JP4326167B2 - Light energy / electric energy conversion element using ITO electrode chemically modified with porphyrin / fullerene linking molecule - Google Patents

Light energy / electric energy conversion element using ITO electrode chemically modified with porphyrin / fullerene linking molecule Download PDF

Info

Publication number
JP4326167B2
JP4326167B2 JP2001220227A JP2001220227A JP4326167B2 JP 4326167 B2 JP4326167 B2 JP 4326167B2 JP 2001220227 A JP2001220227 A JP 2001220227A JP 2001220227 A JP2001220227 A JP 2001220227A JP 4326167 B2 JP4326167 B2 JP 4326167B2
Authority
JP
Japan
Prior art keywords
ito
porphyrin
fullerene
electrode
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001220227A
Other languages
Japanese (ja)
Other versions
JP2003036896A (en
Inventor
容子 中島
博 今堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001220227A priority Critical patent/JP4326167B2/en
Publication of JP2003036896A publication Critical patent/JP2003036896A/en
Application granted granted Critical
Publication of JP4326167B2 publication Critical patent/JP4326167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Hybrid Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光透過型半導体電極であるITO(インジウム−スズ−酸化物:Indium-tin-Oxide)電極上に、同一分子内に電子供与体(ドナーという場合もある)−受容体(アクセプターという場合もある)構造、具体的にはポルフィリン−フラーレン構造を有する化合物を、自己組織化により配列し、共有結合により固定化した単分子膜(Self-Assembled Monolayers=SAM)を作製して、高効率の光エネルギー・電気エネルギー変換系を提供する技術に関する。
【0002】
【従来の技術】
植物やある種の光合成細菌は、太陽エネルギーを化学エネルギーに代える働きを持つ系を持っている。該系では、希薄な密度の光子を効率よく集めるために、アンテナのように多くの光受容体分子が集合体を作っていることが生化学的・分光学的解析データから知られていた。この系をアンテナ系といい、光合成ではクロロフィルやカロチノイドなどの有機色素がエネルギー伝達のために反応中心タンパク質の周辺に配置されている。そして、アンテナ系複合体で捕足された光エネルギーは反応中心複合体に位置するクロロフィル2量体(スペシャルペアーと呼ばれる)に集められ電荷分離反応が行われる。電子供与体と電子受容体間の電子的相互作用が大きい場合、電子移動速度は、電子移動の自由エネルギー変化(−ΔG)と電子移動に伴う再配列エネルギー(λ)(電子移動による化学結合の変化および溶媒などの近傍の分子との相互作用の変化のエネルギー)で決まるが、相互作用が小さくなると距離に依存して指数関数的に電子移動速度は遅くなる。
【0003】
最近生態系における集光複合体のX線結晶学解析に基づくX線構造決定から、効率的なアンテナ系の構築が盛んに試みられている。該アンテナ系の構築により、ここで効率よく集められたエネルギーを高速に電荷分離を行う反応中心タンパク質に送り込むことでき、より効率よく太陽光を吸収し、そのエネルギーを利用できるようにすることができる。
【0004】
前記自然におけるアンテナ複合体は、自己組織化によって形成されており、その際タンパク質が自己組織化複合体の形成を助けている。
このような研究の中で、人工的に組織化された分子集合体、特に単分子膜の形成方法が研究されており、その手法として、ラングミュアー−ブロジェット膜(いわゆるLB膜)や脂質膜などを用いたものがあるが、単分子膜を形成する方法としては均一性に欠け(ピンホールなどの欠陥部の発生がある)、更に、基板上に形成された単分子膜は、該膜を構成する分子が基板表面に物理的に付着したものであるため、膜の安定性にも欠けるという不都合があった。このような中で、アルカンチオールが金表面において自己組織化した単分子膜を形成することがわかって以来、この単分子膜形成の原理、即ち自己組織化の機能を用いて(共吸着)単分子膜を形成させる技術が研究されてきた。また更に進んで、機能性を持った単分子膜を得るために、前記機能性を発揮する基と前記自己組織化機能を発揮する基とを結合し、また自己組織化により形成された単分子膜を電極表面に安定に固定する基を導入した化合物を設計して、その化合物だけで自己組織化により種々の機能を持った単分子膜を形成する研究へと発展してきている(Hiroshi Imahori, et al., J. Phys. Chem. B 2000, 104, 1253-1260)。
本発明者は、前記アンテナ系を更に改良したアンテナ系複合体も提案している(特願2000−120511号、Hiroshi Imahori et. al., J. Am. Chem. Soc. 2001, 123, 100-110)。
【0005】
このような中で、前記技術の新たな展開をすべく、本発明者等は、基本に戻り、電極構成材料と該電極上に形成された自己組織化膜の光電流の量子効率(電極による光励起された色素の失活を押さえる)との関係を確認すべく、金(Au)電極とITO電極上に自己組織化膜(以下、SAMと表現する場合もある。)形成方法を用いてポルフィリンの単分子膜を作製し、該各膜の光電流特性をトリエタノールアミン(犠牲試薬)の存在する系を用いて測定した。その結果、金板上のポルフィリンSAMに比べて、ITO上のポルフィリンSAMを用いた場合は280倍の光電流の量子効率でアノード光電流が流れることが明らかになり、電極材料としては金に比べ、ITOの方が優れていることを明らかした(Hiroko Yamada et. al., Chem. Commun. 2000, 1921-1922)。電極材料と光電流変換系を結合する結合構造が光電流変換効率にどのように影響するかについては系統的には検討しなかったが、本発明においてITO電極表面を「ITO」OSi−(CH−NH(図1)で処理した材料を用いたことにも前記光電流変換効率の向上において何らかの技術的意味があることも予想される。
【0006】
【発明が解決しようとする課題】
従って、本発明の課題は、前記本発明者等の前記基本的な研究を更に進めて、より実用に近い光エネルギー・電気エネルギー変換素子を提供することである。
前記課題を解決するために、本発明者等はITO電極上に同一分子にドナー−アクセプターを持つ二元系化合物、特にポルフィリン(P)−フラーレン(P:メタルフリーまたはZn化)を持つ二元系化合物の自己組織化単分子膜の形成、更にはOSi−の結合構造を介して前記二元系化合物の自己組織化単分子膜の形成を試みた。そして、前記二元系化合物の自己組織化単分子膜を作用極とし、白金線を対極、Ag/AgCl(飽和KCl)電極を参照極として用い、電解質として0.1モルNaSOを含む水溶液に、電子受容体として酸素(O)あるいはヘキシルビオローゲン(HV2+)を溶存させたものを電解液とし、これらにより光電池系を構築し、Xeランプからの単色光を照射して光電流を測定することにより、前記自己組織化単分子膜の光電気化学特性を調べたところ、フラーレン部分を持たないものに比べて10倍または30倍という光電流発生の量子効率が得られることを確認し、前記課題を解決できることを見出した。
【0007】
【課題を解決するための手段】
本発明は、インジウム−スズ酸化物(ITO)電極表面に前記一般式(A)で表される化合物の群から選択される少なくとも一種を、Bin.で表される共有結合、特にO Si−の結合構造を介して自己組織化することにより単分子膜を形成したことを特徴とする光エネルギー・電気エネルギー変換素子である。好ましくは、前記形式1で結合して自己組織化して単一膜を形成していたことを特徴とする前記光エネルギー・電気エネルギー変換素子である。
【0008】
【本発明の実施の態様】
本発明をより詳細に説明する。
A.本発明の特徴を図面を参照しながら説明する。
本発明の光電池系の概略は図2のように表すことができる。すなわち、外部から供給される光エネルギー(hv)はポルフィリン(M=2Hの場合はメタルフリー、M=Znの場合は亜鉛ポルフィリン)部分で吸収され、励起されたポルフィリンから電子はまずフラーレンに移動し、さらに電解液中の電子受容体として機能する酸素(O)あるいはヘキシルビオローゲン(HV2+)に移動する。還元されたこれらの電子受容体は溶液中を拡散して、対極である白金電極に電子を受け渡す。一方、電子移動により生じたポルフィリンラジカルカチオンへは、ITO電極から電子が供給される。結果として、修飾電極への光照射によりカソード電流が回路に流れることになる。
【0009】
B.本発明の光エネルギー・電気エネルギー変換素子の構築方法。
式Bの化合物の合成。
【0010】
【化4】

Figure 0004326167
式B
【0011】
(但し、Pは、メタルフリーのポルフィリン環である。)の化合物は、式Cの化合物を、
【0012】
【化5】
Figure 0004326167
【0013】
(Mは2Hである。)4−メトキシカルボニルアニリン(4-methoxycarbonylaniline)および4−(4,4’−ジメチル−2,6−ジオキサシクロヘキシル)アニリン〔4-(4,4'-dimethyl-2,6-dioxacyclohexyl)aniline〕と交差縮合させ、ついで酸およびアルカリで加水分解することにより得られる。
【0014】
式Dの化合物(但し、Pは、メタルフリーのポルフィリン環である。)は前記式Bの化合物を、ペンタフルオロフェノール(pentafluorophenol)と反応させることによって得られる。
【0015】
【化6】
Figure 0004326167
式D
【0016】
次いで、前記Dの化合物を、N−メチルグリシンの存在下でC60フラーレンと環化付加することによってポルフィリン−フラーレン構造を持つ式E(但し、Pは、メタルフリーのポルフィリン環である。)の二元化合物が得られる。
【0017】
【化7】
Figure 0004326167
式E
【0018】
3、前記Eの化合物を図1に示されるITO電極と反応させることにより前記形式1で表される、本発明の光エネルギー・電気エネルギー変換系の一態様系を構築することができる。
【0019】
【実施例】
実施例1
A,自己組織化膜の形成に用いられるポルフィリン−フラーレンC60の二元化合物式Eの化合物の調製
1、式Cのポルフィリン化合物を6mLのCHCl溶解させ、これに4−ピロリジノピリジン(4-pyrrolidinopyridine:3.3 mg,0.2ミリモル)およびペンタフルオロフェノール(37 mg, 0.022ミリモル)を加える。該溶液を0℃に冷却し、窒素雰囲気下でN,N’−ジシクロヘキシルカルボジイミド(4.5 mg, 0.022ミリモル)加える。次いで、ゆっくり室温にし、該溶液を18時間撹拌する。溶媒を除去後、残留物をシリカゲルカラムクロマトグラフィーを用い(溶剤CHCl)精製し所望の前記式Dの化合物を収率60%(16 mg, 0.012ミリモル)で得た。
前記式Dの化合物の物性;融点>300℃、
1H-NMR (270 MHz, CDCl3) d = 10.01 (s, 1H), 8.93 (d, J = 5 Hz, 4H), 8.78 (d, J = 5 Hz, 4H) 8.3 (m, 13H), 8.09 (m, 4H), 8.01 (s, 1H), 7.98 (s, 4H), 7.83 (s, 2H), 1.53 (s, 36H), -2.70 (s, 2H)
質量分析:FAB(fast atom bombardment法)、1315(M+H
【0020】
前記Dの化合物80mg、C60フラーレン(220mg,0.305ミリモル)およびN−メチルグリシン(272mg、3.01ミリモル)を乾燥トルエン400mL中に溶かし、該溶液を一昼夜還流する。有機溶媒を減圧下で除去し、残部をトルエン−CHCl溶液を用いたシリカゲルクロマトグラフィーで精製し、ポルフィリン−C60フラーレンを含む上記二元化合物Eを83%の収率(104mg、0.050ミリモル)で得た。
化合物Eの物性:融点>300℃、
H−NMR(270MHz、CDCl) δ=8.91(m, 4H), 8.78 (m, 4H), 8.49 (s, 1H), 8.40 (d, J = 8 Hz, 4H), 8.30 (d, J = 8 Hz, 4H), 8.26 (s, 4H), 8.06 (s, 4H), 8.02 (d, J = 8 Hz, 2H), 7.94 (d, J = 8 Hz, 2H), 7.82 (s, 2H), 7.78 (s, 1H), 4.79 (d, J = 9 Hz, 1H), 4.67 (s, 1H), 4.02 (d, J = 9 Hz, 2H), 2.77 (s, 3H), 1.55 (s, 36H), -2.77 (s, 2H)、
質量分析:(FAB)2063 (M+H+).
【0021】
B,光エネルギー・電気エネルギー変換系の形成
1、透明ガラススライド表面に190〜200nm厚のITOを形成したITO電極( エバース社製(Evers, Inc. (Japan))表面をトリメトキシシリルプロピルアミン(((MeO)3Si(CH2)3NH2)(10%v/v)及びイソプロピルアミン(2%v/v)を溶かしたトルエン溶液中に入れ、還流下で20時間処理し、表面にシロキシ結合で結合するアミノプロピルシリル化ITO電極(図1)を調製する。
2、該アミノプロピルシリル化ITO電極を、前記式Eのポルフィリン(2H)−C60フラーレン二元化合物を溶かしたトルエン溶液中に入れ、還流下で20時間処理し、ITO表面にポルフィリン−C60フラーレン2元化合物で修飾した1a/ITOを得た。
【0022】
実施例2
前記調製された1a/ITOのポルフィリン環部分にZnを挿入するために酢酸亜鉛〔Zn(OAc)2〕を溶解させたCHCl溶液中に入れ、還流下で6時間、アルゴン雰囲気下で処理しポルフィリン環に亜鉛を挿入したポルフィリン(Zn)−C60フラーレン二元化合物修飾電極1b/ITOを得た。
【0023】
比較例1,2
実施例1、2の二元化合物で修飾した1a/ITOおよび1b/ITOに代えて、一元のC60フラーレンを含む結合基を除いた、換言すればポルフィリンのみを含む化合物で修飾した2a/ITO(メタルフリーポルフィリン環を含む)および2b/ITO(Znでメタル化したポルフィリン環を含む)を調製した。
【0024】
前記実施例1および2の修飾ITO電極、ならびに比較例1および2の修飾ITO電極表面上の自己組織化化合物の吸着量(Γ)を電気化学測定によるポルフィリンのアノードピークから求め、表1にまとめた。1a/ITO(2.5×10−10molcm−2) および2a/ITO(1.8×10−10mol cm−2)はITO表面上の類似のポルフィリンSAM (2.4×10−10mol cm−2).と実質的に同じあった。
【0025】
光電流を、前記「0006」で説明するようにITO/1a/HV2+/Pt電池系により測定した。波長λ=430±5nm、強度500μWcm−2の光を用いて、作用極電位を-0.2Vに設定して光照射すると、カソード電流が観測された。作用極電位を正方向に変化させるにつれ、光電流は小さくなり、作用極電位が+0.8Vで光電流はゼロになった。同様の測定を、ITO/1b、2a又は2b/HV2+/Pt電池系についても行った。ITO上の化合物によって吸収された光子の数に対する流れた電子数の割合を表す量子収率の結果を表1にまとめた。
この結果から、本発明のC60フラーレン(アクセプター部位)を含む二元系の光電流発生特性がポルフィリンのみの参照系に比べて著しく改善されたことがわかる。
【0026】
1a、1b、2a、あるいは2b/ITOのポルフィリン部位の蛍光寿命を、ピコ秒単−光子計数法を用い、励起光453nmを用い、ITO表面の蛍光寿命を測定することにより調べ、表1にまとめた。蛍光の観測はポルフィリン部位の蛍光に相当する、655nm(1a及び2a/ITO)あるいは605nm(1b及び2b/ITO)で行った。
2a/ITOの平均蛍光寿命(3.2ナノ秒)は2b/ITOの平均蛍光寿命(0.14ナノ秒)に対し25倍であり、1a/ITO(0.12ナノ秒)は1b/ITO(0.031ナノ秒)に対して5倍であった。
前記平均蛍光寿命の値は、光電流の量子収率に対応している。2a/ITOの平均蛍光寿命(3.2ナノ秒)は、メルカプト基で金(Au)表面に自己組織化した対応するポルフィリン部位のみを持つ化合物の蛍光寿命(40ピコ秒)の80倍であり、ITO電極を用いると、金電極によるポルフィリン励起状態の消光が抑えられることが確認された。
【0027】
【表1】
被覆率、蛍光寿命、および光電流の量子収率
Figure 0004326167
【0028】
上記結果から、本発明において電極構成材料としてITOを用いたこと、自己組織化による単分子膜形成材料として前記二元化合物を用いたことにより、光電流発生の量子効率を著しく向上できたことは明らかである。
【0029】
【発明の効果】
以上述べたように、本発明により光電流発生の量子効率を著しく向上させた光エネルギー・電気エネルギー変換系の構築は、このような系を改善した実用系の実現に向けての大きな示唆を与えたという優れた効果がもたらされる。
【図面の簡単な説明】
【図1】 本発明の光エネルギー・電気エネルギー変換系を構成するITOの結合基の一態様
【図2】 本発明の光エネルギー・電気エネルギー変換系のメカニズムの概要[0001]
BACKGROUND OF THE INVENTION
