JP4695977B2 - Microchip and manufacturing method thereof - Google Patents
Microchip and manufacturing method thereof Download PDFInfo
- Publication number
- JP4695977B2 JP4695977B2 JP2005368372A JP2005368372A JP4695977B2 JP 4695977 B2 JP4695977 B2 JP 4695977B2 JP 2005368372 A JP2005368372 A JP 2005368372A JP 2005368372 A JP2005368372 A JP 2005368372A JP 4695977 B2 JP4695977 B2 JP 4695977B2
- Authority
- JP
- Japan
- Prior art keywords
- quartz glass
- microchip
- black
- glass
- flow path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 85
- 239000011521 glass Substances 0.000 claims description 32
- 239000000758 substrate Substances 0.000 claims description 12
- 238000003466 welding Methods 0.000 claims description 6
- 238000005422 blasting Methods 0.000 claims description 5
- 238000001039 wet etching Methods 0.000 claims description 5
- 238000000227 grinding Methods 0.000 claims description 4
- 238000001312 dry etching Methods 0.000 claims description 3
- 238000004040 coloring Methods 0.000 claims description 2
- 239000006059 cover glass Substances 0.000 claims 6
- 238000010438 heat treatment Methods 0.000 description 26
- 238000000034 method Methods 0.000 description 16
- 238000005530 etching Methods 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 6
- 229910010271 silicon carbide Inorganic materials 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- 239000010955 niobium Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000005338 heat storage Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000000018 DNA microarray Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000004031 devitrification Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 206010040844 Skin exfoliation Diseases 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- -1 fluorine carbon ions Chemical class 0.000 description 1
- 238000007496 glass forming Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- YHBDIEWMOMLKOO-UHFFFAOYSA-I pentachloroniobium Chemical compound Cl[Nb](Cl)(Cl)(Cl)Cl YHBDIEWMOMLKOO-UHFFFAOYSA-I 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C15/00—Surface treatment of glass, not in the form of fibres or filaments, by etching
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Micromachines (AREA)
Description
本発明は、DNAマイクロアレイ、バイオチップ、電気泳動チップやマイクロリアクター等のマイクロチップに関する。
更に詳しくは、ガラス基板上に形成した流路を局所的に加熱することができるようにしたマイクロチップに関する。
The present invention relates to microchips such as DNA microarrays, biochips, electrophoresis chips and microreactors.
More specifically, the present invention relates to a microchip capable of locally heating a flow path formed on a glass substrate.
マイクロチップの流路を流れる試料を加熱するための方法としては、外部から直接熱を加える方法、及び、流路内に金属線等の電熱線を設置し、電気的に発熱させる方法が採用されており、特許文献1(特開2000−173750)には、石英ガラス体に形成した溝内にカーボンファイバー束を配設して発熱体とすることが開示されている。
マイクロチップ内で一定条件での分析をおこなう場合、もしくは、化学反応等を起こすために、流路を限定的に加熱して所定の温度に維持する必要を生じる場合等があるが、小さな部品であるマイクロチップを局所的に加熱することが困難であった。
本発明は、電熱線等の発熱体を流路に設けることなく、マイクロチップ自体が局所的に発熱するようにしたものである。
When performing analysis under certain conditions in the microchip, or in order to cause a chemical reaction, etc., it may be necessary to heat the flow path limitedly and maintain it at a predetermined temperature. It was difficult to locally heat a certain microchip.
In the present invention, the microchip itself generates heat locally without providing a heating element such as a heating wire in the flow path.
本発明は、赤外線を通すガラス等で形成したマイクロチップの流路の一部を黒色ガラスで形成し、外部から赤外線を照射して黒色部分を発熱させることによってマイクロチップを局所的に加熱できるようにしたものである。
具体的には、マイクロチップの流路部分に黒色ガラスを貼り付け、もしくは、マイクロチップの特定領域を黒色ガラスとして構成して直接黒色ガラスに溝を設けて流路を形成し、赤外線を照射して黒色ガラスを発熱させ、局所的に高熱状態を生成するものである。
According to the present invention, a part of a microchip channel formed of glass or the like that transmits infrared rays is formed of black glass, and the microchip can be locally heated by irradiating infrared rays from the outside to generate heat. It is a thing.
Specifically, black glass is affixed to the flow path portion of the microchip, or a specific area of the microchip is configured as black glass, and a groove is formed directly in the black glass to form a flow path, which is irradiated with infrared rays. The black glass generates heat and locally generates a high heat state.
ガラスの材質は、紫外線、可視光線、赤外線の全域、またはその一部帯域の光透過性を有するホウケイ酸ガラスや石英ガラスなどの透明ガラスが好ましい。特に、マイクロチップの機能として化学反応、物理的観測の必要性から、紫外線から近赤外の広範囲に渡って透過特性に優れ、高純度、かつ、耐熱性、化学的耐久性に優れた石英ガラスとすることが好ましい。
発熱体になる黒色ガラスは赤外線及び遠赤外線を熱に変える黒色物であり、流路を形成するガラスと一体化するものであれば、金属、酸化金属、非金属、酸化非金属等どのような物質でも使用できる。
透明石英ガラスは赤外線透過特性に優れており、この透明石英ガラスと熱的特性等が同等なため融着一体化が容易な黒色石英ガラスとを組み合わせて用いるのが好ましい。
The glass material is preferably transparent glass such as borosilicate glass or quartz glass having light transmissivity in the entire region of ultraviolet rays, visible rays, or infrared rays, or a partial band thereof. In particular, because of the necessity of chemical reaction and physical observation as a microchip function, quartz glass has excellent transmission characteristics over a wide range from ultraviolet to near infrared, high purity, heat resistance, and chemical durability. It is preferable that
The black glass that becomes a heating element is a black object that changes infrared rays and far infrared rays into heat, and can be any metal, metal oxide, nonmetal, nonmetal oxide, etc. as long as it is integrated with the glass forming the flow path. Can be used with substances.
Transparent quartz glass is excellent in infrared transmission characteristics, and it is preferable to use this transparent quartz glass in combination with black quartz glass that can be easily fused and integrated because of the same thermal characteristics.
透明及び黒色石英ガラスは熱伝導率が低いため、黒色部分の熱は他の部分に伝播することが少なく、限定的な発熱体に使用することができる。
黒色石英ガラスは、膨張係数が透明石英ガラスとほぼ同一であり、両者の接着性が良好なので、接合してマイクロチップを形成しても剥離の恐れがなく、また、強固な接合状態が得られ、歪が残存しない。
黒色石英ガラスは赤外域波長の光吸収性が高いため、熱吸収性が高く、また、熱伝播性が低いので熱エネルギーを効率良く蓄熱でき、均一な発熱体として限定した流路内を加熱することが可能となる。
黒色石英ガラスは、透明石英ガラスと加工性が変わらず、研削、研磨などの機械加工条件を同一にできるという点で、他の遮光材料と比較して好ましく、更に、化学的安定性が高く、加工、洗浄によって変質することがなく、加工が容易であり、成分の溶出がないので、各種の光学製品に対し影響を及ぼすことがない。
Since transparent and black quartz glass have a low thermal conductivity, the heat in the black part hardly propagates to other parts and can be used as a limited heating element.
Black quartz glass has almost the same expansion coefficient as transparent quartz glass, and both have good adhesion, so there is no risk of peeling even when bonded to form a microchip, and a strong bonded state can be obtained. , No distortion remains.
Black quartz glass has a high light absorption in the infrared wavelength range, so it has high heat absorption and low heat propagation, so it can store heat energy efficiently, and heats the inside of the flow path defined as a uniform heating element. It becomes possible.
Black quartz glass is preferable compared to other light-shielding materials in that the processing conditions are the same as transparent quartz glass, and machining conditions such as grinding and polishing can be made the same, and further, chemical stability is high, It does not change in quality due to processing and washing, is easy to process, and has no elution of components.
マイクロチップの溝の形成方法は、ウエットエッチング、ドライエッチング、ショットブラスト法、もしくは、研削方法のいずれであっても良い。
流路の大きさが比較的大きいものでは、ショットブラスト法、レーザ加工や高精度ダイヤ等による研削加工方法が、また、流路の大きさが小さいものではエッチングでの形成方法が一般的には良く用いられている。
ショットブラストは、ガラス表面にマスキングを施し、炭化ケイ素やアルミナなどの硬質の微細砥粒をコンプレッサーから圧縮された圧搾空気と共に、高速でガラス表面に吹きつけ衝突させてガラスを削る方法である。加工速度が速いという利点がある。
The method for forming the microchip grooves may be any of wet etching, dry etching, shot blasting, or grinding.
When the size of the flow path is relatively large, a shot blasting method, a grinding method such as laser processing or high precision diamond is generally used, and when the size of the flow path is small, a formation method by etching is generally used. It is often used.
Shot blasting is a method in which the glass surface is masked, and hard fine abrasive grains such as silicon carbide and alumina are blown against and collided with the compressed air compressed from the compressor at a high speed to scrape the glass. There is an advantage that the processing speed is fast.
ウエットエッチングは、ガラス表面にメタル膜などのエッチングマスク材料を成膜し、リソグラフィーによりパターニングを施した後に、UV露光し、フッ化水素酸でエッチングして溝となる流路を形成するものである。複雑な流路の形成等にも適している。
ウエットエッチングはフッ化水素酸溶液を用いたエッチングであるが、ドライエッチングはフッ化炭素などのエッチングガスを用いてエッチングするものである。エッチングガスはプラズマ中でフッ素ラジカルやフッ素炭素イオンとして存在し、石英ガラス表面と反応することでエッチングが進行する。加工時間が長いという課題はあるが高精度な加工が行えるという利点がある。
なお、上述のようにガラス板に溝を形成する以外の方法として、ガラス粉末とバインダーの混練物を表面に流路となる所望形状の溝が形成されるように射出成形し、これを加熱脱脂し、更に焼結して溝を形成したガラス板を直接作成しても良い。簡易な方法によって表面が滑らかなものが得られるという利点がある。
In wet etching, an etching mask material such as a metal film is formed on a glass surface, patterned by lithography, then exposed to UV, and etched with hydrofluoric acid to form a channel that becomes a groove. . It is also suitable for forming complicated channels.
Wet etching is etching using a hydrofluoric acid solution, while dry etching is etching using an etching gas such as carbon fluoride. The etching gas exists in the plasma as fluorine radicals or fluorine carbon ions, and etching proceeds by reacting with the quartz glass surface. Although there is a problem that the processing time is long, there is an advantage that high-precision processing can be performed.
As a method other than forming the grooves on the glass plate as described above, the kneaded product of the glass powder and the binder is injection-molded so as to form grooves having a desired shape on the surface, and this is heated and degreased. Further, a glass plate that is further sintered to form grooves may be directly formed. There is an advantage that a smooth surface can be obtained by a simple method.
この場合、射出成形条件を、粒径が0.01〜20μmの球状粒子で、粒径分布が0.1〜0.5μmの小径側と、1〜5μmの大径側に極大分布ピークを有し、大径側ピーク粒径/小径側ピーク粒径比が5〜10であるシリカガラス粉末を使用し、焼結温度1200〜1400℃で、焼結雰囲気が真空とすることによって流路となる溝が形成された透明石英ガラス板が得られる。
また、0.01〜20μmの球状粒子からなり、かつ、0.2μm以下の粒子が全体の5〜70重量%であるシリカガラス粉末と、有機バインダーを重量比で70:30〜90:10の割合で混練し、当該混練物を射出成形した後、0.1〜5気圧(ゲージ圧)に加圧した非酸化性ガス雰囲気にて加熱脱脂し、次いで温度1200〜1400℃で真空焼結することによって、溝が形成された黒色石英ガラス板を得ることができる。
In this case, the injection molding conditions are spherical particles having a particle size of 0.01 to 20 μm, and a particle size distribution having a maximum distribution peak on the small diameter side of 0.1 to 0.5 μm and on the large diameter side of 1 to 5 μm. Then, a silica glass powder having a large-diameter side peak particle size / small-diameter side peak particle size ratio of 5 to 10 is used, a sintering temperature is 1200 to 1400 ° C., and the sintering atmosphere is evacuated to form a flow path. A transparent quartz glass plate having grooves is obtained.
Moreover, the silica glass powder which consists of 0.01-20 micrometers spherical particle | grains, and the particle | grains of 0.2 micrometer or less are 5 to 70 weight% of the whole, and an organic binder are 70: 30-90: 10 by weight ratio. After kneading at a ratio and injection-molding the kneaded product, it is heated and degreased in a non-oxidizing gas atmosphere pressurized to 0.1 to 5 atm (gauge pressure), and then vacuum sintered at a temperature of 1200 to 1400 ° C. As a result, a black quartz glass plate having grooves can be obtained.
接合方法は、透明石英ガラスと黒色石英ガラスの接合面とを予め鏡面加工し、双方の接合面を合わせ、900℃〜石英ガラスの軟化点(約1300℃)に加熱して溶着して一体接合する。
このとき、両者を加圧すると溶着温度を下げることができると共に、強固な接合状態を得ることができる。
酸水素火炎や電気加熱による溶接方法では、加熱温度が1700〜1800℃といった石英ガラスの軟化点以上の温度が必要となるため、接合部は流動変形を起こして面ダレなどを生じ、要求される一体ものの厚さや透明部と黒色部との夫々の厚さの制御、まして0.5mmや1mm厚さの薄物を溶着する場合などには、超高寸法精度の制御や、接合部の境界面の制御は不可能である。
As a joining method, the joining surfaces of transparent quartz glass and black quartz glass are mirror-finished in advance, and both joining surfaces are combined and heated to 900 ° C. to a softening point (about 1300 ° C.) of quartz glass to be integrally joined. To do.
At this time, when both are pressurized, the welding temperature can be lowered and a strong bonded state can be obtained.
The welding method using oxyhydrogen flame or electric heating requires a temperature higher than the softening point of quartz glass, such as a heating temperature of 1700 to 1800 ° C., so that the joint part is deformed by flow and causes surface sagging and the like. When controlling the thickness of a single unit or the thickness of a transparent part and a black part, or when welding a thin object with a thickness of 0.5 mm or 1 mm, etc. Control is impossible.
接合面は、光透過部と光遮蔽部分とに別れる境界面となるので、マイクロ等の光学部品を機械・装置にセットするときの位置決めの基準面ともすることができる。そして、黒色石英ガラスは、失透性がなく、かつ、ガラスとして均質であり、透明石英ガラスと接合しても透明石英ガラスを失透させるなどの悪影響を与えることがない。 Since the joint surface is a boundary surface that separates into the light transmitting portion and the light shielding portion, it can be used as a reference surface for positioning when an optical component such as a micro is set in the machine / device. The black quartz glass has no devitrification property and is homogeneous as a glass, and does not have an adverse effect such as devitrification of the transparent quartz glass even when bonded to the transparent quartz glass.
黒色石英ガラスは、特許第3112111号公報、及び特許第3156733号公報などに開示されているように、着色源としてTi,Zr,V,Cr,Mo,Co,Fe,Mn,C,Nb,及びSiCの群から選ばれた少なくとも1種の金属成分を含むものとすることが好ましい。なかでも、黒色化に対して安定性があり、1mm以下の薄い板厚のものでも、遠紫外域から遠赤外域に至る広範囲な領域において遮光性に優れていることから、Nb,SiCを着色源とすることが好ましい。
黒色石英ガラスの製造方法は、SiCの場合は、炭化珪素をシリカ微粉末に炭素量換算で0.05〜0.3重量%で混合して原料微粉末とし、それを成形、焼結してガラス化させると、色むらがなく耐蝕性に優れた黒色ガラスを得ることができる。
Nbの場合は、ニオブ塩化物をアルコール溶液中に溶解し、この溶液をシリカ粉が湿潤状態となるように混合し、乾燥させて微粉末として還元雰囲気中で高温熱処理した後に、溶融ガラス化することにより、185〜25000(nm)の波長域で、1mm厚さでの透過度がほぼ零の遮光性に優れた黒色石英ガラスを得ることができる。
As disclosed in Japanese Patent No. 3112111 and Japanese Patent No. 3156733, black quartz glass is used as a coloring source such as Ti, Zr, V, Cr, Mo, Co, Fe, Mn, C, Nb, and It is preferable to include at least one metal component selected from the group of SiC. Above all, it is stable against blackening, and even with a thin plate thickness of 1 mm or less, it has excellent light shielding properties in a wide range from the far ultraviolet region to the far infrared region, so that Nb and SiC are colored. The source is preferred.
The manufacturing method of black quartz glass is, in the case of SiC, silicon carbide is mixed with silica fine powder at 0.05 to 0.3% by weight in terms of carbon amount to obtain raw material fine powder, which is molded and sintered. When vitrified, black glass having no color unevenness and excellent corrosion resistance can be obtained.
In the case of Nb, niobium chloride is dissolved in an alcohol solution, this solution is mixed so that the silica powder is in a wet state, dried and subjected to high-temperature heat treatment in a reducing atmosphere as a fine powder, and then melted into glass. As a result, a black quartz glass excellent in light-shielding property having almost zero transmittance at a thickness of 1 mm in a wavelength range of 185 to 25000 (nm) can be obtained.
マイクロチップ内で、流路の特定箇所を限定して高熱を発生させることができればマイクロチップの応用にも大きく寄与することができる。例えば、マイクロリアクタ領域においても、化学反応の促進のためにはこうした加熱機構は重要である。
特に石英ガラスにおいては透明材及び黒色石英ガラス材共に耐熱性に優れているため、数百度の連続加熱においても何十年という保証期間を設けられていたとしても充分に信頼に応えられるものであり、他の材質の流路形成材と比較しても最大加熱温度を安定的に達成することが可能となる。
なお、透明石英ガラス領域を光導波路として使用して赤外光を光導波路を通して黒色石英ガラス領域へ導き、黒色石英ガラス中に蓄熱して流路内を限定領域のみ均一に加熱させて、反応を促進させる構成としても構わない。
If high heat can be generated in a microchip by limiting a specific portion of the flow path, it can greatly contribute to the application of the microchip. For example, in the microreactor region, such a heating mechanism is important for promoting chemical reactions.
Especially for quartz glass, both transparent and black quartz glass materials are excellent in heat resistance, so even with continuous heating of several hundred degrees, even if there is a guarantee period of several decades, it can be fully satisfied. Even when compared with other flow path forming materials, the maximum heating temperature can be stably achieved.
The transparent quartz glass region is used as an optical waveguide, and infrared light is guided to the black quartz glass region through the optical waveguide. It may be configured to promote.
マイクロチップの流路部を黒色ガラスで覆い、外部から赤外線を照射して黒色ガラスを発熱させて局所的に高熱状態とするものであり、マイクロチップ内の特定の光加熱された領域で化学反応等を起こすことができ、マイクロチップの応用に大きく寄与することとなる。 The microchip channel is covered with black glass, and infrared rays are irradiated from the outside to heat the black glass and bring it into a locally hot state. Chemical reaction occurs in a specific light-heated area in the microchip. Etc., which greatly contributes to the application of microchips.
実施例1
図1に示すように、厚さ0.9mmの透明石英ガラス板を研磨した基板1にウエットエッチングにより幅200μm、深さ40μm、長さ30mmの直線の溝2を形成した。溝2の両端部には流路の出入口となる穴3を機械加工によって形成した。
厚さ0.9mmの透明石英ガラス板を溝2の幅及び長さにあわせて板厚さの半分くらいまで座繰りを入れて溝を形成し、この溝の大きさに合致するSiCを含有する黒色石英ガラスの細板20を嵌め込み、電気炉で融着してカバー4を形成した。基板1にカバー4の黒色石英ガラスが基板1の溝の上となるようにあわせて熱溶着接合して外形寸法50×30×1.8(mm)の流路を有するマイクロチップ10を作製した。この実施例は、溝2の全長に渡って黒色石英ガラスが流路を覆った状態となっている。
Example 1
As shown in FIG. 1, a
A transparent quartz glass plate with a thickness of 0.9 mm is formed with a countersink to the half of the plate thickness according to the width and length of the
このマイクロチップ10の流路に穴3を介して室温の水を毎秒10mmの流速で流しながら、75Wのスポットタイプハロゲンランプによりマイクロチップ10の黒色石英ガラスの細板20に光を照射した。水温を流路の出口で測定したところ、水温は80℃に上昇して定常状態となった。
図3に示すように黒色ガラス20を流路一部だけ覆うようにしたり、また、図4に示すように、カバー4のガラス板をくりぬき、板厚と同じ厚さの黒色ガラスをくりぬいた部分に嵌め込むようにしてもよい。
While flowing water at room temperature through the
As shown in FIG. 3, the
実施例2
Nbを含有する黒色石英ガラスの厚み1.0mm研磨基板にショットブラストにより幅500μm、深さ500μm、長さ50mmの直線溝を形成した。透明石英ガラスの厚さ0.7mm研磨基板に、前記、黒色石英ガラス研磨基板に形成された溝両端に穴を形成し、直線溝形成基板と熱溶着して、流路形状が500×500×長さ50000(μm)、外形寸法70×30×1.7(mm)のマイクロチップ10を作製した。
このマイクロチップ10の流路に穴3から窒素ガスを2cc/m流しながら、2000Wハロゲンランプヒーターを黒色石英ガラスに照射し、入口と出口において窒素ガスの温度を測定してその差を求めたところ、800℃の上昇が認められた。
Example 2
A straight groove having a width of 500 μm, a depth of 500 μm, and a length of 50 mm was formed by shot blasting on a black quartz glass having a thickness of 1.0 mm and containing Nb. A hole is formed on both ends of the groove formed in the black quartz glass polishing substrate on the transparent quartz glass thickness 0.7 mm polishing substrate and thermally welded to the linear groove forming substrate, and the flow path shape is 500 × 500 ×. A
While irradiating black quartz glass with a 2000 W halogen lamp heater while flowing 2 cc / m of nitrogen gas through the
実施例1では溝を覆う蓋の部分となる領域を黒色石英ガラスとしたものであり、実施例2は逆に蓋となる部分は透明石英ガラスとし、溝となる部分の3方向が黒色石英ガラスで形成された流路を示したが、構成の一部を例示しただけであり、これに限られるわけではない。
また、透明石英ガラス上に流路と同じ位置上に同じ大きさの黒色石英ガラスを貼り付けても良いし、透明石英ガラスに特定の流路領域と同じ大きさのざぐりを入れて黒色石英ガラスを埋め込んでも良いし、透明石英ガラスの特定箇所にマスキングを施した後に黒色ガラス部分を蒸着等により被覆したものでも構わない。
また、透明石英ガラスと黒色石英ガラスとの接着は、両者の接着面をオプチカルコンタクトにより電気炉で融着するが、圧着や溶接により一体化させても構わない。
In Example 1, the region serving as the lid part covering the groove is made of black quartz glass. Conversely, in Example 2, the part serving as the lid is made of transparent quartz glass, and the three directions of the part serving as the groove are black quartz glass. Although the flow path formed in is shown, only a part of the configuration is illustrated, and the present invention is not limited to this.
In addition, black quartz glass of the same size may be pasted on the transparent quartz glass at the same position as the flow path, or a black quartz glass with a spot of the same size as the specific flow path area is placed in the transparent quartz glass. Alternatively, the black glass portion may be coated by vapor deposition after masking a specific portion of the transparent quartz glass.
In addition, the transparent quartz glass and the black quartz glass are bonded to each other by fusing the bonding surfaces of the two in an electric furnace with an optical contact, but they may be integrated by pressure bonding or welding.
このように、マイクロチップ10の流路の少なくとも一部を黒色石英ガラスで覆うことによって、黒色石英ガラスに熱が蓄熱されるため流路の一定領域を均一の温度状態に保つことができる。
石英ガラスの蓄熱性が良いため均一な温度が得られるという利点のほか、黒色石英ガラスは、熱伝導性が低いため、ハロゲンランプの照射によって生成された熱は一定領域内に留まっているので有効に熱を利用できる。また、耐熱性にも優れているため、より高温においても使用でき、不純物が少なく純度が高いため、黒色石英ガラスは発熱体として経時変化を起こすことなく安定して使用できる。
Thus, by covering at least a part of the flow path of the
In addition to the advantage that quartz glass has a good heat storage property and a uniform temperature can be obtained, black quartz glass has a low thermal conductivity, so the heat generated by halogen lamp irradiation remains within a certain range. Heat can be used. In addition, since it has excellent heat resistance, it can be used at higher temperatures, and since it has less impurities and high purity, black quartz glass can be used stably as a heating element without causing a change with time.
黒色石英ガラスは、厚さ1mmでの光直線透過率が波長200〜5000nmの範囲で5%以下であるものを使用するが、赤外線放射蓄熱性を高めるためには赤外線波長を含む領域においては透過率が1%以下となるものを使用することが好ましい。
また、石英ガラスの線膨張係数は5.5×10-7K-1と小さく、熱伝導率は800℃でも2.2ワット/メートル・ケルビンであり局所発熱体材質として適している。
黒色石英ガラスからなる流路の領域へ赤外線を導入する部分は赤外線透過特性に優れた透明石英ガラスとするが、透過光導入部以外の部分は透明石英ガラスに遮光部を更に形成した構成にすることで、より安定した発熱体となる。
Black quartz glass has a linear light transmittance of 5% or less in a wavelength range of 200 to 5000 nm at a thickness of 1 mm. However, in order to improve infrared radiation heat storage, it transmits in a region including infrared wavelengths. It is preferable to use one having a rate of 1% or less.
In addition, the coefficient of linear expansion of quartz glass is as small as 5.5 × 10 −7 K −1 and the thermal conductivity is 2.2 watts / meter · Kelvin even at 800 ° C., making it suitable as a local heating element material.
The part that introduces infrared rays into the area of the channel made of black quartz glass is made of transparent quartz glass with excellent infrared transmission characteristics, but the part other than the transmitted light introduction part is configured by further forming a light shielding part on the transparent quartz glass. As a result, a more stable heating element is obtained.
赤外線源としては、赤外線ヒーターや赤外線ランプ、またはハロゲンランプ等の赤外線発生装置を利用する。また、こうした赤外線ランプ等の赤外線照射での光加熱方式によるマイクロチップの黒色石英ガラス流路への導入によって発熱体を形成するほかに、マイクロ波をも利用することが可能であり、マイクロ波を照射して黒色石英ガラス内部から発熱させることができる。
マイクロ波を利用した、黒色石英ガラスからなる流路の加熱においては、成形体自身が直接発熱するものであり、黒色石英ガラスの熱伝導、熱吸収、蓄熱に依存するものでないので、エネルギー効率が高くなる。
加えて、マイクロ波の周波数が高いものでは、光のように集光して電界強度を高めることができ、黒色石英ガラスの内部中心より効率良く加熱することができる。
As the infrared source, an infrared generator such as an infrared heater, an infrared lamp, or a halogen lamp is used. Moreover, in addition to forming a heating element by introducing a microchip into a black quartz glass flow path by a light heating method with infrared irradiation such as an infrared lamp, it is possible to use microwaves. Irradiation can generate heat from inside the black quartz glass.
In the heating of the channel made of black quartz glass using microwaves, the molded body itself generates heat directly and does not depend on the heat conduction, heat absorption, or heat storage of the black quartz glass. Get higher.
In addition, when the frequency of the microwave is high, it can be condensed like light to increase the electric field strength, and can be efficiently heated from the inner center of the black quartz glass.
黒色石英ガラスからなる流路の中心部でマイクロ波の電界強度が最大になるように、周波数10〜50GHzのマイクロ波で加熱保持して、黒色石英ガラスを発熱させる。黒色石英ガラスは、透明石英ガラスと同等な耐熱特性を有するため高温での利用も可能である。
マイクロ波の周波数を10GHz未満とすると、石英ガラスのマイクロ波の吸収が少なくなり、大きなマイクロ波出力を必要とし、効率が悪いので好ましくない。また、50GHzを超える周波数では、マイクロ波発生装置が複雑、高価になり好ましくない。
The black quartz glass is heated by being heated and held with microwaves having a frequency of 10 to 50 GHz so that the electric field intensity of the microwaves is maximized at the center of the flow path made of black quartz glass. Since black quartz glass has heat resistance characteristics equivalent to transparent quartz glass, it can be used at high temperatures.
If the frequency of the microwave is less than 10 GHz, the absorption of the microwave in the quartz glass is reduced, a large microwave output is required, and the efficiency is poor, which is not preferable. On the other hand, when the frequency exceeds 50 GHz, the microwave generator is complicated and expensive.
以上のように、本発明の流路の一部分に黒色ガラスを使用して発熱体として利用したマイクロチップは、赤外線を効率良く蓄熱して、赤外線を照射した部分の流路内だけで熱を発生して、黒色部分で発熱した熱は石英ガラスの熱伝導率の悪さから他の部分への伝播が少ないため、限定的な発熱体として使用することができる。
また、特定領域の流路を覆った黒色石英ガラス部位の中心部をマイクロ波加熱することで、黒色石英ガラスが直接発熱するため熱伝導に依存せず、エネルギー効率が高い。加えて、マイクロ波周波数が高くなると、光のように集光して電界強度を高めることができて、マイクロチップの特定流路を局所的に、効率良く発熱させることが可能となる。
このように流路内に電熱線等の金属を配設することなしに、光加熱方式により流路を限定的に加熱してマイクロチップを局所的に発熱させることが可能となる。
As described above, the microchip using black glass as a heating element in part of the flow path of the present invention efficiently stores infrared rays and generates heat only in the flow path of the irradiated portion. Since the heat generated in the black portion is less propagated to other portions due to the poor thermal conductivity of quartz glass, it can be used as a limited heating element.
In addition, by heating the central portion of the black quartz glass part covering the flow path in the specific region, the black quartz glass directly generates heat, so it does not depend on heat conduction and has high energy efficiency. In addition, when the microwave frequency is increased, it can be condensed like light to increase the electric field strength, and the specific flow path of the microchip can be locally and efficiently heated.
As described above, without arranging a metal such as a heating wire in the flow path, it is possible to locally heat the microchip by limitedly heating the flow path by the light heating method.
1 ガラス基板
2 溝
3 穴
4 カバー
10 マイクロチップ
1
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005368372A JP4695977B2 (en) | 2005-12-21 | 2005-12-21 | Microchip and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005368372A JP4695977B2 (en) | 2005-12-21 | 2005-12-21 | Microchip and manufacturing method thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2007170958A JP2007170958A (en) | 2007-07-05 |
JP2007170958A5 JP2007170958A5 (en) | 2008-12-11 |
JP4695977B2 true JP4695977B2 (en) | 2011-06-08 |
Family
ID=38297716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005368372A Expired - Fee Related JP4695977B2 (en) | 2005-12-21 | 2005-12-21 | Microchip and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4695977B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016121929A1 (en) * | 2015-01-30 | 2016-08-04 | 株式会社ニコン | Fluid device, temperature control device, temperature control method, nucleic acid amplification device, and nucleic acid amplification method |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5137007B2 (en) * | 2007-11-14 | 2013-02-06 | ローム株式会社 | Microchip |
JP5974429B2 (en) * | 2011-07-20 | 2016-08-23 | ソニー株式会社 | Composite material structure and manufacturing method thereof |
JP5814054B2 (en) * | 2011-09-26 | 2015-11-17 | 信越石英株式会社 | Method for producing quartz glass article having minute hollow channel |
US10133156B2 (en) | 2012-01-10 | 2018-11-20 | Apple Inc. | Fused opaque and clear glass for camera or display window |
CN104335114B (en) * | 2012-06-08 | 2018-02-23 | 苹果公司 | The jealous glass and transparent glass of the fusion of camera window or indicator gate |
JP7342839B2 (en) * | 2020-10-27 | 2023-09-12 | 信越化学工業株式会社 | Processing method of synthetic quartz glass substrate |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01166723A (en) * | 1987-12-23 | 1989-06-30 | Sharp Corp | Heating material absorbing microwave |
JP2001180964A (en) * | 1999-12-27 | 2001-07-03 | Kyocera Corp | Black type sintered quartz |
JP2004053345A (en) * | 2002-07-18 | 2004-02-19 | Tosoh Quartz Corp | Flat flow cell, manufacturing method of the same and measuring method |
JP2004513779A (en) * | 2000-11-23 | 2004-05-13 | ユィロス・アクチボラグ | Equipment for heat cycle |
JP2004525339A (en) * | 2000-06-28 | 2004-08-19 | スリーエム イノベイティブ プロパティズ カンパニー | Enhanced sample processing device, system and method |
JP2005300333A (en) * | 2004-04-12 | 2005-10-27 | National Institute Of Advanced Industrial & Technology | Method and apparatus for controlling microflow of liquid |
-
2005
- 2005-12-21 JP JP2005368372A patent/JP4695977B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01166723A (en) * | 1987-12-23 | 1989-06-30 | Sharp Corp | Heating material absorbing microwave |
JP2001180964A (en) * | 1999-12-27 | 2001-07-03 | Kyocera Corp | Black type sintered quartz |
JP2004525339A (en) * | 2000-06-28 | 2004-08-19 | スリーエム イノベイティブ プロパティズ カンパニー | Enhanced sample processing device, system and method |
JP2004513779A (en) * | 2000-11-23 | 2004-05-13 | ユィロス・アクチボラグ | Equipment for heat cycle |
JP2004053345A (en) * | 2002-07-18 | 2004-02-19 | Tosoh Quartz Corp | Flat flow cell, manufacturing method of the same and measuring method |
JP2005300333A (en) * | 2004-04-12 | 2005-10-27 | National Institute Of Advanced Industrial & Technology | Method and apparatus for controlling microflow of liquid |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016121929A1 (en) * | 2015-01-30 | 2016-08-04 | 株式会社ニコン | Fluid device, temperature control device, temperature control method, nucleic acid amplification device, and nucleic acid amplification method |
Also Published As
Publication number | Publication date |
---|---|
JP2007170958A (en) | 2007-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101495582B (en) | Method of bonding resins by light irradiation and process for producing resin article | |
JP4695977B2 (en) | Microchip and manufacturing method thereof | |
KR102157751B1 (en) | Method and apparatus for forming shaped glass articles | |
CN101366099B (en) | Mounting table structure and heat treatment apparatus | |
KR960705742A (en) | Quartz glass molded body and its manufacturing method | |
TW201346194A (en) | Fluid heating-cooling cylinder device | |
JP2011012954A (en) | Method and device for homogeneous heating of glass and/or glass-ceramic using infrared radiation | |
US20040004989A1 (en) | Temperature measuring method, heat treating device and method, computer program, and radiation thermometer | |
TW201916246A (en) | Bonding structure of e chuck to aluminum base configuration | |
JPS6240311B2 (en) | ||
Jourdain et al. | Estimation of the power absorbed by the surface of optical components processed by an inductively coupled plasma torch | |
JP5506514B2 (en) | Infrared light source | |
Kopparthy et al. | Microfab in a microwave oven: Simultaneous patterning and bonding of glass microfluidic devices | |
JP4728573B2 (en) | Micro chemical reactor | |
JP2004053345A (en) | Flat flow cell, manufacturing method of the same and measuring method | |
US20050031831A1 (en) | Method and device for shaping a structured body and body produced according to said method | |
Bougdid et al. | CO2 laser-assisted sintering of TiO2 nanoparticles for transparent films | |
JPH09257374A (en) | Infrared heating furnace and thermodilatometer | |
Ahn et al. | Fabrication of transparent amorphous silica by controlling forming and sintering processes with spherical nano-silica powder | |
WO2008026241A1 (en) | Gas chromatograph | |
JPH0955287A (en) | Heater device for and melting heat-weldable resin-made tubular part by heating | |
EP3255421B1 (en) | Device for the contactless and non-destructive testing of a surface by measuring its infrared radiation | |
JP2007083235A (en) | Microchemical reactor | |
JP4329629B2 (en) | Excimer lamp | |
Lewis et al. | Material processing with a high frequency millimeter-wave source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081028 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081201 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110208 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110228 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140304 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4695977 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |