JP5143606B2 - Charged particle beam irradiation equipment - Google Patents

Charged particle beam irradiation equipment Download PDF

Info

Publication number
JP5143606B2
JP5143606B2 JP2008087123A JP2008087123A JP5143606B2 JP 5143606 B2 JP5143606 B2 JP 5143606B2 JP 2008087123 A JP2008087123 A JP 2008087123A JP 2008087123 A JP2008087123 A JP 2008087123A JP 5143606 B2 JP5143606 B2 JP 5143606B2
Authority
JP
Japan
Prior art keywords
irradiation
particle beam
charged particle
scanning
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008087123A
Other languages
Japanese (ja)
Other versions
JP2009243891A (en
Inventor
敏樹 立川
徹 浅羽
俊昭 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2008087123A priority Critical patent/JP5143606B2/en
Priority to TW098104202A priority patent/TWI430288B/en
Priority to CN2009101288975A priority patent/CN101543663B/en
Priority to KR1020090025762A priority patent/KR101079629B1/en
Priority to US12/382,919 priority patent/US8153989B2/en
Publication of JP2009243891A publication Critical patent/JP2009243891A/en
Application granted granted Critical
Publication of JP5143606B2 publication Critical patent/JP5143606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/01Devices for producing movement of radiation source during therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1043Scanning the radiation beam, e.g. spot scanning or raster scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Description

本発明は、スキャニング法による荷電粒子線照射装置に関する。   The present invention relates to a charged particle beam irradiation apparatus using a scanning method.

従来、荷電粒子線照射装置として、例えば特許文献1に記載されたように、スキャニング法によるものが知られている。このような荷電粒子線照射装置は、荷電粒子線を走査するための走査電磁石と、走査電磁石の動作を制御する制御手段と、を備えており、被照射物に設定された照射野において照射ラインに沿って荷電粒子線を走査しながら連続照射する。
特開2002−22900号公報
2. Description of the Related Art Conventionally, as a charged particle beam irradiation apparatus, for example, a device using a scanning method as described in Patent Document 1 is known. Such a charged particle beam irradiation apparatus includes a scanning electromagnet for scanning a charged particle beam, and a control means for controlling the operation of the scanning electromagnet, and an irradiation line in an irradiation field set on an irradiation object. A continuous irradiation is performed while scanning a charged particle beam along the line.
Japanese Patent Laid-Open No. 2002-22900

しかしながら、上述したような荷電粒子線照射装置では、照射された荷電粒子線の線量分布(以下、単に「線量分布」という)の辺縁部において、むらや低下が生じてしまうおそれがある。ここで、荷電粒子線の強度を制御することによって、線量分布の辺縁部のむらや低下を抑制することが考えられる。しかし、この場合、スキャニング法では、荷電粒子線の強度を高速で制御することが必要となり、且つその制御も複雑となるため、現実的ではない。   However, in the charged particle beam irradiation apparatus as described above, there is a possibility that unevenness or a decrease may occur in the peripheral portion of the dose distribution of the irradiated charged particle beam (hereinafter simply referred to as “dose distribution”). Here, it is conceivable to control the unevenness and lowering of the edge of the dose distribution by controlling the intensity of the charged particle beam. However, in this case, the scanning method is not realistic because it is necessary to control the intensity of the charged particle beam at high speed and the control becomes complicated.

そこで、本発明は、荷電粒子線の線量分布における辺縁部のむらや低下を簡易に抑制することができる荷電粒子線照射装置を提供することを課題とする。   Then, this invention makes it a subject to provide the charged particle beam irradiation apparatus which can suppress the nonuniformity and fall of the edge part in the dose distribution of a charged particle beam easily.

上記課題を解決するため、本発明に係る荷電粒子線照射装置は、被照射物に設定された照射野において照射ラインに沿って荷電粒子線を走査しながら連続照射する荷電粒子線照射装置であって、荷電粒子線を走査するための走査電磁石と、走査電磁石の動作を制御する制御手段と、を備え、制御手段は、照射ラインに沿って荷電粒子線を照射するときの走査速度を、荷電粒子線の線量分布における辺縁部が補正されるように変更することを特徴とする。   In order to solve the above-mentioned problems, a charged particle beam irradiation apparatus according to the present invention is a charged particle beam irradiation apparatus that continuously irradiates while scanning a charged particle beam along an irradiation line in an irradiation field set on an object to be irradiated. A scanning electromagnet for scanning the charged particle beam, and a control means for controlling the operation of the scanning electromagnet. The control means charges the scanning speed when the charged particle beam is irradiated along the irradiation line. It changes so that the edge part in dose distribution of particle beam may be corrected.

この荷電粒子線照射装置では、照射ラインに沿って荷電粒子線を照射するときの走査速度を、荷電粒子線の線量分布における辺縁部が補正されるように変更する。つまり、線量分布の辺縁部が補正されるように荷電粒子線の照射時間が長く又は短くされることになる。従って、荷電粒子線の強度を制御することなく辺縁部の線量分布を制御することができ、よって、線量分布における辺縁部のむらや低下を簡易に抑制することが可能となる。   In this charged particle beam irradiation apparatus, the scanning speed when irradiating a charged particle beam along the irradiation line is changed so that the edge in the dose distribution of the charged particle beam is corrected. That is, the irradiation time of the charged particle beam is lengthened or shortened so that the edge of the dose distribution is corrected. Therefore, it is possible to control the dose distribution at the edge without controlling the intensity of the charged particle beam, and thus it is possible to easily suppress the unevenness and lowering of the edge in the dose distribution.

また、照射ラインは、具体的には、矩形波状に延在しており、所定間隔で並設された3列以上の第1照射ラインと、隣接する第1照射ラインの一端同士又は他端同士を接続する複数の第2照射ラインと、を含んで構成される場合がある。なお、ここでの「矩形波状」とは、完全な矩形波状だけでなく、略矩形波状も含むものを意味する。 In addition, the irradiation lines specifically extend in a rectangular wave shape, and three or more rows of first irradiation lines arranged in parallel at a predetermined interval and one end or the other end of adjacent first irradiation lines. And a plurality of second irradiation lines that connect the two. The “rectangular wave shape” here means not only a complete rectangular wave shape but also a substantially rectangular wave shape.

このとき、制御手段は、3列以上の第1照射ラインのうち外側の第1照射ラインに沿って荷電粒子線を照射するときの走査速度を、それ以外の第1照射ラインに沿って荷電粒子線を照射するときの走査速度よりも遅くすることが好ましい。ここで、通常、荷電粒子線の線量がガウス分布を示すことから、線量分布が外縁側で裾広がりになり易いため、線量分布の急峻さが低下することがある。この点、本発明では、上記のように、3列以上の第1照射ラインのうち外側の第1照射ラインに沿って荷電粒子線を照射するときの走査速度を、それ以外の第1照射ラインに沿って荷電粒子線を照射するときの走査速度よりも遅くしている。そのため、外側の第1照射ラインに沿っては、荷電粒子線が充分に照射されることになる。よって、第1照射ラインが並ぶ方向における辺縁部の線量分布が低下するのを簡易に抑制することができる。 At this time, the control means determines the scanning speed when the charged particle beam is irradiated along the outer first irradiation line among the three or more rows of the first irradiation lines, and the charged particles along the other first irradiation lines. It is preferable to make it slower than the scanning speed when irradiating a line. Here, since the dose of a charged particle beam usually shows a Gaussian distribution, the dose distribution tends to be broadened on the outer edge side, so that the steepness of the dose distribution may be reduced. In this regard, in the present invention, as described above, the scanning speed when the charged particle beam is irradiated along the outer first irradiation line among the three or more rows of the first irradiation lines is set to the other first irradiation lines. The scanning speed is slower than that when the charged particle beam is irradiated along the line. Therefore, the charged particle beam is sufficiently irradiated along the outer first irradiation line. Therefore, it is possible to easily suppress a decrease in the dose distribution at the edge in the direction in which the first irradiation lines are arranged.

また、制御手段は、第1照射ラインの端部に荷電粒子線を照射するときの走査速度を、第1照射ラインの端部以外に荷電粒子線を照射するときの走査速度よりも遅くする、又は所定時間の間0とすることが好ましい。この場合、第1照射ラインの端部に荷電粒子線が充分に照射されることとなる。よって、第1照射ラインに沿う方向における辺縁部の線量分布が低下するのを簡易に抑制することができる。   Further, the control means makes the scanning speed when the charged particle beam is irradiated to the end of the first irradiation line slower than the scanning speed when the charged particle beam is irradiated to the end other than the end of the first irradiation line. Alternatively, it is preferably set to 0 for a predetermined time. In this case, the charged particle beam is sufficiently irradiated to the end portion of the first irradiation line. Therefore, it is possible to easily suppress a decrease in the dose distribution at the edge in the direction along the first irradiation line.

また、制御手段は、第2照射ラインに沿って荷電粒子線を走査するときの走査速度を、第1照射ラインに沿って荷電粒子線を走査するときの走査速度よりも速めることが好ましい。照射ラインが矩形波状を呈していると、照射野の第1照射ラインの端部側には、第2照射ラインが存在する領域と存在しない領域とが混在する。そのため、照射野の第1照射ラインの端部側においては、照射された荷電粒子線の線量が多い領域と少ない領域とのむらが生じ易い(例えば、図7(a)参照)。この点、本発明では、上記のように、第2照射ラインに沿っての走査速度を、第1照射ラインに沿っての走査速度よりも速めている。そのため、第2照射ラインに沿って照射された荷電粒子線の線量が抑えられることになる。よって、照射野の第1照射ラインの端部側において、荷電粒子線の線量が多い領域と少ない領域とのむらが生じるのを簡易に抑制することができる(例えば、図7(b)参照)。   Moreover, it is preferable that a control means speeds up the scanning speed when scanning a charged particle beam along a 2nd irradiation line rather than the scanning speed when scanning a charged particle beam along a 1st irradiation line. When the irradiation line has a rectangular wave shape, a region where the second irradiation line exists and a region where the second irradiation line does not exist are mixed on the end side of the first irradiation line of the irradiation field. For this reason, unevenness between the region where the dose of the irradiated charged particle beam is large and the region where the dose is small is likely to occur on the end side of the first irradiation line of the irradiation field (see, for example, FIG. 7A). In this regard, in the present invention, as described above, the scanning speed along the second irradiation line is made faster than the scanning speed along the first irradiation line. Therefore, the dose of the charged particle beam irradiated along the second irradiation line is suppressed. Therefore, it is possible to easily suppress unevenness between a region where the dose of the charged particle beam is high and a region where the dose of the charged particle beam is small on the end side of the first irradiation line of the irradiation field (see, for example, FIG. 7B).

また、制御手段は、線量分布における辺縁部の照射ラインに沿って荷電粒子線を照射するときの走査速度を、それ以外の照射ラインに沿って荷電粒子線を照射するときの走査速度よりも遅くすることが好ましい。この場合、辺縁部の線量分布が低下するのを簡易に抑制することができる。   Further, the control means sets the scanning speed when irradiating the charged particle beam along the irradiation line at the edge of the dose distribution to be higher than the scanning speed when irradiating the charged particle beam along the other irradiation lines. It is preferable to slow down. In this case, it is possible to easily suppress a decrease in the dose distribution at the edge.

また、照射ラインは、照射野の外縁に沿って延在する第3照射ラインと、第3照射ラインの内側の第4照射ラインと、を含んで構成され、制御手段は、第3照射ラインに沿って荷電粒子線を走査するときの走査速度を、第4照射ラインに沿って荷電粒子線を走査するときの走査速度よりも遅くすることが好ましい。この場合、第3照射ラインに沿って荷電粒子線が充分に照射されることになるため、辺縁部の線量分布が低下するのを簡易に抑制することが可能となる。   The irradiation line is configured to include a third irradiation line extending along the outer edge of the irradiation field, and a fourth irradiation line inside the third irradiation line, and the control means includes a third irradiation line. It is preferable that the scanning speed when scanning the charged particle beam along the fourth irradiation line is slower than the scanning speed when scanning the charged particle beam along the fourth irradiation line. In this case, since the charged particle beam is sufficiently irradiated along the third irradiation line, it is possible to easily suppress a decrease in the dose distribution at the edge portion.

このとき、第4照射ラインは、矩形波状に延在しており、所定間隔で並設された3列以上の第5照射ラインと、隣接する第5照射ラインの一端同士又は他端同士を接続する複数の第6照射ラインと、を含んで構成される場合がある。 At this time, the fourth irradiation line extends in a rectangular wave shape, and three or more rows of fifth irradiation lines arranged in parallel at a predetermined interval are connected to one end or the other end of the adjacent fifth irradiation lines. And a plurality of sixth irradiation lines.

本発明によれば、荷電粒子線の線量分布における辺縁部のむらや低下を簡易に抑制することが可能となる。   According to the present invention, it is possible to easily suppress the unevenness and lowering of the edge portion in the dose distribution of the charged particle beam.

以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、以下の説明において同一又は相当要素には同一符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description, the same or equivalent elements will be denoted by the same reference numerals, and redundant description will be omitted.

まず、本発明の第1実施形態に係る荷電粒子線照射装置について説明する。図1は本発明の第1実施形態に係る荷電粒子線照射装置の斜視図であり、図2は図1の荷電粒子線照射装置の概略構成図である。図1に示すように、荷電粒子線照射装置1は、スキャニング法によるものであり、治療台11を取り囲むように設けられた回転ガントリ12に取り付けられ、該回転ガントリ12によって治療台11の回りに回転可能とされている。   First, the charged particle beam irradiation apparatus according to the first embodiment of the present invention will be described. FIG. 1 is a perspective view of a charged particle beam irradiation apparatus according to the first embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of the charged particle beam irradiation apparatus of FIG. As shown in FIG. 1, the charged particle beam irradiation apparatus 1 is based on a scanning method and is attached to a rotating gantry 12 provided so as to surround a treatment table 11, and around the treatment table 11 by the rotating gantry 12. It can be rotated.

この荷電粒子線照射装置1は、図2に示すように、患者13の体内の腫瘍(被照射物)14に向けて荷電粒子線Rを連続照射する。具体的には、荷電粒子線照射装置1は、腫瘍14を深さ方向(Z方向)に複数層に分け、各層に設定された照射野Fにおいて照射ラインLに沿って荷電粒子線Rを走査速度Vで走査しながら連続照射(いわゆる、ラインスキャニング)する。つまり、荷電粒子線照射装置1は、腫瘍14に合わせた3次元の照射野を形成するため、腫瘍14を複数の層に分割してこれらの各層のそれぞれに対して平面スキャニングを行う。これにより、腫瘍14の3次元形状に合わせて荷電粒子線Rが照射されることとなる。   As illustrated in FIG. 2, the charged particle beam irradiation apparatus 1 continuously irradiates a charged particle beam R toward a tumor (irradiation object) 14 in the body of a patient 13. Specifically, the charged particle beam irradiation apparatus 1 divides the tumor 14 into a plurality of layers in the depth direction (Z direction), and scans the charged particle beam R along the irradiation line L in the irradiation field F set in each layer. Continuous scanning (so-called line scanning) is performed while scanning at a speed V. That is, the charged particle beam irradiation apparatus 1 divides the tumor 14 into a plurality of layers and performs planar scanning on each of these layers in order to form a three-dimensional irradiation field that matches the tumor 14. Thereby, the charged particle beam R is irradiated according to the three-dimensional shape of the tumor 14.

荷電粒子線Rは、電荷をもった粒子を高速に加速したものであり、荷電粒子線Rとしては、例えば陽子線、重粒子(重イオン)線、電子線等が挙げられる。照射野Fは、例えば最大200mm×200mmの領域とされ、図4に示すように、ここでの照射野Fは、その外形が略矩形状とされている。なお、照射野Fの形状は、種々の形状としてもよく、例えば腫瘍14の形状に沿った形状としても勿論よい。   The charged particle beam R is obtained by accelerating charged particles at a high speed. Examples of the charged particle beam R include a proton beam, a heavy particle (heavy ion) beam, and an electron beam. The irradiation field F is, for example, a region having a maximum size of 200 mm × 200 mm. As shown in FIG. 4, the irradiation field F here has a substantially rectangular outer shape. Note that the shape of the irradiation field F may be various shapes, for example, may be a shape along the shape of the tumor 14.

照射ラインLは、荷電粒子線Rを照射する予定線(仮想線)である。ここでの照射ラインLは、矩形波状に延在しており、具体的には、所定間隔で並設された複数の第1照射ラインL(L11〜L1n、nは整数)と、隣接する第1照射ラインLの一端同士又は他端同士を接続する複数の第2照射ラインLと、を含んで構成されている。 The irradiation line L is a planned line (virtual line) for irradiating the charged particle beam R. The irradiation line L here extends in a rectangular wave shape, specifically, a plurality of first irradiation lines L 1 (L 11 to L 1n , n is an integer) arranged in parallel at a predetermined interval, It is configured to include a second irradiation line L 2 a plurality of connecting the one ends or the other ends of the first irradiation line L 1 adjacent the.

図2に戻り、荷電粒子線照射装置1は、サイクロトロン2、収束用電磁石3a,3b、モニタ4a,4b、走査電磁石5a,5b及びファインデグレーダ8を備えている。サイクロトロン2は、荷電粒子線Rを連続的に発生させる発生源である。このサイクロトロン2で発生した荷電粒子線Rは、ビーム輸送系7によって後段の収束用電磁石3aへ輸送される。   Returning to FIG. 2, the charged particle beam irradiation apparatus 1 includes a cyclotron 2, focusing electromagnets 3 a and 3 b, monitors 4 a and 4 b, scanning electromagnets 5 a and 5 b, and a fine degrader 8. The cyclotron 2 is a generation source that continuously generates charged particle beams R. The charged particle beam R generated by the cyclotron 2 is transported by the beam transport system 7 to the subsequent focusing electromagnet 3a.

収束用電磁石3a,3bは、荷電粒子線Rを絞って収束させるものである。収束用電磁石3a,3bは、荷電粒子線Rの照射軸(以下、単に「照射軸」という)においてサイクロトロン2の下流側に配置されている。   The converging electromagnets 3a and 3b focus the charged particle beam R to converge. The focusing electromagnets 3a and 3b are arranged on the downstream side of the cyclotron 2 on the irradiation axis of the charged particle beam R (hereinafter simply referred to as “irradiation axis”).

モニタ4aは、荷電粒子線Rのビーム位置を監視し、モニタ4bは、荷電粒子線Rの線量の絶対値と荷電粒子線Rの線量分布とを監視する。モニタ4aは、例えば照射軸において収束用電磁石3a,3b間に配置され、モニタ4bは、例えば照射軸において収束用電磁石3bの下流側に配置されている。   The monitor 4a monitors the beam position of the charged particle beam R, and the monitor 4b monitors the absolute value of the dose of the charged particle beam R and the dose distribution of the charged particle beam R. The monitor 4a is disposed between the focusing electromagnets 3a and 3b, for example, on the irradiation axis, and the monitor 4b is disposed on the downstream side of the focusing electromagnet 3b, for example, on the irradiation axis.

走査電磁石5a,5bは、荷電粒子線Rを走査するためのものである。具体的には、印加される電流に応じて磁場を変化させることで、通過する荷電粒子線Rの照射位置を照射野において移動させる。走査電磁石5aは、照射野FのX方向(照射軸に直交する方向)に荷電粒子線Rを走査し、走査電磁石5bは、照射野FのY方向(照射軸及びX方向に直交する方向)に荷電粒子線Rを走査する。これらの走査電磁石5a,5bは、照射軸において収束用電磁石3b及びモニタ4b間に配置されている。なお、走査電磁石5aがY方向に荷電粒子線Rを走査し、走査電磁石5bがX方向に荷電粒子線Rを走査する場合もある。   The scanning electromagnets 5a and 5b are for scanning the charged particle beam R. Specifically, the irradiation position of the charged particle beam R passing therethrough is moved in the irradiation field by changing the magnetic field according to the applied current. The scanning electromagnet 5a scans the charged particle beam R in the X direction (direction orthogonal to the irradiation axis) of the irradiation field F, and the scanning electromagnet 5b is the Y direction (direction orthogonal to the irradiation axis and the X direction) of the irradiation field F. The charged particle beam R is scanned. These scanning electromagnets 5a and 5b are arranged between the converging electromagnet 3b and the monitor 4b on the irradiation axis. In some cases, the scanning electromagnet 5a scans the charged particle beam R in the Y direction, and the scanning electromagnet 5b scans the charged particle beam R in the X direction.

ファインデグレーダ8は、深さ方向に複数層に分割された腫瘍14の各層に荷電粒子線Rを照射するためのものである。具体的には、このファインデグレーダ8は、通過する荷電粒子線Rのエネルギー損失を変化させ、患者13の体内における荷電粒子線Rの到達深さを調整することで、分割された各層のうちの一の層に荷電粒子線Rの到達深さを合わせる。   The fine degrader 8 is for irradiating each layer of the tumor 14 divided into a plurality of layers in the depth direction with the charged particle beam R. Specifically, the fine degrader 8 changes the energy loss of the charged particle beam R that passes therethrough and adjusts the arrival depth of the charged particle beam R in the body of the patient 13, so that each of the divided layers The arrival depth of the charged particle beam R is adjusted to one layer.

また、荷電粒子線照射装置1は、制御装置(制御手段)6を備えている。この制御装置6は、モニタ4b及び走査電磁石5a,5bに電気的に接続されており、モニタ4bにて監視した荷電粒子線Rの線量の絶対値と線量分布とに基づいて、走査電磁石5a,5bの動作を制御する(詳しくは、後述)。   The charged particle beam irradiation apparatus 1 includes a control device (control means) 6. This control device 6 is electrically connected to the monitor 4b and the scanning electromagnets 5a and 5b, and based on the absolute value and dose distribution of the charged particle beam R monitored by the monitor 4b, the scanning electromagnet 5a, The operation of 5b is controlled (details will be described later).

次に、説明した荷電粒子線照射装置1の動作について図3に示すフローチャートを参照しつつ説明する。   Next, the operation of the charged particle beam irradiation apparatus 1 described will be described with reference to the flowchart shown in FIG.

荷電粒子線照射装置1では、腫瘍14を深さ方向に複数層に分割し、その一の層に設定された照射野Fに向けて荷電粒子線Rを照射する。そして、これを各層に繰り返し実施することで、腫瘍14の3次元形状に沿って荷電粒子線Rが照射されることとなる。   In the charged particle beam irradiation apparatus 1, the tumor 14 is divided into a plurality of layers in the depth direction, and the charged particle beam R is irradiated toward the irradiation field F set in the one layer. By repeating this for each layer, the charged particle beam R is irradiated along the three-dimensional shape of the tumor 14.

ここで、荷電粒子線Rを照射する際には、制御装置6で走査電磁石5a,5bを制御することにより、照射野Fの照射ラインLに沿って荷電粒子線Rを平行に走査すると共に、その走査速度を、線量分布における辺縁部(ここでは、外縁部)が補正されるように変更する。具体的には、制御装置6によって走査電磁石5a,5bを制御して、以下の動作を実行する。   Here, when irradiating the charged particle beam R, the controller 6 controls the scanning electromagnets 5a and 5b to scan the charged particle beam R in parallel along the irradiation line L of the irradiation field F, and The scanning speed is changed so that the edge (here, the outer edge) in the dose distribution is corrected. Specifically, the control device 6 controls the scanning electromagnets 5a and 5b to execute the following operations.

すなわち、図4(a)に示すように、まず、外側の第1照射ラインL11の一端(照射ラインLの基端)に照射点を合わせて荷電粒子線Rを照射しつつ、所定時間tの間だけ走査を停止(走査速度0に)する(S1)。所定時間tは、下式(1)に示すように、荷電粒子線Rの半値幅Dと後述の走査速度V11とに関する時間とされている。
=α×D/V11 (但し、0<α<1) ・・・(1)
That is, as shown in FIG. 4 (a), first, while irradiating a charged particle beam R at one end of the outer side of the first irradiation line L 11 (the proximal end of the irradiation line L) and the combined irradiation point, the predetermined time t Scanning is stopped (scanning speed 0) during 1 (S1). The predetermined time t 1 is a time relating to the half-value width D of the charged particle beam R and a scanning speed V 11 to be described later, as shown in the following expression (1).
t 1 = α 1 × D / V 11 (where 0 <α 1 <1) (1)

続いて、図4(b)に示すように、第1照射ラインL11に沿って、荷電粒子線Rを走査速度V11で走査しながら連続照射する(S2)。そして、図4(c)に示すように、荷電粒子線Rの照射点が第1照射ラインL11の他端に達したとき、荷電粒子線Rの走査を所定時間tの間だけ停止する(S3)。 Subsequently, as shown in FIG. 4 (b), along the first irradiation line L 11, it is continuously irradiated while scanning the charged particle beam R at a scanning speed V 11 (S2). Then, as shown in FIG. 4 (c), when the irradiation point of the charged particle beam R reaches the other end of the first irradiation line L 11, and stops the scanning of the charged particle beam R by a predetermined time t 1 (S3).

続いて、図4(d)に示すように、第2照射ラインLに沿って、荷電粒子線Rを走査速度Vで走査しながら連続照射する(S4)。この走査速度Vは、後述の走査速度V12よりも速く設定されている。そして、図4(c)に示すように、荷電粒子線Rの照射点が第1照射ラインL12の他端に達したとき、荷電粒子線Rの走査を所定時間tの間だけ停止する(S5)。所定時間tは、下式(2)に示すように、荷電粒子線Rの半値幅Dと後述の走査速度V12とに関する時間とされている。
=α×D/V12 (但し、0<α<1) ・・・(2)
Subsequently, as shown in FIG. 4 (d), along a second irradiation line L 2, it is continuously irradiated while scanning the charged particle beam R at a scan rate V 2 (S4). The scanning speed V 2 is set faster than the scanning speed V 12 to be described later. Then, as shown in FIG. 4 (c), when the irradiation point of the charged particle beam R reaches the other end of the first irradiation line L 12, and stops the scanning of the charged particle beam R by a predetermined time t 2 (S5). The predetermined time t 2, as shown in the following equation (2), there is a time for the half-value width D and below the scanning speed V 12 Metropolitan of the charged particle beam R.
t 2 = α 2 × D / V 12 (where 0 <α 2 <1) (2)

続いて、図5(a)に示すように、第1照射ラインL12に沿って、荷電粒子線Rを走査速度V12で走査しながら連続照射する(S6)。この走査速度V12は、走査速度V11よりも速く設定されている。換言すると、第1照射ラインL11に沿っての走査速度V11が、第1照射ラインL12に沿っての走査速度V12よりも遅くなっている。 Subsequently, as shown in FIG. 5 (a), along the first irradiation line L 12, it is continuously irradiated while scanning the charged particle beam R at a scanning speed V 12 (S6). The scanning speed V 12 is set faster than the scanning speed V 11. In other words, the scanning speed V 11 along the first irradiation line L 11 has become slower than the scanning speed V 12 along the first irradiation line L 12.

続いて、荷電粒子線Rの照射点が第1照射ラインL12の一端に達したとき、荷電粒子線Rの走査を所定時間tの間だけ停止する(S7)。そして、第2照射ラインLに沿って、荷電粒子線Rを走査速度Vで走査しながら連続照射する(S8)。 Subsequently, when the irradiation point of the charged particle beam R reaches the end of the first irradiation line L 12, and stops the scanning of the charged particle beam R by a predetermined time t 2 (S7). Then, along the second irradiation line L 2, it is continuously irradiated while scanning the charged particle beam R at a scan rate V 2 (S8).

続いて、S5〜S8を所定回数繰り返した後、第1照射ラインL11に対し反対側の第1照射ラインL1nの一端に荷電粒子線Rの照射点が達したとき、荷電粒子線Rの走査を所定時間tの間だけ停止する(S9)。所定時間tは、下式(3)に示すように、荷電粒子線Rの半値幅Dと後述の走査速度V1nとに関する時間とされている。
=α×D/V1n (但し、0<α<1) ・・・(3)
Subsequently, the S5~S8 repeated for a predetermined number of times, when the irradiation point of the charged particle beam R at one end of the first irradiation line L 1n opposite to the first irradiation line L 11 has reached, the charged particle beam R scanning only during a predetermined time t n stopped (S9). The predetermined time t n is a time relating to the half-value width D of the charged particle beam R and a scanning speed V 1n described later, as shown in the following expression (3).
t n = α n × D / V 1n (where 0 <α n <1) (3)

そして、図5(b)に示すように、この第1照射ラインL1nに沿って、走査速度V12よりも遅い走査速度V1nで荷電粒子線Rを走査しながら連続照射する(S10)。最後に、図5(c)に示すように、荷電粒子線Rの照射点が第1照射ラインL1nの他端(照射ラインの終端)に達したとき、荷電粒子線Rの走査を所定時間tの間だけ停止する(S11)。これにより、照射野Fの照射ラインLに沿っての荷電粒子線Rの照射が完了することとなる。 Then, as shown in FIG. 5B, the charged particle beam R is continuously irradiated along the first irradiation line L 1n while scanning the charged particle beam R at a scanning speed V 1n slower than the scanning speed V 12 (S10). Finally, as shown in FIG. 5C, when the irradiation point of the charged particle beam R reaches the other end of the first irradiation line L1n (end of the irradiation line), scanning of the charged particle beam R is performed for a predetermined time. It stops only for t n (S11). Thereby, irradiation of the charged particle beam R along the irradiation line L of the irradiation field F is completed.

図6(a)は、従来の荷電粒子線照射装置での線量分布を示す図、図6(b)は、図1の荷電粒子線照射装置での線量分布を示す図、図6(c)は、図6(a),(b)の比較図である。図中において、線量分布B0,B1は、荷電粒子線Rの線量分布(総線量分布)を示し、線量分布B0,B1は、各照射ラインLに沿っての線量分布のみを示している。 6A shows a dose distribution in the conventional charged particle beam irradiation apparatus, FIG. 6B shows a dose distribution in the charged particle beam irradiation apparatus in FIG. 1, and FIG. 6C. These are the comparison figures of FIG. 6 (a), (b). In the drawing, dose distributions B0 and B1 indicate the dose distribution (total dose distribution) of the charged particle beam R, and dose distributions B0 L and B1 L indicate only the dose distribution along each irradiation line L. .

荷電粒子線Rの線量(強度)がガウス分布を示すことから、図6(a)に示すように、従来の荷電粒子線照射装置では、線量分布B0が辺縁部で低下(線量分布B0の急峻さが低下)している。つまり、線量分布B0の内側では、隣接する照射ラインLに沿って照射された荷電粒子線Rの影響(重なり)で均一性を保つことができるものの、辺縁部(輪郭)では、なだらかに傾斜し裾広がりとなってしまう。   Since the dose (intensity) of the charged particle beam R exhibits a Gaussian distribution, as shown in FIG. 6A, in the conventional charged particle beam irradiation apparatus, the dose distribution B0 decreases at the edge (the dose distribution B0 Steepness is reduced). That is, inside the dose distribution B0, uniformity can be maintained due to the influence (overlap) of the charged particle beam R irradiated along the adjacent irradiation line L, but the edge (contour) is gently inclined. The hem will spread.

これに対し、本実施形態の荷電粒子線照射装置1では、上述したように、制御装置6が、第1照射ラインLのうち外側の第1照射ラインL11,L1nに沿って荷電粒子線Rを照射するときの走査速度V11,V1nを、それ以外の第1照射ラインに沿って荷電粒子線Rを照射するときの走査速度V12よりも遅くさせている。そのため、第1照射ラインL11,L1nに沿った荷電粒子線Rの照射時間が長くなり、第1照射ラインL11,L1nに沿って荷電粒子線Rが充分に照射されることになる。よって、図6(b),(c)に示すように、荷電粒子照射装置1による線量分布B1にあっては、第1照射ラインLが並ぶ方向(図4の左右方向)の辺縁部で線量分布B1が急峻に立ち上がるようになり、かかる辺縁部での低下を抑制することが可能となる。 In contrast, in the charged particle beam irradiation apparatus 1 of the present embodiment, as described above, the control device 6, the charged particles along the outside of the first irradiation line L 11, L 1n of the first irradiation line L 1 The scanning speeds V 11 and V 1n when irradiating the line R are made slower than the scanning speed V 12 when irradiating the charged particle beam R along the other first irradiation lines. Therefore, the irradiation time of the charged particle beam R along the first irradiation lines L 11 and L 1n becomes longer, and the charged particle beam R is sufficiently irradiated along the first irradiation lines L 11 and L 1n. . Thus, FIG. 6 (b), the (c), the In the dose distribution B1 by the charged particle irradiation apparatus 1, peripheral portions of the first irradiation line L 1 are arranged direction (lateral direction in FIG. 4) As a result, the dose distribution B1 rises sharply, and it is possible to suppress the decrease at the edge.

また、荷電粒子線照射装置1では、上述したように、制御装置6が、第1照射ラインLの端部(一端及び他端の位置)に荷電粒子線Rを照射するとき、荷電粒子線Rの走査を所定時間tの間だけ停止させている。そのため、第1照射ラインLの端部では、荷電粒子線Rの照射時間が長くなって充分に照射される。よって、線量分布B1にあっては、第1照射ラインLに沿う方向(図4の上下方向)の辺縁部で線量分布B1が急峻に立ち上がるようになり、かかる辺縁部での低下を抑制することが可能となる。 Further, the charged particle beam irradiation apparatus 1, as described above, the control device 6, when irradiating a charged particle beam R to the end of the first irradiation line L 1 (position of the one end and the other end), a charged particle beam the scanning of R only for a predetermined time t 1 has stopped. Therefore, in the first end portion of the irradiation line L 1, the irradiation time of the charged particle beam R is sufficiently irradiated longer. Therefore, in the dose distribution B1, now dose distribution B1 rises sharply at the edges in the direction along the first irradiation line L 1 (vertical direction in FIG. 4), a reduction in such edge portion It becomes possible to suppress.

ここで、照射ラインLが矩形波状に延在していると、図5(c)に示すように、照射野Fの第1照射ラインLの端部側には、第2照射ラインLが存在する領域20と存在しない領域21とが混在する。そのため、従来の荷電粒子線照射装置では、図7(a)に示すように、照射野Fの第1照射ラインLの端部側において、照射された荷電粒子線Rの線量が多い領域と少ない領域とのむらが生じ易い(斑状となり易い)。 Here, when the irradiation line L extends in a rectangular wave shape, as shown in FIG. 5C, the second irradiation line L 2 is located on the end side of the first irradiation line L 1 of the irradiation field F. A region 20 where the sigma exists and a region 21 where it does not exist are mixed. Therefore, in the conventional charged particle beam irradiation apparatus, as shown in FIG. 7A, an area where the dose of the irradiated charged particle beam R is large on the end side of the first irradiation line L 1 of the irradiation field F is Unevenness with a small area is likely to occur (prone to spots).

この点、荷電粒子線照射装置1によれば、上述したように、制御装置6が、第2照射ラインLに沿って荷電粒子線Rを走査するときの走査速度Vを、第1照射ラインLに沿って荷電粒子線を走査するときの走査速度V11,V12,V1nよりも速めている。そのため、図7(b)に示すように、第2照射ラインLに沿って照射される荷電粒子線Rの線量を抑えることができ、照射野Fの第1照射ラインLの端部側にむらが生じるのを抑制することができる。 In this regard, according to the charged particle beam irradiation apparatus 1, as described above, the control apparatus 6 performs the first irradiation at the scanning speed V 2 when scanning the charged particle beam R along the second irradiation line L 2. It is faster than the scanning speeds V 11 , V 12 , and V 1n when scanning the charged particle beam along the line L 1 . Therefore, as shown in FIG. 7 (b), it is possible to suppress the dose of the charged particle beam R irradiated along the second irradiation line L 2, the first end portion side of the irradiation line L 1 of the radiation field F The occurrence of unevenness can be suppressed.

以上、本実施形態1の荷電粒子線照射装置1によれば、制御装置6が、照射ラインLに沿って荷電粒子線を照射するときの走査速度Vを、荷電粒子線Rの線量分布における辺縁部が補正されるように変更する。従って、荷電粒子線Rの強度を制御することなく線量分布B1の辺縁部を制御することができ、線量分布B1の辺縁部のむらや低下を簡易に抑制することが可能となる。   As described above, according to the charged particle beam irradiation apparatus 1 of the first embodiment, the scanning speed V when the control apparatus 6 irradiates the charged particle beam along the irradiation line L is set to the side in the dose distribution of the charged particle beam R. Change so that the edges are corrected. Therefore, it is possible to control the edge of the dose distribution B1 without controlling the intensity of the charged particle beam R, and it is possible to easily suppress unevenness and lowering of the edge of the dose distribution B1.

なお、荷電粒子線照射装置1では、上述したように、荷電粒子線Rを連続的に発生させるサイクロトロン2を採用している。このことは、荷電粒子線Rを断続(パルス)的に発生させるシンクロトロンを採用した場合に比べ、照射ラインLに沿って荷電粒子線Rを連続照射する点で有効である。   The charged particle beam irradiation apparatus 1 employs the cyclotron 2 that continuously generates the charged particle beam R as described above. This is effective in that the charged particle beam R is continuously irradiated along the irradiation line L as compared with the case where a synchrotron that generates the charged particle beam R intermittently (pulsed) is employed.

次に、本発明の第2実施形態に係る荷電粒子線照射装置について説明する。なお、本実施形態の説明では、上記の第1実施形態の荷電粒子線照射装置1と異なる点について主に説明する。   Next, a charged particle beam irradiation apparatus according to the second embodiment of the present invention will be described. In the description of the present embodiment, differences from the charged particle beam irradiation apparatus 1 of the first embodiment will be mainly described.

図9に示すように、照射ラインL10は、照射野Fの外縁に沿って延在する第3照射ラインLと、この第3照射ラインLの内側に位置する第4照射ラインLと、を含んで構成されている。また、第4照射ラインLは、上記の照射ラインLと同様な第5照射ラインL、及び上記の照射ラインLと同様な第6照射ラインLを含んでいる。制御装置6は、走査電磁石5a,5bを制御して、以下の動作を実行する。 As shown in FIG. 9, the irradiation line L10 has a third irradiation line L 3 extending along the outer edge of the irradiation field F, the fourth irradiation line L 4 located inside the third irradiation line L 3 , Including. The fourth irradiation line L 4 are, it includes a sixth irradiation line L 6 similar to the irradiation line L 1 and the same fifth irradiation line L 5, and irradiation line L 2 of the above. The control device 6 controls the scanning electromagnets 5a and 5b to execute the following operations.

すなわち、まず、図9(a)に示すように、第3照射ラインLに沿って荷電粒子線Rを走査速度Vで走査しながら連続照射する(図8のS21)。この走査速度Vは、後述の走査速度Vよりも遅く設定されている。 That is, first, as shown in FIG. 9 (a), continuous irradiation while scanning the charged particle beam R at a scanning speed V 3 along the third irradiation line L 3 (S21 in FIG. 8). The scanning speed V 3 is set slower than the scanning speed V 4 will be described later.

続いて、図9(b)に示すように、第4照射ラインLに沿って荷電粒子線Rを走査速度Vで走査しながら連続照射する(S22)。具体的には、荷電粒子線Rを、上記の走査速度V12と同様な走査速度V41で照射ラインLに沿って走査しつつ照射し、上記の走査速度Vと同様な走査速度V42で照射ラインLに沿って走査しつつ照射する。そして、このS22を所定回数繰り返すことにより、図9(c)に示すように、照射野Fにおける照射ラインL10に沿っての荷電粒子線Rの照射が完了する。 Subsequently, as shown in FIG. 9 (b), continuously irradiated while scanning the charged particle beam R at a scanning speed V 4 along the fourth irradiation line L 4 (S22). Specifically, the charged particle beam R is irradiated while scanning along the irradiation line L 5 at a scanning speed V 41 similar to the scanning speed V 12, and the scanning speed V similar to the scanning speed V 2 described above. Irradiate while scanning along the irradiation line L 6 at 42 . Then, by repeating S22 a predetermined number of times, irradiation of the charged particle beam R along the irradiation line L10 in the irradiation field F is completed as shown in FIG.

以上、本実施形態の荷電粒子線照射装置では、制御装置6が、第3照射ラインLに沿って荷電粒子線Rを照射するときの走査速度Vを、この第3照射ラインLの内側の照射ラインである第4照射ラインLに沿って荷電粒子線Rを照射するときの走査速度V(V41及びV42)よりも遅くさせている。つまり、制御装置6は、線量分布B1における辺縁部の照射ラインに沿って荷電粒子線Rを照射するときの走査速度を、それ以外の照射ラインに沿って荷電粒子線Rを照射するときの走査速度よりも遅くさせている。従って、第3照射ラインLに沿った荷電粒子線Rの照射時間が長くなり、第3照射ラインLに沿って荷電粒子線Rが充分に照射されることになる。その結果、線量分布B1の辺縁部が低下するのを簡易に抑制することが可能となる。 As described above, in the charged particle beam irradiation apparatus of the present embodiment, the control device 6 sets the scanning speed V 3 when irradiating the charged particle beam R along the third irradiation line L 3 to the third irradiation line L 3 . The scanning speed V 4 (V 41 and V 42 ) when irradiating the charged particle beam R along the fourth irradiation line L 4 that is the inner irradiation line is made slower. That is, the control device 6 uses the scanning speed when irradiating the charged particle beam R along the irradiation line at the edge in the dose distribution B1 and the irradiation speed when irradiating the charged particle beam R along the other irradiation lines. It is slower than the scanning speed. Therefore, the irradiation time of the charged particle beam R along the third irradiation line L 3 becomes long, so that the charged particle beam R along the third irradiation line L 3 is sufficiently illuminated. As a result, it is possible to easily suppress a decrease in the edge portion of the dose distribution B1.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.

例えば、図10(a)に示すように、照射野Fにおいて三角波状に延在する照射ラインL20に沿って荷電粒子線Rを走査しながら連続照射(いわゆる、ラスタースキャニング)してもよい。つまり、本発明は、あらゆる形状の照射ラインに適応することが可能である。また、図10(b)に示すように、照射野Fの一部(ここでは中央部)を避けるように照射ラインL30を設定し、照射野Fの一部を避けるように荷電粒子Rを照射してもよい。なお、この場合の線量分布の辺縁部は、外縁部及び内縁部となる。   For example, as shown in FIG. 10A, continuous irradiation (so-called raster scanning) may be performed while scanning the charged particle beam R along the irradiation line L20 extending in a triangular wave shape in the irradiation field F. That is, the present invention can be applied to irradiation lines of any shape. Further, as shown in FIG. 10B, the irradiation line L30 is set so as to avoid a part of the irradiation field F (here, the central part), and the charged particles R are irradiated so as to avoid a part of the irradiation field F. May be. In this case, the edge portions of the dose distribution are an outer edge portion and an inner edge portion.

また、上記実施形態では、第1照射ラインLの一端及び他端の位置に荷電粒子線Rを照射するとき、その走査を所定時間の間停止したが、走査を停止せずに走査速度を遅くしてもよい。つまり、第1照射ラインL11の一端及び他端では、走査速度V11よりも遅くしてもよく、第1照射ラインL12の一端及び他端では走査速度V12よりも遅くしてもよく、第1照射ラインL1nの一端及び他端では走査速度V1nよりも遅くしてもよい。 In the above embodiment, when irradiating a charged particle beam R to the position of the one end and the other end of the first irradiation line L 1, has been stopped during the scanning of a predetermined time, the scanning speed without stopping the scanning May be late. That is, in the one end and the other end of the first irradiation line L 11, may be slower than the scanning speed V 11, at the one end and the other end of the first irradiation line L 12 may be slower than the scanning speed V 12 The first irradiation line L 1n may be slower than the scanning speed V 1n at one end and the other end.

また、モニタ4a,4bの配置される位置は、上記実施形態における位置に限定されず、適宜な位置に配置しても勿論よい。   Further, the positions where the monitors 4a and 4b are arranged are not limited to the positions in the above-described embodiment, and may of course be arranged at appropriate positions.

本発明の第1実施形態に係る荷電粒子線照射装置の斜視図である。1 is a perspective view of a charged particle beam irradiation apparatus according to a first embodiment of the present invention. 図1の荷電粒子線照射装置の概略構成図である。It is a schematic block diagram of the charged particle beam irradiation apparatus of FIG. 図1の荷電粒子線照射装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the charged particle beam irradiation apparatus of FIG. 図1の荷電粒子線照射装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the charged particle beam irradiation apparatus of FIG. 図4の後続の図である。FIG. 5 is a diagram subsequent to FIG. 4. 図5(c)のVI−VI線に沿う断面での線量分布を示す線図である。It is a diagram which shows the dose distribution in the cross section along the VI-VI line of FIG.5 (c). 図5(c)のVII−VII線に沿う断面での線量分布を示す線図である。It is a diagram which shows the dose distribution in the cross section along the VII-VII line of FIG.5 (c). 本発明の第2実施形態に係る荷電粒子線照射装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the charged particle beam irradiation apparatus which concerns on 2nd Embodiment of this invention. 図7の荷電粒子線照射装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the charged particle beam irradiation apparatus of FIG. 照射ラインの他の例を示す図である。It is a figure which shows the other example of an irradiation line.

符号の説明Explanation of symbols

1…荷電粒子線照射装置、5a,5b…走査電磁石、6…制御装置(制御手段)、14…腫瘍(被照射物)、F…照射野、L,L10,L20,L30…照射ライン、L1,L11〜L1n…第1照射ライン、L2…第2照射ライン、L3…第3照射ライン、L4…第4照射ライン、L5…第5照射ライン、L6…第6照射ライン、R…荷電粒子線。   DESCRIPTION OF SYMBOLS 1 ... Charged particle beam irradiation apparatus, 5a, 5b ... Scanning magnet, 6 ... Control apparatus (control means), 14 ... Tumor (irradiation object), F ... Irradiation field, L, L10, L20, L30 ... Irradiation line, L1 , L11 to L1n ... first irradiation line, L2 ... second irradiation line, L3 ... third irradiation line, L4 ... fourth irradiation line, L5 ... fifth irradiation line, L6 ... sixth irradiation line, R ... charged particle beam. .

Claims (8)

被照射物に設定された照射野において照射ラインに沿って荷電粒子線を走査しながら連続照射する荷電粒子線照射装置であって、
前記荷電粒子線を走査するための走査電磁石と、
前記走査電磁石の動作を制御する制御手段と、を備え、
前記制御手段は、前記照射ラインに沿って前記荷電粒子線を照射するときの走査速度を、前記荷電粒子線の線量分布における辺縁部が補正されるように変更することを特徴とする荷電粒子線照射装置。
A charged particle beam irradiation apparatus for continuously irradiating a charged particle beam along an irradiation line in an irradiation field set on an irradiation object,
A scanning electromagnet for scanning the charged particle beam;
Control means for controlling the operation of the scanning electromagnet,
The control means changes a scanning speed when irradiating the charged particle beam along the irradiation line so that a marginal portion in a dose distribution of the charged particle beam is corrected. X-ray irradiation device.
前記照射ラインは、矩形波状に延在しており、所定間隔で並設された3列以上の第1照射ラインと、隣接する前記第1照射ラインの一端同士又は他端同士を接続する複数の第2照射ラインと、を含んで構成されることを特徴とする請求項1記載の荷電粒子線照射装置。 The irradiation line extends in a rectangular wave shape, and a plurality of first irradiation lines arranged in parallel at predetermined intervals and a plurality of adjacent one ends or the other ends of the adjacent first irradiation lines are connected. The charged particle beam irradiation apparatus according to claim 1, comprising a second irradiation line. 前記制御手段は、3列以上の前記第1照射ラインのうち外側の第1照射ラインに沿って前記荷電粒子線を照射するときの走査速度を、それ以外の第1照射ラインに沿って前記荷電粒子線を照射するときの走査速度よりも遅くすることを特徴とする請求項2記載の荷電粒子線照射装置。 The control means determines the scanning speed when irradiating the charged particle beam along the outer first irradiation line among the three or more rows of the first irradiation lines, and the charge along the other first irradiation lines. The charged particle beam irradiation apparatus according to claim 2, wherein the charged particle beam irradiation apparatus is slower than a scanning speed when the particle beam is irradiated. 前記制御手段は、前記第1照射ラインの端部に前記荷電粒子線を照射するときの走査速度を、前記第1照射ラインの前記端部以外に前記荷電粒子線を照射するときの走査速度よりも遅くする、又は所定時間の間0とすることを特徴とする請求項2又は3記載の荷電粒子線照射装置。   The control means uses a scanning speed when irradiating the charged particle beam to the end portion of the first irradiation line, and a scanning speed when irradiating the charged particle beam to a portion other than the end portion of the first irradiation line. 4. The charged particle beam irradiation apparatus according to claim 2, wherein the charged particle beam irradiation apparatus is also delayed or set to 0 for a predetermined time. 前記制御手段は、前記第2照射ラインに沿って前記荷電粒子線を走査するときの走査速度を、前記第1照射ラインに沿って前記荷電粒子線を走査するときの走査速度よりも速めることを特徴とする請求項2〜4の何れか一項記載の荷電粒子線照射装置。   The controller is configured to increase a scanning speed when scanning the charged particle beam along the second irradiation line to be higher than a scanning speed when scanning the charged particle beam along the first irradiation line. The charged particle beam irradiation apparatus according to any one of claims 2 to 4, wherein the charged particle beam irradiation apparatus is characterized. 前記制御手段は、前記線量分布における辺縁部の照射ラインに沿って前記荷電粒子線を照射するときの走査速度を、それ以外の照射ラインに沿って前記荷電粒子線を照射するときの走査速度よりも遅くすることを特徴とする請求項1記載の荷電粒子線照射装置。 The control means has a scanning speed when irradiating the charged particle beam along an irradiation line at a peripheral portion in the dose distribution, and a scanning speed when irradiating the charged particle beam along other irradiation lines. The charged particle beam irradiation apparatus according to claim 1, wherein the charged particle beam irradiation apparatus is slower. 前記照射ラインは、前記照射野の外縁に沿って延在する第3照射ラインと、前記第3照射ラインの内側の第4照射ラインと、を含んで構成され、
前記制御手段は、前記第3照射ラインに沿って前記荷電粒子線を走査するときの走査速度を、前記第4照射ラインに沿って前記荷電粒子線を走査するときの走査速度よりも遅くすることを特徴とする請求項6記載の荷電粒子線照射装置。
The irradiation line includes a third irradiation line extending along an outer edge of the irradiation field, and a fourth irradiation line inside the third irradiation line,
The control means makes a scanning speed when scanning the charged particle beam along the third irradiation line slower than a scanning speed when scanning the charged particle beam along the fourth irradiation line. The charged particle beam irradiation apparatus according to claim 6.
前記第4照射ラインは、矩形波状に延在しており、所定間隔で並設された3列以上の第5照射ラインと、隣接する前記第5照射ラインの一端同士又は他端同士を接続する複数の第6照射ラインと、を含んで構成されることを特徴とする請求項7記載の荷電粒子線照射装置。 The fourth irradiation line extends in a rectangular wave shape, and connects three or more rows of fifth irradiation lines arranged in parallel at a predetermined interval to one end or the other end of the adjacent fifth irradiation lines. The charged particle beam irradiation apparatus according to claim 7, comprising a plurality of sixth irradiation lines.
JP2008087123A 2008-03-28 2008-03-28 Charged particle beam irradiation equipment Active JP5143606B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008087123A JP5143606B2 (en) 2008-03-28 2008-03-28 Charged particle beam irradiation equipment
TW098104202A TWI430288B (en) 2008-03-28 2009-02-10 Charged particle line irradiation device
CN2009101288975A CN101543663B (en) 2008-03-28 2009-03-23 Charged particle ray irradiation device
KR1020090025762A KR101079629B1 (en) 2008-03-28 2009-03-26 Irradiation apparatus of charged particle ray
US12/382,919 US8153989B2 (en) 2008-03-28 2009-03-26 Charged particle beam irradiating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008087123A JP5143606B2 (en) 2008-03-28 2008-03-28 Charged particle beam irradiation equipment

Publications (2)

Publication Number Publication Date
JP2009243891A JP2009243891A (en) 2009-10-22
JP5143606B2 true JP5143606B2 (en) 2013-02-13

Family

ID=41191203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008087123A Active JP5143606B2 (en) 2008-03-28 2008-03-28 Charged particle beam irradiation equipment

Country Status (5)

Country Link
US (1) US8153989B2 (en)
JP (1) JP5143606B2 (en)
KR (1) KR101079629B1 (en)
CN (1) CN101543663B (en)
TW (1) TWI430288B (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3557956A1 (en) 2004-07-21 2019-10-23 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
WO2007061937A2 (en) 2005-11-18 2007-05-31 Still River Systems Inc. Charged particle radiation therapy
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
JP5583436B2 (en) * 2010-03-15 2014-09-03 住友重機械工業株式会社 Line scanning device
JP5646312B2 (en) * 2010-04-02 2014-12-24 三菱電機株式会社 Particle beam irradiation apparatus and particle beam therapy apparatus
US8471224B2 (en) * 2010-05-13 2013-06-25 Mitsubishi Electric Research Laboratories, Inc. Method for determining paths of particle beams through 3D tissue volumes
JP5410608B2 (en) * 2010-07-28 2014-02-05 住友重機械工業株式会社 Neutron beam irradiation apparatus and control method of neutron beam irradiation apparatus
JP5670126B2 (en) * 2010-08-26 2015-02-18 住友重機械工業株式会社 Charged particle beam irradiation apparatus, charged particle beam irradiation method, and charged particle beam irradiation program
JP5886155B2 (en) * 2012-07-13 2016-03-16 住友重機械工業株式会社 Charged particle beam therapy planning device
TW201438787A (en) 2012-09-28 2014-10-16 Mevion Medical Systems Inc Controlling particle therapy
TW201424467A (en) 2012-09-28 2014-06-16 Mevion Medical Systems Inc Controlling intensity of a particle beam
EP2901821B1 (en) 2012-09-28 2020-07-08 Mevion Medical Systems, Inc. Magnetic field regenerator
WO2015048468A1 (en) 2013-09-27 2015-04-02 Mevion Medical Systems, Inc. Particle beam scanning
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
JP6587826B2 (en) * 2015-05-14 2019-10-09 株式会社日立製作所 Particle beam irradiation system
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
WO2018009779A1 (en) 2016-07-08 2018-01-11 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
JP6940676B2 (en) 2017-06-30 2021-09-29 メビオン・メディカル・システムズ・インコーポレーテッド Configurable collimator controlled using a linear motor
US10381195B2 (en) 2017-07-19 2019-08-13 Sumitomo Heavy Industries, Ltd. Charged particle beam treatment apparatus
JP7165559B2 (en) 2018-10-23 2022-11-04 住友重機械工業株式会社 Treatment planning system
EP3934752A1 (en) 2019-03-08 2022-01-12 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor
US11865361B2 (en) * 2020-04-03 2024-01-09 Varian Medical Systems, Inc. System and method for scanning pattern optimization for flash therapy treatment planning

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4421988A (en) * 1982-02-18 1983-12-20 Varian Associates, Inc. Beam scanning method and apparatus for ion implantation
CN1155152A (en) * 1995-12-11 1997-07-23 株式会社日立制作所 Charged particle bunch device and operation method thereof
US6172363B1 (en) * 1996-03-05 2001-01-09 Hitachi, Ltd. Method and apparatus for inspecting integrated circuit pattern
JP3335845B2 (en) * 1996-08-26 2002-10-21 株式会社東芝 Charged beam drawing apparatus and drawing method
JP3518270B2 (en) 1996-08-30 2004-04-12 株式会社日立製作所 Charged particle beam equipment
JP3577201B2 (en) * 1997-10-20 2004-10-13 三菱電機株式会社 Charged particle beam irradiation device, charged particle beam rotation irradiation device, and charged particle beam irradiation method
JPH11253563A (en) * 1998-03-10 1999-09-21 Hitachi Ltd Method and device for charged particle beam radiation
JP2000241600A (en) 1999-02-19 2000-09-08 Mitsubishi Heavy Ind Ltd Charged particle beam irradiator
TW466542B (en) * 1999-02-26 2001-12-01 Nippon Kogaku Kk A stage device and a method of manufacturing same, a position controlling method, an exposure device and a method of manufacturing same, and a device and a method of manufacturing same
JP2001231873A (en) 2000-02-21 2001-08-28 Hitachi Ltd Method and device for irradiating charged particle beam
JP3423675B2 (en) 2000-07-13 2003-07-07 住友重機械工業株式会社 Charged particle beam irradiation device and treatment device using the same
JP2003126278A (en) 2001-10-22 2003-05-07 Hitachi Ltd Particle beam therapy apparatus and therapy planning apparatus and charged particle beam irradiation method
EP1477206B2 (en) * 2003-05-13 2011-02-23 Hitachi, Ltd. Particle beam irradiation apparatus and treatment planning unit
JP4771944B2 (en) * 2004-06-16 2011-09-14 株式会社日立メディコ Radiation tomographic imaging system
JP3806723B2 (en) * 2004-11-16 2006-08-09 株式会社日立製作所 Particle beam irradiation system
JP4435829B2 (en) * 2005-02-04 2010-03-24 三菱電機株式会社 Particle beam irradiation equipment
JP4591356B2 (en) * 2006-01-16 2010-12-01 三菱電機株式会社 Particle beam irradiation apparatus and particle beam therapy apparatus
WO2008003526A2 (en) * 2006-07-06 2008-01-10 Ion Beam Applications S.A. Method and software for irradiating a target volume with a particle beam and device implementing same
US7619229B2 (en) * 2006-10-16 2009-11-17 Varian Semiconductor Equipment Associates, Inc. Technique for matching performance of ion implantation devices using an in-situ mask
JP5409428B2 (en) * 2009-03-31 2014-02-05 株式会社日立製作所 Charged particle irradiation system and irradiation planning device

Also Published As

Publication number Publication date
CN101543663A (en) 2009-09-30
TW200941504A (en) 2009-10-01
US20100072389A1 (en) 2010-03-25
US8153989B2 (en) 2012-04-10
KR20090103781A (en) 2009-10-01
KR101079629B1 (en) 2011-11-03
CN101543663B (en) 2013-02-27
TWI430288B (en) 2014-03-11
JP2009243891A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP5143606B2 (en) Charged particle beam irradiation equipment
JP5722559B2 (en) Treatment planning device
US8822965B2 (en) Charged particle beam irradiation apparatus
JP2010029594A (en) Corpuscular beam irradiating apparatus and treatment planning device
JP2009066106A (en) Particle beam irradiation apparatus and method
JP6634299B2 (en) Treatment planning device, treatment planning method, control device, and particle beam therapy system
JP6657015B2 (en) Charged particle beam therapy system
JP2015097683A (en) Particle beam therapy system
JP5130175B2 (en) Particle beam irradiation system and control method thereof
US11058894B2 (en) Particle beam therapy device and irradiation field forming method
JP6286168B2 (en) Charged particle beam irradiation system and irradiation planning system
JP6787771B2 (en) Charged particle beam therapy device
JP2013153993A (en) Particle beam therapeutic apparatus
WO2019198211A1 (en) Charged-particle beam treatment device
JP5311566B2 (en) Radiation irradiation system
JP6815231B2 (en) Charged particle beam therapy device
US10381195B2 (en) Charged particle beam treatment apparatus
WO2018181595A1 (en) Charged particle beam treatment device
JP2018143659A (en) Charged particle beam treatment device
JP2023142817A (en) Corpuscular beam therapeutic apparatus
JP6063983B2 (en) Particle beam therapy system
JP6215086B2 (en) Charged particle beam therapy apparatus and control method for charged particle beam therapy apparatus
JP2015110171A (en) Particle therapy system
JP2019055005A (en) Particle beam treatment system
JP2019126462A (en) Charged particle beam treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5143606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250