The present invention provides an electron donor (sometimes referred to as a donor) -acceptor (referred to as an acceptor) within the same molecule on an ITO (Indium-Tin-Oxide) electrode that is a light-transmissive semiconductor electrode. Highly efficient production of monomolecular films (Self-Assembled Monolayers = SAM) in which compounds having a structure, specifically a porphyrin-fullerene structure, are arranged by self-assembly and immobilized by covalent bonds It is related with the technology which provides the light energy and electric energy conversion system of.
[0002]
[Prior art]
Plants and certain photosynthetic bacteria have systems that work to replace solar energy with chemical energy. In this system, it has been known from biochemical and spectroscopic analysis data that a large number of photoreceptor molecules form an aggregate like an antenna in order to efficiently collect photons having a low density. This system is called an antenna system. In photosynthesis, organic pigments such as chlorophyll and carotenoid are arranged around the reaction center protein for energy transfer. The light energy captured by the antenna complex is collected in a chlorophyll dimer (referred to as a special pair) located in the reaction center complex, and a charge separation reaction is performed. When the electronic interaction between the electron donor and the electron acceptor is large, the electron transfer rate is determined by the change in free energy (−ΔG) of the electron transfer and the rearrangement energy (λ) accompanying the electron transfer (the chemical bond of the electron transfer). Energy of change and interaction with nearby molecules such as solvent), but as the interaction becomes smaller, the electron transfer rate becomes exponentially slower depending on the distance.
[0003]
Recently, the construction of an efficient antenna system has been actively attempted from the X-ray structure determination based on the X-ray crystallographic analysis of the light-collecting complex in the ecosystem. By constructing the antenna system, the energy efficiently collected here can be sent to the reaction center protein that performs charge separation at high speed, and sunlight can be absorbed more efficiently and the energy can be used. .
[0004]
The natural antenna complex is formed by self-assembly, in which the protein helps to form the self-assembly complex.
In such research, methods for forming artificially assembled molecular aggregates, particularly monomolecular films, have been studied. As methods for such methods, Langmuir-Blodgett membranes (so-called LB membranes) and lipid membranes have been studied. However, as a method for forming a monomolecular film, the uniformity is lacking (defects such as pinholes are generated), and the monomolecular film formed on the substrate is the film. Since the molecules constituting the film are physically attached to the substrate surface, there is a disadvantage that the stability of the film is also lacking. Under such circumstances, since it was found that alkanethiol forms a self-assembled monolayer on the gold surface, the principle of monolayer formation, that is, the function of self-assembly (coadsorption) is used. Techniques for forming molecular films have been studied. Further, in order to obtain a monomolecular film having functionality, a monomolecule formed by bonding the group exhibiting the functionality and the group exhibiting the self-organizing function, and by self-organization. We have developed compounds that introduce groups that stably fix the membrane to the electrode surface, and have developed into monomolecular films with various functions by self-organization using only these compounds (Hiroshi Imahori, et al., J. Phys. Chem. B 2000, 104, 1253-1260).
The present inventor has also proposed an antenna system complex in which the antenna system is further improved (Japanese Patent Application No. 2000-120511, Hiroshi Imahori et. Al., J. Am. Chem. Soc. 2001, 123, 100- 110).
[0005]
Under such circumstances, in order to develop a new technology, the present inventors returned to the basics, and the quantum efficiency (depending on the electrode) of the photocurrent of the electrode constituent material and the self-assembled film formed on the electrode. In order to confirm the relationship between the photoexcited dye and the porphyrin, a method of forming a self-assembled film (hereinafter sometimes referred to as SAM) on the gold (Au) electrode and the ITO electrode is used. And the photocurrent characteristics of each film were measured using a system in which triethanolamine (sacrificial reagent) was present. As a result, it became clear that the anode photocurrent flows with a quantum efficiency of 280 times the photocurrent when using the porphyrin SAM on ITO, compared with the porphyrin SAM on the gold plate. It was revealed that ITO was superior (Hiroko Yamada et. Al., Chem. Commun. 2000, 1921-1922). Although how the coupling structure that couples the electrode material and the photocurrent conversion system affects the photocurrent conversion efficiency has not been systematically studied, in the present invention, the ITO electrode surface is made “ITO” O 3 Si— The use of a material treated with (CH 2 ) 3 —NH 2 (FIG. 1) is also expected to have some technical meaning in improving the photocurrent conversion efficiency.
[0006]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to further advance the basic research by the inventors and provide a light energy / electric energy conversion element that is more practical.
In order to solve the above problems, the present inventors have made a binary compound having a donor-acceptor in the same molecule on an ITO electrode, particularly a binary having a porphyrin (P) -fullerene (P: metal-free or Znated). An attempt was made to form a self-assembled monolayer of a system compound, and further to form a self-assembled monolayer of the binary system via an O 3 Si- bond structure. The self-assembled monolayer of the binary compound is used as a working electrode, a platinum wire is used as a counter electrode, an Ag / AgCl (saturated KCl) electrode is used as a reference electrode, and 0.1 mol Na 2 SO 4 is contained as an electrolyte. An aqueous solution in which oxygen (O 2 ) or hexyl viologen (HV 2+ ) as an electron acceptor is dissolved is used as an electrolytic solution, and a photocell system is constructed using these. By measuring the photoelectrochemical properties of the self-assembled monolayer, it was confirmed that the quantum efficiency of photocurrent generation was 10 times or 30 times that of a film having no fullerene moiety. The inventors have found that the above problems can be solved.
[0007]
[Means for Solving the Problems]
In the present invention, at least one selected from the group of compounds represented by the general formula (A) on the surface of an indium-tin oxide (ITO) electrode is Bin. Covalent bond, a light energy and electrical energy conversion element characterized by forming a monomolecular film by self-assembly, especially through the O 3 Si- bonds structure in represented. Preferably, the light energy / electric energy conversion element is characterized in that a single film is formed by bonding in the format 1 and self-organizing.
[0008]
[Embodiments of the present invention]
The present invention will be described in more detail.
A. The features of the present invention will be described with reference to the drawings.
The outline of the photovoltaic cell system of the present invention can be expressed as shown in FIG. That is, light energy (hv) supplied from the outside is absorbed by the porphyrin (metal-free when M = 2H, zinc-porphyrin when M = Zn), and the electrons first migrate to fullerene from the excited porphyrin. Furthermore, it moves to oxygen (O 2 ) or hexyl viologen (HV 2+ ) that functions as an electron acceptor in the electrolyte. These reduced electron acceptors diffuse in the solution and transfer electrons to a platinum electrode as a counter electrode. On the other hand, electrons are supplied from the ITO electrode to porphyrin radical cations generated by electron transfer. As a result, the cathode current flows through the circuit due to light irradiation on the modified electrode.
[0009]
B. The construction method of the light energy-electric energy conversion element of this invention.
Synthesis of compounds of formula B.
[0010]
[Formula 4]
Figure 0004326167
Formula B
[0011]
(Wherein P is a metal-free porphyrin ring), the compound of formula C is
[0012]
[Chemical formula 5]
Figure 0004326167
[0013]
(M is 2H.) 4-methoxycarbonylaniline and 4- (4,4′-dimethyl-2,6-dioxacyclohexyl) aniline [4- (4,4′-dimethyl-2 , 6-dioxacyclohexyl) aniline] and then hydrolyzed with acid and alkali.
[0014]
The compound of formula D (where P is a metal-free porphyrin ring) is obtained by reacting the compound of formula B with pentafluorophenol.
[0015]
[Chemical 6]
Figure 0004326167
Formula D
[0016]
Next, the compound of D is cyclized with C 60 fullerene in the presence of N-methylglycine to form a porphyrin-fullerene structure E (where P is a metal-free porphyrin ring). A binary compound is obtained.
[0017]
[Chemical 7]
Figure 0004326167
Formula E
[0018]
3. By reacting the compound of E with the ITO electrode shown in FIG. 1, it is possible to construct an embodiment of the light energy / electric energy conversion system of the present invention represented by the above type 1.
[0019]
【Example】
Example 1
A, Binary compound of porphyrin-fullerene C 60 used for formation of self-assembled film Preparation of compound of formula E 1. Porphyrin compound of formula C is dissolved in 6 mL of CH 2 Cl 2 , and 4-pyrrolidinopyridine is dissolved therein. (4-pyrrolidinopyridine: 3.3 mg, 0.2 mmol) and pentafluorophenol (37 mg, 0.022 mmol) are added. The solution is cooled to 0 ° C. and N, N′-dicyclohexylcarbodiimide (4.5 mg, 0.022 mmol) is added under a nitrogen atmosphere. It is then slowly brought to room temperature and the solution is stirred for 18 hours. After removing the solvent, the residue was purified using silica gel column chromatography (solvent CHCl 3 ) to obtain the desired compound of formula D in a yield of 60% (16 mg, 0.012 mmol).
Physical properties of compound of formula D; melting point> 300 ° C.
1H-NMR (270 MHz, CDCl 3 ) d = 10.01 (s, 1H), 8.93 (d, J = 5 Hz, 4H), 8.78 (d, J = 5 Hz, 4H) 8.3 (m, 13H), 8.09 (m, 4H), 8.01 (s, 1H), 7.98 (s, 4H), 7.83 (s, 2H), 1.53 (s, 36H), -2.70 (s, 2H)
Mass spectrometry: FAB (fast atom bombardment method), 1315 (M + H + )
[0020]
80 mg of the compound of D, C 60 fullerene (220 mg, 0.305 mmol) and N-methylglycine (272 mg, 3.01 mmol) are dissolved in 400 mL of dry toluene and the solution is refluxed overnight. The organic solvent was removed under reduced pressure, and the residue was purified by silica gel chromatography using a toluene-CHCl 3 solution to obtain the above binary compound E containing porphyrin-C 60 fullerene in 83% yield (104 mg, 0.050). Mmol).
Physical properties of Compound E: melting point> 300 ° C.
1 H-NMR (270 MHz, CDCl 3 ) δ = 8.91 (m, 4H), 8.78 (m, 4H), 8.49 (s, 1H), 8.40 (d, J = 8 Hz, 4H), 8.30 (d , J = 8 Hz, 4H), 8.26 (s, 4H), 8.06 (s, 4H), 8.02 (d, J = 8 Hz, 2H), 7.94 (d, J = 8 Hz, 2H), 7.82 (s , 2H), 7.78 (s, 1H), 4.79 (d, J = 9 Hz, 1H), 4.67 (s, 1H), 4.02 (d, J = 9 Hz, 2H), 2.77 (s, 3H), 1.55 (s, 36H), -2.77 (s, 2H),
Mass spectrometry: (FAB) 2063 (M + H +).
[0021]
B. Formation of light energy / electric energy conversion system 1. The surface of ITO electrode (Evers, Inc. (Japan)) with 190-200nm thick ITO formed on the surface of a transparent glass slide is trimethoxysilylpropylamine ( ((MeO) 3 Si (CH 2 ) 3 NH 2 ) (10% v / v) and isopropylamine (2% v / v) were placed in a toluene solution and treated under reflux for 20 hours. An aminopropylsilylated ITO electrode (FIG. 1) is prepared that binds with a siloxy bond.
2, the aminopropylsilylated ITO electrodes, placed in toluene solution prepared by dissolving porphyrin (2H) -C 60 fullerene binary compounds of formula E, and 20 hours at reflux, porphyrin -C 60 on ITO surface 1a / ITO modified with a fullerene binary compound was obtained.
[0022]
Example 2
In order to insert Zn into the porphyrin ring part of 1a / ITO prepared above, it was put in a CHCl 3 solution in which zinc acetate [Zn (OAc) 2 ] was dissolved, and treated under an argon atmosphere for 6 hours under reflux. porphyrins inserting the zinc porphyrin ring (Zn) -C 60 fullerene binary compounds modified electrode 1b / ITO was obtained.
[0023]
Comparative Examples 1 and 2
Instead of 1a / ITO and 1b / ITO modified with the binary compounds of Examples 1 and 2, 2a / ITO modified with a compound containing only porphyrin, in other words, the bonding group containing one C 60 fullerene was removed. (Including metal-free porphyrin ring) and 2b / ITO (including porphyrin ring metallated with Zn) were prepared.
[0024]
The adsorption amount (Γ) of the self-assembled compound on the modified ITO electrodes of Examples 1 and 2 and the modified ITO electrodes of Comparative Examples 1 and 2 was determined from the anode peak of porphyrin by electrochemical measurement and summarized in Table 1. It was. 1a / ITO (2.5 × 10 -10 molcm -2) and 2a / ITO (1.8 × 10 -10 mol cm -2) is similar on the ITO surface porphyrin SAM (2.4 × 10 -10 mol cm −2 ).
[0025]
Photocurrent was measured with the ITO / 1a / HV 2+ / Pt battery system as described in “0006” above. When light having a wavelength λ = 430 ± 5 nm and an intensity of 500 μWcm −2 was used and the working electrode potential was set to −0.2 V and light was irradiated, a cathode current was observed. As the working electrode potential was changed in the positive direction, the photocurrent decreased, and the photocurrent became zero when the working electrode potential was + 0.8V. Similar measurements were made on ITO / 1b, 2a or 2b / HV 2+ / Pt battery systems. The quantum yield results representing the ratio of the number of electrons flowed to the number of photons absorbed by the compound on ITO are summarized in Table 1.
From this result, it can be seen that the photocurrent generation characteristics of the binary system containing the C 60 fullerene (acceptor moiety) of the present invention are remarkably improved compared to the reference system of porphyrin alone.
[0026]
Table 1 summarizes the fluorescence lifetime of the porphyrin sites of 1a, 1b, 2a, or 2b / ITO by measuring the fluorescence lifetime of the ITO surface using the picosecond single-photon counting method and the excitation light of 453 nm. It was. The fluorescence was observed at 655 nm (1a and 2a / ITO) or 605 nm (1b and 2b / ITO) corresponding to the fluorescence at the porphyrin site.
The average fluorescence lifetime (3.2 nanoseconds) of 2a / ITO is 25 times that of 2b / ITO (0.14 nanoseconds), and 1a / ITO (0.12 nanoseconds) is 1b / ITO 5 times (0.031 nanoseconds).
The average fluorescence lifetime value corresponds to the quantum yield of photocurrent. 2a / mean fluorescence lifetime of ITO (3.2 ns) is 80 times the fluorescent lifetime of the compound having only the corresponding porphyrins site self-assembled gold (Au) surface mercapto group (40 picoseconds) Yes, it was confirmed that quenching of the porphyrin excited state by the gold electrode can be suppressed by using the ITO electrode.
[0027]
[Table 1]
Coverage, fluorescence lifetime, and quantum yield of photocurrent
Figure 0004326167
[0028]
From the above results, it was confirmed that the quantum efficiency of photocurrent generation could be remarkably improved by using ITO as an electrode constituent material in the present invention and using the binary compound as a monomolecular film forming material by self-assembly. it is obvious.
[0029]
【The invention's effect】
As described above, the construction of a light energy / electric energy conversion system in which the quantum efficiency of photocurrent generation is significantly improved according to the present invention provides a great suggestion for realizing a practical system that improves such a system. It has an excellent effect.
[Brief description of the drawings]
FIG. 1 shows an embodiment of an ITO bonding group constituting the light energy / electric energy conversion system of the present invention. FIG. 2 outlines the mechanism of the light energy / electric energy conversion system of the present invention.

Claims (2)

インジウム−スズ酸化物(ITO)電極表面に一般式(A)で表される化合物の群から選択される少なくとも一種を、Bin.で表される共有結合を介して自己組織化することにより単分子膜を形成したことを特徴とする光エネルギー・電気エネルギー変換素子
Figure 0004326167
一般式A
(但し、Bin.はOSi−である。、XおよびX は、−NH−CO−であり、nは1〜20の整数、Arは嵩高のアルキル基を有していても良いフェニル基、Mは2HまたはZn、フラーレン誘導体は式(a)で表されるC 60 のフラーレン誘導体〔式(a)(R2はメチル基である。〕。
Figure 0004326167
(a)
At least one selected from the group of compounds represented by general formula (A) on the surface of an indium-tin oxide (ITO) electrode is Bin. Light energy and electrical energy varying 換素Ko, characterized in that the formation of the monomolecular film by self-assembly through a covalent bond in represented.
Figure 0004326167
Formula A
. (However, Bin are O 3 is Si- X 1, X 2 and X 3, -. A NH-CO-, n is an integer of 1 to 20, Ar is have a bulky alkyl group A good phenyl group, M is 2H or Zn, and a fullerene derivative is a C 60 fullerene derivative represented by the formula (a) [formula (a) (R2 is a methyl group )].
Figure 0004326167
(A)
ITO電極と一般式Aの化合物類から選択される化合物が形式1で結合して自己組織化して単一膜を形成していることを特徴とする請求項1に記載の光エネルギー・電気エネルギー変換素子
Figure 0004326167
形式1
(ここで、嵩高のアルキル基を有するArは3,5−ジ(t−ブチル)−フェニル基であり、MはZnあるいは2Hである。)
2. The light energy / electric energy conversion according to claim 1, wherein the ITO electrode and the compound selected from the compounds of the general formula A are combined in the form 1 and self-assembled to form a single film. Element .
Figure 0004326167
Format 1
(Here, Ar having a bulky alkyl group is a 3,5-di (t-butyl) -phenyl group, and M is Zn or 2H.)
JP2001220227A 2001-07-19 2001-07-19 Light energy / electric energy conversion element using ITO electrode chemically modified with porphyrin / fullerene linking molecule Expired - Fee Related JP4326167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001220227A JP4326167B2 (en) 2001-07-19 2001-07-19 Light energy / electric energy conversion element using ITO electrode chemically modified with porphyrin / fullerene linking molecule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001220227A JP4326167B2 (en) 2001-07-19 2001-07-19 Light energy / electric energy conversion element using ITO electrode chemically modified with porphyrin / fullerene linking molecule

Publications (2)

Publication Number Publication Date
JP2003036896A JP2003036896A (en) 2003-02-07
JP4326167B2 true JP4326167B2 (en) 2009-09-02

Family

ID=19054084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001220227A Expired - Fee Related JP4326167B2 (en) 2001-07-19 2001-07-19 Light energy / electric energy conversion element using ITO electrode chemically modified with porphyrin / fullerene linking molecule

Country Status (1)

Country Link
JP (1) JP4326167B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548779B2 (en) * 2004-01-23 2010-09-22 日本電信電話株式会社 Organic photoelectric conversion device and organic solar cell
JP4956736B2 (en) * 2004-02-19 2012-06-20 独立行政法人産業技術総合研究所 Monomolecular film formation method
JP4201339B2 (en) 2004-03-10 2008-12-24 独立行政法人科学技術振興機構 Photocharge separation using supramolecular complex of pi-electron extended viologen derivative and porphyrin
CN100424084C (en) * 2004-05-27 2008-10-08 中国科学院化学研究所 (Zinc) porphyrin - perylene diimide ( PDI) - C60 ternary system and its synthesis method
JP4857799B2 (en) * 2006-02-10 2012-01-18 セイコーエプソン株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element, and electronic device
JP5476561B2 (en) * 2009-02-25 2014-04-23 独立行政法人物質・材料研究機構 Novel diblock copolymer and high mobility / photoconductive anisotropic nanowire formed by self-assembly of the diblock copolymer
US8723026B2 (en) 2009-07-27 2014-05-13 University Of Utah Research Foundation Parallel coaxial molecular stack arrays
JP5459125B2 (en) * 2010-07-16 2014-04-02 セイコーエプソン株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element, and electronic device
CN103193786A (en) * 2013-05-07 2013-07-10 中国工程物理研究院核物理与化学研究所 Water-soluble fullerene-tetra(p-hydroxy phenyl) porphyrin as well as preparation method and application thereof
CN103724356B (en) * 2013-12-18 2015-09-02 中国科学院化学研究所 A kind of Porphyrin-fullerene analog derivative photosensitizers and preparation method thereof and application
CN113651825B (en) * 2021-08-17 2022-07-26 华侨大学 Fullerene derivative, preparation method thereof and perovskite solar cell

Also Published As

Publication number Publication date
JP2003036896A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
Vos et al. Ruthenium polypyridyl chemistry; from basic research to applications and back again
Yan et al. Independent tuning of the band gap and redox potential of graphene quantum dots
den Hollander et al. Enhanced photocurrent generation by photosynthetic bacterial reaction centers through molecular relays, light-harvesting complexes, and direct protein–gold interactions
Long et al. Promising anodic electrochemiluminescence of nontoxic core/shell CuInS2/ZnS nanocrystals in aqueous medium and its biosensing potential
JP5062766B2 (en) Photoelectric conversion material containing fullerene derivative
JP4326167B2 (en) Light energy / electric energy conversion element using ITO electrode chemically modified with porphyrin / fullerene linking molecule
Fu et al. Electrochemically lighting up luminophores at similar low triggering potentials with mechanistic insights
JP4312353B2 (en) Optical energy / electric energy conversion element in which antenna compound and charge separation type compound are integrated on electrode as mixed self-assembled monolayer
Wang et al. A label-free cytochrome c photoelectrochemical aptasensor based on CdS/CuInS2/Au/TiO2 nanotubes
JP4183402B2 (en) Materials for photoelectric conversion elements comprising thin films containing fullerenes
Chen et al. Metal nanocluster‐based devices: Challenges and opportunities: Nanoscience: Special Issue Dedicated to Professor Paul S. Weiss
JP5062765B2 (en) Photoelectric conversion material containing fullerene derivative
JP5444747B2 (en) Color imaging device and manufacturing method thereof, optical sensor and manufacturing method thereof, photoelectric conversion device and manufacturing method thereof, and electronic device
JP4445641B2 (en) Optical energy transfer device with mixed self-assembled monolayer of energy donor compound and energy acceptor compound formed on substrate surface
JP4088711B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND ITS MANUFACTURING METHOD, OPTICAL SENSOR AND SOLAR CELL
JP4175476B2 (en) ORGANIC SOLAR CELL USING SELF-ORGANIZATION AND METHOD FOR PRODUCING SELF-ORGANIZING STRUCTURE USED FOR SAME
WO2004076531A1 (en) Phenylazomethine dendrimer containing metal or metal cluster and method for preparation thereof
JP4291551B2 (en) Material for photoelectric conversion element containing host-guest complex
JP2011057937A (en) DONOR-ACCEPTOR TYPE PIGMENT HAVING TWISTED pi CONJUGATION PART, AND DYE-SENSITIZED TYPE SOLAR CELL USING THE SAME
Imahori et al. Structure and photoelectrochemical properties of nanostructured SnO2 electrodes deposited electrophoretically with the composite clusters of porphyrin-modified gold nanoparticle with a long spacer and fullerene
Bachu et al. Bioelectrochemiluminescence as an Analytical Signal of Extreme Sensitivity
Zhang et al. Photoelectric response of a gold electrode modified with self-assembled monolayers of pyrrolidinofullerenes
Zhu et al. Effective photocurrent generation in supramolecular porphyrin-fullerene conjugates assembled by crown ether-alkyl ammonium cation interactions
JPH0875543A (en) Photoelectric converision element
JPH0873834A (en) Organic thin film and photofunctional element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090609

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees