JP4639889B2 - Polytrimethylene terephthalate extra fine yarn - Google Patents
Polytrimethylene terephthalate extra fine yarn Download PDFInfo
- Publication number
- JP4639889B2 JP4639889B2 JP2005087900A JP2005087900A JP4639889B2 JP 4639889 B2 JP4639889 B2 JP 4639889B2 JP 2005087900 A JP2005087900 A JP 2005087900A JP 2005087900 A JP2005087900 A JP 2005087900A JP 4639889 B2 JP4639889 B2 JP 4639889B2
- Authority
- JP
- Japan
- Prior art keywords
- yarn
- dtex
- fineness
- elution
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Chemical Or Physical Treatment Of Fibers (AREA)
- Artificial Filaments (AREA)
- Multicomponent Fibers (AREA)
Description
本発明は、溶出処理して得られ、人工皮革やスエード調素材として好適な染色均一性に優れたポリトリメチレンテレフタレート極細糸に関するものである。 The present invention relates to an ultrafine polytrimethylene terephthalate yarn obtained by elution treatment and excellent in dyeing uniformity suitable for artificial leather and suede-like material.
従来、人工皮革やスエード調織編物は家庭用資材、衣料用として広く利用されている。それらの素材には単繊維繊度が0.5dtex以下の極細糸が多く用いられ、ナイロンやポリエチレンテレフタレートを用いるのが一般的である。しかし、ソフト性と発色性との両立は困難であった。一方、ソフト性、易染性、発色性に優れたポリトリメチレンテレフタレート(以下3GTと称す)は近年、注目を集めており、3GTの特徴を活かした人工皮革やスエード調素材として極細糸の出現が強く求められていた。3GTからなる極細糸は提案されている(特許文献1,特許文献2参照)が、直接製糸による極細糸であり、繊度変動度U%が悪く、染色したときに染め斑となり、染色の均一性で劣るものであった。また、非常に孔径の小さい口金での製糸であるため、経時でモノマー等による口金汚れの堆積により、マルチフィラメント内での単繊維繊度がばらつくなどの悪影響が顕在化し、染色均一性で劣るものとなってしまい、長期間の安定性に欠けるものであった。特許文献2においては、0.2デニール以下の極細糸を得るために、極限粘度の低い0.4〜0.8の3GTを使用しているが、極限粘度の低い3GTでは、繊維化したときに、充分な強度と伸度を実現することができず、発色性で劣るものとなってしまうという問題があった。
本発明は、上記従来の問題点を解決しようとするものであり、ソフト性、易染性、発色性に優れた3GTを用い、発色性および染色の均一性に優れた極細糸を提供することにある。 The present invention is intended to solve the above-described conventional problems, and provides an ultrafine yarn excellent in color developability and dyeing uniformity using 3GT excellent in softness, easy dyeability and color developability. It is in.
本発明は、以下の項目を採用することにより達成される。
(1)溶出成分としてポリ乳酸と、繊維形成成分として90モル%以上がトリメチレンテレフタレートの繰り返し単位からなるポリトリメチレンテレフタレートとを含む複合繊維の溶出成分を溶出処理して得られるポリトリメチレンテレフタレート極細糸であって、極限粘度が0.8〜2.0、単繊維繊度が0.01〜0.3dtex、繊度変動度U%が1.0%以下、マルチフィラメント中の単繊維繊度ばらつき(繊度CV)が5%以下、強度が3.0〜5.0cN/dtex、伸度が30〜60%であることを特徴とするポリトリメチレンテレフタレート極細糸。
The present invention is achieved by adopting the following items.
(1) and polylactic acid as the eluting component, fiber-forming component as a polytrimethylene terephthalate obtained by elution of the elution component of the composite fibers comprising polytrimethylene terephthalate least 90 mole%, of recurring units of trimethylene terephthalate An ultrafine yarn having an intrinsic viscosity of 0.8 to 2.0, a single fiber fineness of 0.01 to 0.3 dtex, a fineness variation U% of 1.0% or less, and a single fiber fineness variation in a multifilament A polytrimethylene terephthalate ultrafine yarn having a (fineness CV) of 5% or less, a strength of 3.0 to 5.0 cN / dtex, and an elongation of 30 to 60% .
本発明により、従来技術ではなし得なかった発色性および染色の均一性に優れた3GT極細糸を提供することができる。 According to the present invention, it is possible to provide a 3GT ultrafine yarn excellent in color developability and dyeing uniformity which could not be achieved by the prior art.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明の3GT極細糸は、複合繊維を溶出処理して得られるものである。該複合繊維は、非溶出成分(成分Aとする)と、溶出成分(成分Bとする)からなり、図1〜図2に示すような海島型複合繊維や分割型複合繊維が例として挙げられる。溶出処理により複数個に分割される形態であれば特に規定はされないが、溶出処理後の極細糸が合同であることが染色均一性を得るうえで好ましい。分割数に特に規定はなく、本発明規定の繊度範囲であればいずれの分割数でも良く、極細糸単繊維繊度、極細糸マルチフィラメント繊度、生産性を考慮し設定すると良い。具体的には3〜200の範囲の分割数であることが好ましい。 The 3GT ultrafine yarn of the present invention is obtained by elution treatment of a composite fiber. The composite fiber is composed of a non-eluting component (component A) and an elution component (component B), and examples include sea-island type composite fibers and split type composite fibers as shown in FIGS. . Although it is not particularly defined as long as it is divided into a plurality of parts by the elution treatment, it is preferable that the ultrafine yarns after the elution treatment are congruent in obtaining dyeing uniformity. There are no particular restrictions on the number of divisions, and any number of divisions may be used as long as it is within the fineness range defined in the present invention. Specifically, the number of divisions is preferably in the range of 3 to 200.
複合繊維の非溶出成分である成分Aは、溶出処理後、極細糸を構成する成分であり、90モル%以上がトリメチレンテレフタレートの繰り返し単位からなるポリトリメチレンテレフタレートである。 Component A, which is a non-eluting component of the composite fiber, is a component constituting an ultrathin yarn after the elution treatment, and is 90% by mole or more of polytrimethylene terephthalate composed of trimethylene terephthalate repeating units.
ポリトリメチレンテレフタレートとはテレフタル酸を主たる酸成分とし、1,3プロパンジオールを主たるグリコール成分として得られるポリエステルである。ただし、10モル%以下の割合で他のエステル結合を形成可能な共重合成分を含むものであっても良い。共重合可能な化合物として、たとえばイソフタル酸、シクロヘキサンジカルボン酸、アジピン酸、ダイマ酸、セバシン酸などのジカルボン酸類、一方、グリコール成分として、例えばエチレングリコール、ジエチレングリコール、ブタンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、ポリエチレングリコール、ポリプロピレングリコールなどを挙げることができるが、これらに限られるものではない。 Polytrimethylene terephthalate is a polyester obtained using terephthalic acid as the main acid component and 1,3 propanediol as the main glycol component. However, it may contain a copolymer component capable of forming another ester bond at a ratio of 10 mol% or less. Examples of copolymerizable compounds include dicarboxylic acids such as isophthalic acid, cyclohexanedicarboxylic acid, adipic acid, dimer acid, and sebacic acid, while glycol components include, for example, ethylene glycol, diethylene glycol, butanediol, neopentyl glycol, and cyclohexanedimethanol. , Polyethylene glycol, polypropylene glycol and the like can be mentioned, but are not limited thereto.
また、艶消剤として、二酸化チタン、滑剤としてのシリカやアルミナの微粒子、抗酸化剤として、ヒンダードフェノール誘導体、着色顔料などを必要に応じて添加することができる。 Further, titanium dioxide as a matting agent, silica or alumina fine particles as a lubricant, hindered phenol derivatives, coloring pigments and the like as antioxidants can be added as necessary.
複合繊維の溶出成分である成分Bは、成分Aに対し、アルカリ減量速度が速い熱可塑性樹脂であれば特に規定はされないが、ポリエチレンテレフタレートよりも融点の低い3GTの熱劣化抑制等を考慮するとポリ乳酸が好ましい。また、ポリ乳酸は有機金属塩を共重合したポリエチレンテレフタレートなどと異なり、溶出に酸処理を必要としないため、酸性溶媒の排出がなく、環境負荷を小さくでき、また、溶出工程の短縮化が図れ、非常に好ましい。 Component B, which is an elution component of the composite fiber, is not particularly defined as long as it is a thermoplastic resin that has a higher alkali weight loss rate than Component A. However, considering the suppression of thermal degradation of 3GT having a melting point lower than that of polyethylene terephthalate, etc. Lactic acid is preferred. Polylactic acid, unlike polyethylene terephthalate copolymerized with an organic metal salt, does not require acid treatment for elution, so there is no discharge of acidic solvent, reducing the environmental burden, and shortening the elution process. Very preferred.
ここで本発明で用いるポリ乳酸とは、−(O−CHCH3−CO)n−を繰り返し単位とするポリマーであり、乳酸やそのオリゴマーを重合したものをいう。乳酸にはD−乳酸とL−乳酸の2種類の光学異性体が存在するため、その重合体もD体のみからなるポリ(D−乳酸)とL体のみからなるポリ(L−乳酸)および両者からなるポリ乳酸がある。ポリ乳酸中のD−乳酸、あるいはL−乳酸の光学純度は、低くなるとともに結晶化が低下し、融点降下が大きくなる。そのため、耐熱性を高めるために光学純度は90%以上であることが好ましい。より好ましい光学純度はは93%以上、さらに好ましい光学純度は97%以上である。なお、光学純度は前記した様に融点と強い相関が認められ、光学純度90%程度で融点が約150℃、光学純度93%で融点が約160℃、光学純度97%で融点が約170℃となる。 Here, the polylactic acid used in the present invention is a polymer having-(O-CHCH 3 -CO) n -as a repeating unit, and refers to a polymer obtained by polymerizing lactic acid or its oligomer. Since lactic acid has two types of optical isomers, D-lactic acid and L-lactic acid, the polymer is poly (D-lactic acid) consisting only of D isomer and poly (L-lactic acid) consisting only of L isomer, and There is polylactic acid consisting of both. The optical purity of D-lactic acid or L-lactic acid in polylactic acid is lowered, crystallization is lowered, and melting point drop is increased. Therefore, the optical purity is preferably 90% or more in order to improve heat resistance. A more preferable optical purity is 93% or more, and a still more preferable optical purity is 97% or more. As described above, the optical purity has a strong correlation with the melting point. The optical purity is about 90%, the melting point is about 150 ° C., the optical purity is 93%, the melting point is about 160 ° C., the optical purity is 97%, and the melting point is about 170 ° C. It becomes.
また、上記のように2種類の光学異性体が単純に混合している系とは別に、前記2種類の光学異性体をブレンドして繊維に成型した後、140℃以上の高温熱処理を施してラセミ結晶を形成させたステレオコンプレックスにすると、融点を飛躍的に高めることができ、より好ましい。 In addition to the system in which two types of optical isomers are simply mixed as described above, the two types of optical isomers are blended and formed into a fiber, and then subjected to high-temperature heat treatment at 140 ° C. or higher. A stereo complex in which a racemic crystal is formed is more preferable because the melting point can be dramatically increased.
本発明の極細糸の断面形状は、特に限定されるものではなく、丸断面のほか、三角断面等の多角断面や扁平形状、T字やY字、X字等のアルファベット断面、星型などが挙げられる。 The cross-sectional shape of the ultrafine yarn of the present invention is not particularly limited, and includes a round cross-section, a polygonal cross-section such as a triangular cross-section and a flat shape, an alphabet cross-section such as a T-shape, Y-shape, and X-shape, and a star shape Can be mentioned.
本発明の極細糸は極限粘度が0.8〜2.0であることが肝要である。極限粘度が0.8を切ると充分な強度、伸度を兼ね備えた繊維を製造することが困難となる。より好ましい極限粘度は0.9以上である。また、極限粘度が2.0を超えると、生産安定性も劣るものとなってしまう。より好ましい極限粘度は1.5以下である。 It is important that the ultrafine yarn of the present invention has an intrinsic viscosity of 0.8 to 2.0. When the intrinsic viscosity is less than 0.8, it becomes difficult to produce a fiber having sufficient strength and elongation. A more preferable intrinsic viscosity is 0.9 or more. Moreover, when intrinsic viscosity exceeds 2.0, production stability will also be inferior. A more preferable intrinsic viscosity is 1.5 or less.
また、極細糸の単繊維繊度は0.01〜0.5dtexである。0.01dtex未満では、ソフト感は向上するが充分な発色性を得ることが困難となるので好ましくない。より好ましい単繊維繊度は0.03dtex以上である。また、単繊維繊度が0.5dtexを超えると、スエード調素材や人工皮革等への展開に向かないため好ましくない。より好ましい単繊維繊度は0.3dtex以下である。 Moreover, the single fiber fineness of the ultrafine yarn is 0.01 to 0.5 dtex. If it is less than 0.01 dtex, the soft feeling is improved, but it is difficult to obtain sufficient color developability, which is not preferable. A more preferable single fiber fineness is 0.03 dtex or more. Further, if the single fiber fineness exceeds 0.5 dtex, it is not preferable because it is not suitable for deployment to a suede-like material or artificial leather. A more preferable single fiber fineness is 0.3 dtex or less.
さらには、繊度変動度U%は1.0%以下である。1.0%を超えると、布帛とした後染色したときに、スジ状に染色むらが顕著となり実用に耐えない。好ましいU%の範囲は0.8%以下である。また、マルチフィラメント中の単繊維繊度ばらつき(繊度CV)は5%以下である必要がある。5%を超えると布帛とした後染色したときに、スジ状に染色むらが顕著となり実用に耐えない。単繊維繊度ばらつきは3%以下が好ましい。これらの規定を満足するためには、極細糸は上述複合繊維から溶出処理されたものである必要があり、直接紡糸法では、繊度が細いために外乱による気流の乱れの影響を受けやすい等の理由により良好なU%を得ることが難しく、また、孔径の小さな口金を使用せざるを得ないため、製糸開始直後は良いものの、経時で析出した口金汚れによって単繊維繊度のばらつきが大きくなってしまう。 Furthermore, the fineness variation degree U% is 1.0% or less. When it exceeds 1.0%, when dyeing is performed after forming a fabric, uneven dyeing becomes noticeable in a streak shape and cannot be practically used. A preferable range of U% is 0.8% or less. Moreover, the single fiber fineness variation (fineness CV) in a multifilament needs to be 5% or less. If it exceeds 5%, the dyeing unevenness becomes noticeable when dyeing after making into a fabric, which is not practical. The variation in single fiber fineness is preferably 3% or less. In order to satisfy these regulations, it is necessary for the ultrafine yarn to be eluted from the above-mentioned composite fiber, and in the direct spinning method, the fineness is so thin that it is easily affected by the turbulence of the airflow due to disturbance. For reasons, it is difficult to obtain a good U%, and it is necessary to use a die having a small hole diameter, so although it is good immediately after the start of spinning, the dispersion of the single fiber fineness increases due to the stain of the die deposited over time. End up.
本発明の極細糸は、強度が3.0〜5.0cN/dtexであることが好ましい。製織、染色等の後加工において糸切れ、毛羽等の改善効果があるため強度は3.0cN/dtex以上であることが好ましい。より好ましい強度は3.3cN/dtex以上である。また延伸倍率等生産条件に起因する生産性の適正化を考えた場合、強度5.0cN/dtex以下であることが好ましい。より好ましい強度は4.5cN/dtex以下である。また、伸度は、30〜60%が好ましい。伸度が30%以上であると、発色性が良好となり好ましい。より好ましい伸度は35%以上、より好ましくは38%以上である。また、伸度が60%以下であると、強度の適正化が図れ、糸切れや毛羽等の問題を回避しやすくなるため好ましい。より好ましい伸度は55%以下である。
本発明の極細糸の収縮性能は、沸騰収縮率で9〜20%、160℃乾熱収縮率で12〜30%、熱収縮応力ピーク値で0.2〜0.5cN/dtexの範囲が適度なソフト感と発色性を得るうえで適当である。また、初期引張抵抗度は20〜40cN/dtexの範囲が適度なソフト感を得るうえで適当である。
The ultrafine yarn of the present invention preferably has a strength of 3.0 to 5.0 cN / dtex. In post-processing such as weaving and dyeing, the strength is preferably 3.0 cN / dtex or more because of the effect of improving yarn breakage, fluff and the like. A more preferable strength is 3.3 cN / dtex or more. When considering optimization of productivity due to production conditions such as draw ratio, the strength is preferably 5.0 cN / dtex or less. More preferable strength is 4.5 cN / dtex or less. Further, the elongation is preferably 30 to 60%. An elongation of 30% or more is preferable because the color developability is good. More preferable elongation is 35% or more, more preferably 38% or more. Further, it is preferable that the elongation is 60% or less because the strength can be optimized and problems such as yarn breakage and fluff are easily avoided. A more preferable elongation is 55% or less.
The shrinkage performance of the ultrafine yarn of the present invention is appropriately in the range of 9 to 20% in boiling shrinkage, 12 to 30% in dry heat shrinkage at 160 ° C., and 0.2 to 0.5 cN / dtex in heat shrinkage stress peak value. It is suitable for obtaining a soft feeling and color developability. In addition, the initial tensile resistance is in the range of 20 to 40 cN / dtex, which is appropriate for obtaining an appropriate soft feeling.
次に以上に述べた極細糸の製造方法について説明する。 Next, the manufacturing method of the ultrafine yarn described above is demonstrated.
本発明の極細糸を得るための複合繊維は、いずれの公知の方法においても製造されるが、複合構造の安定性、生産性を考慮すると、溶融紡糸法が最も優れている。該複合繊維を溶融紡糸する上では、非溶出成分となる3GTは、240〜280℃にて溶融されるのが好ましい。溶融するに際し、プレッシャーメルター法およびエクストルーダー法が挙げられるが、均一溶融と滞留防止の観点からエクストルーダーによる溶融が好ましい。一方、溶出成分であるポリマーはポリマーの融点から10〜40℃高い温度での溶融が好ましい。溶出成分としてポリ乳酸を使用する場合、3GTと同様にエクストルーダーを用い、200〜240℃での溶融が好ましい。別々に溶融されたポリマーは別々の配管を通り、計量された後、口金パックへ流入する。この際、熱劣化を抑制する観点から、配管通過時間が5〜30分であることが好ましい。パックへ流入したポリマーは口金により合流され、公知の技術により海島型、割繊型などの形態に複合され口金より吐出される。この際のポリマー温度は、溶出成分としてポリ乳酸を用いた場合、240〜270℃が適当である。この範囲であれば、生産性の低下や熱劣化による発色性やソフト感の低下を防止できる。 The composite fiber for obtaining the ultrafine yarn of the present invention is produced by any known method, but the melt spinning method is the most excellent in view of the stability and productivity of the composite structure. In melt spinning the composite fiber, 3GT as a non-eluting component is preferably melted at 240 to 280 ° C. In the melting, a pressure melter method and an extruder method can be mentioned, and melting by an extruder is preferable from the viewpoint of uniform melting and retention prevention. On the other hand, the polymer as an elution component is preferably melted at a temperature 10 to 40 ° C. higher than the melting point of the polymer. When polylactic acid is used as an elution component, melting at 200 to 240 ° C. is preferable using an extruder as in 3GT. Separately melted polymers pass through separate pipes, weigh and then flow into the base pack. Under the present circumstances, it is preferable that piping passage time is 5 to 30 minutes from a viewpoint of suppressing thermal deterioration. The polymer that has flowed into the pack is merged by the die, and is combined into a form such as a sea-island type or a split-fiber type by a known technique and discharged from the die. In this case, the polymer temperature is suitably 240 to 270 ° C. when polylactic acid is used as an elution component. If it is this range, the fall of productivity and the coloring property by a heat degradation and the fall of a soft feeling can be prevented.
口金から吐出されたポリマーは冷却、固化され、油剤が付与された後、引き取られる。
引き取り速度は500〜6000m/分のいずれの速度においても可能である。2工程法と呼ばれる未延伸糸を一旦巻き取って後、延伸を行う方法においては、引き取り速度は500〜2000m/分で行うのが定法である。また、4000m/分までの領域で引き取り、部分配向糸を一旦巻き取って後、延伸を行っても良い。部分配向糸を得る際には巻き取る前に熱処理を行い、熱による結晶化を促進させた後巻き取る方法が均一な諸物性を得るうえで好ましい。一方、1工程法では、4000〜6000m/分の速度で一気に延伸糸を得る方法が挙げられる。この際も、巻き取り前に熱処理を行うことが効果的である。さらに、直接紡糸延伸法と呼ばれる方法も挙げられる。この方法は、500〜4000m/分の未延伸糸または部分配向糸領域において引き取り、一旦巻き取ることなく、予熱、延伸、熱処理を行い延伸糸とした後巻き取る方法である。以上挙げた紡糸、延伸方法においては、延伸倍率は延伸糸伸度が本件規定の範囲となるように適宜設定するのが良い。また、紡糸、延伸いずれかの工程において、巻取りまでに公知の交絡装置を用い、交絡を施すことも可能である。必要であれば複数回付与することで交絡数を上げることが可能となる。さらには巻取り直前に、追加で油剤を付与するのも良い。
The polymer discharged from the die is cooled and solidified, and after the oil is applied, it is taken out.
The take-up speed is possible at any speed of 500 to 6000 m / min. In a method in which an undrawn yarn called a two-step method is wound once and then drawn, the take-up speed is 500 to 2000 m / min. Further, the film may be taken up in a region up to 4000 m / min, and the partially oriented yarn may be wound once and then drawn. When obtaining a partially oriented yarn, a method of performing a heat treatment before winding and accelerating crystallization by heat and then winding is preferred for obtaining uniform physical properties. On the other hand, in the one-step method, there is a method of obtaining drawn yarn at a speed at a speed of 4000 to 6000 m / min. Also in this case, it is effective to perform heat treatment before winding. Furthermore, a method called a direct spinning drawing method is also included. This method is a method of taking up in an undrawn yarn or partially oriented yarn region of 500 to 4000 m / min and winding up after preheating, drawing, and heat treatment to obtain a drawn yarn without winding up once. In the spinning and drawing methods mentioned above, the draw ratio is suitably set so that the drawn yarn elongation falls within the range specified in the present case. Further, in any of the spinning and drawing processes, it is possible to perform entanglement using a known entanglement device before winding. If necessary, it is possible to increase the number of confounding by giving multiple times. Furthermore, it is also possible to add an oil agent immediately before winding.
上記のように製造された複合糸は、必要に応じて酸溶液中で処理の後、アルカリ溶液中で溶出処理され極細糸となる。一般的には布帛とした後、溶出処理されるがこれに限ったことではない。溶出成分としてポリ乳酸を用いた場合は酸溶液での処理が不要になり、アルカリ溶液も生分解可能であることから、生産性や環境対応性の上で好ましいといえる。アルカリ溶出処理は、定法に従い水酸化ナトリウム水溶液を用いて溶出することができる。80℃以上に加熱した水酸化ナトリウム水溶液を用いると、溶出時間が短縮されるので、好ましい。 The composite yarn produced as described above is treated in an acid solution, if necessary, and then eluted in an alkaline solution to form an ultrafine yarn. In general, the elution treatment is carried out after making the fabric, but it is not limited to this. When polylactic acid is used as an elution component, the treatment with an acid solution is not necessary, and an alkaline solution can be biodegraded, which is preferable in terms of productivity and environmental compatibility. The alkali elution treatment can be eluted using an aqueous sodium hydroxide solution according to a conventional method. It is preferable to use an aqueous sodium hydroxide solution heated to 80 ° C. or higher because the elution time is shortened.
得られた極細糸はスエード調素材や人工皮革に好適であるほか、防風性を兼ね備えた高密度織物としても有用であり、特有のソフト感や発色性、均一な染色性が生み出す均一な表面感が得られる。適用できる用途はこれに限ったことではなく、溶出成分としてポリ乳酸を用いた場合、酸溶液による処理が不要であるために、綿などの天然繊維との交織、交編が可能であり、各種織編物のほか、資材用途にも適用可能である。 The ultra-fine yarn obtained is suitable for suede-like materials and artificial leather, and is also useful as a high-density fabric that combines windproof properties, creating a uniform surface feel that produces a unique soft feeling, color development, and uniform dyeability. Is obtained. Applications that can be applied are not limited to this, and when polylactic acid is used as an elution component, treatment with an acid solution is not necessary, so it can be woven or knitted with natural fibers such as cotton. In addition to woven and knitted fabrics, it can also be applied to materials.
以下、実施例を挙げて具体的に説明するが、本発明は実施例に限定されるものではない。なお、実施例の主な測定値は以下の方法で測定した。
(1)極限粘度
極限粘度[η]は、次の定義式に基づいて求められる値である。
Hereinafter, although an example is given and explained concretely, the present invention is not limited to an example. In addition, the main measured value of the Example was measured with the following method.
(1) Intrinsic viscosity Intrinsic viscosity [η] is a value determined based on the following defining formula.
定義式のηrは、純度98%以上のO−クロロフェノールで溶解した3GTの希釈溶液の25℃での粘度を、同一温度で測定した上記溶剤自体の粘度で割った値であり、相対粘度と定義されているものである。また、cは上記溶液100ml中のグラム単位による溶質重量値である。
(2)U%
Zellweger社製USTER TESTER 4−CXを使用し、200m/分の速度で1分間糸を給糸しながらノーマルモードで測定を行った。
(3)単繊維繊度ばらつき(繊度CV)
マルチフィラメントの全単繊維の断面写真を撮影し、断面積から単繊維繊度を計算し、マルチフィラメントの全単繊維繊度の標準偏差を平均の単繊維繊度で除した値の百分率とした。任意の点、5点について断面撮影、算出し、その平均値を単繊維繊度ばらつき(繊度CV)とした。
(4)強度、伸度
JIS L1013(1999)に従い測定した。
(5)沸騰水収縮率
沸騰水収縮率(%)={(L0−L1)/L0}×100
L0:原糸を1m×10回巻きのかせ取りをし、測定荷重0.029cN/dtexでのかせ長
L1:原糸を無荷重の状態で100℃の沸騰水にて15分間処理し、風乾後、測定荷重0.029cN/dtexを掛けたときのかせ長
(6)染色均一性
製糸開始直後(サンプルA)と製糸開始24時間後(サンプルB)のサンプルを筒編みし、染料としてテトラシールネイビーブルーSGL0.275%owf、助剤としてテトロシンPE−C5.0%owf、分散剤としてニッカサンソルト#12001.0%owfを用い、浴比1:100にて50℃15分、さらに90℃20分にて染色を行った。染色後のサンプルは染色むら、サンプルA、B間の染色差を総合的に官能検査し3段階評価した。尚、合格レベルは○以上である。
Ηr in the definition formula is a value obtained by dividing the viscosity at 25 ° C. of a diluted solution of 3GT dissolved in O-chlorophenol having a purity of 98% or more by the viscosity of the solvent itself measured at the same temperature. Is defined. C is the solute weight value in grams in 100 ml of the solution.
(2) U%
Measurement was performed in the normal mode while feeding the yarn at a speed of 200 m / min for 1 minute using a Zellerweger USTER TESTER 4-CX.
(3) Single fiber fineness variation (fineness CV)
A cross-sectional photograph of all the single filaments of the multifilament was taken, the single fiber fineness was calculated from the cross-sectional area, and the standard deviation of the total single fiber fineness of the multifilament was divided by the average single fiber fineness. The cross-sectional image was taken and calculated for arbitrary points and 5 points, and the average value was defined as the single fiber fineness variation (fineness CV).
(4) Strength and elongation Measured according to JIS L1013 (1999).
(5) Boiling water shrinkage Boiling water shrinkage (%) = {(L0−L1) / L0} × 100
L0: skein of the original yarn 1 m × 10 times, skein length with a measurement load of 0.029 cN / dtex L1: the raw yarn is treated with boiling water at 100 ° C. for 15 minutes under no load, and air-dried After that, the skein length when a measurement load of 0.029 cN / dtex was applied (6) Uniform dyeing uniformity Samples immediately after the start of yarn production (Sample A) and 24 hours after the start of yarn production (Sample B) were knitted and tetraseal as a dye Navy Blue SGL 0.275% owf, Tetrocin PE-C 5.0% owf as an auxiliary agent, Nikka Sun Salt # 12001.0% owf as a dispersing agent, 50 ° C. for 15 minutes at a bath ratio of 1: 100, and further 90 ° C. Staining was performed at 20 minutes. The sample after dyeing was subjected to a sensory test for uneven dyeing and a dyeing difference between samples A and B and evaluated in three stages. In addition, the pass level is more than ○.
○○:非常に優れている
○ :優れている
× :均一性に乏しい
(7)発色性
(6)と同様の染色後サンプルを用い、官能検査により3段階評価した。尚、合格レベルは○以上である。
◯: Excellent ◯: Excellent ×: Poor uniformity (7) Colorability (7) Using a dyed sample similar to (6), a three-stage evaluation was made by sensory test. In addition, the pass level is more than ○.
○○:非常に優れている
○ :優れている
× :ポリエチレンテレフタレート繊維同等
実施例1
光学純度98.0%のポリ−L−乳酸と極限粘度1.1のホモ3GTをそれぞれエクストルーダーを用い、それぞれ210℃、250℃にて溶融後、ポンプによる計量を行い、250℃にて図1に示すような海島型複合形態を形成すべく公知の口金に流入させた。複合重量比はポリ乳酸3に対し、3GT7の割合とした。各ポリマーの配管通過時間は、ポリ乳酸が20分、3GTは11分であった。口金から吐出された糸条は、冷却、油剤付与後、2700m/分の速度で55℃に加熱されたホットローラーに引き取られ、一旦巻き取ることなく、4300m/分の速度で150℃に加熱されたホットローラーに引き回し、延伸、熱セットを行った。さらに、4200m/分にて2個のゴデットローラーを引き回した後、4080m/分にて巻き取り、72dtex−36フィラメントの8島の海島型複合糸を得た。巻取機入口での張力は0.13cN/dtexであった。得られた複合糸を25℃の3%水酸化ナトリウム水溶液中にてポリ乳酸が完全に溶出するまで処理し極細糸とした。極細糸の物性および風合評価の結果は表1の通りであり、染色均一性、発色性に優れたものであった。
○○: Very good ○: Excellent ×: Equivalent to polyethylene terephthalate fiber Example 1
Poly-L-lactic acid with an optical purity of 98.0% and homo-3GT with an intrinsic viscosity of 1.1 were melted at 210 ° C and 250 ° C, respectively, using an extruder, and then weighed with a pump. In order to form a sea-island type composite form as shown in FIG. The composite weight ratio was 3GT7 with respect to polylactic acid 3. The passage time of each polymer for piping was 20 minutes for polylactic acid and 11 minutes for 3GT. The yarn discharged from the die is cooled and applied with an oil agent, taken up by a hot roller heated to 55 ° C. at a speed of 2700 m / min, and heated to 150 ° C. at a speed of 4300 m / min without being wound once. It was drawn around a hot roller and stretched and heat set. Further, two godet rollers were drawn around at 4200 m / min, and then wound up at 4080 m / min to obtain 8 island-island type composite yarns of 72 dtex-36 filaments. The tension at the winder inlet was 0.13 cN / dtex. The obtained composite yarn was treated in a 3% aqueous sodium hydroxide solution at 25 ° C. until the polylactic acid was completely eluted to obtain ultrafine yarn. The results of physical properties and texture evaluation of the ultrafine yarn are shown in Table 1, and were excellent in dyeing uniformity and color development.
実施例2
70島の海島型複合繊維用の口金を用い、4070m/分で巻き取った以外は、実施例1と同様の条件にて製糸し、72dtex−9フィラメントの70島の海島型複合繊維を得た。実施例1と同様に溶出処理を行い、極細糸を得た。染色均一性、発色性に優れたものであった。
Example 2
A 70 island sea-island composite fiber was obtained by spinning the yarn under the same conditions as in Example 1 except that it was wound at 4070 m / min using a 70-island sea-island composite fiber base. . Elution treatment was performed in the same manner as in Example 1 to obtain ultrafine yarn. It was excellent in dyeing uniformity and color development.
実施例3
140島の海島型複合繊維用の口金を用いた以外は、実施例1と同様の条件にて製糸し、
56dtex−12フィラメントの140島の海島型複合繊維を得た。実施例1と同様に溶出処理を行い、極細糸を得た。超極細糸であったが染色均一性、発色性は良好であった。
Example 3
Except for using a base for 140 islands of sea-island type composite fibers, yarn was produced under the same conditions as in Example 1,
A sea-island type composite fiber of 140 islands of 56 dtex-12 filaments was obtained. Elution treatment was performed in the same manner as in Example 1 to obtain ultrafine yarn. Although it was a super extra fine thread, the dyeing uniformity and color development were good.
実施例5〜6
表1に示すように、3GTの極限粘度をそれぞれ0.9、1.5とした以外は実施例1と同様の条件にて製糸し、72dtex−36フィラメントの8島の海島型複合糸を得た。染色均一性、発色性に優れたものであった。
Examples 5-6
As shown in Table 1, yarns were produced under the same conditions as in Example 1 except that the intrinsic viscosities of 3GT were 0.9 and 1.5, respectively, and eight islands of 72 dtex-36 filaments were obtained. It was. It was excellent in dyeing uniformity and color development.
実施例7
口金を変更し図2に示すような6分割型の割繊型複合繊維とした以外は、実施例1と同様に製糸し複合糸を得た。実施例1と同様に溶出処理を行い、極細糸とした。染色均一性、発色性とも優れており、丸断面では見られない独特の表面感を持った布帛を得た。
Example 7
A composite yarn was obtained in the same manner as in Example 1 except that the base was changed to a 6-split split fiber composite fiber as shown in FIG. Elution treatment was performed in the same manner as in Example 1 to obtain ultrafine yarn. A fabric having a unique surface feeling that is excellent in both dyeing uniformity and color developability and not seen in a round cross section was obtained.
比較例1
極限粘度1.1のホモ3GTを用い、260℃でエクストルーダーにて溶融した後、ポンプにて計量を行い、260℃の温度で口金から吐出させた。冷却後、油剤を付与し、1200m/分の速度で一旦巻取り、未延伸糸を得た。得られた未延伸糸を50℃にてホットロール予熱し、延伸倍率2.5倍、ホットロール熱処理120℃にて延伸、熱処理を行い、800m/分にて巻取り、56dtex−140フィラメントの極細糸を得た。得られた極細糸の物性および風合い評価の結果は表2に示す通りであり、U%が悪く、経時での単繊維ばらつきが大きいため、染色の均一性が悪く、伸度が低く、発色性にも劣るものであった。
Comparative Example 1
A homo 3GT having an intrinsic viscosity of 1.1 was melted at 260 ° C. with an extruder, weighed with a pump, and discharged from the die at a temperature of 260 ° C. After cooling, an oil agent was applied and wound up at a speed of 1200 m / min to obtain an undrawn yarn. The obtained undrawn yarn was pre-heated at 50 ° C. with a hot roll, drawn at a draw ratio of 2.5 times, and subjected to a hot roll heat treatment at 120 ° C., wound up at 800 m / min, and extremely fine with a 56 dtex-140 filament. I got a thread. The results of physical properties and texture evaluation of the obtained ultrafine yarn are as shown in Table 2. U% is poor, and single fiber variation over time is large, so that the uniformity of dyeing is poor, the elongation is low, and the color developability. It was also inferior.
比較例2
56dtex−180フィラメントの極細糸を比較例1と同様の条件にて得ようとしたが、製糸性、延伸性が悪く、サンプル採取ができなかったため評価不可であった。
Comparative Example 2
An attempt was made to obtain a 56 dtex-180 filament ultrafine yarn under the same conditions as in Comparative Example 1, but the evaluation was not possible because the yarn-making property and drawability were poor and the sample could not be collected.
比較例3
極限粘度0.6の3GTを使用した以外は比較例1と同様の条件にて製糸し極細糸を得た。強度、伸度が低く、染色均一性、発色性に劣るものであった。
Comparative Example 3
An ultrafine yarn was obtained by producing yarn under the same conditions as in Comparative Example 1 except that 3GT having an intrinsic viscosity of 0.6 was used. The strength and elongation were low, and the dyeing uniformity and color developability were poor.
比較例4
実施例1と同様の条件にて製糸したが、冷却ゾーンにおいて、強制的に外乱風を当てた。得られた極細糸は、U%が悪く、スジ状に染色ムラが確認された。
Comparative Example 4
Although yarn was produced under the same conditions as in Example 1, turbulent wind was forcibly applied in the cooling zone. The obtained ultrafine yarn had a low U%, and streaky dyeing unevenness was confirmed.
1 ポリトリメチレンテレフタレートを主成分とするポリマーからなる領域(非溶出成分)
2 易溶出ポリマーからなる領域(溶出成分)
1 Region consisting of polymer based on polytrimethylene terephthalate (non-eluting component)
2 Area consisting of easily eluting polymers (eluting components)
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005087900A JP4639889B2 (en) | 2005-03-25 | 2005-03-25 | Polytrimethylene terephthalate extra fine yarn |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005087900A JP4639889B2 (en) | 2005-03-25 | 2005-03-25 | Polytrimethylene terephthalate extra fine yarn |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006265786A JP2006265786A (en) | 2006-10-05 |
JP4639889B2 true JP4639889B2 (en) | 2011-02-23 |
Family
ID=37202035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005087900A Expired - Fee Related JP4639889B2 (en) | 2005-03-25 | 2005-03-25 | Polytrimethylene terephthalate extra fine yarn |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4639889B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5422128B2 (en) * | 2008-02-01 | 2014-02-19 | 公益財団法人神奈川科学技術アカデミー | Manufacturing method of fibrous structure |
JP5117983B2 (en) * | 2008-10-08 | 2013-01-16 | 帝人ファイバー株式会社 | Antistatic core-sheath type polytrimethylene terephthalate extra fine yarn |
JP2011157646A (en) * | 2010-01-29 | 2011-08-18 | Teijin Fibers Ltd | Polyester microfiber |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001089940A (en) * | 1999-09-20 | 2001-04-03 | Unitika Ltd | Polyester-based splittable type conjugate fiber |
JP2004323991A (en) * | 2003-04-22 | 2004-11-18 | Solotex Corp | Conjugate fiber for woven fabric and method for producing the same |
-
2005
- 2005-03-25 JP JP2005087900A patent/JP4639889B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001089940A (en) * | 1999-09-20 | 2001-04-03 | Unitika Ltd | Polyester-based splittable type conjugate fiber |
JP2004323991A (en) * | 2003-04-22 | 2004-11-18 | Solotex Corp | Conjugate fiber for woven fabric and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2006265786A (en) | 2006-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3859672B2 (en) | Composite fiber and method for producing the same | |
WO2017114313A1 (en) | Core-sheath type composite fibre, false-twist yarns and fibrous structure | |
EP2508657A1 (en) | Polyester fibers dyeable at ordinary pressure and process for producing same | |
JP2007262610A (en) | Combined filament yarn | |
JP5813747B2 (en) | Cationic dyeable polyester fiber and composite fiber | |
JP4954955B2 (en) | High-shrinkage polyester fiber and production method and use thereof | |
JP2009150022A (en) | Sheath-core conjugate fiber and fiber fabric thereof | |
JP5718045B2 (en) | Polyester fibers and fiber aggregates with excellent dyeability | |
JP4639889B2 (en) | Polytrimethylene terephthalate extra fine yarn | |
JP7476619B2 (en) | Polyester composite fiber | |
JP2008274446A (en) | Latently crimpable conjugate fiber | |
JP4631481B2 (en) | Polyester core-sheath composite fiber | |
JP4315002B2 (en) | High elongation polymer alloy fiber and method for producing the same | |
JP2007231473A (en) | Blended spun yarn and method for producing the same | |
JP2005113309A (en) | Modified cross-section polytrimethylene terephthalate fiber | |
JP2000226734A (en) | Conjugate fiber, combined filament yarn and woven or knitted fabric | |
JP2002129433A (en) | Highly strechable polyester-based conjugated fiber | |
JP4687091B2 (en) | Soft stretch yarn and fabric | |
JP6752757B2 (en) | Side-by-side split type composite fiber and method of manufacturing fabric using it | |
JP5003632B2 (en) | Temporary twisted yarn | |
JP2007154343A (en) | Core-sheath conjugate type partially oriented fiber of polyester and method for producing the same | |
JP2007154374A (en) | Polyester core-sheath conjugate fiber | |
JP2003342843A5 (en) | ||
JP2009084748A (en) | Combined filament yarn using polymer alloy fiber and woven fabric formed of the same | |
JP2004277912A (en) | Antistatic polyester-based conjugate fiber and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100805 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100817 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101013 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101102 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |