JP5174848B2 - Plasma processing method and plasma processing apparatus - Google Patents

Plasma processing method and plasma processing apparatus Download PDF

Info

Publication number
JP5174848B2
JP5174848B2 JP2010095322A JP2010095322A JP5174848B2 JP 5174848 B2 JP5174848 B2 JP 5174848B2 JP 2010095322 A JP2010095322 A JP 2010095322A JP 2010095322 A JP2010095322 A JP 2010095322A JP 5174848 B2 JP5174848 B2 JP 5174848B2
Authority
JP
Japan
Prior art keywords
magnetic
plasma
magnetic field
chamber
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010095322A
Other languages
Japanese (ja)
Other versions
JP2010166093A (en
Inventor
征英 岩崎
智聡 請井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2010095322A priority Critical patent/JP5174848B2/en
Publication of JP2010166093A publication Critical patent/JP2010166093A/en
Application granted granted Critical
Publication of JP5174848B2 publication Critical patent/JP5174848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、被処理基板にプラズマ処理を施す技術に係わり、特に高周波放電を利用してプラズマを生成する枚葉式のプラズマ処理方法および装置に関する。   The present invention relates to a technique for performing plasma processing on a substrate to be processed, and more particularly to a single-wafer type plasma processing method and apparatus for generating plasma using high-frequency discharge.

半導体デバイスやFPD(Flat Panel Display)の製造プロセスにおけるエッチング、堆積、酸化、スパッタリング等の処理では、処理ガスに比較的低温で良好な反応を行わせるためにプラズマが多く利用されている。一般に、プラズマ処理装置においてプラズマを生成する方式は、グロー放電または高周波放電を利用するものと、マイクロ波を利用するものとに大別される。   In processes such as etching, deposition, oxidation, sputtering and the like in the manufacturing process of semiconductor devices and FPDs (Flat Panel Displays), plasma is often used in order to allow a process gas to react well at a relatively low temperature. In general, methods for generating plasma in a plasma processing apparatus are roughly classified into those using glow discharge or high-frequency discharge and those using microwaves.

一般に、高周波放電を利用する枚葉式のプラズマ処理装置では、減圧可能なチャンバ内に電極を兼ねた載置台またはサセプタを設置して、このサセプタの上に被処理基板(半導体ウエハ、ガラス基板等)を載置する。そして、チャンバの室内を所定の真空度まで減圧してから処理ガスを導入し、室内のガス圧力が設定値になった時点で電極に高周波を印加する。そうすると、処理ガスが放電を開始し、ガスプラズマが発生する。このプラズマの下で基板の表面または被処理面に膜の微細加工処理(ドライエッチング等)や成膜処理(化学的気相成長等)等が施される。   In general, in a single wafer plasma processing apparatus using high frequency discharge, a mounting table or a susceptor that also serves as an electrode is installed in a chamber that can be decompressed, and a substrate to be processed (semiconductor wafer, glass substrate, etc.) is placed on the susceptor. ) Is placed. Then, after reducing the pressure in the chamber to a predetermined degree of vacuum, a processing gas is introduced, and a high frequency is applied to the electrode when the gas pressure in the chamber reaches a set value. Then, the process gas starts to discharge and gas plasma is generated. Under this plasma, the surface of the substrate or the surface to be processed is subjected to film microfabrication (such as dry etching) or film formation (such as chemical vapor deposition).

高周波放電方式のプラズマ処理装置では、ガス圧力が低いと、ガス分子の密度が低いため、放電の開始(プラズマの着火)や維持が難しくなる。特に、平行平板型のプラズマ処理装置では、その傾向が顕著なだけでなく、電極間隔を狭くしても、あるいは電極間に印加するRF電圧を低くしても、電子が電界から得るエネルギーひいてはガス分子または原子を電離させるエネルギーが少なくなって、放電が不安定になる傾向がある。しかしながら、プラズマプロセッシングの中には、低ガス圧、挟電極間隔あるいは低RF印加電圧を望ましい処理条件とするものもある。たとえば、異方性エッチングでは、良好な垂直エッチング形状を得るには低ガス圧が有利とされており、低圧領域での安定した放電開始特性および放電維持特性が求められている。   In a high-frequency discharge type plasma processing apparatus, when the gas pressure is low, the density of gas molecules is low, so that it is difficult to start or maintain the discharge (plasma ignition). In particular, in the parallel plate type plasma processing apparatus, not only the tendency is remarkable, but even if the electrode interval is narrowed or the RF voltage applied between the electrodes is lowered, the energy obtained from the electric field by the electric field and the gas There is a tendency for the discharge to become unstable due to less energy for ionizing molecules or atoms. However, some plasma processing may have low gas pressure, sandwiched electrode spacing, or low RF applied voltage as desirable processing conditions. For example, in anisotropic etching, a low gas pressure is advantageous for obtaining a good vertical etching shape, and stable discharge start characteristics and discharge maintenance characteristics in a low pressure region are required.

従来より、放電に適した特別の高圧条件の下で放電を開始し(たとえば特許文献1参照)、あるいは異種ガス条件または高RF印加条件の下で放電を開始し、放電が安定化してから本来の処理条件に切り換える方法(イグニションプラズマ方式)が知られている。また、マイクロ波やUV光でプラズマ生成をアシストする方法も効果があることが知られている。   Conventionally, discharge is started under special high-pressure conditions suitable for discharge (see, for example, Patent Document 1), or discharge is started under different gas conditions or high RF application conditions. A method (ignition plasma method) for switching to the above processing conditions is known. It is also known that a method of assisting plasma generation with microwaves or UV light is also effective.

特開2003−124198号公報JP 2003-124198 A

しかしながら、イグニションプラズマ方式は、本来の処理条件とは異なる条件を一定時間用いるため、プロセスへの影響やスループットの低下を招く不利点がある。また、マイクロ波やUV光を用いる方法も、やはりプロセスへの影響が懸念されるだけでなく、装置が煩雑化したり装置コストが増大するという難点がある。結局、従来は、低圧プラズマのアプリケーションには、ECR(Electron Cyclotron Resonance)等のマイクロ波方式を用いるほかなかった。   However, since the ignition plasma method uses conditions different from the original processing conditions for a certain period of time, there are disadvantages that affect the process and reduce the throughput. In addition, the method using microwaves or UV light is not only concerned with the influence on the process, but also has the disadvantage that the apparatus becomes complicated and the apparatus cost increases. After all, conventionally, microwave applications such as ECR (Electron Cyclotron Resonance) have been used for low-pressure plasma applications.

本発明は、上記のような従来技術の問題点に鑑みてなされたもので、簡易かつ低コストで高周波放電の開始を容易にして放電を安定に維持するプラズマ処理方法およびプラズマ処理装置を提供する。   The present invention has been made in view of the above-described problems of the prior art, and provides a plasma processing method and a plasma processing apparatus that can easily start a high-frequency discharge at a low cost and maintain a stable discharge. .

また、本発明は、被処理基板上のプラズマを効果的に高密度に閉じ込めてプラズマ処理の反応速度や面内均一性を向上させるプラズマ処理方法およびプラズマ処理装置を提供する。   The present invention also provides a plasma processing method and a plasma processing apparatus that effectively confine plasma on a substrate to be processed at a high density to improve the reaction rate and in-plane uniformity of plasma processing.

本発明のプラズマ処理方法は、減圧可能なチャンバ内に処理ガスを流し込むとともに高周波電界を形成して前記処理ガスのプラズマを生成し、前記プラズマの下で被処理基板に所望のプラズマ処理を施すプラズマ処理方法であって、前記チャンバ内のプラズマ生成空間のうち前記基板の外周端よりも半径方向外側の周辺プラズマ領域のみに、この領域内を磁力線が通過し、かつ前記磁力線の始点および終点の双方が前記チャンバの側壁よりも半径方向内側に位置するような磁場を形成し、前記磁場において、前記磁力線の始点および終点が共に前記周辺プラズマ領域の上方に位置し、前記始点から出た前記磁力線が前記周辺プラズマ領域の中またはその下方でUターンして前記終点に達し、前記磁力線の始点および終点をそれぞれ与える第1および第2の磁極の双方が磁石であって、前記第1および第2の磁極の間では、半径方向外側に配置される方の磁気量が半径方向内側に配置される方の磁気量よりも大きく、前記プラズマ生成空間のうち前記基板の外周端よりも半径方向内側の主プラズマ領域では実質的に無磁場状態とする。   In the plasma processing method of the present invention, a processing gas is flowed into a depressurizable chamber, a high-frequency electric field is formed to generate plasma of the processing gas, and a plasma for performing a desired plasma processing on a substrate to be processed under the plasma. In the processing method, the magnetic lines of force pass only in the peripheral plasma region radially outside the outer peripheral edge of the substrate in the plasma generation space in the chamber, and both the starting point and the ending point of the magnetic line of force are passed through this region. Forms a magnetic field located radially inward of the side wall of the chamber, and in the magnetic field, both the starting point and the ending point of the magnetic field lines are located above the peripheral plasma region, and the magnetic field lines exiting from the starting point are A U-turn is made in or below the peripheral plasma region to reach the end point, and a first point and an end point of the magnetic field lines are respectively provided. And the second magnetic pole is a magnet, and between the first and second magnetic poles, the magnetic quantity arranged on the radially outer side is larger than the magnetic quantity arranged on the radially inner side. Largely, the main plasma region radially inward from the outer peripheral edge of the substrate in the plasma generation space is substantially in the absence of a magnetic field.

また、本発明のプラズマ処理装置は、減圧可能なチャンバと、前記チャンバ内で被処理基板をほぼ水平に載置する電極と、前記電極の上方および周囲に設定されたプラズマ生成空間に処理ガスを供給する処理ガス供給部と、前記プラズマ生成空間に高周波電界を形成する高周波電界形成機構と、前記チャンバ内のプラズマ生成空間のうち前記基板の外周端よりも半径方向外側の周辺プラズマ領域のみに、この領域内を磁力線が通過し、かつ前記磁力線の始点および終点の双方が前記チャンバの側壁よりも半径方向内側に位置するような磁場を形成する磁場形成機構とを有し、前記磁場形成機構が、前記第1および第2の磁極を共に下向きで前記周辺プラズマ領域の上方に配置しており、前記磁場において、前記始点の第1の磁極から出た前記磁力線が前記周辺プラズマ領域内に降りてからUターンして前記終点の第2の磁極に達し、前記磁力線の始点および終点をそれぞれ与える第1および第2の磁極の双方が磁石であって、前記第1および第2の磁極の間では、半径方向外側に配置される方の磁気量が半径方向内側に配置される方の磁気量よりも大きく、前記プラズマ生成空間のうち前記基板の外周端よりも半径方向内側の主プラズマ領域では実質的に無磁場状態とする。   The plasma processing apparatus of the present invention also includes a chamber capable of decompression, an electrode for placing a substrate to be processed in the chamber substantially horizontally, and a processing gas in a plasma generation space set above and around the electrode. A processing gas supply unit to supply, a high-frequency electric field forming mechanism for forming a high-frequency electric field in the plasma generation space, and only a peripheral plasma region radially outside the outer peripheral edge of the substrate in the plasma generation space in the chamber, A magnetic field forming mechanism that forms a magnetic field in which magnetic field lines pass through the region and both the starting point and the ending point of the magnetic field lines are located radially inward of the side wall of the chamber, the magnetic field forming mechanism , Both the first and second magnetic poles are disposed downward and above the peripheral plasma region, and the magnetic field exits the first magnetic pole at the starting point in the magnetic field. The field lines fall into the peripheral plasma region and then make a U-turn to reach the second magnetic pole at the end point, and both the first and second magnetic poles respectively giving the start point and end point of the magnetic field lines are magnets, Between the first and second magnetic poles, the amount of magnetism arranged on the radially outer side is larger than the amount of magnetism arranged on the radially inner side, and the outer peripheral edge of the substrate in the plasma generation space In the main plasma region on the radially inner side, a substantially no magnetic field is set.

本発明では、減圧可能なチャンバ内で高周波放電により処理ガスのプラズマを生成するプラズマ処理装置において、磁場形成機構が、プラズマ生成空間のうち基板の外周端よりも半径方向外側の周辺プラズマ領域のみに実質的な磁場を形成する。これにより、プラズマプロセッシングの際には、高周波電界形成機構がプラズマ生成空間に高周波電界を形成すると、磁場の存在する周辺プラズマ領域内で最初に処理ガスが放電を開始し、そこから一瞬にプラズマ生成空間全体に放電が拡大して、放電ないしプラズマ生成が確立される。その後も、周辺プラズマ領域内で磁界が高周波放電をアシストするため、処理ガスの供給と高周波の印加が維持される限り、プラズマ生成空間全体で放電ないしプラズマ生成も安定に維持される。このように、周辺プラズマ領域内で磁場が高周波放電の開始のトリガとなり放電維持をアシストすることにより、たとえば低ガス圧力の条件下でも放電開始を容易にして放電を安定に維持することができる。一方で、磁場形成機構は主プラズマ領域を実質的に無磁場状態とすることができるので、電極上の基板に磁界が作用してダメージやストレスを与える可能性を回避または低減することができる。   In the present invention, in a plasma processing apparatus that generates plasma of a processing gas by high-frequency discharge in a depressurizable chamber, the magnetic field forming mechanism is only in a peripheral plasma region radially outside the outer peripheral edge of the substrate in the plasma generation space. Create a substantial magnetic field. As a result, during plasma processing, if the high-frequency electric field formation mechanism forms a high-frequency electric field in the plasma generation space, the process gas starts to discharge first in the surrounding plasma region where the magnetic field exists, and plasma is generated instantaneously from there. Discharge expands throughout the space and discharge or plasma generation is established. Thereafter, since the magnetic field assists the high frequency discharge in the peripheral plasma region, as long as the supply of the processing gas and the application of the high frequency are maintained, the discharge or plasma generation is stably maintained in the entire plasma generation space. As described above, the magnetic field in the peripheral plasma region serves as a trigger for the start of the high frequency discharge and assists the discharge maintenance, so that the discharge can be easily started and maintained stably even under a low gas pressure condition, for example. On the other hand, since the magnetic field forming mechanism can make the main plasma region substantially non-magnetic, it can avoid or reduce the possibility that the magnetic field acts on the substrate on the electrode to cause damage or stress.

また、本発明では、チャンバ内のプラズマ生成空間のうち基板の外周端よりも半径方向外側の周辺プラズマ領域のみに、この領域内を磁力線が通過し、かつ磁力線の始点および終点の双方がチャンバの側壁よりも半径方向内側に位置するような磁場を形成する。ここで、磁場形成機構は、第1および第2の磁極を共に下向きで前記周辺プラズマ領域の上方に配置しており、上記磁場において、始点の第1の磁極から出た前記磁力線が周辺プラズマ領域内に降りて、基板よりも低い高さ位置でUターンして終点の第2の磁極に達する。このような磁極配置構造によれば、処理容器の側壁の外に磁場形成機構を配置する構成と比較して、チャンバ中心に対する半径距離および周回距離が格段に短いため、周辺プラズマ領域内に好適なプロファイル(つまり、主プラズマ領域に磁気的な影響を及ぼすことなく、できるだけ主プラズマ領域に近い位置で強い磁場が得られるようなプロファイル)の磁場を形成するための磁石または磁極の個数および磁気量(サイズまたは体積に比例)を大幅に少なくすることが可能であり、磁場形成機構の装備に伴なう装置サイズおよびコストの増大を必要最小限に抑えることができる。   Further, in the present invention, the magnetic lines of force pass through only the peripheral plasma region radially outside the outer peripheral edge of the substrate in the plasma generation space in the chamber, and both the start point and the end point of the magnetic force line are in the chamber. A magnetic field is formed so as to be located radially inward of the side wall. Here, in the magnetic field forming mechanism, both the first and second magnetic poles are disposed downward and above the peripheral plasma region, and in the magnetic field, the lines of magnetic force emitted from the first magnetic pole at the start point are the peripheral plasma region. Go down and make a U-turn at a lower height than the substrate to reach the second magnetic pole at the end point. According to such a magnetic pole arrangement structure, compared with a configuration in which the magnetic field forming mechanism is arranged outside the side wall of the processing vessel, the radial distance and the circulation distance with respect to the chamber center are remarkably short, so that it is suitable for the peripheral plasma region. The number of magnets or magnetic poles and the amount of magnetic force for forming a magnetic field of a profile (that is, a profile in which a strong magnetic field is obtained as close to the main plasma region as possible without magnetically affecting the main plasma region) ( (Proportional to size or volume) can be greatly reduced, and the increase in device size and cost associated with the provision of the magnetic field forming mechanism can be minimized.

また、本発明は、上記のように磁力線の始点および終点をそれぞれ与える第1および第2の磁極を共に下向きで周辺プラズマ領域の上方に配置して周辺プラズマ領域内で磁力線をUターンさせる磁力線ループ構造により、周辺プラズマ領域内の磁束密度を高められると同時に、主プラズマ領域側への磁力線の流入を効果的に防止することができる。そして、第1および第2の磁極の間では、半径方向外側に配置される方の磁気量が半径方向内側に配置される方の磁気量よりも大きいので、上記磁力線ループ構造の作用効果を一層高めることができる。   In addition, the present invention provides a magnetic field line loop for U-turning the magnetic field lines in the peripheral plasma region by disposing the first and second magnetic poles that respectively provide the starting point and the end point of the magnetic field lines as described above, both downward and above the peripheral plasma region. With the structure, the magnetic flux density in the peripheral plasma region can be increased, and at the same time, the flow of magnetic lines of force to the main plasma region can be effectively prevented. In addition, between the first and second magnetic poles, the magnetic amount arranged on the radially outer side is larger than the magnetic amount arranged on the radially inner side, so that the effect of the magnetic field line loop structure is further enhanced. Can be increased.

本発明のプラズマ処理方法またはプラズマ処理装置によれば、上記のような構成と作用により、簡易かつ低コストで高周波放電の開始を容易にし放電を安定に維持することができる。さらには、被処理基板上のプラズマを効果的に高密度に閉じ込めてプラズマ処理の反応速度や面内均一性を向上させることもできる。   According to the plasma processing method or the plasma processing apparatus of the present invention, it is possible to easily start the high frequency discharge at a low cost and to maintain the discharge stably by the above configuration and operation. Furthermore, the plasma on the substrate to be processed can be effectively confined to improve the plasma processing reaction speed and in-plane uniformity.

本発明の一実施形態におけるプラズマエッチング装置の構成を示す断面図である。It is sectional drawing which shows the structure of the plasma etching apparatus in one Embodiment of this invention. 実施形態における磁場形成機構の要部の構成を示す斜視図である。It is a perspective view which shows the structure of the principal part of the magnetic field formation mechanism in embodiment. 実施形態における磁場形成機構の要部の構成を示す断面図である。It is sectional drawing which shows the structure of the principal part of the magnetic field formation mechanism in embodiment. 一実施例におけるプラズマ生成空間内の磁界強度分布を示すグラフ図である。It is a graph which shows magnetic field strength distribution in the plasma production space in one Example. 一実施例におけるプラズマ生成空間内の磁界強度分布を示すグラフ図である。It is a graph which shows magnetic field strength distribution in the plasma production space in one Example. 実施形態における磁場形成機構の一作用を模式的に示す略断面図である。It is a schematic sectional drawing which shows typically an effect | action of the magnetic field formation mechanism in embodiment. 実施形態における磁場形成機構の一変形例の構成を示す断面図である。It is sectional drawing which shows the structure of the modification of the magnetic field formation mechanism in embodiment. 図6の変形例の要部を示す平面図である。It is a top view which shows the principal part of the modification of FIG. 一実施例による磁場形成機構の要部の構成を示す断面図である。It is sectional drawing which shows the structure of the principal part of the magnetic field formation mechanism by one Example. 一実施例による磁場形成機構の要部の構成を示す断面図である。It is sectional drawing which shows the structure of the principal part of the magnetic field formation mechanism by one Example. 一変形例による磁場形成機構の要部の構成を示す断面図である。It is sectional drawing which shows the structure of the principal part of the magnetic field formation mechanism by one modification. 一変形例による磁場形成機構の要部の構成を示す断面図である。It is sectional drawing which shows the structure of the principal part of the magnetic field formation mechanism by one modification.

以下、添付図を参照して本発明の好適な実施の形態を説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1に、本発明の一実施形態によるプラズマ処理装置の構成を示す。このプラズマ処理装置は、平行平板型のプラズマエッチング装置として構成されており、たとえばアルミニウムまたはステンレス鋼等の金属製の円筒型チャンバ(処理容器)10を有している。チャンバ10は保安接地されている。   FIG. 1 shows the configuration of a plasma processing apparatus according to an embodiment of the present invention. This plasma processing apparatus is configured as a parallel plate type plasma etching apparatus, and has a cylindrical chamber (processing vessel) 10 made of metal such as aluminum or stainless steel. The chamber 10 is grounded for safety.

チャンバ10内には、被処理基板としてたとえば半導体ウエハWを載置する円板状の下部電極またはサセプタ12が設けられている。このサセプタ12は、たとえばアルミニウムからなり、絶縁性の筒状保持部14を介してチャンバ10の底から垂直上方に延びる筒状支持部16に支持されている。筒状保持部14の上面には、サセプタ12の上面を環状に囲むたとえば石英からなるフォーカスリング18が配置されている。   In the chamber 10, for example, a disk-like lower electrode or susceptor 12 on which a semiconductor wafer W is placed is provided as a substrate to be processed. The susceptor 12 is made of, for example, aluminum, and is supported by a cylindrical support portion 16 that extends vertically upward from the bottom of the chamber 10 via an insulating cylindrical holding portion 14. On the upper surface of the cylindrical holding part 14, a focus ring 18 made of quartz, for example, surrounding the upper surface of the susceptor 12 in an annular shape is disposed.

チャンバ10の側壁と筒状支持部16との間には排気路20が形成され、この排気路20の入口または途中に環状のバッフル板22が取り付けられるとともに底部に排気口24が設けられている。この排気口24に排気管26を介して排気装置28が接続されている。排気装置28は、真空ポンプを有しており、チャンバ10内の処理空間を所定の真空度まで減圧することができる。チャンバ10の側壁には、半導体ウエハWの搬入出口を開閉するゲートバルブ30が取り付けられている。   An exhaust passage 20 is formed between the side wall of the chamber 10 and the cylindrical support portion 16, and an annular baffle plate 22 is attached to the entrance or midway of the exhaust passage 20 and an exhaust port 24 is provided at the bottom. . An exhaust device 28 is connected to the exhaust port 24 via an exhaust pipe 26. The exhaust device 28 includes a vacuum pump, and can reduce the processing space in the chamber 10 to a predetermined degree of vacuum. A gate valve 30 that opens and closes the loading / unloading port of the semiconductor wafer W is attached to the side wall of the chamber 10.

サセプタ12には、プラズマ生成用の高周波電源32が整合器34および給電棒36を介して電気的に接続されている。この高周波電源32は、所望の高周波数たとえば60MHzの高周波を下部電極つまりサセプタ12に印加する。サセプタ12と平行に向かい合って、チャンバ10の天井部には、後述するシャワーヘッド38が接地電位の上部電極として設けられている。高周波電源32からの高周波によってサセプタ12とシャワーヘッド38との間の空間つまりプラズマ生成空間PSに高周波電界が形成される。   A high frequency power supply 32 for generating plasma is electrically connected to the susceptor 12 via a matching unit 34 and a power feed rod 36. The high frequency power supply 32 applies a desired high frequency, for example, 60 MHz, to the lower electrode, that is, the susceptor 12. Facing the susceptor 12 in parallel, a shower head 38, which will be described later, is provided on the ceiling of the chamber 10 as an upper electrode of the ground potential. A high frequency electric field is formed in the space between the susceptor 12 and the shower head 38, that is, the plasma generation space PS by the high frequency from the high frequency power supply 32.

ここで、プラズマ生成空間PSは、サセプタ12およびシャワーヘッド38の外周端より半径方向内側の空間に限定されるものではなく、それよりも半径方向外側の空間に広がってチャンバ10の内壁または側壁まで延在するものである。本発明では、プラズマ生成空間PSのうち、サセプタ12上に載置されている基板Wの外周端より半径方向内側の領域PSAを「主プラズマ領域」と称し、「主プラズマ領域」の外側つまり基板Wの外周端より半径方向外側の領域PSBを「周辺プラズマ領域」と称する。 Here, the plasma generation space PS is not limited to a space radially inward from the outer peripheral ends of the susceptor 12 and the shower head 38, and spreads to a space radially outward from the outer peripheral ends of the susceptor 12 and the shower head 38 to the inner wall or side wall of the chamber 10. It is an extension. In the present invention, among the plasma generation space PS, it referred to the area PS A radially inner than the outer peripheral edge of the substrate W placed on the susceptor 12 as a "main plasma region", outside clogging of "main plasma region" the radially outer region PS B from the outer peripheral edge of the substrate W is referred to as a "peripheral plasma region".

サセプタ12の上面には半導体ウエハWを静電吸着力で保持するための静電チャック40が設けられている。この静電チャック40は導電膜からなる電極40aを一対の絶縁膜40b,40cの間に挟み込んだものであり、電極40aには直流電源42がスイッチ43を介して電気的に接続されている。直流電源42からの直流電圧により、クーロン力で半導体ウエハWをチャック上に吸着保持できるようになっている。   An electrostatic chuck 40 is provided on the upper surface of the susceptor 12 to hold the semiconductor wafer W with an electrostatic attraction force. The electrostatic chuck 40 has an electrode 40a made of a conductive film sandwiched between a pair of insulating films 40b and 40c, and a DC power source 42 is electrically connected to the electrode 40a via a switch 43. The semiconductor wafer W can be attracted and held on the chuck by a Coulomb force by a DC voltage from the DC power source 42.

サセプタ12の内部には、たとえば円周方向に延在する冷媒室44が設けられている。この冷媒室44には、チラーユニット46より配管48,50を介して所定温度の冷媒たとえば冷却水が循環供給される。冷媒の温度によって静電チャック40上の半導体ウエハWの処理温度が制御される。さらに、伝熱ガス供給部52からの伝熱ガスたとえばHeガスが、ガス供給ライン54を介して静電チャック40の上面と半導体ウエハWの裏面との間に供給される。   Inside the susceptor 12, for example, a refrigerant chamber 44 extending in the circumferential direction is provided. A coolant having a predetermined temperature, for example, cooling water is circulated and supplied to the coolant chamber 44 from the chiller unit 46 through the pipes 48 and 50. The processing temperature of the semiconductor wafer W on the electrostatic chuck 40 is controlled by the temperature of the coolant. Further, a heat transfer gas such as He gas from the heat transfer gas supply unit 52 is supplied between the upper surface of the electrostatic chuck 40 and the back surface of the semiconductor wafer W via the gas supply line 54.

天井部のシャワーヘッド38は、多数のガス通気孔56aを有する下面の電極板56と、この電極板56を着脱可能に支持する電極支持体58とを有する。電極支持体58の内部にバッファ室60が設けられ、このバッファ室60のガス導入口60aには処理ガス供給部62からのガス供給配管64が接続されている。   The shower head 38 at the ceiling includes an electrode plate 56 on the lower surface having a large number of gas vent holes 56a, and an electrode support 58 that detachably supports the electrode plate 56. A buffer chamber 60 is provided inside the electrode support 58, and a gas supply pipe 64 from the processing gas supply unit 62 is connected to a gas inlet 60 a of the buffer chamber 60.

チャンバ10の天井部において、周辺プラズマ領域PSBの上方(好ましくはシャワーヘッド38の周囲)には、環状または同心状に延在する磁場形成機構66が設けられている。この磁場形成機構66は、チャンバ10内のプラズマ生成空間PSにおける高周波放電の開始(プラズマの着火)を容易にして放電を安定に維持するために機能する。磁場形成機構66の詳細な構成と作用は後に詳述する。 In a ceiling portion of the chamber 10, above (preferably around the shower head 38) of the peripheral plasma region PS B, the magnetic field forming mechanism 66 that extend annularly or concentrically are provided. The magnetic field forming mechanism 66 functions to facilitate the start of high-frequency discharge (plasma ignition) in the plasma generation space PS in the chamber 10 and maintain the discharge stably. The detailed configuration and operation of the magnetic field forming mechanism 66 will be described in detail later.

制御部68は、このプラズマエッチング装置内の各部たとえば排気装置28、高周波電源32、静電チャック用のスイッチ43、チラーユニット46、伝熱ガス供給部52および処理ガス供給部62等の動作を制御するもので、ホストコンピュータ(図示せず)等とも接続されている。   The control unit 68 controls the operation of each unit in the plasma etching apparatus, such as the exhaust device 28, the high frequency power supply 32, the electrostatic chuck switch 43, the chiller unit 46, the heat transfer gas supply unit 52, and the processing gas supply unit 62. It is also connected to a host computer (not shown).

このプラズマエッチング装置において、エッチングを行なうには、先ずゲートバルブ30を開状態にして加工対象の半導体ウエハWをチャンバ10内に搬入して、サセプタ12の上に載置する。次いで、直流電源42より直流電圧を静電チャック40の電極40aに印加して、半導体ウエハWを静電チャック40上に固定する。そして、処理ガス供給部62よりエッチングガス(一般に混合ガス)を所定の流量および流量比でチャンバ10内に導入し、排気装置28によりチャンバ10内の圧力を設定値にしたうえで、高周波電源32より所定のパワーで高周波をサセプタ12に供給する。シャワーヘッド38より吐出されたエッチングガスはプラズマ生成空間PS内で放電してプラズマ化し、このプラズマで生成されるラジカルやイオンによって半導体ウエハWの主面がエッチングされる。   In order to perform etching in this plasma etching apparatus, first, the gate valve 30 is opened, and the semiconductor wafer W to be processed is loaded into the chamber 10 and placed on the susceptor 12. Next, a DC voltage is applied from the DC power source 42 to the electrode 40 a of the electrostatic chuck 40 to fix the semiconductor wafer W on the electrostatic chuck 40. Then, an etching gas (generally a mixed gas) is introduced into the chamber 10 from the processing gas supply unit 62 at a predetermined flow rate and flow rate ratio, the pressure inside the chamber 10 is set to a set value by the exhaust device 28, and the high-frequency power source 32. A high frequency is supplied to the susceptor 12 with a predetermined power. The etching gas discharged from the shower head 38 is discharged into plasma in the plasma generation space PS, and the main surface of the semiconductor wafer W is etched by radicals and ions generated by the plasma.

このプラズマエッチング装置では、チャンバ天井部の磁場形成機構66が、プラズマ生成空間PSのうち周辺プラズマ領域PSBに限定して実質的な磁場を形成する。このことにより、高周波電源32からの高周波がサセプタ12に印加されると、磁場の存在する周辺プラズマ領域PSB内で最初にエッチングガスが放電を開始し、そこから一瞬にプラズマ生成空間PS全体に放電が拡大して、グロー放電ないしプラズマ生成が確立される。その後も、周辺プラズマ領域PSB内で磁界が高周波放電をアシストまたは維持するため、エッチングガスの供給と高周波の印加が維持される限り、プラズマ生成空間PS全体で放電ないしプラズマ生成も安定に維持される。 In this plasma etching apparatus, a magnetic field forming mechanism 66 of the chamber ceiling forms a substantial magnetic field is limited to the peripheral plasma region PS B of the plasma generation space PS. Thus, when the high frequency from the high frequency power source 32 is applied to the susceptor 12, the first etching gas starts to discharge in the peripheral plasma region PS B in the presence of a magnetic field, from which the plasma generation space entire PS momentarily The discharge expands and a glow discharge or plasma generation is established. Thereafter, since the magnetic field assists or maintains the high frequency discharge in the peripheral plasma region PS B , the discharge or plasma generation is stably maintained in the entire plasma generation space PS as long as the supply of the etching gas and the application of the high frequency are maintained. The

ここで、磁場が高周波放電の開始や維持に良く作用するのは、高周波電界の下でドリフト運動する電荷(主に電子)が磁場によって力(ローレンツ力)を受けることで、力の方向に加速度を生じて、ガス分子や原子を電離させるエネルギーを増すためである。なお、周辺プラズマ領域PSBでは、主としてチャンバ10の内壁(天井部および側壁)と下部電極12との間で高周波電界が形成される。 Here, the magnetic field works well for the initiation and maintenance of high-frequency discharge. Charge (mainly electrons) drifting under a high-frequency electric field receives a force (Lorentz force) by the magnetic field, and accelerates in the direction of the force. This is to increase the energy for ionizing gas molecules and atoms. In the peripheral plasma region PS B , a high-frequency electric field is mainly formed between the inner wall (ceiling part and side wall) of the chamber 10 and the lower electrode 12.

このように、周辺プラズマ領域PSB内で磁場が高周波放電の開始のトリガとなり放電維持をアシストすることにより、低ガス圧力(たとえば10mTorr以下)、挟電極間隔、低RF印加電圧の条件下でも放電開始を容易にし放電を安定に維持することができる。一例として、エッチングガスとしてHBrを単ガスとして用いるポリシリコンのエッチングにおいて、従来はガス圧力を5mtorr以下にすると放電開始(プラズマ着火)が困難であったが、この実施形態によればガス圧力を5mtorr以下にしても確実に放電を開始し、安定に放電を維持できることが確認されている。 In this manner, the magnetic field in the peripheral plasma region PS B triggers the start of high-frequency discharge and assists the maintenance of the discharge, so that the discharge is performed even under the conditions of low gas pressure (for example, 10 mTorr or less), sandwiched electrode spacing, and low RF applied voltage. It is easy to start and keep the discharge stable. As an example, in the etching of polysilicon using HBr as a single gas as an etching gas, it has been difficult to start discharge (plasma ignition) when the gas pressure is 5 mtorr or less. According to this embodiment, the gas pressure is 5 mtorr. It has been confirmed that the discharge can be surely started and the discharge can be stably maintained even in the following.

一方で、磁場形成機構66は、主プラズマ領域PSAでは実質的に無磁場状態を形成する。このことにより、サセプタ12上の半導体ウエハWに磁界が作用してウエハ上のデバイスにダメージやストレスを与える可能性を回避または低減することができる。ここで、ウエハ上のデバイスにダメージやストレスを与えないような無磁場状態は、磁界強度の面で好ましくは地磁気レベル(たとえば0.5G)以下の状態であるが、5G程度でも支障ない(実質的な無磁場状態といえる)場合がある。 On the other hand, the magnetic field forming mechanism 66 forms a substantially non-magnetic field state in the main plasma region PS A. As a result, it is possible to avoid or reduce the possibility that a magnetic field acts on the semiconductor wafer W on the susceptor 12 to damage or stress the devices on the wafer. Here, the non-magnetic field state that does not damage or stress the device on the wafer is preferably a state below the geomagnetic level (for example, 0.5 G) in terms of magnetic field strength, but there is no problem even at about 5 G (substantially). May be said to be a typical magnetic field-free state).

図2および図3に磁場形成機構66の構成と作用を示す。図2に示すように、磁場形成機構66は、チャンバ半径方向に一定の間隔を置いて並置された一対のセグメント磁石Mi,miで1組の磁場形成ユニット[Mi,mi]を構成し、好ましくはN組(Nは2以上の整数)の磁場形成ユニット[M1,m1],[M2,m2],‥‥,[MN,mN]を円周方向に一定の間隔を置いて並べている。 2 and 3 show the configuration and operation of the magnetic field forming mechanism 66. FIG. As shown in FIG. 2, the magnetic field forming mechanism 66 includes a pair of magnetic field forming units [M i , m i ] with a pair of segment magnets M i , m i arranged in parallel at a constant interval in the chamber radial direction. Preferably, N sets (N is an integer of 2 or more) of magnetic field forming units [M 1 , m 1 ], [M 2 , m 2 ],..., [M N , m N ] are arranged in the circumferential direction. They are lined up at regular intervals.

各磁場形成ユニット[Mi,mi]において、半径方向外側のセグメント磁石Miは、直方体の形状を有し、N極の面を下方に向けて配置される。一方、半径方向内側のセグメント磁石miは、直方体の形状を有し、S極の面を下方に向けて配置される。両セグメント磁石Mi,miは永久磁石たとえば希土類磁石(サマリウムコバルト磁石、ネオジム磁石等)で構成されてよい。 In each magnetic field forming unit [M i , m i ], the segment magnet M i on the outer side in the radial direction has a rectangular parallelepiped shape and is arranged with the N-pole surface facing downward. On the other hand, the segment magnets m i of the radially inner has a rectangular parallelepiped shape is disposed toward the face of the S-pole downward. Both the segment magnets M i, m i may be constituted by permanent magnets such as rare earth magnets (samarium-cobalt magnet, neodymium magnet or the like).

このような磁極配置構造によれば、外側セグメント磁石Miの下面(N極)から出た磁力線Biは、直下の周辺プラズマ領域PSB内に降りてから放物線を描くように上方へUターンして内側セグメント磁石miの下面(S極)に達する。隣の磁場形成ユニット[Mi+1,mi+1]においても、上記磁場形成ユニット[Mi,mi]から円周方向に所定の角度間隔(たとえばN=24の場合は15゜)だけ離れた位置で、上記と同様のループを有する磁力線Bi+1が形成される。 According to such a magnetic pole arrangement structure, the magnetic lines of force B i coming out from the lower surface (N pole) of the outer segment magnet M i fall in the peripheral plasma region PS B immediately below, and then turn upward to draw a parabola. was reached on the lower surface (S pole) of the inner segment magnets m i with. Also in the adjacent magnetic field forming unit [M i + 1 , m i + 1 ], a predetermined angular interval in the circumferential direction from the magnetic field forming unit [M i , m i ] (for example, 15 ° when N = 24). Magnetic field lines B i + 1 having loops similar to those described above are formed at positions separated by a distance.

図3に示すように、各磁場形成ユニット[Mi,mi]の上には、外側セグメント磁石Miの背面または上面(S極)と内側セグメント磁石miの背面または上面(N極)とを磁気的に結合するためのヨーク70が設けられている。この背面ヨーク構造により、内側セグメント磁石miの背面(N極)から出た磁力線Biの大部分はヨーク70の中を通って外側セグメント磁石Miの背面(S極)に達するようになっている。ヨーク70は、全ての磁場形成ユニット[M1,m1],[M2,m2],‥‥,[MN,mN]をカバーするようにリング状に形成されてよい。 As shown in FIG. 3, the magnetic field forming units [M i, m i] On top of the back or top of the outer segment magnets M i (S-pole) and the back or upper surface of the inner segment magnets m i (N pole) Are provided for magnetically coupling the two. The back yoke structure, so most of the magnetic lines B i emitted from the back (N pole) of the inner segment magnets m i reaches the back of the outer segment magnets M i through the inside of the yoke 70 (S pole) ing. The yoke 70 may be formed in a ring shape so as to cover all the magnetic field forming units [M 1 , m 1 ], [M 2 , m 2 ], ..., [M N , m N ].

このように、各磁場形成ユニット[Mi,mi]において、外側セグメント磁石Miの下面(N極)より出た磁力線Biが、直下の周辺プラズマ領域PSB内に降りてから四方に発散することなく上方へUターンして内側セグメント磁石miの下面(S極)に達する点が重要である。このような磁力線ループ構造により、周辺プラズマ領域PSB内の磁束密度を高められると同時に、主プラズマ領域PSA側への磁力線の流入を効果的に防止することができる。かかる磁力線ループ構造の作用効果を一層高めるために、外側セグメント磁石Miと内側セグメント磁石miとの間では、相対的に、基板Gから遠い前者Miの磁気量(磁極強度)を大きくし、基板Gに近い後者miの磁気量(磁極強度)を小さくするのが好ましい。 As described above, in each magnetic field forming unit [M i , m i ], the magnetic field lines B i coming out from the lower surface (N pole) of the outer segment magnet M i fall into the peripheral plasma region PS B immediately below and then move in all directions. point to reach the lower surface of the inner segment magnets m i and U-turn upward without divergence (S pole) is important. Such magnetic field lines loop structure, at the same time enhances the magnetic flux density near the plasma region PS B, it is possible to prevent the inflow of magnetic field lines in the main plasma region PS A side effectively. To enhance effects of such magnetic field lines loop structure more, between the outer segment magnets M i and the inner segment magnets m i, relatively, magnetic charge of distant former M i from the substrate G (the pole intensity) increased preferably, to reduce magnetic charge of the latter m i closer to the substrate G (the pole strength).

また、この実施形態においては、磁場形成機構66の各部(特に各磁場形成ユニット[Mi,mi])が周辺プラズマ領域PSBの上方つまりチャンバ10の側壁よりも半径方向内側に配置されている点も重要である。このような磁極配置構造によれば、チャンバ10の側壁の外に磁場形成ユニットを配置する構成と比較して、チャンバ中心に対する半径距離および周回距離が格段に短いため、周辺プラズマ領域PSB内に好適なプロファイルの磁場を形成するための磁石または磁極の個数および磁気量(サイズまたは体積に比例)を大幅に少なくすることが可能であり、磁場形成機構66の装備に伴なう装置サイズおよびコストの増大を必要最小限に抑えることができる。ここで、周辺プラズマ領域PSB内に形成される磁場の好適なプロファイルとは、主プラズマ領域PSAに磁気的な影響を及ぼすことなく、できるだけ主プラズマ領域PSAに近い位置で強い磁場が得られるようなプロファイルである。 Further, in this embodiment, each part (particularly, each magnetic field forming unit [M i , m i ]) of the magnetic field forming mechanism 66 is disposed above the peripheral plasma region PS B , that is, radially inward from the side wall of the chamber 10. The point is also important. According to such a pole arrangement, as compared with the construction of arranging the magnetic field forming unit outside the sidewall of the chamber 10, because is much shorter radial distance and orbiting distance to the center of the chamber, the peripheral plasma region PS in B The number of magnets or magnetic poles and magnetic quantity (proportional to size or volume) for forming a magnetic field having a suitable profile can be greatly reduced, and the apparatus size and cost associated with the installation of the magnetic field forming mechanism 66 can be reduced. Can be minimized. Here, the preferred profile of the magnetic field formed around the plasma region in PS B, magnetic without affecting the main plasma region PS A, a strong magnetic field as close as possible to the main plasma region PS A obtained Profile.

図4Aおよび図4Bに、一実施例によるプラズマ生成空間PS内の磁界強度分布を示す。この実施例では、被処理基板Wとして300mm口径の半導体ウエハを想定し、チャンバ10の内径を約260mmに設定し、電極間隔(ギャップ)を25mmに設定している。図4Aは、上部電極38の下面の高さ位置(電極ギャップトップ位置:Z=25mm)における径方向の磁場強度分布(円周方向の平均値)を示す。図4Bは、サセプタ12上に載置される半導体ウエハWの上面の高さ位置(電極ギャップボトム位置:Z=0mm)における径方向の磁場強度分布(円周方向の平均値)を示す。図中、実線は上記のような磁場形成機構66で得られる特性(実施例)を示し、点線は磁場形成機構66において各内側セグメント磁石miを省いた場合の特性(参考例)を示す。 4A and 4B show the magnetic field strength distribution in the plasma generation space PS according to one embodiment. In this embodiment, a 300 mm diameter semiconductor wafer is assumed as the substrate W to be processed, the inner diameter of the chamber 10 is set to about 260 mm, and the electrode interval (gap) is set to 25 mm. FIG. 4A shows the magnetic field strength distribution (average value in the circumferential direction) in the radial direction at the height position of the lower surface of the upper electrode 38 (electrode gap top position: Z = 25 mm). FIG. 4B shows the magnetic field strength distribution (average value in the circumferential direction) in the radial direction at the height position (electrode gap bottom position: Z = 0 mm) of the upper surface of the semiconductor wafer W placed on the susceptor 12. In the figure, the solid line shows the characteristic (example) obtained by the magnetic field forming mechanism 66 as described above, and the dotted line shows the characteristic (reference example) when each inner segment magnet mi is omitted in the magnetic field forming mechanism 66.

図4Aおよび図4Bから明らかなように、参考例では、外側セグメント磁石Miの下面(N極)より出た磁力線Biが四方に発散しやすいため、磁場は周辺プラズマ領域PSB内に留まらず、主プラズマ領域PSAにも及んでいる。これに対して、実施例では、上記のように外側セグメント磁石Miの下面(N極)より出た磁力線Biが四方に発散せずにUターンして内側セグメント磁石miに吸収されるため、磁場は周辺プラズマ領域PSB内に留まり、主プラズマ生成領域PSAには殆ど及ばない。実際、実施例の磁場形成機構66によれば、主プラズマ領域PSAで磁場強度を地磁気レベル(たとえば0.5G)以下まで減衰させることが可能である。また、周辺プラズマ領域PSB内ではピーク値で40G〜450Gであり、高周波放電の開始をトリガし放電維持をアシストするのに十分な磁場強度を得ることができる。 As apparent from FIGS. 4A and 4B, in the reference example, the magnetic field lines B i emitted from the lower surface (N pole) of the outer segment magnet M i tend to diverge in all directions, so that the magnetic field remains in the peripheral plasma region PS B. It not, also extends to the main plasma region PS A. In contrast, in the embodiment, is absorbed by the inner segment magnets m i and U-turn without diverging magnetic force lines B i emitted from the lower surface (N pole) of the outer segment magnets M i is the square as described above Therefore, the magnetic field remains in the peripheral plasma region PS in B, almost falls short of the main plasma generation region PS A. In fact, according to the magnetic field forming mechanism 66 of the embodiment, it is possible to attenuate the magnetic field strength to geomagnetism level (e.g. 0.5G) or less in the main plasma region PS A. Further, a 40G~450G the peak value in the peripheral plasma region PS B, it is possible to obtain a sufficient magnetic field strength to assist the discharge sustaining triggers the start of the high-frequency discharge.

なお、図4Aおよび図4Bの磁場強度分布は電極間ギャップトップ位置(Z=25mm)および電極間ギャップボトム位置(Z=0mm)におけるものであるが、電極間の中間部(0mm<Z<25mm)では図4A、図4Bの中間の磁場強度分布が得られることが容易に理解されよう。   4A and 4B are at the gap top position between electrodes (Z = 25 mm) and the gap bottom position between electrodes (Z = 0 mm), but the intermediate portion between electrodes (0 mm <Z <25 mm). ), It will be easily understood that an intermediate magnetic field strength distribution between FIGS. 4A and 4B can be obtained.

このように、各磁場形成ユニット[Mi,mi]において、外側セグメント磁石Miの下面(N極)より出た磁力線Biが、直下の周辺プラズマ領域PSB内に降りてから四方に発散することなく上方へUターンして内側セグメント磁石miの下面(S極)に達する点が重要である。このような磁力線ループ構造により、周辺プラズマ領域PSB内の磁束密度を高められると同時に、主プラズマ領域PSA側への磁力線の流入を効果的に防止することができる。かかる磁力線ループ構造の作用効果を一層高めるために、外側セグメント磁石Miと内側セグメント磁石miとの間では、相対的に、基板Gから遠い前者Miの磁気量(磁極強度)を大きくし、基板Gに近い後者miの磁気量(磁極強度)を小さくするのが好ましい。 As described above, in each magnetic field forming unit [M i , m i ], the magnetic field lines B i coming out from the lower surface (N pole) of the outer segment magnet M i fall into the peripheral plasma region PS B immediately below and then move in all directions. point to reach the lower surface of the inner segment magnets m i and U-turn upward without divergence (S pole) is important. Such magnetic field lines loop structure, at the same time enhances the magnetic flux density near the plasma region PS B, it is possible to prevent the inflow of magnetic field lines in the main plasma region PS A side effectively. To increase effects of such magnetic field lines loop structure more, between the outer segment magnets M i and the inner segment magnets m i, relatively, magnetic charge of distant former M i from the substrate G (the pole intensity) increased preferably, to reduce magnetic charge of the latter m i closer to the substrate G (the pole strength).

本発明の別の観点として、この実施形態では、上記のように、磁場形成機構66により主プラズマ領域PSAの周囲をカーテンのように取り囲む鉛直方向に延びる磁場(プラズマの拡散方向に直交する磁場)Bを形成することができる。このようなカーテン型の鉛直磁場Bによれば、図5に模式的に示すように、主プラズマ領域PSA内のプラズマPRを外に逃がさずに内側に効果的かつ効率的に閉じ込めることが可能であり、主プラズマ領域PSA内でプラズマPRの高密度化および均一化をはかり、ひいては半導体ウエハW上のプラズマエッチング特性を向上させることができる。 Another aspect of the present invention, the magnetic field in this embodiment, as described above, orthogonal to the periphery of the main plasma region PS A extending in the vertical direction magnetic field (plasma diffusion directions surrounding like a curtain by the magnetic field forming mechanism 66 ) B can be formed. According to such a curtain-type vertical magnetic field B, can be schematically as shown, be confined effectively and efficiently to the inside without escaping the plasma PR in the main plasma region PS A out in Figure 5 , and the balance the density and uniformity of the plasma PR in the main plasma region PS a, it is possible to turn improve the plasma etching characteristics on the semiconductor wafer W.

たとえば、周辺プラズマ領域PSBに磁場を形成しない場合、酸化膜系プロセス(たとえばシリコン酸化膜のエッチング)では図5の一点鎖線ERAのようにウエハ中心側に対してウエハエッジ側で相対的にエッチング速度が落ち込む傾向があり、ポリ系プロセス(たとえばポリシリコンのエッチング)では図5の点線ERBのようにウエハエッジ側に対してウエハ中心側で相対的にエッチング速度が落ち込む傾向がある。この実施形態のように磁場形成機構66により周辺プラズマ領域PSBにカーテン型の鉛直磁場Bを形成することで、酸化膜系プロセスではウエハ中心側のエッチング速度に対してウエハエッジ側のエッチング速度を相対的に大幅アップさせて実線ERSのように面内均一性を向上させ、ポリ系プロセスではウエハエッジ側のエッチング速度に対してウエハ中心側のエッチング速度を相対的に大幅アップさせて実線ERSのように面内均一性を向上させることができる。 For example, if the peripheral plasma region PS B does not form a magnetic field, relatively etched in the wafer edge side with respect to the wafer center side as a dashed line ER A of oxide-based Process (e.g. etching of the silicon oxide film) 5 tend to speed drops tend to relatively etch rate drops in the wafer center side with respect to the wafer edge side as shown by a dotted line ER B poly-based processes (such as poly silicon etching) in Fig. By forming a curtain-type vertical magnetic field B in the peripheral plasma region PS B by the magnetic field forming mechanism 66 as in this embodiment, the etching rate on the wafer edge side is made relative to the etching rate on the wafer center side in the oxide film process. to greatly up to improve in-plane uniformity as shown by the solid line ER S, poly system in the process of the solid line ER S with relatively greatly up the etch rate of the wafer center side with respect to the etching rate of the wafer edge side In-plane uniformity can be improved.

図6および図7に、この実施形態における磁場形成機構66の一変形例を示す。この変形例は、磁場形成機構66において、磁場形成ユニット[M1,m1],[M2,m2],‥‥,[MN,mN]をチャンバ10の中心(半導体ウエハWの中心O)を通る鉛直線Gの回りに一定速度で回転運動させる構成としている。図示の例では、ガイド72に沿って回転可能に構成されたリング形の内歯車74にヨーク70を介して磁場形成ユニット[M1,m1],[M2,m2],‥‥,[MN,mN]を取り付け、内歯車74に外歯車76を介して電気モータ78の回転駆動軸を接続している。このような回転磁場機構により、磁場形成ユニット[Mi,mi]の数が少なくても,磁場強度分布を円周方向で均一化することができる。特に、鉛直磁場の作用で磁場形成機構66直下のチャンバ天井部に堆積膜が付着する場合は、そのような磁場強度分布の均一化により、堆積膜の付着具合や膜厚を円周方向で均一化することができる。 6 and 7 show a modification of the magnetic field forming mechanism 66 in this embodiment. In this modification, in the magnetic field forming mechanism 66, the magnetic field forming units [M 1 , m 1 ], [M 2 , m 2 ],..., [M N , m N ] are placed at the center of the chamber 10 (on the semiconductor wafer W). It is configured to rotate at a constant speed around a vertical line G passing through the center O). In the illustrated example, magnetic ring forming units [M 1 , m 1 ], [M 2 , m 2 ],..., Are connected to a ring-shaped internal gear 74 configured to be rotatable along a guide 72 via a yoke 70. [M N , m N ] is attached, and the rotational drive shaft of the electric motor 78 is connected to the internal gear 74 via the external gear 76. By such a rotating magnetic field mechanism, the magnetic field strength distribution can be made uniform in the circumferential direction even if the number of magnetic field forming units [M i , m i ] is small. In particular, when a deposited film adheres to the chamber ceiling directly below the magnetic field forming mechanism 66 due to the action of a vertical magnetic field, the degree of deposition film thickness and film thickness are made uniform in the circumferential direction by making the magnetic field strength distribution uniform. Can be

図8および図9に、磁場形成機構66の別の実施例を示す。この実施例は、周辺プラズマ領域PSBの上方(好ましくはシャワーヘッド38の周囲のチャンバ天井部)に1つまたは複数の磁石<Mi>を配置するとともに、周辺プラズマ領域PSBの下方たとえば排気路20ないしバッフル板22付近に磁性体Kを配置する。図8の構成例では磁性体Kを排気路20内の筒状支持部16に取り付け、図9の構成例では磁性体Kを排気路20内のチャンバ側壁部に取り付けている。磁石<Mi>は、たとえば図2〜図7の外側セグメント磁石Miに相当するものでよく、たとえばN極の面を下方に向けて配置される。磁性体Kは、複数のセグメント磁性体を円周方向に一定間隔を置いて配置したものでもよく、あるいは単体のリング状磁性体からなるものでもよく、材質は金属系、フェライト系、セラミック系等のいずれであってもよい。 8 and 9 show another embodiment of the magnetic field forming mechanism 66. FIG. In this embodiment, one or a plurality of magnets <M i > are disposed above the peripheral plasma region PS B (preferably the chamber ceiling around the shower head 38), and below the peripheral plasma region PS B , for example, exhaust A magnetic body K is disposed near the path 20 or the baffle plate 22. In the configuration example of FIG. 8, the magnetic body K is attached to the cylindrical support portion 16 in the exhaust passage 20, and in the configuration example of FIG. 9, the magnetic body K is attached to the chamber side wall portion in the exhaust passage 20. The magnet <M i > may correspond to, for example, the outer segment magnet M i in FIGS. 2 to 7, and is arranged with the N-pole surface facing downward, for example. The magnetic body K may be one in which a plurality of segment magnetic bodies are arranged at regular intervals in the circumferential direction, or may be made of a single ring-shaped magnetic body, and the material is metal, ferrite, ceramic, etc. Any of these may be used.

このような磁極配置構造によれば、磁石<Mi>の下面(N極)から出た磁力線Biは、直下の周辺プラズマ領域PSBを上から下に横切って磁性体Kに達する。磁性体Kは磁力線Biを受け取ることで磁化し、その表面がS極となる。図8および図9の構成例では、磁石<Mi>からの磁力線Biを可及的に磁性体Kに向けるために磁石<Mi>の背面(上面)および側面を包囲するヨーク80を設けている。特に、主プラズマ領域PSA寄りのサイドヨーク部80aは、磁石<Mi>の下面(N極)から主プラズマ領域PSA側に出た磁力線を取り込んで磁石<Mi>の上面または背面(S極)へ帰還させ、主プラズマ領域PSAへ行かないようにする働きがある。 According to such a magnetic pole arrangement structure, the magnetic lines of force B i emitted from the lower surface (N pole) of the magnet <M i > reach the magnetic body K across the immediate peripheral plasma region PS B from top to bottom. Magnetic K is magnetized by receiving the magnetic field lines B i, its surface becomes an S pole. 8 and 9, the yoke 80 surrounding the back surface (upper surface) and the side surface of the magnet <M i > in order to direct the magnetic field lines B i from the magnet <M i > to the magnetic body K as much as possible. Provided. In particular, the main plasma region PS A side of the side yoke portion 80a has an upper surface or rear surface of the magnet <M i> captures the magnetic force lines leaving the main plasma region PS A side from the lower surface of the magnet <M i> (N-pole) ( is fed back to the S pole), there acts to not to go to the main plasma region PS a.

図8および図9の実施例において、磁石<Mi>の上下の極性を反転させて下面をS極とする変形や、磁石<Mi>と磁性体Kのそれぞれの配置位置を相互に入れ換える変形等が可能である。また、磁石<Mi>の個数増加や体積増大ひいては装置の大型化を伴なうが、図10に示すように磁石<Mi>をチャンバ10の側壁の外に配置する構成も可能である。あるいは、磁石<Mi>をチャンバ10の側壁の内側に配置して、磁性体Kをチャンバ側壁の外に配置する構成も可能である。 8 and 9, the upper and lower polarities of the magnet <M i > are reversed so that the lower surface is the south pole, and the arrangement positions of the magnet <M i > and the magnetic body K are interchanged with each other. Deformation and the like are possible. In addition, although the number of magnets <M i > and the volume increase and the size of the apparatus are increased, it is possible to arrange the magnets <M i > outside the side walls of the chamber 10 as shown in FIG. . Alternatively, a configuration in which the magnet <M i > is disposed inside the sidewall of the chamber 10 and the magnetic body K is disposed outside the chamber sidewall is also possible.

図1〜図7の実施例でも種々の変形が可能である。たとえば、各磁場形成ユニット[Mi,mi]において、外側セグメント磁石Miの上下の極性および内側セグメント磁石miの上下の極性をそれぞれ反転させて、外側セグメント磁石Miの下面をS極とし、内側セグメント磁石miの下面をN極とする構成も可能である。また、片側のセグメント磁石(通常は内側セグメント磁石mi)を磁性体で代用することも可能である。また、磁場形成ユニット[Mi,mi]を周辺プラズマ領域PSBの下方に配置する構成、たとえば片方(Mi)をサセプタ12側に取り付けて他の片方(mi)をチャンバ10の側壁に取り付ける構成等も可能である。さらには、磁石の個数増加や体積増大ひいては装置の大型化を伴なうが、図11に示すように外側セグメント磁石Miをチャンバ10の側壁の外に配置する構成も可能である。また、各磁場形成ユニット[Mi,mi]において、両磁石Mi,miを半径方向以外の方向に並べて配置する構成も可能である。 Various modifications are also possible in the embodiment of FIGS. For example, in each of the magnetic field forming units [M i, m i], the polarity of the upper and lower vertical polarity and the inner segment magnets m i of the outer segment magnets M i respectively is inverted, the lower surface of the outer segment magnets M i S pole and then, a configuration is possible in which the lower surface of the inner segment magnets m i and N pole. It is also possible to substitute one segment magnet (usually the inner segment magnet mi ) with a magnetic material. Further, the magnetic field forming unit [M i , m i ] is arranged below the peripheral plasma region PS B , for example, one side (M i ) is attached to the susceptor 12 side and the other side (m i ) is attached to the side wall of the chamber 10. It is also possible to have a configuration that is attached to the battery. Furthermore, it an enlargement of the number increases and volume increases and hence apparatus magnet companion, but can also be configured to place the outside of the side wall of the chamber 10 the outer segment magnets M i, as shown in FIG. 11. Further, in each magnetic field forming unit [M i , m i ], a configuration in which both magnets M i and m i are arranged in a direction other than the radial direction is also possible.

上記実施形態における平行平板型のプラズマエッチング装置(図1)は、プラズマ生成用の1つの高周波電力をサセプタ12に印加する方式であった。しかし、図示省略するが、本発明は上部電極38側にプラズマ生成用の高周波電力を印加する方式や、上部電極38とサセプタ12とに周波数の異なる第1および第2の高周波電力をそれぞれ印加する方式(上下高周波印加タイプ)や、サセプタ12に周波数の異なる第1および第2の高周波電力を重畳して印加する方式(下部2周波重畳印加タイプ)などにも適用可能であり、広義には減圧可能な処理容器内に少なくとも1つの電極を有するプラズマ処理装置に適用可能である。また、本発明とイグニションプラズマ方式を併用することももちろん可能である。   The parallel plate type plasma etching apparatus (FIG. 1) in the above embodiment is a system in which one high frequency power for plasma generation is applied to the susceptor 12. However, although not shown in the drawings, the present invention applies a method of applying high-frequency power for plasma generation to the upper electrode 38 side, and applies first and second high-frequency powers having different frequencies to the upper electrode 38 and the susceptor 12, respectively. It can also be applied to a method (upper and lower high-frequency application type) and a method of applying first and second high-frequency powers having different frequencies to the susceptor 12 (lower two-frequency superimposed application type). The present invention is applicable to a plasma processing apparatus having at least one electrode in a possible processing container. Of course, the present invention and the ignition plasma method can be used in combination.

また、本発明の適用可能なプラズマ源は平行平板型に限るものではなく、他の任意の高周波放電方式たとえばヘリコン波プラズマ方式のものであってもよい。さらに、本発明は、プラズマCVD、プラズマ酸化、プラズマ窒化、スパッタリングなどの他のプラズマ処理装置にも適用可能である。また、本発明における被処理基板は半導体ウエハに限るものではなく、フラットパネルディスプレイ用の各種基板や、フォトマスク、CD基板、プリント基板等も可能である。   The plasma source to which the present invention can be applied is not limited to the parallel plate type, but may be any other high-frequency discharge method, for example, a helicon wave plasma method. Furthermore, the present invention can also be applied to other plasma processing apparatuses such as plasma CVD, plasma oxidation, plasma nitridation, and sputtering. Further, the substrate to be processed in the present invention is not limited to a semiconductor wafer, and various substrates for flat panel displays, photomasks, CD substrates, printed substrates, and the like are also possible.

10 チャンバ
12 サセプタ(下部電極)
20 排気路
28 排気装置
32 高周波電源
38 シャワーヘッド(上部電極)
62 処理ガス供給部
66 磁場形成機構
70 ヨーク
78 電気モータ
80 ヨーク
i 外側セグメント磁石
i 外側セグメント磁石
<Mi> 磁石
10 Chamber 12 Susceptor (lower electrode)
20 Exhaust path 28 Exhaust device 32 High frequency power supply 38 Shower head (upper electrode)
62 Process gas supply unit 66 Magnetic field forming mechanism 70 Yoke 78 Electric motor 80 Yoke M i outer segment magnet m i outer segment magnet <M i > magnet

Claims (11)

減圧可能なチャンバ内に処理ガスを流し込むとともに高周波電界を形成して前記処理ガスのプラズマを生成し、前記プラズマの下で被処理基板に所望のプラズマ処理を施すプラズマ処理方法であって、
前記チャンバ内のプラズマ生成空間のうち前記基板の外周端よりも半径方向外側の周辺プラズマ領域のみに、この領域内を磁力線が通過し、かつ前記磁力線の始点および終点の双方が前記チャンバの側壁よりも半径方向内側に位置するような磁場を形成し、
前記磁場において、前記磁力線の始点および終点が共に前記周辺プラズマ領域の上方に位置し、前記始点から出た前記磁力線が前記周辺プラズマ領域の中またはその下方でUターンして前記終点に達し、
前記磁力線の始点および終点をそれぞれ与える第1および第2の磁極の双方が磁石であって、前記第1および第2の磁極の間では、半径方向外側に配置される方の磁気量が半径方向内側に配置される方の磁気量よりも大きく、
前記プラズマ生成空間のうち前記基板の外周端よりも半径方向内側の主プラズマ領域では実質的に無磁場状態とする、
プラズマ処理方法。
A plasma processing method of flowing a processing gas into a chamber capable of depressurization and generating a plasma of the processing gas by forming a high-frequency electric field, and performing a desired plasma processing on a substrate to be processed under the plasma,
Of the plasma generation space in the chamber, the magnetic lines of force pass only in the peripheral plasma region radially outside the outer peripheral edge of the substrate, and both the starting and ending points of the magnetic lines of force are from the side wall of the chamber. Also forms a magnetic field that is located radially inside,
In the magnetic field, both the starting point and the ending point of the magnetic lines of force are located above the peripheral plasma region, and the magnetic lines of force emitted from the starting point make a U-turn in or below the peripheral plasma region to reach the end point,
Both the first and second magnetic poles that respectively provide the starting point and the ending point of the magnetic field lines are magnets, and the amount of magnetic force arranged radially outward is between the first and second magnetic poles in the radial direction. Larger than the amount of magnetism on the inside,
In the plasma generation space, in the main plasma region radially inward from the outer peripheral edge of the substrate, a substantially no magnetic field state is set.
Plasma processing method.
減圧可能なチャンバと、
前記チャンバ内で被処理基板をほぼ水平に載置する電極と、
前記電極の上方および周囲に設定されたプラズマ生成空間に処理ガスを供給する処理ガス供給部と、
前記プラズマ生成空間に高周波電界を形成する高周波電界形成機構と、
前記チャンバ内のプラズマ生成空間のうち前記基板の外周端よりも半径方向外側の周辺プラズマ領域のみに、この領域内を磁力線が通過し、かつ前記磁力線の始点および終点の双方が前記チャンバの側壁よりも半径方向内側に位置するような磁場を形成する磁場形成機構と
を有し、
前記磁場形成機構が、前記第1および第2の磁極を共に下向きで前記周辺プラズマ領域の上方に配置しており、
前記磁場において、前記始点の第1の磁極から出た前記磁力線が前記周辺プラズマ領域内に降りてからUターンして前記終点の第2の磁極に達し、
前記磁力線の始点および終点をそれぞれ与える第1および第2の磁極の双方が磁石であって、前記第1および第2の磁極の間では、半径方向外側に配置される方の磁気量が半径方向内側に配置される方の磁気量よりも大きく、
前記プラズマ生成空間のうち前記基板の外周端よりも半径方向内側の主プラズマ領域では実質的に無磁場状態とする、
プラズマ処理装置。
A depressurizable chamber;
An electrode for placing the substrate to be processed substantially horizontally in the chamber;
A processing gas supply unit for supplying a processing gas to a plasma generation space set above and around the electrode;
A high-frequency electric field forming mechanism for forming a high-frequency electric field in the plasma generation space;
Of the plasma generation space in the chamber, the magnetic lines of force pass only in the peripheral plasma region radially outside the outer peripheral edge of the substrate, and both the starting and ending points of the magnetic lines of force are from the side wall of the chamber. Has a magnetic field formation mechanism that forms a magnetic field located radially inward,
The magnetic field forming mechanism is arranged such that both the first and second magnetic poles face downward and above the peripheral plasma region;
In the magnetic field, the magnetic field lines coming out of the first magnetic pole at the starting point descend into the peripheral plasma region and then make a U-turn to reach the second magnetic pole at the end point,
Both the first and second magnetic poles that respectively provide the starting point and the ending point of the magnetic field lines are magnets, and the amount of magnetic force arranged radially outward is between the first and second magnetic poles in the radial direction. Larger than the amount of magnetism on the inside,
In the plasma generation space, in the main plasma region radially inward from the outer peripheral edge of the substrate, a substantially no magnetic field state is set.
Plasma processing equipment.
前記第1および第2の磁極のうち、一方がN極で、他方がS極である、請求項2に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 2, wherein one of the first and second magnetic poles is an N pole and the other is an S pole. 前記第1および第2の磁極が前記チャンバの天井の壁の中に設けられている、請求項2または請求項3に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 2, wherein the first and second magnetic poles are provided in a ceiling wall of the chamber. 前記磁場において、前記始点の第1の磁極から出た前記磁力線の一部が、前記周辺プラズマ領域内に降りて、前記基板よりも低い高さ位置でUターンして前記終点の第2の磁極に達する、請求項2〜4のいずれか一項に記載のプラズマ処理装置。   In the magnetic field, a part of the lines of magnetic force coming out of the first magnetic pole at the starting point descends into the peripheral plasma region, and makes a U-turn at a lower position than the substrate to make the second magnetic pole at the end point. The plasma processing apparatus as described in any one of Claims 2-4 which reaches | attains. 前記周辺プラズマ領域内の磁場の強度は、前記チャンバの半径方向において、前記基板の外周端と前記チャンバの側壁との中間の或る位置で最大かつ極大となる、請求項2〜5のいずれか一項に記載のプラズマ処理装置。   The intensity of the magnetic field in the peripheral plasma region becomes maximum and maximum at a certain position between the outer peripheral edge of the substrate and the side wall of the chamber in the radial direction of the chamber. The plasma processing apparatus according to one item. 前記第1の磁極と前記第2の磁極とを前記チャンバの半径方向に所望の間隔を置いて並置する、請求項2〜6のいずれか一項に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 2, wherein the first magnetic pole and the second magnetic pole are juxtaposed at a desired interval in the radial direction of the chamber. 前記第1および第2の磁極がそれぞれ円周方向に所定の間隔を置いて多数配置される、請求項2〜7のいずれか一項に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 2, wherein a large number of the first and second magnetic poles are arranged at predetermined intervals in the circumferential direction. 前記第1および第2の磁極を一体に円周方向に回転させる磁極回転部を有する、請求項2〜8のいずれか一項に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 2, further comprising a magnetic pole rotating unit that rotates the first and second magnetic poles integrally in a circumferential direction. 前記周辺プラズマ領域側から見て前記磁石の背面に接触または近接してヨークを設ける、請求項2〜9のいずれか一項に記載のプラズマ処理装置。   The plasma processing apparatus according to any one of claims 2 to 9, wherein a yoke is provided in contact with or in proximity to the back surface of the magnet as viewed from the peripheral plasma region side. 前記主プラズマ領域寄りの前記磁石の側面に接触または近接してヨークを設ける、請求項10に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 10, wherein a yoke is provided in contact with or close to a side surface of the magnet near the main plasma region.
JP2010095322A 2010-04-16 2010-04-16 Plasma processing method and plasma processing apparatus Expired - Fee Related JP5174848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010095322A JP5174848B2 (en) 2010-04-16 2010-04-16 Plasma processing method and plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010095322A JP5174848B2 (en) 2010-04-16 2010-04-16 Plasma processing method and plasma processing apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004114240A Division JP4527431B2 (en) 2004-04-08 2004-04-08 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2010166093A JP2010166093A (en) 2010-07-29
JP5174848B2 true JP5174848B2 (en) 2013-04-03

Family

ID=42581956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010095322A Expired - Fee Related JP5174848B2 (en) 2010-04-16 2010-04-16 Plasma processing method and plasma processing apparatus

Country Status (1)

Country Link
JP (1) JP5174848B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090421A1 (en) * 2010-12-28 2012-07-05 キヤノンアネルバ株式会社 Plasma cvd device
CN106548915B (en) * 2015-09-17 2018-06-08 中微半导体设备(上海)有限公司 A kind of slide holder and corresponding plasma processing apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311668A (en) * 1995-05-18 1996-11-26 Hitachi Ltd High-frequency wave plasma treatment apparatus
JPH10163173A (en) * 1996-11-28 1998-06-19 Hitachi Ltd Semiconductor treatment equipment
JP2000323463A (en) * 2000-01-01 2000-11-24 Hitachi Ltd Plasma processing method
JP4527432B2 (en) * 2004-04-08 2010-08-18 東京エレクトロン株式会社 Plasma processing method and plasma processing apparatus
JP4527431B2 (en) * 2004-04-08 2010-08-18 東京エレクトロン株式会社 Plasma processing equipment

Also Published As

Publication number Publication date
JP2010166093A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
JP4527431B2 (en) Plasma processing equipment
JP4812991B2 (en) Plasma processing equipment
KR100988085B1 (en) High density plasma processing apparatus
US7059268B2 (en) Method, apparatus and magnet assembly for enhancing and localizing a capacitively coupled plasma
US20040168771A1 (en) Plasma reactor coil magnet
JP2006114767A (en) Equipment and method for plasma treatment
JPH06267903A (en) Plasma device
JP4527432B2 (en) Plasma processing method and plasma processing apparatus
JP5174848B2 (en) Plasma processing method and plasma processing apparatus
JP2002100607A (en) Method for etching oxide film
JP5097074B2 (en) Plasma processing apparatus and plasma processing method
JP2003274633A (en) Linear induction plasma pump for treating reaction furnace
JP2000243707A (en) Plasma treatment method and apparatus
JP5236777B2 (en) Plasma processing equipment
JP2001093699A (en) Plasma treatment device
JP4223143B2 (en) Plasma processing equipment
JP4379771B2 (en) Plasma processing apparatus and plasma processing method
JP4373061B2 (en) Plasma processing apparatus and plasma processing method
JP4135173B2 (en) Plasma processing apparatus and plasma processing method
JP2004165266A (en) Plasma etching device
JP2004259760A (en) Magnetic field generator for magnetron plasma
KR20090043863A (en) Appartus of plasma processing for substrate
JPH10308298A (en) Plasma processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121228

R150 Certificate of patent or registration of utility model

Ref document number: 5174848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees