one end (lower end) of an extendable bellows 26 provided so as to surround the lifter pin 24 is connected to each flange 25. The other end (upper end) of the bellows 26 is connected to the bottom wall of the chamber 2. Thereby, the bellows 26 expands and contracts following the lifting and lowering of the lifter pin 24 and seals the gap between the insertion hole 23 and the lifter pin 24.

チャンバー2の上部または上壁には、後述する処理ガス供給機構3によって供給された処理ガスをチャンバー2内に吐出するとともに上部電極として機能するシャワーヘッド27がサセプタ20と対向するように設けられている。シャワーヘッド27は接地されており、内部に処理ガスを拡散させるガス拡散空間28が形成され、下面またはサセプタ20との対向面にガス拡散空間28で拡散された処理ガスを吐出するための複数の吐出孔29が形成されている。   A shower head 27 that discharges a processing gas supplied by a processing gas supply mechanism 3 to be described later into the chamber 2 and functions as an upper electrode is provided on the upper or upper wall of the chamber 2 so as to face the susceptor 20. Yes. The shower head 27 is grounded, and a gas diffusion space 28 for diffusing the processing gas is formed therein. A plurality of processing gases for discharging the processing gas diffused in the gas diffusion space 28 to the lower surface or the surface facing the susceptor 20 are formed. A discharge hole 29 is formed.

排気手段4は、チャンバー2の例えば底壁に接続された排気路としての排気管41と、この排気管41に接続され、排気管41を介してチャンバー2内を排気する排気装置42と、排気管41の排気装置42との接続部よりも上流側に設けられた、チャンバー2内の圧力を調整するための圧力調整バルブ43とを備えている。排気装置42は、ターボ分子ポンプなどの真空ポンプを有し、これによりチャンバー2内を所定の減圧雰囲気まで真空引き可能に構成されている。排気管41は、チャンバー2の周方向に間隔をあけて複数設けられ、排気装置42および圧力調整バルブ43は、各排気管41に対応して複数設けられている。   The exhaust means 4 includes an exhaust pipe 41 serving as an exhaust path connected to, for example, the bottom wall of the chamber 2, an exhaust device 42 connected to the exhaust pipe 41 and exhausting the inside of the chamber 2 through the exhaust pipe 41, A pressure adjusting valve 43 for adjusting the pressure in the chamber 2 is provided upstream of the connection portion of the pipe 41 with the exhaust device 42. The exhaust device 42 has a vacuum pump such as a turbo molecular pump, and is configured to be able to evacuate the chamber 2 to a predetermined reduced pressure atmosphere. A plurality of exhaust pipes 41 are provided at intervals in the circumferential direction of the chamber 2, and a plurality of exhaust devices 42 and pressure adjustment valves 43 are provided corresponding to the respective exhaust pipes 41.

プラズマ生成機構5は、サセプタ20の基材20aに接続された、高周波電力を供給するための給電線51と、この給電線51に接続された整合器52および高周波電源53とを備えている。高周波電源53からは例えば13.56MHzの高周波電力がサセプタ20に供給され、これにより、サセプタ20は、下部電極として機能し、シャワーヘッド27とともに一対の平行平板電極をなすように構成されている。サセプタ20およびシャワーヘッド27は、プラズマ生成機構5の一部を構成している。   The plasma generation mechanism 5 includes a power supply line 51 that is connected to the base material 20 a of the susceptor 20 and supplies high-frequency power, and a matching unit 52 and a high-frequency power supply 53 that are connected to the power supply line 51. For example, high frequency power of 13.56 MHz is supplied from the high frequency power supply 53 to the susceptor 20, whereby the susceptor 20 functions as a lower electrode and is configured to form a pair of parallel plate electrodes together with the shower head 27. The susceptor 20 and the shower head 27 constitute a part of the plasma generation mechanism 5.

処理ガス供給機構3は、処理ガス、例えばHeガス、HClガスおよびSFガスをチャンバー2内に供給するための処理ガス供給源、例えばHeガス供給源30、HClガス供給源31およびSFガス供給源32と、Heガス供給源30、HClガス供給源31およびSFガス供給源32からの処理ガスを一時的に貯留または充填するための複数、例えば2つの処理ガスタンク33、34と、Heガス供給源30、HClガス供給源31およびSFガス供給源32からの処理ガスを処理ガスタンク33、34およびチャンバー2内に送給し、処理ガスタンク33、34に貯留された処理ガスをチャンバー2内に送給する配管等からなる処理ガス通流部材35とを備えている。処理ガス通流部材35は、Heガス供給源30、HClガス供給源31およびSFガス供給源32とチャンバー2とに接続された第1の処理ガス流路36と、2つの処理ガスタンク33、34に対応するように各々が第1の処理ガス流路36から分岐して処理ガスタンク33、34に接続された第2の処理ガス流路37、38とを有している。 The processing gas supply mechanism 3 is a processing gas supply source for supplying processing gas, for example, He gas, HCl gas, and SF 6 gas, into the chamber 2, for example, He gas supply source 30, HCl gas supply source 31, and SF 6 gas. A plurality of, for example, two process gas tanks 33, 34 for temporarily storing or filling process gas from a supply source 32, He gas supply source 30, HCl gas supply source 31 and SF 6 gas supply source 32; The processing gas from the gas supply source 30, HCl gas supply source 31 and SF 6 gas supply source 32 is fed into the processing gas tanks 33 and 34 and the chamber 2, and the processing gas stored in the processing gas tanks 33 and 34 is supplied to the chamber 2. And a processing gas flow member 35 made of piping or the like to be fed inside. The processing gas flow member 35 includes a first processing gas flow path 36 connected to the He gas supply source 30, HCl gas supply source 31, SF 6 gas supply source 32, and the chamber 2, two processing gas tanks 33, 34, each having a second processing gas flow path 37, 38 branched from the first processing gas flow path 36 and connected to the processing gas tanks 33, 34.

第1の処理ガス流路36は、3つの処理ガス供給源(Heガス供給源30、HClガス供給源31およびSFガス供給源32)に対応するように3本に分岐して各処理ガス供給源に接続された供給源接続流路36a、36b、36cを一方側または上流側部に有し、他端部または下流側端部がガス拡散空間28と連通するようにシャワーヘッド27の上面に接続されている。第1の処理ガス流路36には、供給源接続流路36a、36b、36cにそれぞれ、処理ガスの流量を調整するためのマスフローコントローラ36d、36e、36fおよびバルブ36g、36h、36iが設けられ、第2の処理ガス流路37、38との分岐部よりも他方側の例えば一端部および他端部にもそれぞれバルブ36s、36tが設けられている。 The first processing gas flow path 36 is branched into three so as to correspond to three processing gas supply sources (He gas supply source 30, HCl gas supply source 31 and SF 6 gas supply source 32). The upper surface of the shower head 27 has supply source connection channels 36 a, 36 b, 36 c connected to the supply source on one side or upstream side, and the other end or downstream end communicates with the gas diffusion space 28. It is connected to the. The first processing gas channel 36 is provided with mass flow controllers 36d, 36e, 36f and valves 36g, 36h, 36i for adjusting the flow rate of the processing gas in the supply source connection channels 36a, 36b, 36c, respectively. Valves 36s and 36t are also provided at, for example, one end and the other end on the other side of the branching portion with the second process gas flow paths 37 and 38, respectively.

第2の処理ガス流路37、38はそれぞれ、第1の処理ガス流路36の供給源接続流路36a、36b、36cよりも下流側から分岐し、ガス拡散空間28と連通するようにシャワーヘッド27の上面に接続され、中間部に処理ガスタンク33、34が接続されている。これにより、第2の処理ガス流路37、38はそれぞれ、処理ガスを処理ガスタンク33、34に送り入れるための送入流路37a、38aと、処理ガスを処理ガスタンク33、34から送り出すための送出流路37b、38bとを別個に有している。送入流路37a、38aおよび送出流路37b、38bにはそれぞれ、バルブ37c、38cおよびバルブ37d、38dが設けられ、処理ガスタンク33、34にはそれぞれ、内部の圧力を測定するための圧力計33a、34aが設けられている。   The second process gas channels 37 and 38 are branched from the supply source connection channels 36 a, 36 b and 36 c of the first process gas channel 36 from the downstream side, and are connected to the gas diffusion space 28. Connected to the upper surface of the head 27, process gas tanks 33 and 34 are connected to the middle part. As a result, the second process gas flow paths 37 and 38 are respectively used to send process gas into the process gas tanks 33 and 34, and to send process gas from the process gas tanks 33 and 34, respectively. The delivery channels 37b and 38b are separately provided. Valves 37c and 38c and valves 37d and 38d are provided in the inflow channels 37a and 38a and the outflow channels 37b and 38b, respectively, and the processing gas tanks 33 and 34 are pressure gauges for measuring the internal pressure, respectively. 33a and 34a are provided.

処理ガス通流部材35、例えば第1の処理ガス流路36と複数の排気管41のうちの一部、例えば1本とには、配管等のバイパス流路39が接続されており、処理ガス通流部材35内の処理ガスがバイパス流路39を介して排気手段4により排出可能となっている。バイパス流路39は、排気管41の圧力調整バルブ43と排気装置42との間に接続されており、この圧力調整バルブ43を閉じることにより、バイパス流路39から排出された処理ガスが排気管41を介してチャンバー2内に流入することを防止できるように構成されている。   A bypass flow path 39 such as a pipe is connected to the processing gas flow member 35, for example, the first processing gas flow path 36 and a part, for example, one of the plurality of exhaust pipes 41, and the processing gas The processing gas in the flow member 35 can be exhausted by the exhaust means 4 through the bypass channel 39. The bypass passage 39 is connected between the pressure adjustment valve 43 of the exhaust pipe 41 and the exhaust device 42, and the processing gas discharged from the bypass passage 39 is exhausted by closing the pressure adjustment valve 43. It is configured so that it can be prevented from flowing into the chamber 2 via 41.

プラズマエッチング装置1の各構成部は、マイクロプロセッサ(コンピュータ)を備えたプロセスコントローラ90によって制御される。このプロセスコントローラ90には、工程管理者がプラズマエッチング装置1を管理するためにコマンドの入力操作等を行うキーボードやプラズマエッチング装置1の稼働状況を可視化して表示するディスプレイ等からなるユーザーインターフェイス91と、プラズマエッチング装置1で実行される処理をプロセスコントローラ90の制御にて実現するための制御プログラムや処理条件データ等が記録されたレシピが格納された記憶部92とが接続されている。そして、必要に応じて、ユーザーインターフェイス91からの指示等にて任意のレシピを記憶部92から呼び出してプロセスコントローラ90に実行させることで、プロセスコントローラ90の制御下でプラズマエッチング装置1での処理が行われる。また、前記レシピは、例えば、CD−ROM、ハードディスク、フラッシュメモリなどのコンピュータ読み取り可能な記憶媒体に格納された状態のものを利用したり、あるいは、他の装置から、例えば専用回線を介して随時伝送させて利用したりすることも可能である。   Each component of the plasma etching apparatus 1 is controlled by a process controller 90 having a microprocessor (computer). The process controller 90 includes a user interface 91 including a keyboard for a process manager to input commands to manage the plasma etching apparatus 1, a display for visualizing and displaying the operating status of the plasma etching apparatus 1, and the like. A storage unit 92 storing a recipe in which a control program for realizing the processing executed by the plasma etching apparatus 1 under the control of the process controller 90 and processing condition data is stored is connected. Then, if necessary, an arbitrary recipe is called from the storage unit 92 by an instruction from the user interface 91 and is executed by the process controller 90, so that the process in the plasma etching apparatus 1 can be performed under the control of the process controller 90. Done. The recipe may be stored in a computer-readable storage medium such as a CD-ROM, a hard disk, or a flash memory, or may be received from another device, for example, via a dedicated line as needed. It is also possible to transmit and use.

また、より具体的に、処理ガス供給機構3の各バルブ36g、36h、36i、36s、36t、37c、37d、38c、38d、39aは、プロセスコントローラ90に接続されたユニットコントローラ93(制御部)によって制御される構成となっている。そして、必要に応じて、ユーザーインターフェイス91からの指示等にてプロセスコントローラ90が任意のレシピを記憶部92から呼び出してユニットコントローラ93に制御させる。   More specifically, each valve 36g, 36h, 36i, 36s, 36t, 37c, 37d, 38c, 38d, 39a of the processing gas supply mechanism 3 is a unit controller 93 (control unit) connected to the process controller 90. It is the structure controlled by. Then, if necessary, the process controller 90 calls an arbitrary recipe from the storage unit 92 and controls the unit controller 93 in accordance with an instruction from the user interface 91 or the like.

このように構成されたプラズマエッチング装置1においては、排気手段4によってチャンバー2内を所定の真空度に維持したまま、まず、ゲートバルブ22によって搬入出口21が開放された状態で、基板Gが図示しない搬送機構によって搬入出口21から搬入されたら、各リフターピン24を上昇させ、各リフターピン24によって基板Gを搬送機構から受け取って支持させる。搬送機構が搬入出口21からチャンバー2外に退出したら、ゲートバルブ22によって搬入出口21を閉塞するとともに、各リフターピン24を下降させてサセプタ20の基板載置面に没入させ、基板Gをサセプタ20に載置させる。   In the plasma etching apparatus 1 configured as described above, the substrate G is illustrated in a state in which the loading / unloading port 21 is opened by the gate valve 22 while the inside of the chamber 2 is maintained at a predetermined degree of vacuum by the exhaust unit 4. When the transfer mechanism 21 does not carry it in from the loading / unloading port 21, each lifter pin 24 is raised, and the substrate G is received and supported by each lifter pin 24 from the transfer mechanism. When the transfer mechanism exits from the loading / unloading port 21 to the outside of the chamber 2, the loading / unloading port 21 is closed by the gate valve 22, and each lifter pin 24 is lowered to be immersed in the substrate mounting surface of the susceptor 20. To be placed.

次に、処理ガス供給機構3によってチャンバー2内に処理ガスを供給する。ここでの処理ガスの供給は、あらかじめHeガス供給源30、HClガス供給源31およびSFガス供給源32から処理ガスタンク33に充填させておいたHeガス、HClガスおよびSFガスを、バルブ37dを開いて放出することによって行う。 Next, the processing gas is supplied into the chamber 2 by the processing gas supply mechanism 3. Here, the processing gas is supplied by supplying He gas, HCl gas, and SF 6 gas previously filled in the processing gas tank 33 from the He gas supply source 30, the HCl gas supply source 31, and the SF 6 gas supply source 32 with a valve. This is done by opening and releasing 37d.

チャンバー2内は排気手段4によって排気されているため、処理ガスタンク33に充填された処理ガスを供給しただけでは時間の経過とともにチャンバー2内の圧力が低下してしまう。したがって、処理ガスタンク33に充填された処理ガスの供給時または供給直後に、バルブ36s、36t、36g、36h、36iを開き、Heガス供給源30、HClガス供給源31およびSFガス供給源32からのHeガス、HClガスおよびSFガスをマスフローコントローラ36d、36e、36fによって流量調整し、チャンバー2内に供給するとともに、圧力制御バルブ43によりチャンバー2内を設定圧力、例えば23.3Pa(0.175Torr)に保持する。これにより、チャンバー2内の設定圧力に迅速に保持することができる。また、処理ガス通流部材35を、Heガス供給源30、HClガス供給源31およびSFガス供給源32とチャンバー2とに接続された第1の処理ガス流路36と、第1の処理ガス流路36から分岐して処理ガスタンク33、34にそれぞれ接続された第2の処理ガス流路37、38とから構成したため、Heガス供給源30、HClガス供給源31およびSFガス供給源32からのHeガス、HClガスおよびSFガスを、第1の処理ガス流路36を介し、大きな空間である処理ガスタンク33、34を通過させずにチャンバー2内に短時間で供給することができ、これにより、チャンバー2内の圧力保持のさらなる迅速化を図ることが可能となる。 Since the inside of the chamber 2 is exhausted by the exhaust means 4, the pressure in the chamber 2 is reduced with the passage of time only by supplying the processing gas filled in the processing gas tank 33. Accordingly, the valves 36 s, 36 t, 36 g, 36 h, 36 i are opened when the processing gas filled in the processing gas tank 33 is supplied or immediately after the supply, and the He gas supply source 30, the HCl gas supply source 31 and the SF 6 gas supply source 32 are opened. The flow rate of He gas, HCl gas and SF 6 gas from gas is adjusted by the mass flow controllers 36d, 36e, and 36f and supplied into the chamber 2, and the pressure inside the chamber 2 is set by the pressure control valve 43, for example, 23.3 Pa (0 .175 Torr). Thereby, the set pressure in the chamber 2 can be quickly held. Further, the processing gas passage member 35, the He gas supply source 30, HCl gas supply source 31 and the SF 6 gas supply source 32 and the first process gas channel 36 connected to the chamber 2, the first processing Since the second processing gas flow paths 37 and 38 are branched from the gas flow path 36 and connected to the processing gas tanks 33 and 34, respectively, the He gas supply source 30, the HCl gas supply source 31, and the SF 6 gas supply source are configured. The He gas, HCl gas and SF 6 gas from 32 can be supplied into the chamber 2 through the first process gas flow path 36 in a short time without passing through the process gas tanks 33 and 34 which are large spaces. This makes it possible to further speed up the pressure holding in the chamber 2.

この状態で、サセプタ20に内蔵された静電吸着機構に直流電圧を印加して基板Gをサセプタ20に吸着させるとともに、サセプタ20に内蔵された温調機構によって基板Gの温度を調節する。そして、高周波電源53から整合器52を介してサセプタ20に高周波電力を印加し、下部電極としてのサセプタ20と上部電極としてのシャワーヘッド27との間に高周波電界を生じさせてチャンバー2内の処理ガスをプラズマ化させる。この処理ガスのプラズマによって基板Gにエッチング処理が施される。   In this state, a DC voltage is applied to the electrostatic adsorption mechanism built in the susceptor 20 to attract the substrate G to the susceptor 20, and the temperature of the substrate G is adjusted by the temperature adjustment mechanism built in the susceptor 20. Then, high-frequency power is applied to the susceptor 20 from the high-frequency power supply 53 via the matching unit 52, and a high-frequency electric field is generated between the susceptor 20 as the lower electrode and the shower head 27 as the upper electrode, thereby processing in the chamber 2. The gas is turned into plasma. The substrate G is etched by the processing gas plasma.

基板Gにエッチング処理を施したら、高周波電源53からの高周波電力の印加を停止する。次に、バルブ36g、36h、36iを閉じてHeガス供給源30、HClガス供給源31およびSFガス供給源32からのHeガス、HClガスおよびSFガスの供給を停止するとともに、排気手段4によりチャンバー2内および第1の処理ガス流路36または処理ガス通流部材35内の処理ガスを排出する。そして、静電吸着機構による基板Gの吸着を解除し、その後、チャンバー2内に処理ガスを供給し、チャンバー2内を設定圧力、例えば26.7Pa(0.2Torr)に保持した状態でサセプタ20に高周波電力を印加して処理ガスをプラズマ化させ、基板Gに対して除電処理を施す。ここでの処理ガスの供給は、バルブ38dを開き、あらかじめHeガス供給源30から処理ガスタンク34に充填させておいたHeガスを放出するのと併せて、バルブ36s、36t、36gを開き、チャンバー2内が設定圧力に保持されるように、Heガス供給源30からのHeガスをマスフローコントローラ36dによって流量調整し、送給することにより行う。これにより、チャンバー2内の圧力を瞬時に設定圧力または設定圧力近傍に保持することができ、基板Gの除電処理を迅速に行うことが可能となる。 When the substrate G is etched, the application of the high frequency power from the high frequency power supply 53 is stopped. Next, the valves 36g, 36h and 36i are closed to stop the supply of He gas, HCl gas and SF 6 gas from the He gas supply source 30, HCl gas supply source 31 and SF 6 gas supply source 32, and exhaust means 4, the processing gas in the chamber 2 and in the first processing gas flow path 36 or the processing gas flow member 35 is discharged. Then, the adsorption of the substrate G by the electrostatic adsorption mechanism is released, and then the processing gas is supplied into the chamber 2, and the susceptor 20 is held in a state where the inside of the chamber 2 is maintained at a set pressure, for example, 26.7 Pa (0.2 Torr). A high-frequency power is applied to the substrate to turn the processing gas into plasma, and the substrate G is subjected to charge removal processing. Here, the supply of the processing gas is performed by opening the valve 38d and opening the valves 36s, 36t, and 36g together with releasing the He gas previously filled in the processing gas tank 34 from the He gas supply source 30. The flow rate of He gas from the He gas supply source 30 is adjusted by the mass flow controller 36d so as to be maintained at the set pressure, and then fed. As a result, the pressure in the chamber 2 can be instantaneously held at the set pressure or in the vicinity of the set pressure, and the charge removal processing of the substrate G can be performed quickly.

基板Gの除電処理を行ったら、排気手段4によりチャンバー2内および第1の処理ガス流路36または処理ガス通流部材35内の処理ガスを排出する。次に、ゲートバルブ22によって搬入出口21を開放するとともに、リフターピン24を上昇させ、基板Gをサセプタ20から上方に離間させる。その後、図示しない搬送機構が搬入出口21からチャンバー2内に進入してきたら、リフターピン24を下降させ、基板Gを搬送機構に移し換える。その後、基板Gは、搬送機構によって搬入出口21からチャンバー2外に搬出されることとなる。   After performing the charge removal process on the substrate G, the process gas in the chamber 2 and the first process gas flow path 36 or the process gas flow member 35 is discharged by the exhaust means 4. Next, the loading / unloading port 21 is opened by the gate valve 22 and the lifter pin 24 is raised to separate the substrate G from the susceptor 20 upward. Thereafter, when a transport mechanism (not shown) enters the chamber 2 from the loading / unloading port 21, the lifter pin 24 is lowered and the substrate G is transferred to the transport mechanism. Thereafter, the substrate G is carried out of the chamber 2 from the carry-in / out port 21 by the carrying mechanism.

処理ガスタンク33、34への処理ガスの再充填は、基板Gの搬入出時に行う。まず、バルブ37cを開き、処理ガスタンク33に処理ガスを充填する。この際には、処理ガスが処理ガスタンク34およびチャンバー2内に流入するのを防ぐため、バルブ37d、38c、36sを閉じておく。処理ガスタンク33への処理ガスの充填が完了したら、バルブ37cを閉じ、第1の処理ガス流路36および送入流路37a、38aに残留している処理ガスを排出するため、バルブ39aを開ける。この際には、処理ガスがチャンバー2内に流入しないように、バイパス流路39が接続された排気管41の圧力調整バルブ43を閉じておく。処理ガスの排出が完了したら、処理ガスタンク33への充填と同様に、処理ガスの処理ガスタンク34への充填を行い、充填完了後には、第1の処理ガス流路36および送入流路37a、38aに残留している処理ガスの排出を同様に行う。なお、処理ガスの充填は、処理ガスタンク34を先に行ってもよい。   The processing gas tanks 33 and 34 are refilled with the processing gas when the substrate G is loaded and unloaded. First, the valve 37c is opened and the processing gas tank 33 is filled with the processing gas. At this time, the valves 37d, 38c, and 36s are closed in order to prevent the processing gas from flowing into the processing gas tank 34 and the chamber 2. When the processing gas tank 33 is completely filled with the processing gas, the valve 37c is closed, and the valve 39a is opened to discharge the processing gas remaining in the first processing gas channel 36 and the inflow channels 37a and 38a. . At this time, the pressure adjustment valve 43 of the exhaust pipe 41 to which the bypass channel 39 is connected is closed so that the processing gas does not flow into the chamber 2. When the discharge of the processing gas is completed, the processing gas tank 34 is charged in the same manner as the processing gas tank 33 is filled. After the filling is completed, the first processing gas channel 36 and the inflow channel 37a, The processing gas remaining in 38a is similarly discharged. The processing gas may be filled first in the processing gas tank 34.

本実施形態では、処理ガス通流部材35を介し、処理ガス供給源、例えばHeガス供給源30、HClガス供給源31およびSFガス供給源32からの処理ガス、例えばHeガス、HClガスおよびSFガスを処理ガスタンク33、34に一旦充填し、処理ガスタンク33、34に充填された処理ガスをチャンバー2内に供給して基板Gのプラズマエッチングを含む処理を行うため、チャンバー2の容量が大きい場合であっても、このチャンバー2内が設定圧力となるような処理ガスを短時間で供給することができ、これにより、処理時間の短縮化を図ることが可能となる。 In the present embodiment, through the processing gas passage member 35, the processing gas supply source, for example, process gas from the He gas supply source 30, HCl gas supply source 31 and the SF 6 gas supply source 32, for example He gas, HCl gas and Since the processing gas tanks 33 and 34 are temporarily filled with SF 6 gas and the processing gas filled in the processing gas tanks 33 and 34 is supplied into the chamber 2 to perform processing including plasma etching of the substrate G, the capacity of the chamber 2 is increased. Even if it is large, it is possible to supply a processing gas at a set pressure in the chamber 2 in a short time, thereby shortening the processing time.

なお、本実施形態では、プラズマエッチング処理時に供給される処理ガスを充填するのに処理ガスタンク33を用い、プラズマエッチング処理後に供給される処理ガスを充填するのに処理ガスタンク34を用いたが、これらは入れ替えて用いてもよい。また、本実施形態では、第2の処理ガス流路37、38を個別に第1の処理ガス流路36から分岐させて設けたが、これらを一端部同士が合流した状態で第1の処理ガス流路36から分岐させて設けてもよい。あるいは、第2の処理ガス流路37、38をシャワーヘッド27の上面ではなく、チャンバー2の他の部分、例えば側壁に接続し、シャワーヘッド27を通さずに処理ガスをチャンバー2内に送給するように構成してもよい。さらに、本実施形態では、第2の処理ガス流路37、38の送出流路37b、38bをそれぞれ、チャンバー2に接続したが、これらは第1の処理ガス流路36に接続してもよい。さらに、本実施形態では、異なる処理ガスを用いた2種のプロセスを連続して行うために2つの処理ガスタンク33、34を使用したが、プロセスが1種のみ等の場合には処理ガスタンクは1つのみでもよく、3種以上のプロセスを連続して行うなどの場合には3つ以上の処理ガスタンクを使用してもよい。   In this embodiment, the process gas tank 33 is used to fill the process gas supplied during the plasma etching process, and the process gas tank 34 is used to fill the process gas supplied after the plasma etching process. May be used interchangeably. In the present embodiment, the second processing gas flow paths 37 and 38 are individually branched from the first processing gas flow path 36, but the first processing is performed in a state where one ends thereof are joined together. You may branch and provide from the gas flow path 36. FIG. Alternatively, the second processing gas flow paths 37 and 38 are connected to the other part of the chamber 2, for example, the side wall instead of the upper surface of the shower head 27, and the processing gas is fed into the chamber 2 without passing through the shower head 27. You may comprise. Furthermore, in this embodiment, the delivery channels 37b and 38b of the second process gas channels 37 and 38 are connected to the chamber 2, respectively, but they may be connected to the first process gas channel 36. . Further, in the present embodiment, two processing gas tanks 33 and 34 are used in order to continuously perform two types of processes using different processing gases. However, when only one type of process is used, the number of processing gas tanks is one. In the case where three or more processes are continuously performed, three or more process gas tanks may be used.

次に、プラズマエッチング装置1を用い、処理ガスタンク33に処理ガスを所定の圧力で充填する時間(以下、充填時間と記す)、および処理ガスタンク33に充填した処理ガスおよび処理ガス供給源30、31、32からの処理ガスをチャンバー2内に供給し、チャンバー2内の圧力が設定圧力程度に安定するまでの時間(以下、安定時間と記す)をそれぞれ測定した。ここでのプラズマエッチング装置1は、図2に示すように、処理ガス供給機構3の第2の処理ガス流路37、38を簡素な構造に変形したものを用いた。ここでの第2の処理ガス流路37、38はそれぞれ、一端部が第1の処理ガス流路36から分岐して他端部が処理ガスタンク33、34に接続され、中間部にバルブ37z、38zが設けられている。したがって、ここでの第2の処理ガス流路37、38はそれぞれ、処理ガス供給源30、31、32からの処理ガスを処理ガスタンク33、34に導くための流路と、処理ガスタンク33、34内の処理ガスをチャンバー2内に導くための流路とを兼ねている。   Next, using the plasma etching apparatus 1, the processing gas tank 33 is filled with a processing gas at a predetermined pressure (hereinafter referred to as a filling time), and the processing gas filled in the processing gas tank 33 and the processing gas supply sources 30, 31. , 32 was supplied into the chamber 2, and the time until the pressure in the chamber 2 was stabilized to the set pressure (hereinafter referred to as the stable time) was measured. As shown in FIG. 2, the plasma etching apparatus 1 used here is one in which the second process gas flow paths 37 and 38 of the process gas supply mechanism 3 are modified into a simple structure. Each of the second processing gas flow paths 37 and 38 here has one end branched from the first processing gas flow path 36 and the other end connected to the processing gas tanks 33 and 34, and a valve 37 z and a middle part. 38z is provided. Accordingly, the second processing gas flow paths 37 and 38 here are a flow path for guiding the processing gas from the processing gas supply sources 30, 31 and 32 to the processing gas tanks 33 and 34, respectively, and the processing gas tanks 33 and 34. It also serves as a flow path for guiding the inside processing gas into the chamber 2.

処理ガスであるHeガス、HClガスおよびSFガスの流量比は2:1:1、合計流量は5slmとし、チャンバー2の容量lは2310l、処理ガスタンク33の容量lは3l、チャンバー2内の設定圧力Pは23.3Pa(0.175Torr)とし、処理ガスタンク33に充填される処理ガスの圧力Pが26.7kPa(200Torr)の場合(実施例1)、53.3kPa(400Torr)の場合(実施例2)、80.0kPa(600Torr)の場合(実施例3)についてそれぞれ測定を行った。また、比較例として、処理ガスタンク33を使用せずに処理ガス供給源30、31、32からの処理ガスのみをチャンバー2内に供給した場合の安定時間を測定した。測定結果を表1に示す。 He gas is a process gas flow rate ratio of HCl gas and SF 6 gas 2: 1: 1, total flow rate was set to 5 slm, volume l 0 of the chamber 2 is 2310L, volume l 1 processing tank 33 3l, chamber 2 set pressure P 0 of the inner is a 23.3Pa (0.175Torr), if the pressure P 1 of the processing gas to be charged into the processing tank 33 is 26.7 kPa (200 Torr) (example 1), 53.3kPa (400Torr ) (Example 2) and 80.0 kPa (600 Torr) (Example 3). As a comparative example, the stabilization time was measured when only the processing gas from the processing gas supply sources 30, 31, and 32 was supplied into the chamber 2 without using the processing gas tank 33. The measurement results are shown in Table 1.

Figure 0005235293
Figure 0005235293

表1に示すように、実施例1、2、3では、比較例と比べて安定時間が短くなることが確認された。すなわち、プラズマエッチング装置1を用いることにより、処理ガスタンク33を使用しない従来型のプラズマエッチング装置を用いた場合と比較して安定時間を短縮できることが確認された。   As shown in Table 1, in Examples 1, 2, and 3, it was confirmed that the stabilization time was shorter than in the comparative example. That is, it was confirmed that the use of the plasma etching apparatus 1 can shorten the stabilization time as compared with the case of using a conventional plasma etching apparatus that does not use the processing gas tank 33.

また、充填時間は、処理ガスタンク33に充填される処理ガスの圧力が低いほど短かったが、安定時間は、処理ガスタンク33に充填される処理ガスの圧力が高いほど短く、80.0kPaの場合には26.7kPaの場合と比較してほぼ半分になることが確認された。これは、処理ガスタンク33内に充填される処理ガスの圧力が低いと、処理ガス供給源30、31、32からチャンバー2内に供給される処理ガスが第2の処理ガス流路37を介して処理ガスタンク33に流入してしまうことにも起因すると考えられる。そこで、処理ガスタンク33からチャンバー2内への処理ガス供給開始前後の処理ガス通流部材35内の圧力変化を測定したところ、処理ガスタンク33からチャンバー2内への処理ガス供給開始直後の処理ガス通流部材35内の圧力は、図3(a)の矢印部分に示すように、処理ガスタンク33に充填される処理ガスの圧力Pが26.7kPaの場合に、安定時の処理ガス通流部材35内の圧力29.9kPa(224Torr)に近く、図3(b)の矢印部分に示すように、処理ガスタンク33に充填される処理ガスの圧力Pが29.9kPa未満、例えば17.9kPa(135Torr)の場合には、安定時の処理ガス通流部材35内の圧力よりも小さく、図3(c)の矢印部分に示すように、処理ガスタンク33に充填される処理ガスの圧力Pが29.9kPaよりも大きい、例えば53.3kPaの場合には、安定時の処理ガス通流部材35内の圧力よりも大きい結果となった。また、処理ガスタンク33に充填される処理ガスの圧力Pが17.9kPaの場合には、26.7kPaの場合と比較して安定時間が2秒ほど長く、すなわち、処理ガスタンク33を使用せずに処理ガス供給源30、31、32からの処理ガスのみをチャンバー2内に供給した場合の安定時間よりも長い結果となった。したがって、第2の処理ガス流路37(38)が、処理ガスを処理ガスタンク33(34)に送り入れるための流路と、処理ガスを処理ガスタンク33(34)から送り出すための流路とを兼ねている場合には、処理ガスタンク33に充填される処理ガスの圧力を処理ガス通流部材35内の圧力よりも高くすると、処理ガスタンク33、34への処理ガスの流入を防止することができ、処理ガスタンク33に充填される処理ガスの圧力を高くするほど、安定時間を短縮することができると考えられる。 Further, the filling time is shorter as the pressure of the processing gas filled in the processing gas tank 33 is lower. However, the stabilization time is shorter as the pressure of the processing gas filled in the processing gas tank 33 is higher, and is 80.0 kPa. Was confirmed to be almost halved compared to 26.7 kPa. This is because when the pressure of the processing gas filled in the processing gas tank 33 is low, the processing gas supplied from the processing gas supply sources 30, 31, 32 into the chamber 2 passes through the second processing gas channel 37. This may be caused by the flow into the processing gas tank 33. Therefore, when the change in pressure in the processing gas flow member 35 before and after the start of supply of the processing gas from the processing gas tank 33 into the chamber 2 was measured, the processing gas flow immediately after the start of the processing gas supply from the processing gas tank 33 into the chamber 2 was measured. pressure in the flow member 35, as shown in arrow in FIG. 3 (a), when the pressure P 1 of the processing gas to be charged into the processing tank 33 is 26.7 kPa, stability during processing gas through member close to the pressure in 35 29.9kPa (224Torr), as shown in the arrow in FIG. 3 (b), the pressure P 1 of the processing gas to be charged into the processing tank 33 is less than 29.9KPa, for example 17.9KPa ( 135 Torr), the pressure is lower than the pressure in the processing gas flow member 35 at the time of stabilization, and the processing gas tank 33 is filled as shown by the arrow in FIG. The pressure P 1 of the process gas is greater than 29.9KPa, for example in the case of 53.3kPa it has resulted greater than the pressure of the stable state of the processing gas through member 35. Further, when the pressure P 1 of the processing gas to be charged into the processing tank 33 is 17.9kPa is stabilization time compared with the case of 26.7kPa is long enough 2 seconds, i.e., without the use of process gas tank 33 In addition, the result was longer than the stabilization time when only the processing gas from the processing gas supply sources 30, 31, and 32 was supplied into the chamber 2. Therefore, the second process gas flow path 37 (38) has a flow path for sending the process gas into the process gas tank 33 (34) and a flow path for sending the process gas from the process gas tank 33 (34). In this case, if the pressure of the processing gas filled in the processing gas tank 33 is made higher than the pressure in the processing gas flow member 35, the processing gas can be prevented from flowing into the processing gas tanks 33 and 34. It is considered that the stabilization time can be shortened as the pressure of the processing gas filled in the processing gas tank 33 is increased.

次に、プラズマエッチング装置の他の実施形態について説明する。
図4は本発明に係るガス処理装置の他の実施形態であるプラズマエッチング装置の概略断面図である。
Next, another embodiment of the plasma etching apparatus will be described.
FIG. 4 is a schematic sectional view of a plasma etching apparatus as another embodiment of the gas processing apparatus according to the present invention.

図4に示すように、プラズマエッチング装置1′は、プラズマエッチング装置1における処理ガス供給機構3の第2の処理ガス流路37、38の送入流路37a、38aおよびバイパス流路39を変形したものであり、プラズマエッチング装置1と同部位については同符号を付して説明を省略する。プラズマエッチング装置1′における処理ガス供給機構3′の第2の処理ガス流路37′(38′)の処理ガスタンク33(34)への送入流路37a′(38a′)は、一端部または上流側端部が供給源接続流路36a、36b、36cのマスフローコントローラ36d、36e、36fよりも上流側からそれぞれ分岐するように設けられた導入分岐流路37i、37j、37kから、さらに分岐された分岐送入流路37e、37f、37g(38e、38f、38g)と、分岐送入流路37e、37f、37g(38e、38f、38g)の他端部または下流側端部同士が合流し、処理ガスタンク33(34)に接続された合流送入流路37h(38h)とを有している。導入分岐流路37i、37j、37kにはそれぞれ、マスフローコントローラ37l、37m、37nが設けられ、分岐送入流路37e、37f、37g、38e、38f、38gにはそれぞれ、バルブ37o、37p、37q、38o、38p、38qが設けられている。   As shown in FIG. 4, the plasma etching apparatus 1 ′ deforms the inflow passages 37 a and 38 a and the bypass passage 39 of the second processing gas passages 37 and 38 of the processing gas supply mechanism 3 in the plasma etching apparatus 1. Therefore, the same parts as those of the plasma etching apparatus 1 are denoted by the same reference numerals and the description thereof is omitted. The flow path 37a '(38a') to the processing gas tank 33 (34) of the second processing gas flow path 37 '(38') of the processing gas supply mechanism 3 'in the plasma etching apparatus 1' has one end or The upstream end is further branched from introduction branch channels 37i, 37j, and 37k provided to branch from the upstream side of the mass flow controllers 36d, 36e, and 36f of the supply source connection channels 36a, 36b, and 36c, respectively. The branch inlet / outlet flow paths 37e, 37f, 37g (38e, 38f, 38g) and the other end or downstream end of the branch inlet / outlet flow paths 37e, 37f, 37g (38e, 38f, 38g) join together. And a confluence flow path 37h (38h) connected to the processing gas tank 33 (34). The introduction branch flow paths 37i, 37j, and 37k are respectively provided with mass flow controllers 37l, 37m, and 37n, and the branch introduction flow paths 37e, 37f, 37g, 38e, 38f, and 38g are valves 37o, 37p, and 37q, respectively. , 38o, 38p, 38q.

処理ガス供給機構3′におけるバイパス流路39′は、一方側または上流側が分岐して合流送入流路37h、38hにそれぞれ接続され、各分岐部にバルブ39b、39cが設けられている。   A bypass flow path 39 ′ in the processing gas supply mechanism 3 ′ is branched on one side or upstream side and connected to the merging / inflow flow paths 37h and 38h, and valves 39b and 39c are provided at the respective branch portions.

このように構成された処理ガス供給機構3′においては、Heガス供給源30、HClガス供給源31およびSFガス供給源32から第1の処理ガス通流部材35を介したチャンバー2内へのHeガス、HClガスおよびSFガスの供給と並行して、Heガス供給源30、HClガス供給源31およびSFガス供給源32から第2の処理ガス流路37′(38′)を介した処理ガスタンク33(34)へのHeガス、HClガスおよびSFガスの充填を行うことができるとともに、各マスフローコントローラ36d、36e、36f、37l、37m、37nおよび各バルブ36g、36h、36i、37o(38o)、37p(38p)、37q(38q)によってチャンバー2内に供給されるHeガスの流量、HClガスの流量、SFガス流量、処理ガスタンク33(34)に送られるHeガスの流量、HClガスの流量、SFガス流量を個別に調整することができる。また、バイパス流路39′を分岐させて合流送入流路37h、38hにそれぞれ接続したことにより、合流送入流路37hを含む第2の処理ガス流路37′内の処理ガスと合流送入流路38hを含む第2の処理ガス流路38′内の処理ガスとを別個に排出することができる。したがって、あらかじめ処理ガスタンク33(34)に充填された所定の種類および比率からなる処理ガス、および処理ガス供給源30、31、32からの所定の種類および比率からなる処理ガスをチャンバー2内に供給し、あるプロセスを行うのと並行して、次プロセスで使用される、所定の種類および比率とは異なる種類および/または比率からなる処理ガスを処理ガスタンク34(33)に充填することができるため、使用される処理ガスの種類や比率等が異なる3種以上のプロセスを連続的に行うことが可能となる。 In the processing gas supply mechanism 3 ′ configured as described above, the He gas supply source 30, the HCl gas supply source 31, and the SF 6 gas supply source 32 enter the chamber 2 through the first processing gas flow member 35. In parallel with the supply of the He gas, HCl gas, and SF 6 gas, the second process gas flow path 37 ′ (38 ′) is provided from the He gas supply source 30, the HCl gas supply source 31, and the SF 6 gas supply source 32. The processing gas tank 33 (34) can be filled with He gas, HCl gas and SF 6 gas, and each mass flow controller 36d, 36e, 36f, 37l, 37m, 37n and each valve 36g, 36h, 36i can be filled. , 37o (38o), 37p (38p), 37q (38q), the flow rate of He gas supplied to the chamber 2 and the flow of HCl gas The amount, SF 6 gas flow rate, the flow rate of He gas fed to the processing tank 33 (34), the flow rate of HCl gas, may be adjusted individually SF 6 gas flow rate. Further, the bypass flow path 39 'is branched and connected to the merging and feeding flow paths 37h and 38h, so that the processing gas in the second processing gas flow path 37' including the merging and feeding flow path 37h is merged and sent. The processing gas in the second processing gas channel 38 'including the inlet channel 38h can be discharged separately. Accordingly, the processing gas of a predetermined type and ratio filled in the processing gas tank 33 (34) in advance and the processing gas of a predetermined type and ratio from the processing gas supply sources 30, 31, and 32 are supplied into the chamber 2. In parallel with performing a certain process, the processing gas tank 34 (33) can be filled with a processing gas of a type and / or ratio different from a predetermined type and / or ratio used in the next process. Thus, it is possible to continuously perform three or more types of processes having different types and ratios of processing gases to be used.

なお、本実施形態では、分岐送入流路37e、38e、37f、38f、37g、38gを、導入分岐流路37i、37j、37kを介して供給源接続流路36a、36b、36cから分岐させたが、導入分岐流路37i、37j、37kを介さずに供給源接続流路36a、36b、36cから直接分岐させてもよい。この場合には、分岐送入流路37e、38e、37f、38f、37g、38gにそれぞれマスフローコントローラを設けることができる。   In the present embodiment, the branch-in flow paths 37e, 38e, 37f, 38f, 37g, and 38g are branched from the supply source connection flow paths 36a, 36b, and 36c via the introduction branch flow paths 37i, 37j, and 37k. However, the supply source connection flow paths 36a, 36b, and 36c may be directly branched without passing through the introduction branch flow paths 37i, 37j, and 37k. In this case, a mass flow controller can be provided in each of the branching / inflow channels 37e, 38e, 37f, 38f, 37g, and 38g.

図5はプラズマエッチング装置1に設けられた処理ガス供給機構3の供給源接続流路の変形例を示す図である。
処理ガス供給源30、31、32から処理ガスタンク33、34への処理ガスの充填を短時間で行うには、処理ガスを大流量で処理ガスタンク33、34に送れるように、供給源接続流路36a、36b、36cに設けられたマスフローコントローラおよびバルブを大流量に対応可能なもので構成することが好ましい。しかしながら、基板Gの処理品質を高めるには、処理ガス供給源30、31、32からチャンバー2内に供給される処理ガスの流量を精緻に調整する必要があり、供給源接続流路36a、36b、36cに大流量に対応可能なマスフローコントローラを設けると、流量の微妙な調整ができずに基板Gの処理品質を低下させるおそれがある。そこで、図5に示すように、各供給源接続流路36a、36b、36cに、処理ガス供給源30、31、32からの処理ガスを処理ガスタンク33、34に貯留または充填させる際に通流させる貯留用流路36j、36k、36lと、処理ガス供給源30、31、32からの処理ガスをチャンバー2内に供給する際に通流させる供給用流路36m、36n、36oとを分岐させて設け、貯留用流路36j、36k、36lにそれぞれ大流量に対応可能なマスフローコントローラ36pおよびバルブ36qを設けるとともに、供給用流路36m、36n、36oにそれぞれ、微調整可能な例えば小流量用のマスフローコントローラ36rおよびバルブ36sを設けてもよい。このような構成により、処理ガスタンク33、34への処理ガスの充填を短時間で行いつつ、チャンバー2内に供給される処理ガスの流量を精緻に調整することが可能となる。
FIG. 5 is a view showing a modification of the supply source connection flow path of the processing gas supply mechanism 3 provided in the plasma etching apparatus 1.
In order to fill the processing gas tanks 33 and 34 into the processing gas tanks 33 and 34 from the processing gas supply sources 30, 31, and 32 in a short time, a supply source connection channel is provided so that the processing gas can be sent to the processing gas tanks 33 and 34 at a large flow rate. The mass flow controllers and valves provided in 36a, 36b, and 36c are preferably configured to be capable of handling a large flow rate. However, in order to improve the processing quality of the substrate G, it is necessary to precisely adjust the flow rate of the processing gas supplied from the processing gas supply sources 30, 31, 32 into the chamber 2, and the supply source connection flow paths 36a, 36b If a mass flow controller capable of handling a large flow rate is provided at 36c, the flow rate cannot be finely adjusted, and the processing quality of the substrate G may be degraded. Therefore, as shown in FIG. 5, when the processing gas from the processing gas supply sources 30, 31, 32 is stored or filled in the processing gas tanks 33, 34 in the respective supply source connection flow paths 36a, 36b, 36c. The storage flow paths 36j, 36k, 36l to be branched and the supply flow paths 36m, 36n, 36o that flow when the processing gas from the processing gas supply sources 30, 31, 32 is supplied into the chamber 2 are branched. A mass flow controller 36p and a valve 36q that can handle a large flow rate are provided in the storage flow paths 36j, 36k, and 36l, respectively, and each of the supply flow paths 36m, 36n, and 36o can be finely adjusted. The mass flow controller 36r and the valve 36s may be provided. With such a configuration, it is possible to precisely adjust the flow rate of the processing gas supplied into the chamber 2 while filling the processing gas tanks 33 and 34 in a short time.

以上、本発明の好適な実施の形態を説明したが、本発明は、上記実施形態に限定されるものではなく、種々の変更が可能である。上記実施形態では、下部電極に高周波電力を印加するRIEタイプの容量結合型平行平板プラズマエッチング装置に適用した例について説明したが、これに限らず、アッシング、CVD成膜等の他のプラズマ処理装置に適用可能であり、さらに、基板等の被処理体を処理容器内に収容してガス処理する、プラズマ処理装置以外のガス装置全般にも適用可能である。また、上記実施形態ではFPD用のガラス基板の処理に適用した例について説明したが、これに限らず、半導体基板等の基板全般の処理に適用可能であり、基板以外の被処理体の処理にも適用可能である。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment, and various modifications can be made. In the above embodiment, the example applied to the RIE type capacitively coupled parallel plate plasma etching apparatus that applies high frequency power to the lower electrode has been described. However, the present invention is not limited to this, and other plasma processing apparatuses such as ashing, CVD film formation, etc. Further, the present invention can be applied to any gas apparatus other than the plasma processing apparatus in which an object to be processed such as a substrate is accommodated in a processing container and gas is processed. Moreover, although the said embodiment demonstrated the example applied to the process of the glass substrate for FPD, it is applicable not only to this but to the process of the board | substrates in general, such as a semiconductor substrate, and to the process of to-be-processed objects other than a board | substrate. Is also applicable.

本発明に係るガス処理装置の一実施形態であるプラズマエッチング装置の概略断面図である。It is a schematic sectional drawing of the plasma etching apparatus which is one Embodiment of the gas processing apparatus which concerns on this invention. 処理ガスの充填時間、および処理ガス供給時の安定時間の測定に用いたプラズマエッチング装置の概略断面図である。It is a schematic sectional drawing of the plasma etching apparatus used for measurement of the filling time of processing gas, and the stable time at the time of processing gas supply. 処理ガスの充填時間、および処理ガス供給時の安定時間の測定結果を示す図である。It is a figure which shows the measurement result of the filling time of process gas, and the stable time at the time of process gas supply. 本発明に係るガス処理装置の他の実施形態であるプラズマエッチング装置の概略断面図である。It is a schematic sectional drawing of the plasma etching apparatus which is other embodiment of the gas processing apparatus which concerns on this invention. プラズマエッチング装置に設けられた処理ガス供給機構の供給源接続流路の変形例を示す図である。It is a figure which shows the modification of the supply source connection flow path of the process gas supply mechanism provided in the plasma etching apparatus.

符号の説明Explanation of symbols

1、1′:プラズマエッチング装置(ガス処理装置)
2:チャンバー(処理容器)
3、3′:処理ガス供給機構
4:排気手段
5:プラズマ生成機構
41:排気管(排気路)
42:排気装置
30:Heガス供給源(処理ガス供給源)
31:HClガス供給源(処理ガス供給源)
32:SFガス供給源(処理ガス供給源)
33、34:処理ガスタンク
35:処理ガス通流部材
36:第1の処理ガス流路
36a、36b、36c:供給源接続流路
36j、36k、36l:貯留用流路
36m、36n、36o:供給用流路
37、37′、38、38′:第2の処理ガス流路
37a、37a′、38a、38a′:送入流路
37b、38b:送出流路
39、39′:バイパス流路
90:プロセスコントローラ
91:ユーザーインターフェイス
92:記憶部
93:ユニットコントローラ(制御部)
G:ガラス基板(被処理体)
1, 1 ': Plasma etching device (gas processing device)
2: Chamber (processing container)
3, 3 ': Process gas supply mechanism 4: Exhaust means 5: Plasma generation mechanism 41: Exhaust pipe (exhaust passage)
42: Exhaust device 30: He gas supply source (process gas supply source)
31: HCl gas supply source (process gas supply source)
32: SF 6 gas supply source (process gas supply source)
33, 34: Process gas tank 35: Process gas flow member 36: First process gas flow path 36a, 36b, 36c: Supply source connection flow path 36j, 36k, 36l: Storage flow path 36m, 36n, 36o: Supply Flow path 37, 37 ', 38, 38': Second process gas flow path 37a, 37a ', 38a, 38a': Inflow path 37b, 38b: Outlet path 39, 39 ': Bypass path 90 : Process controller 91: User interface 92: Storage unit 93: Unit controller (control unit)
G: Glass substrate (object to be processed)

Claims (8)

被処理体を収容する処理容器と、
前記処理容器内に処理ガスを供給する処理ガス供給機構と、
前記処理容器内を排気する排気手段と、
前記処理ガス供給機構を制御する制御部とを具備し、
前記処理容器内に被処理体を収容した状態で、前記排気手段によって排気しつつ前記処理ガス供給機構によって処理ガスを供給して被処理体に対して所定の処理を施すガス処理装置であって、
前記処理ガス供給機構は、
前記処理容器内に処理ガスを供給するための処理ガス供給源と、
前記処理ガス供給源からの処理ガスを一時的に貯留するための処理ガスタンクと、
前記処理ガス供給源からの処理ガスを前記処理ガスタンクに送給し、前記処理ガスタンク内の処理ガスを前記処理容器内に送給する処理ガス通流部材と
を備え、
処理ガスが、前記処理ガス供給源から前記処理ガスタンクに一旦貯留され、前記処理ガスタンクから前記処理容器内に供給されるとともに、前記処理ガス供給源からも前記処理容器内に供給され、
前記処理ガス通流部材は、前記処理ガス供給源および前記処理容器に接続された第1の処理ガス流路と、前記第1の処理ガス流路から分岐して前記処理ガスタンクに接続された第2の処理ガス流路とを有し、
前記処理ガスタンクは複数設けられているとともに、前記第2の処理ガス流路は、前記処理ガスタンクの数に対応して複数設けられ、
前記各第2の処理ガス流路は、処理ガスを前記処理ガスタンクに送り入れるための送入流路と、処理ガスを前記処理ガスタンクから送り出すための送出流路とを別個に有し、
前記制御部は、前記複数の処理ガスタンクの一部から前記送出流路を介して前記処理容器内に処理ガスを供給させるのと並行して、前記処理ガス供給源から前記送入流路を介して前記複数の処理ガスタンクの残りの一部または全部に処理ガスを貯留させることを特徴とするガス処理装置。
A processing container for storing an object to be processed;
A processing gas supply mechanism for supplying a processing gas into the processing container;
Exhaust means for exhausting the inside of the processing container;
A control unit for controlling the processing gas supply mechanism,
A gas processing apparatus for performing a predetermined process on a target object by supplying a processing gas by the processing gas supply mechanism while exhausting by the exhaust means while the target object is accommodated in the processing container. ,
The processing gas supply mechanism includes:
A processing gas supply source for supplying a processing gas into the processing container;
A processing gas tank for temporarily storing processing gas from the processing gas supply source; and
A processing gas flow member for supplying processing gas from the processing gas supply source to the processing gas tank, and supplying processing gas in the processing gas tank into the processing container;
The processing gas is temporarily stored in the processing gas tank from the processing gas supply source, and supplied from the processing gas tank into the processing container, and also supplied from the processing gas supply source into the processing container,
The processing gas flow member includes a first processing gas channel connected to the processing gas supply source and the processing container, a first processing gas channel branched from the first processing gas channel, and connected to the processing gas tank. Two process gas flow paths,
A plurality of the processing gas tanks are provided, and a plurality of the second processing gas flow paths are provided corresponding to the number of the processing gas tanks,
Each of the second processing gas flow paths separately has an inflow path for sending processing gas into the processing gas tank and an outflow path for sending out processing gas from the processing gas tank,
The controller is configured to supply a processing gas from a part of the plurality of processing gas tanks to the processing container via the delivery flow path and from the processing gas supply source via the delivery flow path. A processing gas is stored in the remaining part or all of the plurality of processing gas tanks.
前記第1の処理ガス流路は、前記処理ガス供給源からの処理ガスを前記処理ガスタンクに貯留させる際に通流させる貯留用流路と、前記処理ガス供給源からの処理ガスを前記処理容器内に供給する際に通流させる供給用流路とを別個に有することを特徴とする請求項1に記載のガス処理装置。 The first processing gas flow path includes a storage flow path through which processing gas from the processing gas supply source is stored in the processing gas tank, and processing gas from the processing gas supply source to the processing container. The gas processing apparatus according to claim 1 , further comprising a supply flow channel that is circulated when being supplied to the inside. 前記排気手段は、前記処理容器に複数接続された排気路と、前記排気路を介して前記処理容器内を排気する排気装置とを有し、
前記処理ガス通流部材と前記複数の排気路のうちの一部とにはバイパス流路が接続され、前記処理ガス通流部材内の処理ガスが前記バイパス流路を介して前記排気手段により排出可能に構成されており、
前記バイパス流路が接続された前記排気路は、前記バイパス流路との接続部よりも上流側が開閉自在であることを特徴とする請求項1又は請求項2に記載のガス処理装置。
The exhaust means has a plurality of exhaust passages connected to the processing container, and an exhaust device for exhausting the inside of the processing container through the exhaust passage,
A bypass flow path is connected to the process gas flow member and a part of the plurality of exhaust passages, and the process gas in the process gas flow member is discharged by the exhaust means through the bypass flow path. Configured to be possible,
The gas processing apparatus according to claim 1 or 2 , wherein the exhaust path connected to the bypass flow path is openable and closable upstream of a connection portion with the bypass flow path.
前記処理容器内に、前記処理ガス供給機構によって供給された処理ガスのプラズマを生成するプラズマ生成機構を、さらに具備し、
前記所定の処理は、処理ガスのプラズマを用いたプラズマ処理であることを特徴とする請求項1から請求項3のいずれか1項に記載のガス処理装置。
A plasma generation mechanism for generating plasma of the processing gas supplied by the processing gas supply mechanism in the processing container;
Wherein the predetermined processing, gas processing device according to any one of claims 1 to 3, characterized in that a plasma treatment using a plasma of a processing gas.
処理容器内に収容された被処理体に所定の処理が施されるように前記処理容器内に処理ガスを供給する処理ガス供給方法であって、
前記処理容器内に処理ガスを供給するための処理ガス供給源と、前記処理ガス供給源からの処理ガスを一時的に貯留するための処理ガスタンクと、前記処理ガス供給源からの処理ガスを前記処理ガスタンクに送給し、前記処理ガスタンク内の処理ガスを前記処理容器内に送給する処理ガス通流部材とを準備し、
処理ガスを、前記処理ガス供給源から前記処理ガスタンクに一旦貯留し、前記処理ガスタンクから前記処理容器内に供給し、
前記処理ガス通流部材を、前記処理ガス供給源および前記処理容器に接続された第1の処理ガス流路と、前記第1の処理ガス流路から分岐して前記処理ガスタンクに接続された第2の処理ガス流路とから構成しておき、
処理ガスを前記処理ガス供給源からも前記処理容器内に供給し、
前記処理ガスタンクを複数設けるとともに、前記第2の処理ガス流路を、前記処理ガスタンクの数に対応して複数設け、
前記各第2の処理ガス流路を、処理ガスを前記処理ガスタンクに送り入れるための送入流路と、処理ガスを前記処理ガスタンクから送り出すための送出流路とを別個に有して構成しておき、
前記複数の処理ガスタンクの一部から前記送出流路を介して前記処理容器内に処理ガスを供給するのと並行して、前記処理ガス供給源から前記送入流路を介して前記複数の処理ガスタンクの残りの一部または全部に処理ガスを貯留することを特徴とする処理ガス供給方法。
A processing gas supply method for supplying a processing gas into the processing container so that a predetermined processing is performed on an object to be processed housed in the processing container,
A processing gas supply source for supplying a processing gas into the processing container; a processing gas tank for temporarily storing processing gas from the processing gas supply source; and a processing gas from the processing gas supply source. Preparing a processing gas flow member for supplying the processing gas to the processing gas tank and supplying the processing gas in the processing gas tank into the processing container;
Process gas is temporarily stored in the process gas tank from the process gas supply source, and supplied from the process gas tank into the process container,
The processing gas flow member includes a first processing gas flow path connected to the processing gas supply source and the processing container, and a first branching from the first processing gas flow path and connected to the processing gas tank. 2 processing gas flow paths,
Supplying a processing gas from the processing gas supply source into the processing container;
A plurality of the processing gas tanks are provided, and a plurality of the second processing gas flow paths are provided corresponding to the number of the processing gas tanks,
Each of the second processing gas flow paths has a separate flow path for sending processing gas into the processing gas tank and a sending flow path for sending processing gas from the processing gas tank. Leave
In parallel with supplying the processing gas from a part of the plurality of processing gas tanks into the processing container via the delivery channel, the plurality of processings from the processing gas supply source via the delivery channel. A processing gas supply method, wherein the processing gas is stored in a part or all of the remaining part of the gas tank.
処理容器内に収容された被処理体に所定の処理が施されるように前記処理容器内に処理ガスを供給する処理ガス供給方法であって、
前記処理容器内に処理ガスを供給するための処理ガス供給源と、前記処理ガス供給源からの処理ガスを一時的に貯留するための処理ガスタンクと、前記処理ガス供給源からの処理ガスを前記処理ガスタンクに送給し、前記処理ガスタンク内の処理ガスを前記処理容器内に送給する処理ガス通流部材とを準備し、
処理ガスを、前記処理ガス供給源から前記処理ガスタンクに一旦貯留し、前記処理ガスタンクから前記処理容器内に供給し、
前記処理ガス通流部材を、前記処理ガス供給源および前記処理容器に接続された第1の処理ガス流路と、前記第1の処理ガス流路から分岐して前記処理ガスタンクに接続された第2の処理ガス流路とから構成しておき、
処理ガスを前記処理ガス供給源からも前記処理容器内に供給し、
前記第2の処理ガス流路を、処理ガスを前記処理ガスタンクに送り入れるための送入流路と、処理ガスを前記処理ガスタンクから送り出すための送出流路とを別個に有して構成し、
前記処理ガス供給源を、異なる複数種類の処理ガスを供給するように複数設けるとともに、前記第1の処理ガス流路を、前記処理ガス供給源の数に対応して複数に分岐して前記各処理ガス供給源に接続された供給源接続流路を有して構成し、
前記第2の処理ガス流路の前記送入流路を、前記第1の処理ガス流路の前記各供給源接続流路から分岐させておき、
前記処理ガスタンクから前記送出流路を介して前記処理容器内に所定の種類および比率からなる処理ガスを供給した後、前記複数の処理ガス供給源の一部または全部から前記第1の処理ガス流路を介して前記処理容器内に前記所定の種類および比率からなる処理ガスを供給するのと並行して、前記複数の処理ガス供給源の一部または全部から前記送入流路を介して前記処理ガスタンクに前記所定の種類および比率とは異なる種類および/または比率からなる処理ガスを貯留することを特徴とする処理ガス供給方法。
A processing gas supply method for supplying a processing gas into the processing container so that a predetermined processing is performed on an object to be processed housed in the processing container,
A processing gas supply source for supplying a processing gas into the processing container; a processing gas tank for temporarily storing processing gas from the processing gas supply source; and a processing gas from the processing gas supply source. Preparing a processing gas flow member for supplying the processing gas to the processing gas tank and supplying the processing gas in the processing gas tank into the processing container;
Process gas is temporarily stored in the process gas tank from the process gas supply source, and supplied from the process gas tank into the process container,
The processing gas flow member includes a first processing gas flow path connected to the processing gas supply source and the processing container, and a first branching from the first processing gas flow path and connected to the processing gas tank. 2 processing gas flow paths,
Supplying a processing gas from the processing gas supply source into the processing container;
The second processing gas flow path is configured separately including an inflow path for feeding a processing gas into the processing gas tank and a delivery flow path for sending out the processing gas from the processing gas tank,
A plurality of the processing gas supply sources are provided so as to supply different types of processing gases, and the first processing gas flow paths are branched into a plurality of numbers corresponding to the number of the processing gas supply sources. Having a supply source connection channel connected to the processing gas supply source,
The inflow channel of the second process gas channel is branched from each of the supply source connection channels of the first process gas channel;
After supplying a processing gas of a predetermined type and ratio from the processing gas tank into the processing container via the delivery flow path, the first processing gas flow from a part or all of the plurality of processing gas supply sources In parallel with supplying the processing gas having the predetermined type and ratio into the processing container through a channel, the processing gas supply source is partially or entirely from the plurality of processing gas supply sources through the inlet channel. A processing gas supply method, wherein a processing gas of a type and / or ratio different from the predetermined type and ratio is stored in a processing gas tank.
処理容器内に収容された被処理体に所定の処理が施されるように前記処理容器内に処理ガスを供給する処理ガス供給方法であって、
前記処理容器内に処理ガスを供給するための処理ガス供給源と、前記処理ガス供給源からの処理ガスを一時的に貯留するための処理ガスタンクと、前記処理ガス供給源からの処理ガスを前記処理ガスタンクに送給し、前記処理ガスタンク内の処理ガスを前記処理容器内に送給する処理ガス通流部材とを準備し、
処理ガスを、前記処理ガス供給源から前記処理ガスタンクに一旦貯留し、前記処理ガスタンクから前記処理容器内に供給し、
前記処理ガス通流部材を、前記処理ガス供給源および前記処理容器に接続された第1の処理ガス流路と、前記第1の処理ガス流路から分岐して前記処理ガスタンクに接続された第2の処理ガス流路とから構成しておき、
処理ガスを前記処理ガス供給源からも前記処理容器内に供給し、
前記処理ガスタンクを複数設けるとともに、前記第2の処理ガス流路を、前記処理ガスタンクの数に対応して複数設け、
前記各第2の処理ガス流路を、処理ガスを前記処理ガスタンクに送り入れるための送入流路と、処理ガスを前記処理ガスタンクから送り出すための送出流路とを別個に有して構成し、
前記処理ガス供給源を、異なる複数種類の処理ガスを供給するように複数設けるとともに、前記第1の処理ガス流路を、前記処理ガス供給源の数に対応して複数に分岐して前記各処理ガス供給源に接続された供給源接続流路を有して構成し、
前記第2の処理ガス流路の前記送入流路を、前記第1の処理ガス流路の前記各供給源接続流路から分岐させておき、
前記複数の処理ガスタンクの一部から前記送出流路を介して前記処理容器内に所定の種類および比率からなる処理ガスを供給するとともに、前記複数の処理ガス供給源の一部または全部から前記第1の処理ガス流路を介して前記処理容器内に前記所定の種類および比率からなる処理ガスを供給するのと並行して、前記複数の処理ガス供給源の一部または全部から前記送入流路を介して前記複数の処理ガスタンクの残りの一部または全部に前記所定の種類および比率とは異なる種類および/または比率からなる処理ガスを貯留することを特徴とする処理ガス供給方法。
A processing gas supply method for supplying a processing gas into the processing container so that a predetermined processing is performed on an object to be processed housed in the processing container,
A processing gas supply source for supplying a processing gas into the processing container; a processing gas tank for temporarily storing processing gas from the processing gas supply source; and a processing gas from the processing gas supply source. Preparing a processing gas flow member for supplying the processing gas to the processing gas tank and supplying the processing gas in the processing gas tank into the processing container;
Process gas is temporarily stored in the process gas tank from the process gas supply source, and supplied from the process gas tank into the process container,
The processing gas flow member includes a first processing gas flow path connected to the processing gas supply source and the processing container, and a first branching from the first processing gas flow path and connected to the processing gas tank. 2 processing gas flow paths,
Supplying a processing gas from the processing gas supply source into the processing container;
A plurality of the processing gas tanks are provided, and a plurality of the second processing gas flow paths are provided corresponding to the number of the processing gas tanks,
Each of the second processing gas flow paths has a separate flow path for sending processing gas into the processing gas tank and a sending flow path for sending processing gas from the processing gas tank. ,
A plurality of the processing gas supply sources are provided so as to supply different types of processing gases, and the first processing gas flow paths are branched into a plurality of numbers corresponding to the number of the processing gas supply sources. Having a supply source connection channel connected to the processing gas supply source,
The inflow channel of the second process gas channel is branched from each of the supply source connection channels of the first process gas channel;
A processing gas having a predetermined type and ratio is supplied from a part of the plurality of processing gas tanks into the processing container via the delivery channel, and the first or second part of the plurality of processing gas supply sources is used to supply the processing gas. In parallel with supplying the processing gas of the predetermined type and ratio into the processing container via one processing gas flow path, the inflow from a part or all of the plurality of processing gas supply sources A processing gas supply method comprising storing a processing gas having a type and / or ratio different from the predetermined type and / or ratio in the remaining part or all of the plurality of processing gas tanks via a path.
コンピュータ上で動作する制御プログラムが記憶されたコンピュータ読取可能な記憶媒体であって、
前記制御プログラムは、実行時に請求項5から請求項7のいずれか1項に記載の処理ガス供給方法が行われるように、コンピュータに処理装置を制御させることを特徴とするコンピュータ読取可能な記憶媒体。
A computer-readable storage medium storing a control program that runs on a computer,
8. The computer-readable storage medium, wherein the control program causes a computer to control the processing apparatus so that the processing gas supply method according to any one of claims 5 to 7 is performed at the time of execution. .
JP2006270823A 2006-10-02 2006-10-02 Process gas supply mechanism, process gas supply method, and gas processing apparatus Active JP5235293B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006270823A JP5235293B2 (en) 2006-10-02 2006-10-02 Process gas supply mechanism, process gas supply method, and gas processing apparatus
CN200710154446XA CN101159228B (en) 2006-10-02 2007-09-12 Processing gas supplying mechanism, supplying method and gas processing unit
KR1020070098625A KR100915740B1 (en) 2006-10-02 2007-10-01 Mechanism and method for supplying process gas, gas processing apparatus, and computer readable storage medium
TW096136749A TWI416618B (en) 2006-10-02 2007-10-01 A treatment gas supply means and a treatment gas supply method, and a gas treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006270823A JP5235293B2 (en) 2006-10-02 2006-10-02 Process gas supply mechanism, process gas supply method, and gas processing apparatus

Publications (2)

Publication Number Publication Date
JP2008091625A JP2008091625A (en) 2008-04-17
JP5235293B2 true JP5235293B2 (en) 2013-07-10

Family

ID=39307254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006270823A Active JP5235293B2 (en) 2006-10-02 2006-10-02 Process gas supply mechanism, process gas supply method, and gas processing apparatus

Country Status (4)

Country Link
JP (1) JP5235293B2 (en)
KR (1) KR100915740B1 (en)
CN (1) CN101159228B (en)
TW (1) TWI416618B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101764959B1 (en) * 2014-03-21 2017-08-03 주식회사 엘지화학 Apparatus for High Speed Atomic Layer Deposition and Deposition Method Using the Same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283844A (en) * 2008-05-26 2009-12-03 Japan Steel Works Ltd:The Semiconductor processing device
JP5483600B2 (en) * 2008-12-03 2014-05-07 大陽日酸株式会社 Gas supply method
JP5310409B2 (en) * 2009-09-04 2013-10-09 東京エレクトロン株式会社 Plasma etching method
JP2012033150A (en) 2010-06-30 2012-02-16 Toshiba Corp Mass flow controller, mass flow controller system, substrate processing apparatus and gas flow rate adjustment method
US9348339B2 (en) * 2010-09-29 2016-05-24 Mks Instruments, Inc. Method and apparatus for multiple-channel pulse gas delivery system
US8997686B2 (en) 2010-09-29 2015-04-07 Mks Instruments, Inc. System for and method of fast pulse gas delivery
US10031531B2 (en) 2011-02-25 2018-07-24 Mks Instruments, Inc. System for and method of multiple channel fast pulse gas delivery
US10126760B2 (en) 2011-02-25 2018-11-13 Mks Instruments, Inc. System for and method of fast pulse gas delivery
US10353408B2 (en) 2011-02-25 2019-07-16 Mks Instruments, Inc. System for and method of fast pulse gas delivery
CN103205719B (en) * 2012-01-17 2015-09-09 上海北玻镀膜技术工业有限公司 Gas passage module and apply its gas distributing device
JP6107327B2 (en) 2013-03-29 2017-04-05 東京エレクトロン株式会社 Film forming apparatus, gas supply apparatus, and film forming method
JP6027490B2 (en) * 2013-05-13 2016-11-16 東京エレクトロン株式会社 Gas supply method and plasma processing apparatus
CN103322411B (en) * 2013-07-16 2015-07-22 兖矿集团有限公司 Chemical system stoppage protective device
CN104715995A (en) * 2013-12-17 2015-06-17 中微半导体设备(上海)有限公司 Gas supply device and plasma reaction unit thereof
JP6410622B2 (en) * 2014-03-11 2018-10-24 東京エレクトロン株式会社 Plasma processing apparatus and film forming method
JP6318027B2 (en) * 2014-06-27 2018-04-25 株式会社日立ハイテクノロジーズ Plasma processing equipment
JP6541406B2 (en) * 2015-04-21 2019-07-10 株式会社日立ハイテクノロジーズ Plasma processing system
JP6678489B2 (en) * 2016-03-28 2020-04-08 東京エレクトロン株式会社 Substrate processing equipment
KR102514043B1 (en) * 2016-07-18 2023-03-24 삼성전자주식회사 Method of manufacturing semiconductor device
JP6665760B2 (en) * 2016-11-16 2020-03-13 日本電気硝子株式会社 Glass substrate manufacturing apparatus and manufacturing method
KR102593445B1 (en) * 2018-12-03 2023-10-24 주식회사 원익아이피에스 Apparatus for supplying material source and gas supply control method
KR102489515B1 (en) * 2018-12-03 2023-01-17 주식회사 원익아이피에스 Apparatus for supplying material source and gas supply control method
SG10202101459XA (en) * 2020-02-25 2021-09-29 Kc Co Ltd Gas mixing supply device, mixing system, and gas mixing supply method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318834U (en) * 1986-07-23 1988-02-08
KR100264445B1 (en) * 1993-10-04 2000-11-01 히가시 데쓰로 Plasma treatment equipment
TW299559B (en) * 1994-04-20 1997-03-01 Tokyo Electron Co Ltd
JPH11117070A (en) * 1997-10-14 1999-04-27 Nissan Motor Co Ltd Chemical vapor growth device
JP4204840B2 (en) * 2002-10-08 2009-01-07 株式会社日立国際電気 Substrate processing equipment
DE10247913A1 (en) * 2002-10-14 2004-04-22 Robert Bosch Gmbh Process for the anisotropic etching of structures in a substrate arranged in an etching chamber used in semiconductor manufacture comprises using an etching gas and a passivating gas which is fed to the chamber in defined periods
US6902648B2 (en) * 2003-01-09 2005-06-07 Oki Electric Industry Co., Ltd. Plasma etching device
JP2007519216A (en) * 2003-07-04 2007-07-12 株式会社荏原製作所 Substrate processing equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101764959B1 (en) * 2014-03-21 2017-08-03 주식회사 엘지화학 Apparatus for High Speed Atomic Layer Deposition and Deposition Method Using the Same

Also Published As

Publication number Publication date
JP2008091625A (en) 2008-04-17
CN101159228B (en) 2012-09-05
KR20080031117A (en) 2008-04-08
CN101159228A (en) 2008-04-09
TWI416618B (en) 2013-11-21
KR100915740B1 (en) 2009-09-04
TW200832540A (en) 2008-08-01

Similar Documents

Publication Publication Date Title
JP5235293B2 (en) Process gas supply mechanism, process gas supply method, and gas processing apparatus
KR102432446B1 (en) Mounting table and plasma processing apparatus
US10418258B2 (en) Mounting table temperature control device and substrate processing apparatus
US9340879B2 (en) Substrate processing apparatus, method for manufacturing semiconductor device and computer-readable recording medium
TWI524388B (en) A substrate processing apparatus, a manufacturing method of a semiconductor device, and a recording medium
JP6512959B2 (en) Gas supply system, gas supply control method, and gas replacement method
JP2009283715A (en) Plasma processing apparatus and process gas supply device for use in the same
JP6184760B2 (en) Substrate processing method and substrate processing apparatus
TW200931577A (en) Vacuum treatment system, and method for carrying substrate
US10867777B2 (en) Plasma processing method and plasma processing apparatus
JP2018064058A (en) Film deposition device, method for cleaning the same, and storage medium
US20220181122A1 (en) Support unit, apparatus for treating substrate, and method for treating substrate
US11538665B2 (en) Gas supply system, substrate processing apparatus, and control method for gas supply system
KR100884851B1 (en) Mechanism and method for supplying thermal conduction gas, and substrate processing apparatus and method, and computer readable storage medium
US10373846B2 (en) Substrate processing method
JP2023554113A (en) Substrate processing method and substrate processing apparatus
JP5410794B2 (en) Substrate processing equipment
US20200294773A1 (en) Plasma processing method and plasma processing apparatus
JP2022132091A (en) Substrate processing apparatus and substrate temperature correction method
KR20220122543A (en) Substrate processing apparatus, and substrate temperature correction method
JP2018195722A (en) Cooling circulation system, substrate processing device, and purge method of cooling medium circulation passage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5235293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250