JP4074099B2 - Flat display device and manufacturing method thereof - Google Patents

Flat display device and manufacturing method thereof Download PDF

Info

Publication number
JP4074099B2
JP4074099B2 JP2002027124A JP2002027124A JP4074099B2 JP 4074099 B2 JP4074099 B2 JP 4074099B2 JP 2002027124 A JP2002027124 A JP 2002027124A JP 2002027124 A JP2002027124 A JP 2002027124A JP 4074099 B2 JP4074099 B2 JP 4074099B2
Authority
JP
Japan
Prior art keywords
light
organic
layer
light emitting
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002027124A
Other languages
Japanese (ja)
Other versions
JP2003229283A (en
Inventor
道哉 小林
Original Assignee
東芝松下ディスプレイテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝松下ディスプレイテクノロジー株式会社 filed Critical 東芝松下ディスプレイテクノロジー株式会社
Priority to JP2002027124A priority Critical patent/JP4074099B2/en
Publication of JP2003229283A publication Critical patent/JP2003229283A/en
Application granted granted Critical
Publication of JP4074099B2 publication Critical patent/JP4074099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は複数の表示素子がそれぞれ独立な表示画素として支持基板上に配置される平面表示装置およびその製造方法に関し、特に各表示画素から支持基板側に放出される光を反射するように構成される平面表示装置およびその製造方法に関する。
【0002】
【従来の技術】
液晶表示装置に代表される平面表示装置はCRTディスプレイよりも薄型、軽量、低消費電力であるという特徴を持つことから、その需要が急速に伸びている。中でも、複数の表示素子がそれぞれ独立なスイッチ素子を介して駆動されるアクティブマトリクス型平面表示装置は、隣接表示素子間でのクロストークを低減できることから、携帯情報機器を始めとして種々のディスプレイに利用されている。
【0003】
近年では、有機エレクトロルミネセンス(EL)表示装置の開発が液晶表示装置に比べて高い応答性と広い視野角を得ることができる自己発光型ディスプレイとして盛んに行われている。典型的な有機EL表示装置は、独立な表示画素としてマトリクス状に配置された複数の有機EL素子およびこれら有機EL素子にそれぞれ接続される複数の電流制御回路を含む有機ELパネルと、この有機ELパネルの外部に設けられる外部駆動回路から構成される。各有機EL素子は一対の電極間に有機発光層を挟持した構造でガラス等の支持基板上に形成され、有機発光層に電子および正孔を注入しこれらを再結合させることにより励起子を生成させ、この励起子の失活時に生じる光放出により発光する。有機発光層からの光は、支持基板を透過させて出射させる下面発光方式また支持基板とは反対側から出射させる上面発光方式のいずれかの方式で外部に取り出される。
【0004】
下面発光方式の有機EL表示装置では、電流制御回路を有機発光層の下方に配置すると、このスイッチ素子が有機発光層からの光を遮ることになるため、支持基板上で互いに重ならないように電流制御回路と有機EL素子とをレイアウトする必要がある。従って、電流制御回路が画素領域の一部を占有し、表示画素の開口率を低下させる結果となる。これに対して、上面発光方式の有機EL表示装置は、有機発光層からの光が支持基板とは反対側から取り出されるため、支持基板側に配置される電流制御回路の制約を受けずに開口率を設定して高い光利用効率を確保することが可能である。
【0005】
【発明が解決しようとする課題】
ところで、上面発光方式の有機EL表示装置では、有機EL素子の支持基板側電極が有機発光層から放出される光を反射する反射電極として用いられる。しかし、反射電極で反射された光の一部は斜め方向に進み有機EL表示素子を取り囲む隔壁に入射してしまい、支持基板とは反対側の空間に出射しない。これは、光の利用効率を低下させるだけでなく、隣接有機EL素子の光に干渉して色滲みを発生させる原因となる。
【0006】
また、この反射電極は外光をも反射するためコントラストが低下する。これに対処するため、有機EL表示装置の光出射面(表示面)側に円偏光板を配置する技術が知られているが、コスト増加、生産性の低下の原因となる。
【0007】
本発明は上述したような技術的課題に鑑みてなされたもので、表示素子から放出される光を効率的に利用することが可能な平面表示装置およびその製造方法を提供することを目的とする。また、表示品位の良好な平面表示装置を提供すること、特に生産性を損なうことのない平面表示装置の製造方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明によれば、支持基板と、支持基板上でそれぞれ独立な表示画素として光を放出する複数の表示素子と、複数の表示素子から前記支持基板側に放出される光を反射する光反射層とを備え、光反射層は複数の表示素子から光透過性絶縁膜を介して離され各反射光を対応表示素子に向かわせる入射角調整部を含む平面表示装置が提供される。
【0009】
また、本発明によれば、支持基板上に光反射層を形成する工程と、光反射層を覆う光透過性絶縁膜を形成する工程と、それぞれ独立な表示画素として光を放出する複数の表示素子を形成する工程とを備え、光反射層形成工程は複数の表示素子からの光を反射し各反射光を対応表示素子に向かわせる入射角調整部を含むように光反射層を形成する平面表示装置の製造方法が提供される。
【0010】
この平面表示装置およびその製造方法では、光反射層が光透過性絶縁膜を介して複数の表示素子から離される入射角調整部を含み、この入射角調整部が対応表示素子からの光を反射してこの表示素子に向かわせることになる。従って、表示素子から放出される光を確実に支持基板とは反対側の空間に出射させて光の利用効率を向上させることができる。また、反射光が隣接表示素子の光に干渉することにより生じる画質の劣化を防止することもできる。
【0011】
【発明の実施の形態】
以下、本発明の一実施形態に係る平面表示装置について図面を参照して説明する。この平面表示装置は上面発光方式のアクティブマトリクス型有機EL表示装置である。
【0012】
図1はこの平面表示装置の回路構成を示す。この平面表示装置は有機ELパネルPNLおよび外部駆動回路DRVを備える。
【0013】
外部駆動回路DRVは、パーソナルコンピュータ等の信号源から出力されたデータを受けとり、有機ELパネルPNLを駆動するための制御信号の生成や、映像信号の並び替え等のデジタル処理を行うコントローラ部1と、映像信号をデジタル/アナログ変換する複数のドライバIC2と、コントローラ部1、ドライバIC2および有機ELパネルPNLを駆動する各種電源電圧を生成するDC/DCコンバータ3により構成される。一方、有機ELパネルPNLは、表示領域DSにおいてマトリクス状に配置される複数の表示画素PX、複数の表示画素PXの列に沿って配置される複数の信号線X(X1〜Xm)、複数の表示画素PXの行に沿って配置される複数の走査線Y(Y1〜Yn)、および複数の信号線Xを駆動する信号線駆動回路5、および複数の走査線Yを駆動する走査線駆動回路6を備える。
【0014】
複数の表示画素PXは行方向に隣接する3個一組で1カラー表示画素を構成する。各表示画素PXは赤、緑、または青色に対応する波長の光で発光する有機EL素子OLEDおよびこの有機EL素子OLEDに流れる電流を制御する電流制御回路7を含む。電流制御回路7は例えばNチャネル薄膜トランジスタ11、Pチャネル薄膜トランジスタ12、および容量素子13により構成される。ここで、薄膜トランジスタ11は対応信号線Xおよび対応走査線Yの交差位置近傍に配置され、対応走査線Yの制御により対応信号線Xから映像信号を取り込むスイッチ素子として用いられる。薄膜トランジスタ12は電源線Vdd,Vss間において有機EL素子OLEDと直列に接続され、薄膜トランジスタ11を介して印加される映像信号電圧に基づいて有機EL素子OLEDに電流を流す電流駆動素子として用いられる。容量素子13は薄膜トランジスタ11が非導通状態であるときに映像信号電圧を保持するために用いられる。
【0015】
図2は有機ELパネルPNLの1カラー画素の平面構造を示し、図3は図2に示すIII-III線に沿った断面を示す。図2に示すように、表示画素PXは走査線Yと信号線Xとに囲まれた領域に配置され。薄膜トランジスタ11のソース電極Sは信号線Xに接続され、ゲート電極Gは走査線Yに接続され、ドレイン電極Dは容量素子13の上部電極となる電源線Vddに容量結合する容量素子13の下部電極を介して薄膜トランジスタ12のゲート電極Gに接続される。薄膜トランジスタ12のソース電極Sは有機EL素子OLEDのアノード電極ADに接続され、ドレイン電極Dは電源線Vddに接続される。
【0016】
図3に示すように、有機ELパネルPNLは、支持基板となるガラス基板20上に、薄膜トランジスタ11,12および有機EL素子OLEDを順に積層した構造を持つ。ガラス基板20は例えば合成樹脂のようなの絶縁材、導電材、または半導体等の基板に置き換えてもよいが、特に導電材または半導体を用いる場合には、基板10をSiO2やSiNなどの絶縁膜で覆いこの絶縁膜上に薄膜トランジスタ11,12および有機EL素子OLEDを形成する必要がある。薄膜トランジスタ11,12の各々はトップゲート型であり、ゲート電極Gが例えばポリシリコン(Poly-Silicon)半導体薄膜上にゲート絶縁膜を介して形成された構造を有する。
【0017】
有機EL素子OLEDはアノード電極ADおよびカソード電極CD間に有機発光層EMを挟持した構造を有する。アノード電極ADはITO(Indium Tin Oxide)等の光透過性導電材料からなり、カソード電極CDは光透過性を有する程度に薄く形成したアルカリ土類金属あるいは希土類金属等の導電材料からなる。有機EL素子OLEDでは、アノード電極ADから注入されたホールとカソード電極CDから注入された電子とが有機発光層EMの内部で再結合したときに、有機発光層EMを構成する有機分子を励起して励起子を発生させる。この励起子が放射失活する過程で光が有機発光層EMから放出され、この光が光透過性のカソード電極CDを介して外部へ出射される。尚、有機発光層EMは発光効率を向上させるためにホール輸送層、エレクトロン輸送層および発光層の3層積層で構成されてもよく、また機能的に複合された2層または単層で構成されてもよい。
【0018】
有機EL表示パネルPNLは、さらに複数の有機EL素子OLEDの有機発光層EMからガラス基板20側に放出される光を反射する光反射層RFを備え、光反射層RFは光透過性絶縁膜26を介して有機EL素子OLEDからそれぞれ離され各々対応有機EL素子OLEDに向かわせる複数の凹部15を入射角調整部として含む。各凹部15は対応有機EL素子OLEDの有機発光層EMの外縁に沿う傾斜面16を持つ。光反射層RFは金属等の導電材で構成され、有機EL素子OLEDのアノード電極ADと薄膜トランジスタ12のソース電極Sを接続する配線部材を兼ねている。
【0019】
次に、上述の平面表示装置の製造方法について説明する。
【0020】
まず、常圧CVDあるいはプラズマCVDにより、ガラス等の絶縁基板20上にアンダーコート層21としてSiN膜、SiO膜を堆積し、その上にアモルファスシリコン膜を堆積する。尚、ここで薄膜トランジスタ11,12のしきい値制御のために基板全面にボロン(B)等のP型不純物をドープしてもよい。
【0021】
次に、アモルファスシリコン膜をエキシマレーザでアニール処理し、アモルファスシリコン膜を多結晶シリコン膜に結晶化させる。
【0022】
さらに、その多結晶シリコン膜にレジストを塗布し、露光・パターニング・エッチング処理を施し、多結晶シリコン膜を島状に形成する。
【0023】
続いて、多結晶シリコン膜を覆って全面に、CVDによりSiOxを成膜し、ゲート絶縁膜22を形成する。このゲート絶縁膜22上にフォロシトグラフィー技術を用いてNチャネル薄膜トランジスタのソース領域およびドレイン領域を露出するレジストマスクを形成する。このレジストマスクをマスクとして、燐イオン(P)をドーピングし、薄膜トランジスタ11の多結晶シリコン膜に導電領域であるソース領域およびドレイン領域を形成する。
【0024】
次に、ゲート絶縁膜および多結晶シリコン膜上にゲート金属膜としてMoWを堆積し、フォトリソグラフィー技術を用いてゲート金属膜をパターニングし、Pチャネル薄膜トンジスタ12のゲート電極Gを形成する。
【0025】
その後、薄膜トランジスタ12のゲート電極Gまたはゲート電極形成時のレジストをマスクとして上部よりボロンイオン(B)をドーピングし、Pチャネル薄膜トランジスタ12の多結晶シリコン膜にソース領域およびドレイン領域を形成する。
【0026】
そして、ゲート金属膜をさらにパターニングしてゲート配線およびNチャネル薄膜トランジスタ11のゲート電極G、信号線Xの一部Xa、容量素子13の下部電極を形成する。そしてこれらゲート金属膜をマスクとして、燐イオン(P)を低濃度注入し、ソース領域およびドレイン領域とチャネル領域との間にLDD領域を形成する。
【0027】
さらにCVD法などによりこれらの上面全部を覆うように、層間絶縁層23となるSiOxを成膜し、層間絶縁層23およびゲート絶縁膜21を貫通し薄膜トランジスタ11,12のソース領域およびドレイン領域に達するコンタクトホールを設けた後、Mo/Al/Moからなる金属膜を成膜しパターニング処理し、薄膜トランジスタ11,12のソース電極S、ドレイン電極D、電源線Vddおよび信号線Xの一部Xbを形成する。薄膜トランジスタ11,12は上述のような処理により形成される。信号線駆動回路5および走査線駆動回路6は薄膜トランジスタ11と共通な処理により同時に形成されるNチャネル薄膜トランジスタ、並びに薄膜トランジスタ12と共通な処理により同時に形成されるPチャネルトランジスタの組み合わせとして得られる。また、容量素子13の上部電極は電源線Vddの一部として形成される。
【0028】
さらに基板全面にSiNxの絶縁層24を形成し、全表示画素PXの薄膜トランジスタ12のソース電極Sを露出させるコンタクトホールを設ける。この後、絶縁層24を部分的にハーフエッチングし、この絶縁層24をおお上にMo/Al/Mo、Mo/Al、Ag等の金属膜を成膜しパターニング処理することにより複数の凹部15を持つ光反射層RFを形成する。この光反射層RFはパターニング処理で分割された複数の金属膜部分で構成され、各金属膜部分は対応表示画素PXの薄膜トランジスタ12のソース電極Sに凹部15の周囲でコンタクトする。この後、レジスト材料、ポリイミドなどの有機材料を光透過性絶縁膜26として全体に塗布し、光反射層RFの各金属膜を凹部15の周囲で部分的に露出させるコンタクトホールを形成する。続いて、光透過性絶縁膜26を全体的に覆ってITOを成膜しパターニング処理し、光反射層RFの金属膜にそれぞれコンタクトしこれら金属膜の凹部15にそれぞれ対向する複数のアノード電極ADを形成する。
【0029】
次に、有機絶縁材料を3μmの膜厚で光透過性絶縁膜26の全面に塗布して乾燥させ、この有機絶縁材料膜をパターニング処理することにより、複数の凹部15にそれぞれ対応する領域内でこれらアノード電極ADを露出する複数の開口OPを残して光透過性絶縁膜26を覆う隔壁膜27を形成する。
【0030】
さらに、インクジェット法により順次R,G,Bに対応する高分子系の有機発光材料をこれら開口OP内にそれぞれ吐出し、これら開口OPにより露出された複数のアノード電極AD上に複数の有機発光層EMを100nm程度の厚さでそれぞれ形成する。この後、例えばBa等の光透過性導電膜をこれら有機発光層EMにおよび隔壁膜27を覆って10nmの膜厚で形成する。この場合、光透過性導電膜のシート抵抗はおよそ10Ω/□となる。各有機EL素子OLEDのカソード電極CDはこのような光透過性導電膜により共通に構成される。この後、カソード電極CD側においてガラス等の透明絶縁基板を支持基板20に対向配置させ、これら基板の周囲を例えば窒素雰囲気中で封止する。
【0031】
尚、隔壁膜27は有機EL素子OLED相互の素子分離を行うために有機発光層EMの厚さ以上の膜厚を持ち、開口OPはカソード電極CD用の光透過性導電膜が段切れをおこさないように約80度のテーパ角で傾斜したテーパ形状に設定することが望ましい。また、上述のインクジェット法は有機発光材料が高分子系である場合に用いられる。この場合、隔壁膜27の膜厚は有機発光材料を確実に開口内に収容させるために1μm以上であることが好ましい。
【0032】
すなわち、上述の製造方法は支持基板20上に光反射層RFを形成する工程と、光反射層RFを覆う光透過性絶縁膜26を形成する工程と、それぞれ独立な表示画素として光を放出する複数の有機EL素子OLEDを形成する工程とを備える。ここで、光反射層形成工程は複数の表示有機EL素子OLEDからの光を反射し各反射光を対応有機EL素子OLEDに向かわせる複数の凹部15として入射角調整部を含むように光反射層を形成する。有機EL素子OLEDの形成工程は複数の凹部15にそれぞれ対応する領域内に複数の開口OPを残して光透過性絶縁膜26を覆う隔壁膜27を形成し、複数の開口OP内にそれぞれ独立な表示画素PXとして複数の有機EL素子OLEDを形成する。より具体的には、この形成工程が光透過性絶縁膜26上に光透過性導電膜を形成してこの光透過性導電膜をパターニングすることにより複数の凹部15の上方にそれぞれ配置される複数のアノード電極ADを形成し、複数のアノード電極および光透過性絶縁膜26を覆う隔壁膜27を形成してこの隔壁膜27を複数のアノード電極の一部を露出させるようにパターニングすることにより複数の開口OPを形成し、これら開口OP内で露出した複数のアノード電極AD上に複数の有機発光層EMをそれぞれ形成し、さらに複数の有機発光層EMを覆うカソード電極を形成する処理を含む。
【0033】
上述の製造方法で得られた平面表示装置では、光反射層RFが光透過性絶縁膜26を介して複数の有機EL素子OLEDから離される複数の凹部15を含み、各凹部15が対応有機EL素子OLEDからの光を反射してこの有機EL素子OLEDに向かわせることになる。さらに各凹部15は対応有機EL素子OLEDの有機発光層EMの外縁に沿う傾斜面16を持つ。従って、各有機EL素子OLEDから放出される光を支持基板20とは反対側の空間に出射させて光の利用効率を向上させることができる。
【0034】
図4は有機発光層からの光の出射状況の比較例を示す。光反射層RFが有機EL素子OLEDから離れて配置され、また凹部を有する場合には、有機発光層EMからの光が(a)に示すように開口OPを介して外部の空間に出射し易くなる。有機発光層EMからの光の60〜80%を有効利用することができる。これに対して、(b)に示すように有機EL素子OLEDのアノード電極ADが光反射層RFを兼ねる場合には、有機発光層EMからの光が隔壁膜27に入射し易く、この光の30から50%しか開口OPを介して外部の空間に出射しない。
【0035】
尚、本発明は上述の実施形態に限定されず、その要旨を逸脱しない範囲で様々に変形可能である。
【0036】
上述の実施形態では、有機発光材料が高分子系である場合について説明したが、例えばAlq等の低分子系の有機発光材料を用いてもよい。この場合には、有機発光層EMが有機発光材料の真空蒸着等により形成される。このとき、隔壁膜27の厚さは有機発光層EMの膜厚となる100nm以上であれば良い。
【0037】
上述の実施形態では、光反射層RFが複数の有機EL素子OLEDと光反射層RFの下方に配置される複数の薄膜トランジスタ12とをそれぞれ接続する配線部材を兼ねる複数の金属層からなるが、この構造は例えば図5に示すような構造にすることも可能である。図5に示す第1変形例では、光反射層RFが単一の金属層のままに維持され、その代わりに複数の有機EL素子OLEDと光反射層RFの下方に配置される複数の薄膜トランジスタ12とをそれぞれ接続する配線部材を取り囲む複数の開口を有する。この場合には、図2に示す構造と同様な光利用効率を得ることができる一方で、光反射層RFの部材としてITOやソース電極との選択性を考慮する必要がなく、材料の選択肢が広がる。
【0038】
また、上述の実施形態では、各光反射層RFが1つの凹部15を有する構造からなるが、図6に示す第2変形例のように各凹部15が対応有機EL素子OLEDの有機発光層EMに対向する凹凸面17をさらに持つように構成されてもよい。この凹凸面17はSiNxの絶縁層24にコンタクトホールを形成した後、感光性有機絶縁膜を塗布しこれを所定の露光・現像条件により不均一にエッチングし、これを下地として光反射層RFを形成することにより得られる。このような構造では、図2に示す構造と同様な光利用効率を得ることができる一方で、外光を散乱させてコントラスト比を大きくすることができる。
【0039】
さらに、図6では、光反射層RFの金属膜と一緒に形成されるが、これら光反射層RFの金属膜から絶縁される複数の金属膜部分が複数の薄膜トランジスタ12とをそれぞれ接続する配線部材として設けられる。この場合には、光反射層RFとアノード電極ADとを検査用容量として用いることができる。この検査用容量はアノード電極ADの形成後にアノード電極ADの電位を固定した状態で信号線駆動回路5、走査線駆動回路6、および電流制御回路7を動作させた場合に電荷を蓄積することから、この蓄積電荷を電子ビームテスタ等により検出することにより有機EL素子OLEDの形成前に不良基板を発見することが可能となる。
【0040】
上述の実施形態は、平面表示装置の一例として有機EL表示パネルPNLを用いて説明されたが、本発明は複数の表示画素PXが独立な島状に形成される平面表示装置全般に適用できる。
【0041】
【発明の効果】
本発明によれば、表示素子から放出される光を効率的に利用することが可能な平面表示装置およびその製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す平面表示装置の回路構成を示す図である。
【図2】図1に示す有機ELパネルの1カラー画素の平面構造を示す図である。
【図3】図2に示すIII-III線に沿った断面を示す図である。
【図4】図3に示す有機発光層からの光の出射状況の比較例を示す図である。
【図5】図3に示す構成の第1変形例を示す図である。
【図6】図3に示す構成の第2変形例を示す図である。
【符号の説明】
15…凹部
16…傾斜面
17…凹凸面
20…ガラス基板
26…光透過性絶縁膜
27…隔壁膜
RF…光反射層
AD…アノード
EM…有機EL発光層
OLED…有機EL素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flat display device in which a plurality of display elements are arranged on a support substrate as independent display pixels and a method for manufacturing the same, and more particularly, configured to reflect light emitted from each display pixel to the support substrate. The present invention relates to a flat display device and a manufacturing method thereof.
[0002]
[Prior art]
A flat display device typified by a liquid crystal display device has features that it is thinner, lighter, and consumes less power than a CRT display, and therefore its demand is rapidly increasing. In particular, an active matrix flat panel display device in which a plurality of display elements are driven via independent switch elements can reduce crosstalk between adjacent display elements, and thus can be used for various displays including portable information devices. Has been.
[0003]
In recent years, organic electroluminescence (EL) display devices have been actively developed as self-luminous displays capable of obtaining higher responsiveness and wider viewing angles than liquid crystal display devices. A typical organic EL display device includes an organic EL panel including a plurality of organic EL elements arranged in a matrix as independent display pixels, and a plurality of current control circuits respectively connected to the organic EL elements, and the organic EL panel It consists of an external drive circuit provided outside the panel. Each organic EL element is formed on a supporting substrate such as glass with an organic light emitting layer sandwiched between a pair of electrodes, and excitons are generated by injecting electrons and holes into the organic light emitting layer and recombining them. Then, light is emitted by light emission generated when the exciton is deactivated. Light from the organic light emitting layer is extracted to the outside by any one of a bottom emission method in which the light is transmitted through the support substrate and emitted from a side opposite to the support substrate.
[0004]
In a bottom emission type organic EL display device, when the current control circuit is arranged below the organic light emitting layer, the switch element blocks light from the organic light emitting layer, so that the current does not overlap each other on the support substrate. It is necessary to lay out the control circuit and the organic EL element. Therefore, the current control circuit occupies a part of the pixel region, resulting in a decrease in the aperture ratio of the display pixel. On the other hand, the organic EL display device of the top emission type emits light from the organic light emitting layer from the side opposite to the support substrate, so that it is opened without being restricted by the current control circuit arranged on the support substrate side. It is possible to ensure high light utilization efficiency by setting the rate.
[0005]
[Problems to be solved by the invention]
By the way, in a top emission type organic EL display device, a support substrate side electrode of an organic EL element is used as a reflective electrode that reflects light emitted from an organic light emitting layer. However, part of the light reflected by the reflective electrode travels in an oblique direction and enters the partition wall surrounding the organic EL display element, and does not exit into the space opposite to the support substrate. This not only reduces the light use efficiency, but also causes color blurring by interfering with the light of the adjacent organic EL element.
[0006]
Moreover, since this reflective electrode reflects external light, the contrast is lowered. In order to cope with this, a technique of arranging a circularly polarizing plate on the light emission surface (display surface) side of the organic EL display device is known, but this causes an increase in cost and a decrease in productivity.
[0007]
The present invention has been made in view of the technical problems as described above, and an object thereof is to provide a flat display device capable of efficiently using light emitted from a display element and a method for manufacturing the same. . It is another object of the present invention to provide a flat display device with good display quality, and in particular to provide a method for manufacturing a flat display device that does not impair productivity.
[0008]
[Means for Solving the Problems]
According to the present invention, a support substrate, a plurality of display elements that emit light as independent display pixels on the support substrate, and a light reflection layer that reflects light emitted from the plurality of display elements to the support substrate side The light reflection layer is separated from the plurality of display elements through the light-transmitting insulating film, and a flat display device is provided that includes an incident angle adjustment unit that directs each reflected light toward the corresponding display element.
[0009]
According to the invention, the step of forming the light reflecting layer on the support substrate, the step of forming the light transmissive insulating film covering the light reflecting layer, and a plurality of displays that emit light as independent display pixels, respectively. A step of forming the light reflection layer so as to include an incident angle adjustment unit that reflects light from a plurality of display elements and directs each reflected light toward the corresponding display element. A method for manufacturing a display device is provided.
[0010]
In the flat display device and the manufacturing method thereof, the light reflection layer includes an incident angle adjusting unit that is separated from the plurality of display elements through the light-transmitting insulating film, and the incident angle adjusting unit reflects light from the corresponding display element. Then, it is directed to this display element. Therefore, the light emitted from the display element can be reliably emitted to the space on the side opposite to the support substrate to improve the light use efficiency. In addition, it is possible to prevent deterioration in image quality caused by the reflected light interfering with the light of the adjacent display element.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a flat display device according to an embodiment of the present invention will be described with reference to the drawings. This flat display device is a top emission type active matrix organic EL display device.
[0012]
FIG. 1 shows a circuit configuration of the flat display device. This flat display device includes an organic EL panel PNL and an external drive circuit DRV.
[0013]
The external drive circuit DRV receives data output from a signal source such as a personal computer, and generates a control signal for driving the organic EL panel PNL and performs digital processing such as rearrangement of video signals. A plurality of driver ICs 2 for digital / analog conversion of video signals, and a DC / DC converter 3 for generating various power supply voltages for driving the controller unit 1, the driver IC 2 and the organic EL panel PNL. On the other hand, the organic EL panel PNL includes a plurality of display pixels PX arranged in a matrix in the display region DS, a plurality of signal lines X (X1 to Xm) arranged along a column of the plurality of display pixels PX, and a plurality of display pixels PX. A plurality of scanning lines Y (Y1 to Yn) arranged along the row of display pixels PX, a signal line driving circuit 5 for driving the plurality of signal lines X, and a scanning line driving circuit for driving the plurality of scanning lines Y 6 is provided.
[0014]
The plurality of display pixels PX constitute one color display pixel by a set of three adjacent in the row direction. Each display pixel PX includes an organic EL element OLED that emits light having a wavelength corresponding to red, green, or blue, and a current control circuit 7 that controls a current flowing through the organic EL element OLED. The current control circuit 7 includes, for example, an N-channel thin film transistor 11, a P-channel thin film transistor 12, and a capacitor element 13. Here, the thin film transistor 11 is disposed in the vicinity of the crossing position of the corresponding signal line X and the corresponding scanning line Y, and is used as a switch element that takes in the video signal from the corresponding signal line X under the control of the corresponding scanning line Y. The thin film transistor 12 is connected in series with the organic EL element OLED between the power supply lines Vdd and Vss, and is used as a current driving element for passing a current to the organic EL element OLED based on the video signal voltage applied through the thin film transistor 11. The capacitive element 13 is used to hold a video signal voltage when the thin film transistor 11 is in a non-conductive state.
[0015]
FIG. 2 shows a planar structure of one color pixel of the organic EL panel PNL, and FIG. 3 shows a cross section taken along line III-III shown in FIG. As shown in FIG. 2, the display pixel PX is disposed in a region surrounded by the scanning line Y and the signal line X. The source electrode S of the thin film transistor 11 is connected to the signal line X, the gate electrode G is connected to the scanning line Y, and the drain electrode D is the lower electrode of the capacitive element 13 that is capacitively coupled to the power supply line Vdd serving as the upper electrode of the capacitive element 13. To the gate electrode G of the thin film transistor 12. The source electrode S of the thin film transistor 12 is connected to the anode electrode AD of the organic EL element OLED, and the drain electrode D is connected to the power supply line Vdd.
[0016]
As shown in FIG. 3, the organic EL panel PNL has a structure in which thin film transistors 11 and 12 and an organic EL element OLED are sequentially stacked on a glass substrate 20 serving as a support substrate. The glass substrate 20 may be replaced with an insulating material such as a synthetic resin, a conductive material, or a substrate such as a semiconductor. However, particularly when a conductive material or a semiconductor is used, the substrate 10 is replaced with an insulating film such as SiO 2 or SiN. It is necessary to form the thin film transistors 11 and 12 and the organic EL element OLED on the insulating film. Each of the thin film transistors 11 and 12 is a top gate type, and has a structure in which a gate electrode G is formed on a polysilicon (Poly-Silicon) semiconductor thin film via a gate insulating film.
[0017]
The organic EL element OLED has a structure in which an organic light emitting layer EM is sandwiched between an anode electrode AD and a cathode electrode CD. The anode electrode AD is made of a light transmissive conductive material such as ITO (Indium Tin Oxide), and the cathode electrode CD is made of a conductive material such as an alkaline earth metal or a rare earth metal formed thin enough to have light transmissive properties. In the organic EL element OLED, when the holes injected from the anode electrode AD and the electrons injected from the cathode electrode CD are recombined inside the organic light emitting layer EM, the organic molecules constituting the organic light emitting layer EM are excited. To generate excitons. Light is emitted from the organic light emitting layer EM in the process of radiation deactivation of the excitons, and this light is emitted to the outside through the light-transmitting cathode electrode CD. The organic light emitting layer EM may be composed of a three-layer stack of a hole transport layer, an electron transport layer, and a light emitting layer in order to improve the light emission efficiency, or may be composed of two or a single layer functionally combined. May be.
[0018]
The organic EL display panel PNL further includes a light reflection layer RF that reflects light emitted from the organic light emitting layer EM of the plurality of organic EL elements OLED to the glass substrate 20 side, and the light reflection layer RF is the light-transmissive insulating film 26. A plurality of recesses 15 that are respectively separated from the organic EL element OLED via the, and directed toward the corresponding organic EL element OLED are included as the incident angle adjustment unit. Each recess 15 has an inclined surface 16 along the outer edge of the organic light emitting layer EM of the corresponding organic EL element OLED. The light reflection layer RF is made of a conductive material such as a metal, and also serves as a wiring member that connects the anode electrode AD of the organic EL element OLED and the source electrode S of the thin film transistor 12.
[0019]
Next, a manufacturing method of the above flat display device will be described.
[0020]
First, a SiN film and a SiO 2 film are deposited as an undercoat layer 21 on an insulating substrate 20 such as glass by atmospheric pressure CVD or plasma CVD, and an amorphous silicon film is deposited thereon. Here, in order to control the threshold value of the thin film transistors 11 and 12, the entire surface of the substrate may be doped with a P-type impurity such as boron (B).
[0021]
Next, the amorphous silicon film is annealed with an excimer laser to crystallize the amorphous silicon film into a polycrystalline silicon film.
[0022]
Further, a resist is applied to the polycrystalline silicon film, and exposure, patterning, and etching are performed to form the polycrystalline silicon film in an island shape.
[0023]
Subsequently, a SiOx film is formed by CVD on the entire surface covering the polycrystalline silicon film to form a gate insulating film 22. A resist mask that exposes the source region and drain region of the N-channel thin film transistor is formed on the gate insulating film 22 by using a photolithography technique. Using this resist mask as a mask, phosphorus ions (P) are doped to form a source region and a drain region which are conductive regions in the polycrystalline silicon film of the thin film transistor 11.
[0024]
Next, MoW is deposited as a gate metal film on the gate insulating film and the polycrystalline silicon film, and the gate metal film is patterned using a photolithography technique to form the gate electrode G of the P-channel thin film transistor 12.
[0025]
Thereafter, boron ions (B) are doped from above using the gate electrode G of the thin film transistor 12 or a resist at the time of gate electrode formation as a mask to form a source region and a drain region in the polycrystalline silicon film of the P channel thin film transistor 12.
[0026]
Then, the gate metal film is further patterned to form a gate wiring, a gate electrode G of the N-channel thin film transistor 11, a part Xa of the signal line X, and a lower electrode of the capacitive element 13. Then, using these gate metal films as masks, phosphorus ions (P) are implanted at a low concentration to form LDD regions between the source and drain regions and the channel region.
[0027]
Further, SiOx to be the interlayer insulating layer 23 is formed so as to cover all of these upper surfaces by CVD or the like, and penetrates the interlayer insulating layer 23 and the gate insulating film 21 to reach the source region and the drain region of the thin film transistors 11 and 12. After providing the contact hole, a metal film made of Mo / Al / Mo is formed and patterned to form the source electrode S, drain electrode D, power supply line Vdd, and part Xb of the signal line X of the thin film transistors 11 and 12. To do. The thin film transistors 11 and 12 are formed by the processing as described above. The signal line driver circuit 5 and the scanning line driver circuit 6 are obtained as a combination of an N-channel thin film transistor formed simultaneously by a process common to the thin film transistor 11 and a P-channel transistor formed simultaneously by a process common to the thin film transistor 12. The upper electrode of the capacitive element 13 is formed as a part of the power supply line Vdd.
[0028]
Further, an SiNx insulating layer 24 is formed on the entire surface of the substrate, and a contact hole for exposing the source electrode S of the thin film transistor 12 of all the display pixels PX is provided. Thereafter, the insulating layer 24 is partially half-etched, and a metal film such as Mo / Al / Mo, Mo / Al, or Ag is formed on the insulating layer 24 and patterned to form a plurality of recesses 15. A light reflection layer RF having the following is formed. The light reflecting layer RF is composed of a plurality of metal film portions divided by the patterning process, and each metal film portion is in contact with the source electrode S of the thin film transistor 12 of the corresponding display pixel PX around the recess 15. After that, an organic material such as a resist material or polyimide is applied to the whole as the light transmissive insulating film 26 to form a contact hole that partially exposes each metal film of the light reflecting layer RF around the recess 15. Subsequently, an ITO film is formed so as to entirely cover the light-transmitting insulating film 26, patterned, and contacted with the metal films of the light reflecting layer RF, and a plurality of anode electrodes AD respectively facing the recesses 15 of the metal films. Form.
[0029]
Next, an organic insulating material is applied to the entire surface of the light-transmitting insulating film 26 with a film thickness of 3 μm and dried, and this organic insulating material film is subjected to patterning processing in a region corresponding to each of the plurality of recesses 15. A partition wall film 27 is formed to cover the light transmissive insulating film 26 leaving a plurality of openings OP exposing the anode electrodes AD.
[0030]
Further, polymer organic light-emitting materials corresponding to R, G, and B are sequentially discharged into the openings OP by an inkjet method, and a plurality of organic light-emitting layers are formed on the plurality of anode electrodes AD exposed through the openings OP. Each EM is formed with a thickness of about 100 nm. Thereafter, a light-transmitting conductive film such as Ba is formed on the organic light emitting layer EM and the partition film 27 to a thickness of 10 nm. In this case, the sheet resistance of the light transmissive conductive film is approximately 10 5 Ω / □. The cathode electrode CD of each organic EL element OLED is configured in common by such a light transmissive conductive film. Thereafter, a transparent insulating substrate such as glass is disposed opposite to the support substrate 20 on the cathode electrode CD side, and the periphery of these substrates is sealed in, for example, a nitrogen atmosphere.
[0031]
The partition film 27 has a film thickness equal to or greater than the thickness of the organic light emitting layer EM in order to isolate the organic EL elements OLED from each other, and the opening OP causes the light-transmitting conductive film for the cathode electrode CD to be disconnected. It is desirable to set the taper shape to be inclined at a taper angle of about 80 degrees. The above-described ink jet method is used when the organic light emitting material is a polymer. In this case, the film thickness of the partition film 27 is preferably 1 μm or more in order to ensure that the organic light emitting material is accommodated in the opening.
[0032]
That is, the above-described manufacturing method emits light as an independent display pixel, a step of forming the light reflecting layer RF on the support substrate 20, a step of forming the light-transmissive insulating film 26 covering the light reflecting layer RF, and the like. Forming a plurality of organic EL elements OLED. Here, the light reflecting layer forming step includes a light reflecting layer so as to include an incident angle adjusting portion as a plurality of concave portions 15 that reflect light from the plurality of display organic EL elements OLED and direct each reflected light to the corresponding organic EL element OLED. Form. In the process of forming the organic EL element OLED, a partition film 27 is formed to cover the light-transmissive insulating film 26 while leaving a plurality of openings OP in regions corresponding to the plurality of recesses 15, respectively. A plurality of organic EL elements OLED are formed as display pixels PX. More specifically, in this forming step, a plurality of light-transmitting conductive films are formed on the light-transmitting insulating film 26 and patterned to form a plurality of light-transmitting conductive films. A plurality of anode electrodes AD are formed, a partition film 27 covering the plurality of anode electrodes and the light-transmissive insulating film 26 is formed, and the partition film 27 is patterned so as to expose a part of the plurality of anode electrodes. The process includes forming a plurality of organic light emitting layers EM on the plurality of anode electrodes AD exposed in the openings OP, and further forming a cathode electrode covering the plurality of organic light emitting layers EM.
[0033]
In the flat display device obtained by the manufacturing method described above, the light reflecting layer RF includes a plurality of recesses 15 separated from the plurality of organic EL elements OLED through the light-transmissive insulating film 26, and each recess 15 corresponds to the corresponding organic EL. Light from the element OLED is reflected and directed to the organic EL element OLED. Further, each recess 15 has an inclined surface 16 along the outer edge of the organic light emitting layer EM of the corresponding organic EL element OLED. Therefore, the light emission efficiency can be improved by emitting the light emitted from each organic EL element OLED to the space opposite to the support substrate 20.
[0034]
FIG. 4 shows a comparative example of the state of light emission from the organic light emitting layer. When the light reflection layer RF is arranged away from the organic EL element OLED and has a concave portion, the light from the organic light emitting layer EM is easily emitted to the external space through the opening OP as shown in FIG. Become. 60 to 80% of the light from the organic light emitting layer EM can be effectively used. On the other hand, when the anode electrode AD of the organic EL element OLED also serves as the light reflection layer RF as shown in (b), the light from the organic light emitting layer EM easily enters the partition film 27, and this light Only 30 to 50% is emitted to the outside space through the opening OP.
[0035]
In addition, this invention is not limited to the above-mentioned embodiment, It can deform | transform variously in the range which does not deviate from the summary.
[0036]
In the above-described embodiment, the case where the organic light emitting material is a high molecular weight material has been described. However, a low molecular weight organic light emitting material such as Alq 3 may be used, for example. In this case, the organic light emitting layer EM is formed by vacuum deposition of an organic light emitting material. At this time, the thickness of the partition film 27 may be 100 nm or more, which is the thickness of the organic light emitting layer EM.
[0037]
In the above-described embodiment, the light reflecting layer RF is composed of a plurality of metal layers that also serve as wiring members respectively connecting the plurality of organic EL elements OLED and the plurality of thin film transistors 12 disposed below the light reflecting layer RF. The structure can be a structure as shown in FIG. 5, for example. In the first modification shown in FIG. 5, the light reflection layer RF is maintained as a single metal layer, and instead, the plurality of organic EL elements OLED and the plurality of thin film transistors 12 disposed below the light reflection layer RF. And a plurality of openings surrounding the wiring members connecting the two. In this case, the light utilization efficiency similar to that of the structure shown in FIG. 2 can be obtained. On the other hand, it is not necessary to consider the selectivity with respect to ITO or the source electrode as a member of the light reflection layer RF. spread.
[0038]
In the above-described embodiment, each light reflection layer RF has a structure having one recess 15. However, each recess 15 has an organic light emitting layer EM of the corresponding organic EL element OLED as in the second modification shown in FIG. It may be configured to further have a concavo-convex surface 17 facing the surface. After forming contact holes in the SiNx insulating layer 24, the uneven surface 17 is coated with a photosensitive organic insulating film and etched non-uniformly under predetermined exposure / development conditions. It is obtained by forming. With such a structure, it is possible to obtain the same light use efficiency as that of the structure shown in FIG. 2, but it is possible to increase the contrast ratio by scattering external light.
[0039]
Further, in FIG. 6, the wiring members are formed together with the metal films of the light reflecting layer RF, and the plurality of metal film portions insulated from the metal films of the light reflecting layer RF respectively connect the plurality of thin film transistors 12. As provided. In this case, the light reflecting layer RF and the anode electrode AD can be used as the inspection capacitor. This inspection capacitor accumulates electric charges when the signal line driving circuit 5, the scanning line driving circuit 6, and the current control circuit 7 are operated with the potential of the anode electrode AD fixed after the anode electrode AD is formed. By detecting this accumulated charge with an electron beam tester or the like, it becomes possible to find a defective substrate before forming the organic EL element OLED.
[0040]
The above embodiment has been described using the organic EL display panel PNL as an example of a flat display device, but the present invention can be applied to all flat display devices in which a plurality of display pixels PX are formed in independent island shapes.
[0041]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the flat display apparatus which can utilize the light discharge | released from a display element efficiently, and its manufacturing method can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a circuit configuration of a flat display device according to an embodiment of the present invention.
2 is a diagram showing a planar structure of one color pixel of the organic EL panel shown in FIG.
3 is a view showing a cross section taken along line III-III shown in FIG. 2. FIG.
4 is a diagram showing a comparative example of the state of light emission from the organic light emitting layer shown in FIG.
FIG. 5 is a diagram showing a first modification of the configuration shown in FIG. 3;
6 is a diagram showing a second modification of the configuration shown in FIG. 3. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 15 ... Concave surface 16 ... Inclined surface 17 ... Concave surface 20 ... Glass substrate 26 ... Light-transmitting insulating film 27 ... Partition film RF ... Light reflection layer AD ... Anode EM ... Organic EL light emitting layer
OLED ... Organic EL device

Claims (9)

支持基板と、前記支持基板上でそれぞれ独立な表示画素として光を放出する複数の表示素子と、前記複数の表示素子から前記支持基板側に放出される光を反射する光反射層とを備え、前記光反射層は前記複数の表示素子から光透過性絶縁膜を介して離され各反射光を対応表示素子に向かわせる複数の凹部を入射角調整部としてみ、各凹部が対応表示素子の有機発光層の外縁に沿う傾斜面を持つことを特徴とする平面表示装置。A support substrate, a plurality of display elements that emit light as independent display pixels on the support substrate, and a light reflection layer that reflects light emitted from the plurality of display elements to the support substrate side, the light reflecting layer is observed containing a plurality of recesses for directing the respective reflected light is released through the light transmitting insulating film from said plurality of display elements in the corresponding display element as an incident angle adjusting unit, each recess corresponding display elements A flat display device having an inclined surface along the outer edge of the organic light emitting layer . 各表示素子は一対の光透過電極間に有機発光層を挟持した構造のエレクトロルミネッセンス素子からなることを特徴とする請求項1に記載の平面表示装置。  The flat display device according to claim 1, wherein each display element includes an electroluminescence element having a structure in which an organic light emitting layer is sandwiched between a pair of light transmission electrodes. 凹部はさらに前記対応表示素子の有機発光層に対向する凹凸面を持つことを特徴とする請求項に記載の平面表示装置。The flat display device according to claim 1 , wherein each concave portion further has an uneven surface facing the organic light emitting layer of the corresponding display element. 前記光反射層は前記複数の表示素子と前記光反射層の下方に配置される複数の駆動素子とをそれぞれ接続する配線部材を取り囲む複数の開口を有することを特徴とする請求項1に記載の平面表示装置。  2. The light reflecting layer according to claim 1, wherein the light reflecting layer has a plurality of openings surrounding wiring members respectively connecting the plurality of display elements and a plurality of driving elements disposed below the light reflecting layer. Flat display device. 前記光反射層は前記複数の表示素子と前記光反射層の下方に配置される複数の駆動素子とをそれぞれ接続する配線部材を兼ねる複数の金属層からなることを特徴とする請求項1に記載の平面表示装置。  2. The light reflection layer includes a plurality of metal layers that also serve as wiring members respectively connecting the plurality of display elements and a plurality of driving elements disposed below the light reflection layer. Flat display device. 支持基板上に光反射層を形成する工程と、前記光反射層を覆う光透過性絶縁膜を形成する工程と、それぞれ独立な表示画素として光を放出する複数の表示素子を形成する工程とを備え、前記光反射層形成工程は前記複数の表示素子からの光を反射し各反射光を対応表示素子に向かわせる複数の凹部を入射角調整部として含むように前記光反射層を形成し、各凹部に対応表示素子の有機発光層の外縁に沿う傾斜面を持たせることを特徴とする平面表示装置の製造方法。Forming a light reflecting layer on the support substrate; forming a light transmissive insulating film covering the light reflecting layer; and forming a plurality of display elements that emit light as independent display pixels. The light reflecting layer forming step includes forming the light reflecting layer so as to include a plurality of concave portions that reflect light from the plurality of display elements and direct the reflected light to the corresponding display elements as an incident angle adjustment unit ; A manufacturing method of a flat display device, characterized in that each concave portion has an inclined surface along the outer edge of the organic light emitting layer of the corresponding display element . 前記表示素子形成工程は前記光透過性絶縁膜上に光透過性導電膜を形成してこの光透過性導電膜をパターニングすることにより前記複数の凹部の上方にそれぞれ配置される複数の第1電極層を形成し、前記複数の第1電極層および前記光透過性絶縁膜を覆う隔壁膜を形成してこの隔壁膜を前記複数の電極層の一部を露出させるようにパターニングすることにより複数の開口を形成し、前記複数の開口内で露出した前記複数の電極層上に複数の有機発光層をそれぞれ形成し、さらに前記複数の有機発光層を覆う第2電極層を形成する処理を含むことを特徴とする請求項に記載の製造方法。The display element forming step includes forming a light-transmitting conductive film on the light-transmitting insulating film and patterning the light-transmitting conductive film to form a plurality of first electrodes respectively disposed above the plurality of recesses. Forming a partition layer, covering the plurality of first electrode layers and the light-transmissive insulating film, and patterning the partition film so as to expose a part of the plurality of electrode layers. Forming a plurality of organic light emitting layers on the plurality of electrode layers exposed in the plurality of openings, and further forming a second electrode layer covering the plurality of organic light emitting layers. The manufacturing method according to claim 6 . 前記光透過性絶縁膜は有機レジスト材料からなることを特徴とする請求項6に記載の製造方法。  The manufacturing method according to claim 6, wherein the light transmissive insulating film is made of an organic resist material. 前記有機発光層形成処理は液状の有機発光材料を開口内に吐出する方式で行われることを特徴とする請求項に記載の製造方法。The manufacturing method according to claim 6 , wherein the organic light emitting layer forming process is performed by discharging a liquid organic light emitting material into the opening.
JP2002027124A 2002-02-04 2002-02-04 Flat display device and manufacturing method thereof Expired - Fee Related JP4074099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002027124A JP4074099B2 (en) 2002-02-04 2002-02-04 Flat display device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002027124A JP4074099B2 (en) 2002-02-04 2002-02-04 Flat display device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003229283A JP2003229283A (en) 2003-08-15
JP4074099B2 true JP4074099B2 (en) 2008-04-09

Family

ID=27748744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002027124A Expired - Fee Related JP4074099B2 (en) 2002-02-04 2002-02-04 Flat display device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4074099B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062400A (en) * 2003-08-11 2005-03-10 Toshiba Matsushita Display Technology Co Ltd Flat display device and method for manufacturing the same
US10431634B2 (en) 2015-09-10 2019-10-01 Sharp Kabushiki Kaisha Organic electroluminescence device with recesses filled with a phosphor filling layer in the base material

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4123832B2 (en) 2002-05-31 2008-07-23 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
KR100560782B1 (en) 2003-08-25 2006-03-13 삼성에스디아이 주식회사 Organic electro luminescence display
JP2006100191A (en) * 2004-09-30 2006-04-13 Toshiba Matsushita Display Technology Co Ltd Display device, and manufacturing method of display device
KR101230299B1 (en) * 2005-01-07 2013-02-07 삼성디스플레이 주식회사 Thin film transistor array panel
JP4742639B2 (en) * 2005-03-25 2011-08-10 セイコーエプソン株式会社 Light emitting device
JP4832781B2 (en) 2005-03-29 2011-12-07 富士フイルム株式会社 Organic electroluminescence display device
JP4710475B2 (en) * 2005-08-05 2011-06-29 セイコーエプソン株式会社 ELECTROLUMINESCENT DEVICE, METHOD FOR PRODUCING ELECTROLUMINESCENT DEVICE, AND ELECTRONIC DEVICE
JP5106823B2 (en) * 2006-10-31 2012-12-26 京セラディスプレイ株式会社 Light emitting device
US20080238297A1 (en) * 2007-03-29 2008-10-02 Masuyuki Oota Organic el display and method of manufacturing the same
JP2008310974A (en) * 2007-06-12 2008-12-25 Casio Comput Co Ltd Display device and manufacturing method therefor
JP2009032553A (en) 2007-07-27 2009-02-12 Casio Comput Co Ltd Display device
JP4840304B2 (en) * 2007-09-12 2011-12-21 カシオ計算機株式会社 Light emitting device and image forming apparatus having the same
JP5590285B2 (en) * 2009-03-06 2014-09-17 ソニー株式会社 Display device
JP5117553B2 (en) * 2010-08-05 2013-01-16 富士フイルム株式会社 Manufacturing method of display device
JPWO2012102269A1 (en) 2011-01-25 2014-06-30 出光興産株式会社 ORGANIC ELECTROLUMINESCENCE ELEMENT AND LIGHTING DEVICE
JPWO2013080261A1 (en) * 2011-11-30 2015-04-27 パナソニック株式会社 Display panel and method of manufacturing display panel
JP2014222592A (en) * 2013-05-13 2014-11-27 株式会社ジャパンディスプレイ Display device
JP6151136B2 (en) 2013-09-05 2017-06-21 株式会社ジャパンディスプレイ Organic electroluminescence display device
JP2015072751A (en) * 2013-10-01 2015-04-16 株式会社ジャパンディスプレイ Organic el display device
US10090489B2 (en) 2014-08-26 2018-10-02 Sharp Kabushiki Kaisha Organic electroluminescence apparatus, manufacturing method for same, illumination apparatus, and display apparatus
WO2016031757A1 (en) * 2014-08-29 2016-03-03 シャープ株式会社 Organic electroluminescence device, production method for organic electroluminescence device, illumination device, and display device
WO2016043113A1 (en) 2014-09-16 2016-03-24 シャープ株式会社 Organic electroluminescence device and method for manufacturing organic electroluminescence device
US10224512B2 (en) 2014-09-18 2019-03-05 Sharp Kabushiki Kaisha Organic electroluminescent device and method for producing organic electroluminescent device
US10143062B2 (en) 2014-11-12 2018-11-27 Sharp Kabushiki Kaisha Organic electroluminescence device, illumination device, and display device
WO2016080310A1 (en) 2014-11-20 2016-05-26 シャープ株式会社 Organic electroluminescence device and method for manufacturing organic electroluminescence device
WO2016084759A1 (en) 2014-11-28 2016-06-02 シャープ株式会社 Organic electroluminescence device, illumination device, and display device
US10411223B2 (en) 2015-09-08 2019-09-10 Sharp Kabushiki Kaisha Organic electroluminescence device and illumination device
WO2017043243A1 (en) * 2015-09-10 2017-03-16 シャープ株式会社 Organic electroluminescence device, organic electroluminescence device manufacturing method, lighting device and display device
US10381600B2 (en) * 2015-09-10 2019-08-13 Sharp Kabushiki Kaisha Organic electroluminescence device, illumination device, and display device
US10418592B2 (en) 2015-11-16 2019-09-17 Sharp Kabushiki Kaisha Organic electroluminescence device, production method for organic electroluminescence device, illumination device and display device
CN108370621B (en) * 2015-12-03 2019-09-06 夏普株式会社 Organnic electroluminescent device and its manufacturing method, lighting device and display device
CN110148685B (en) * 2019-05-07 2021-01-15 深圳市华星光电半导体显示技术有限公司 Display panel and manufacturing method thereof
CN110085655B (en) * 2019-05-30 2021-01-26 京东方科技集团股份有限公司 Display panel, manufacturing method thereof and display device
CN110518142A (en) * 2019-08-15 2019-11-29 深圳市华星光电半导体显示技术有限公司 Display panel
CN110752316B (en) * 2019-11-08 2022-08-05 深圳市华星光电半导体显示技术有限公司 Organic display panel and electronic device
US11468832B2 (en) 2019-11-08 2022-10-11 Beijing Boe Technology Development Co., Ltd. Array substrate and method for manufacturing same, display panel, and display device
CN111627972B (en) * 2020-06-05 2023-02-03 京东方科技集团股份有限公司 Display substrate, manufacturing method thereof, display panel and display device
CN113013211B (en) * 2021-02-24 2022-10-25 京东方科技集团股份有限公司 Display substrate, preparation method thereof and display device
CN113437238B (en) * 2021-06-24 2023-04-11 京东方科技集团股份有限公司 Display substrate, display device and manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581187B2 (en) * 2000-06-13 2010-11-17 ソニー株式会社 Manufacturing method of display device
JP4053260B2 (en) * 2000-10-18 2008-02-27 シャープ株式会社 Organic electroluminescence display element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062400A (en) * 2003-08-11 2005-03-10 Toshiba Matsushita Display Technology Co Ltd Flat display device and method for manufacturing the same
US10431634B2 (en) 2015-09-10 2019-10-01 Sharp Kabushiki Kaisha Organic electroluminescence device with recesses filled with a phosphor filling layer in the base material

Also Published As

Publication number Publication date
JP2003229283A (en) 2003-08-15

Similar Documents

Publication Publication Date Title
JP4074099B2 (en) Flat display device and manufacturing method thereof
JP6997231B2 (en) Light emitting device
JP2005062400A (en) Flat display device and method for manufacturing the same
US10332945B2 (en) Organic light-emitting display apparatus
US7510891B2 (en) Organic light emitting display device and method of manufacturing the same
US7456811B2 (en) Organic electro-luminescent display device and method of manufacturing the same
US7986095B2 (en) Organic light emitting diode with enhanced luminance and light uniformity
US20080224600A1 (en) Organic light emitting display (OLED) device and method of fabricating the same
JP2006133725A (en) Flat panel display device
US20050258741A1 (en) Organic electro-luminescence display device and fabricating method thereof
US8514211B2 (en) Display panel
KR20100125502A (en) Organic light emitting display device and method for fabricating the same
JP2007213999A (en) Manufacturing method of organic el device, and organic el device
JP2003233329A (en) Method for repairing display device
JP4548253B2 (en) ORGANIC ELECTROLUMINESCENT DEVICE AND METHOD FOR MANUFACTURING ORGANIC ELECTROLUMINESCENT DEVICE
US7489072B2 (en) Organic electroluminescence display device and method for fabricating the same
KR20100062235A (en) Organic light emitting device and manufacturing method thereof
US20060214564A1 (en) Organic electroluminescent display and method for fabricating the same
KR20030085239A (en) Active Matrix Organic Electro-Luminescence Display Panel And Method Of Fabricating The Same
KR102179972B1 (en) Manufacturing method of metal line and thin transistor array panel, and organic light emitting diode display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4074099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees