JP3919161B2 - Method and apparatus for heat sterilization of liquid to be treated - Google Patents

Method and apparatus for heat sterilization of liquid to be treated Download PDF

Info

Publication number
JP3919161B2
JP3919161B2 JP2001303034A JP2001303034A JP3919161B2 JP 3919161 B2 JP3919161 B2 JP 3919161B2 JP 2001303034 A JP2001303034 A JP 2001303034A JP 2001303034 A JP2001303034 A JP 2001303034A JP 3919161 B2 JP3919161 B2 JP 3919161B2
Authority
JP
Japan
Prior art keywords
liquid
temperature
heater
treated
sterilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001303034A
Other languages
Japanese (ja)
Other versions
JP2003103252A (en
Inventor
佐藤  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2001303034A priority Critical patent/JP3919161B2/en
Publication of JP2003103252A publication Critical patent/JP2003103252A/en
Application granted granted Critical
Publication of JP3919161B2 publication Critical patent/JP3919161B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は被処理液の加熱滅菌方法及び装置に関し、とくに微生物及び/又はウィルス(細菌、糸状菌、酵母、らん藻、原生動物、ウィルス・ファージ、プリオン等から選択された1以上のものをいう。以下、同じ。)の存在が懸念される廃液・排水その他の被処理液を不活化する加熱滅菌方法及び装置に関する。
【0002】
【従来の技術】
微生物及び/又はウィルスの存在が懸念される廃液や排水等(以下、被処理液ということがある。)を排出する血液製剤等の製薬工場や病院等の施設では、被処理液による施設内での感染防止と共に、施設外へ排出する被処理液の不活化が求められる。被処理液の不活化とは被処理液中の微生物及びウィルスの活動を抑制することであり、微生物及びウィルスの種類によって条件は異なるが、滅菌・殺菌・消毒等(以下、これらを纏めて滅菌という。)により達成される。
【0003】
従来から被処理液に対して(1)pH調整や凝集沈澱処理により沈澱部分を分離して焼却処分し、液相部分は次亜塩素酸ナトリウム等の薬剤により滅菌したのち過剰薬剤を中和して施設外へ排出する方法、(2)キルタンクやオートクレーブ等に貯え、バッチ処理により蒸気又は薬液を直接投入して加熱処理又は化学処理したのち施設外へ排出する方法等の滅菌が行われている。しかし、薬剤による滅菌は多量の薬剤と焼却エネルギーとを要するので、ランニングコストが嵩む問題点がある。また、キルタンクやオートクレーブによる滅菌はバッチ式であるため大規模な装置が必要となり、設備コストが嵩む問題点がある。
【0004】
これに対し熱交換器を用いれば、比較的小さな装置で被処理液を連続的に処理できるので、経済的な滅菌が期待できる。ただし、熱交換器による滅菌では、熱処理時に固化変性した被処理液中の微生物・ウィルスその他の有機物(例えば血液製剤等の被処理液中の血漿蛋白質等)が伝(電)熱板や配管内に沈澱・付着して管路を閉塞するおそれがある。
【0005】
本発明者は、被処理液を蛋白質が沈澱しないpHとして熱交換器に通すことにより、配管の閉塞を生じさせない熱交換器利用の滅菌方法及び装置を開発し、特願2000-165344に開示した。図3を参照するに、同出願の滅菌装置は、微生物及び/又はウィルス含有排水A'を貯める原水受槽31、原水受槽31中の排水A'のpHを調整するpH調整装置32、排水A'を滅菌温度で所要時間保持する熱交換装置33、及び原水受槽31中の排水A'を熱交換装置33へ送る送水管38を有し、pH調整装置32により排水A'を微生物及び/又はウィルスの構成蛋白質が滅菌による変性後も沈澱しないpHとしたのち熱交換装置33へ送る。熱交換装置33は、熱交換器34により排水A'を滅菌温度に昇温した上で、滅菌温度の高温排水D'をホールディングチューブ35により所要時間保持する。熱交換装置33による滅菌効果は排水A'のpHにより影響されない。同図の滅菌装置によれば蛋白質の管路への沈澱が抑制できるので、メンテナンス及び管理の容易化、ランニングコストの低減が図れる。
【0006】
更に、送水管38に熱交換装置33へ通す前の排水A'を滅菌温度に保持後の滅菌済排水E'との熱交換で昇温する予熱装置42、43を設けることにより、熱交換装置33での昇温及び滅菌済排水E'の降温に必要なエネルギーを節減すると共に昇温に必要なエネルギーも回収再利用でき、ランニングコストの更なる抑制を図ることができる。同図の符号36は熱交換器34の出口の液温を測定する温度センサ、符号37はホールディングチューブ35内の圧力を測定する圧力センサを示す。
【0007】
【発明が解決しようとする課題】
しかし、図3のように排水A'を連続処理する滅菌装置では、排水A'の流入初期段階や何らかの異常時(流量制御不調時やポンプ故障時等)に、排水A'の加熱不足が生じ得る問題点がある。一般に滅菌保証レベル(Sterility Assurance Level)は、初期生菌数N0に対する滅菌後の生菌数Nの生存割合(=N/N0)が100万分の1(10-6)以下と定義される(古橋正吉著「滅菌・消毒マニュアル」日本醫事新報社、1999年1月、p37。以下、6桁滅菌という)。例えば一般細菌の6桁滅菌には121℃で9分間(好ましくは15分間)以上、134℃では0.45分間(好ましくは3分間)以上の保持が必要である。またB型肝炎ウィルスの6桁滅菌には98℃で2分間、108℃では72秒間の保持が必要である(前掲「滅菌・消毒マニュアル」p49。佐々木次雄他著「日本薬局方に準拠した滅菌法及び微生物殺滅法」日本規格協会、1998年2月、p19)。このように6桁滅菌の確保には滅菌温度への加熱と所要時間に亘る滅菌温度の保持とが必要とされるため、熱交換器34の加熱不足により滅菌温度が得られなければホールディングチューブ35の保持時間では6桁滅菌が確保できなくなり、排水A'が滅菌不十分のまま予熱装置42、43及びその下流の放水管41へ流れ出るおそれがある。
【0008】
排水A'が滅菌不十分のままホールディングチューブ35から流れ出ると、その排水A'を回収するだけでは解決とならず、ホールディングチューブ35より下流側の管路(以下、滅菌装置の下流路ということがある。)の微生物やウィルスによる汚染の問題が生じる。下流路が微生物やウィルスで汚染されると、熱交換装置33の加熱が回復して6桁滅菌が確保できるようになっても、ホールディングチューブ35からの滅菌済排水E'が下流路を経由する過程で微生物及び/又はウィルスに再汚染される可能性がある。とくに予熱装置42、43を設けた図3の例では予熱装置42、43において滅菌済排水E'の温度が下がるので、滅菌済排水E'による下流路の滅菌作用は期待できない。従って、滅菌装置の下流路が汚染された場合は、下流路の分解・滅菌という大規模な消毒処理操作や工事等が必要となる。被処理液の連続的な加熱滅菌処理では、滅菌装置の下流路の微生物及び/又はウィルスによる汚染を防ぎ、下流路での再汚染を避ける対策が必要である。
【0009】
そこで本発明の目的は、被処理液を連続的に加熱滅菌する滅菌装置の下流路の汚染を確実に防止できる加熱滅菌方法及び装置を提供することにある。
【0010】
【課題を解決するための手段】
図1のブロック図及び図2の流れ図を参照するに、本発明の被処理液の加熱滅菌方法は、被処理液Aを加熱器2により滅菌温度に加熱のうえ保持手段3で所要時間保持し且つ保持後の処理済液Eを予熱器6、7に導いて加熱前の被処理液Aの予熱に用いる加熱滅菌方法において、保持手段3と予熱器6、7との間に排液溜18へ連通した抜取路14を切替手段V1・V2経由で接続し、加熱器2の出口の温度不足検出時に加熱器2への被処理液Aの流入を停止すると共に切替手段V1・V2を抜取路14側へ切り替えて加熱器2及び保持手段3内の残留液を排液溜18へ抜き取り、滅菌再開時に切替手段V1・V2を戻して加熱器2への被処理液Aの流入を再開してなるものである。
【0011】
好ましくは、加熱器2の出口の温度不足検出時に加熱器2経由で流入させた洗浄液Iにより前記残留液を排液溜18へ押し出す。更に好ましくは、加熱器2への被処理液A又は洗浄液Iの流入開始時又は再開時に該流入液を加熱器2の出口で滅菌温度となる初期流量で流入させ、加熱器2の出口の液温が滅菌温度となるように被処理液A又は洗浄液Iの流量を制御する。
【0012】
また図1のブロック図を参照するに、本発明の被処理液の加熱滅菌装置は、被処理液Aを滅菌温度に加熱する加熱器2、加熱器2の入口に連通する被処理液Aの送入路11に設けた開閉弁V3、加熱器2の出口に連通し滅菌温度の被処理液Aを所要時間保持する保持手段3、保持手段3通過後の処理済液Eにより加熱前の被処理液Aを昇温する予熱器6、7、排液溜18に連通し保持手段3と予熱器6、7との間に切替手段V1・V2を介して接続した抜取路14、加熱器2の出口の液温を検出する温度検出器8、及び温度検出器8による温度不足検出時に開閉弁V3を閉鎖し且つ切替手段V1・V2を抜取路14側へ切り替えて加熱器2及び保持手段3内の残留液を排液溜18へ抜き取る抜取手段10を備えてなるものである。
【0013】
好ましくは、送入路11に洗浄液弁V4を介して連通する洗浄液槽17を設け、前記温度不足検出時に洗浄液弁V4を開放し加熱器2経由で流入させた洗浄液Iにより前記残留液を排液溜18へ押し出す。更に好ましくは、送入路11に、加熱器2への被処理液A又は洗浄液Iの流入開始時又は再開時に該流入液を加熱器2の出口で滅菌温度となる初期流量で流入させ且つ加熱器2の出口の液温が滅菌温度となるように被処理液A又は洗浄液Iの流量を制御する流量制御手段20を設ける。
【0014】
【発明の実施の形態】
図1は、血液製剤等の製薬施設・工場や病院等のCIP(Cleaning in Place;生産状態のままで、特に装置に追加的機器を取り付けることなく又は生産設備を分解することなく行われる自動洗浄をいう。以下同じ。)排水、洗浄室からの洗浄排水、床排水等の被処理液Aの滅菌に本発明を適用した実施例のブロック図を示す。同図を参照するに、本発明の加熱滅菌装置は、被処理液Aを滅菌温度に加熱する加熱器2と、加熱器2の出口に連通し滅菌温度の被処理液Aを所要時間保持するホールディングチューブ等の保持手段3と、保持手段3通過後の処理済液Eにより加熱前の被処理液Aを昇温する予熱器6、7とを有する。
【0015】
加熱器2及び保持手段3により、被処理液Aを、微生物・ウィルスの種類に応じた滅菌温度で所要時間保持する滅菌路4を構成する。加熱器2の一例は熱交換器であるが、本発明は熱交換器による加熱に限定されない。好ましくは、加熱器2による加熱温度及び保持手段3による保持時間を調節可能とし、微生物・ウィルスの種類に応じて滅菌路4で6桁滅菌を確保できるようにする。
【0016】
本発明者は、血液製剤の製薬施設からの被処理液Aについて、滅菌路4において135℃に90秒以上保持することにより、混在の危険性が否定できない細菌類及びヒト免疫不全ウィルス(HIV)、B型肝炎ウィルス(HBV)やC型肝炎ウィルス(HCV)等の肝炎ウィルス、その他現在、血液と血液製剤で感染が確認されている下記表1の全てのウィルス(WHO:GLOBAL BLOOD SAFETY INITIATIVE、1992年、p374参照)が6桁滅菌できることを実験的に確認した。
【0017】
更に本発明による加熱滅菌装置は、保持手段3と予熱器6、7との間に切替手段V1・V2を介して接続した抜取路14と、加熱器2の出口の液温を検出する温度検出器8と、温度検出器8による温度不足検出時に送入路11の開閉弁V3を閉鎖し且つ切替手段V1・V2を抜取路14側へ切り替えて加熱器2及び保持手段3内の残留液を排液溜18へ抜き取る抜取手段10とを有する。切替手段V1・V2の一例は一対の開閉弁又は切替弁であり、弁V1の開放又は閉鎖時に弁V2を閉鎖又は開放するものである。
【0018】
滅菌処理時は、加熱器2の入口に連通する送入路11の開閉弁V3を開放し、例えば後述する流量制御手段20により被処理液Aを予熱器6、7経由で滅菌路4へ送る。また、保持手段3と予熱器6、7との間の切替手段V1、V2を放出路12側へ切り替え、滅菌路4で滅菌された高温の処理済液Eを放出路12により予熱器6、7へ戻し、送入路11上の比較的低温の被処理液Aとの熱交換により降温したち、排液路13へ送る。排液路13へ送られた処理済液Eは、必要に応じて中和処理やBOD除去のための処理が施されたのち、一般の廃液・排水と共に施設外へ放出する。処理済液Eと被処理液Aとの間の熱交換の利用により、被処理液Aの昇温・降温に要するエネルギーの最小化を図ることができる。
【0019】
【表1】

Figure 0003919161
【0020】
図2は本発明の滅菌方法の流れ図の一例を示す。以下、図1のブロック図と図2の流れ図とを参照して本発明の滅菌方法を説明する。先ずステップ201において、加熱器2に滅菌温度が得られる熱量を加えつつ、被処理液Aの加熱器2への流入を開始する。被処理液Aの流入開始時は加熱器2の加熱不足が発生しがちであるが、本発明者は、被処理液Aの流入を加熱器2の一通過工程(ワンパス)で滅菌温度に昇温できる初期流量で開始することにより、滅菌不十分な被処理液Aの発生を避け得ることに注目した。流入開始時に被処理液Aを滅菌温度に昇温できれば、その後は保持手段3から戻る処理済液Eにより予熱器6、7が働くので、加熱器2の出口は徐々に滅菌温度以上に上昇する。この温度上昇に応じて被処理液Aの流量を制御することにより、滅菌不十分な被処理液Aの発生を避けながら被処理液Aの流量を滅菌路4の定常流量(例えば、滅菌路4において135℃に90秒以上保持できる最大流量)まで増やすことができる。この場合、加熱器2の容量の増加により流入初期段階の加熱不足を避けることも可能であるが、省スペース及び省エネルギーの点からは被処理液Aの流量制御による方が望ましい。
【0021】
図2のステップ201では、加熱器2への流入開始時に被処理液Aを加熱器2の出口で滅菌温度となる初期流量で流入させ、加熱器2の出口の液温が滅菌温度となるように流量を制御する。このような流量処理は、図1の送入路11に設けた流量制御手段20により実現できる。流量制御手段20の一例は、与えられた目標値に従って送入路11の流量を制御すると共に、温度検出器8の出力信号によって流量の目標値を変えるように構成したカスケード制御計である。例えば、温度検出器8の出力信号が1〜2℃上昇するに応じて流量の目標値を変更する。図1の符号5は流量制御手段20により制御可能なポンプ等の送入手段を示す。
【0022】
加熱器2への被処理液Aの流入を開始したのち、ステップ202において加熱器2の出口温度を温度検出器8で継続的に検出し、ステップ203において出口温度が不足しているか否かを判断する。ステップ202以降は、定常流量まで増加した後だけでなく、定常流量まで増加する間も継続的に行うことができる。例えば加熱器出口の液温が滅菌温度以上である場合は温度不足なしと判断してステップ207へ進み、出口温度が滅菌温度に保たれるように被処理液Aの流量及び/又は加熱器2に加える熱量を制御する。加熱器2を熱交換器とした図1の例では、ステップ207において熱媒入力弁V7の開度の調節により加熱器2の出口温度を制御する。ただし、ステップ207における制御は図示例に限定されず、従来技術に属する他の制御技術を用いることができる。
【0023】
ステップ203において温度不足と判断した場合はステップ204へ進み、抜取手段10により送入路11の開閉弁V3を閉鎖し、滅菌不十分な被処理液Aが滅菌路4の下流路へ流出するのを防止する。保持手段3による保持時間では6桁滅菌が確保できないような加熱器2の出口の液温低下又はその持続、例えば(滅菌温度−2℃)の液温の1分間以上の持続は温度不足に該当する。また、加熱器2により被処理液Aを滅菌温度より2℃程度高温に加熱し、加熱器出口で(滅菌温度−2℃)程度の液温が検出された時点で温度不足と判断してもよい。更にステップ205において温度不足の原因を調査し、例えば熱媒入力弁V7、流量制御手段20、送入手段5等の装置・器具に異常が無いことを確認する。必要な場合は装置・器具を修理又は調整する。
【0024】
装置・器具に異常が無いことを確認したのち、ステップ206において抜取手段10により切替手段V1・V2を抜取路14側へ切り替え、加熱器2及び保持手段3内の滅菌不十分な残留液を排液溜18へ抜き取る。例えば排液溜18を加熱前の被処理液Aの貯液槽19(図1参照)とし、抜き取った残留液を他の被処理液Aと共に再び滅菌路4へ戻すことができる。また、後述するライン洗浄ユニット16を排液溜18とし、排液溜18に抜き取った残留液をライン洗浄ユニット16においてバッチ処理により加熱滅菌又は化学滅菌することも可能である。ライン洗浄ユニット16を排液溜18とする場合は、抜取路14上に設けた切替手段V5、V6を抜取手段10により洗浄ユニット16側へ切り替える。切替手段V5、V6の一例も、切替手段V1、V2と同様の一対の開閉弁又は切替弁である。
【0025】
加熱器2及び保持手段3内の残留液は、例えば抜取路14上に設けた引抜ポンプ(図示せず)等により排液溜18へ引き抜くことができる。また、送入路11に洗浄液V4を介して連通する洗浄液槽17(図1参照)を設け、洗浄液弁V4の開放により送入路11から加熱器2へ流入させた洗浄液Iにより前記残留液を排液溜18に押し出してもよい。この場合は、洗浄液Iを水酸化ナトリウム(NaOH)、水酸化カルシウム(Ca(OH)2)等の添加により蛋白質が沈澱しないpHとした水溶液とし、残留液の押し出し時に加熱器2及び保持手段3内における蛋白質の沈澱を抑制することが望ましい。また、ステップ201における被処理液Aの流量制御と同様に、洗浄液Iの流入を加熱器2の出口で滅菌温度となる初期流量で開始し、加熱器2の出口の液温が滅菌温度となるように洗浄液Iの流量を制御することにより、洗浄液Iを滅菌しながら前記残留液を押し出すことも可能である。このような洗浄液Iの流量制御も、図1の流量制御手段20により実現可能である。前記残留液の抜き取り後に洗浄液弁V4を閉鎖する。
【0026】
加熱器2及び保持手段3内の残留液を抜き取った後ステップ201へ戻り、被処理液Aの流入を再開する。流入の再開時も、被処理液Aを前記初期流量で流入させ、加熱器2の出口の温度上昇に応じて流量を制御することにより、滅菌不十分な被処理液Aの発生を避ける。すなわち図2の流れ図によれば、滅菌不十分な被処理液Aの発生を極力抑えることができ、たとえ発生した場合でも滅菌路4の下流路への流出を防止できるので、下流路の微生物及び/又はウィルスによる汚染を確実に防止できる。
【0027】
こうして本発明の目的である「被処理液を連続的に加熱滅菌する滅菌装置の下流路の汚染を確実に防止できる加熱滅菌方法及び装置」の提供が達成できる。
【0028】
なお、例えば加熱器2により被処理液Aを滅菌温度より2℃程度高温に加熱し、加熱器出口で(滅菌温度−2℃)程度の液温を検出した時点で温度不足と判断する場合は、温度不足検出時点で既に加熱器2及び保持手段3内の残留液は滅菌温度に達しているので、ステップ204〜205において残留液の温度が低下しなければステップ206における残留液の抜き取りを省略し、ステップ205からステップ201へ戻してもよい。さらに例えば、送入路11の閉鎖時にも加熱器2による加熱を継続すれば前記残留液の温度低下を防ぐことができ、再開時にステップ201の初期流量及び流量制御を行えば滅菌不十分な被処理液Aの発生を防止できる。
【0029】
【実施例】
90m3/日の被処理液Aを10時間で滅菌処理すると仮定して図1に示す装置を試設計し、図2の流れ図による滅菌処理が可能であることを確認した。先ず、被処理液Aの温度が30℃であることに基づき、加熱器2の伝熱板で焦げ付きが生じない最小流速0.06m/secが確保できるように、流量制御手段20により被処理液Aの初期流量を20リットル/分に調整して加熱器2への流入を開始した。この流量の被処理液Aが加熱器2へ流入してから排出するまでの時間(加熱器2の通過時間)は7.5分間であり、加熱器2の出口で135℃の滅菌温度となることが確認できた。また、被処理液Aの温度が20℃である場合も、初期流量の調整により加熱器2の出口で135℃の滅菌温度とすることができた。
【0030】
初期流量での流入を7.5分間以上継続したのち、温度検出器8の出力信号により流量制御手段20の目標値を変更するカスケード制御に移行した。本設計の保持手段3において90秒の保持時間が確保できる最大流量は150リットル/分であり、前記カスケード制御により加熱器2の出口で135℃の滅菌温度を保ちながら被処理液Aの流量を150リットル/分まで徐々に増加させることができた(ステップ201)。
【0031】
また、加熱器2の出口の温度不足が発生したと仮定して、抜取手段10により送入路11の開閉弁V3を閉鎖すると共に切替手段V1・V2を抜取路14側へ切り替え、加熱器2及び保持手段3内の滅菌不十分な残留液を排液溜18へ抜き取った(ステップ202〜206)。残留液の抜き取り後、30℃の被処理液Aの流入を20リットル/分の初期流量で再開し、前記カスケード制御により被処理液Aの流量を150リットル/分まで増加させた。
【0032】
この再開過程においても加熱器2の出口で135℃の滅菌温度が保たれることが確認できた。また、再開後に排液路13から排出された処理済液E中の生菌数を確認したところ、6桁滅菌が確保できていることが確認できた。このことから、前記流量のカスケード制御と残留液の抜き取りとにより、滅菌路4の下流路の微生物及び/又はウィルスによる汚染が防止できることが確認できた。
【0033】
比較のため、前記カスケード機能のない流量制御手段20を設けた図1の装置に、90m3/日の被処理液A(温度30℃)を150リットル/分の流量で流入させたところ、被処理液Aの流入初期段階において加熱器2の出口の温度検出器8は90℃程度までしか上昇しなかった。被処理液Aの流入の継続により加熱器2の出口温度は135℃の滅菌温度に上昇したが、滅菌温度まで上昇後に処理済液E中の生菌数を確認したところ6桁滅菌が確保できていないことが確認された。これは、流入初期段階の滅菌不十分な被処理液Aが滅菌路4の下流路へ流れ出たことにより下流路が微生物やウィルスにより汚染され、滅菌温度まで上昇した後も下流路で再汚染が起こるからと考えられる。この比較実験から、本発明における被処理液Aの流量のカスケード制御と残留液の抜き取りとが6桁滅菌の確保に極めて有効であることが確認できた。
【0034】
図1の実施例では、加熱器2を熱媒(蒸気)と被処理液Aとの熱交換器とし、2段の予熱器6、7を被処理液Aと同量の処理済液Eとが流入する熱交換器としている。例えば被処理液Aの受け入れ温度を30℃とし、90m3/日の被処理液Aを加熱器2で135℃に昇温して90秒保持するとした場合、予熱器6、7の伝熱面積を45m2、加熱器2の伝熱面積を8m2とすると、被処理液Aは前段予熱器6により75℃に昇温し、後段予熱器7により120℃に昇温し、加熱器2により135℃となる。また、保持手段3から排出される処理済液Eは後段予熱器7により90℃まで降温し、前段予熱器6により45℃となる。この場合、加熱器2には4KGの蒸気圧力で300kg/時の熱媒(蒸気)を投入すれば足りる。
【0035】
他方、90m3/日の被処理液Aをキルタンク(直接蒸気投入式の密閉容器)又は単一の直接熱交換器を用いて135℃、90秒保持の滅菌処理をする場合は、必要な蒸気量は2,200kg/時となる。更にこの場合は、保持手段3通過後の処理済液Eを降温するため、別途に降温エネルギーを加えるか又は降温する時間とスペースが必要となる。このことから、本発明のように予熱器6、7を設けることにより、外部から供給するエネルギーの節減により省エネルギーが図れることを確認できた。
【0036】
本発明は予熱器を1台の熱交換器とした場合も適用できるが、熱交換器1台で30℃の被処理液Aを120℃まで昇温しようとすると熱交伝面を大きくする必要があり、熱交伝面が大きくなると偏流が発生しやすくなり、偏流は被処理液Aの温度分布ムラの原因となる。加熱殺菌における被処理液Aの温度分布ムラの発生は、滅菌温度に加熱できない部分が生じるおそれがあるので好ましくない。
【0037】
本発明者は、低温流体と同量の高温流体とが流入する熱交換器において、低温流体の入口温度と高温流体の出口温度との温度差ΔT1に対する低温流体の上昇温度又は高温流体の下降温度ΔT2(交換温度差)の比(ΔT2/ΔT1)が4より大きくなると、前記温度分布ムラが発生しやすいことを実験的に見出した。例えば、図1の予熱器を1台の熱交換器とすると、交換温度差ΔT2(低温流体である被処理液Aの上昇温度又は高温流体である処理済液Eの下降温度)は90℃(=120℃−30℃)であり、低温流体である被処理液Aの入口温度と高温流体である処理済液Eの出口温度との温度差ΔT1は15℃(45℃−30℃)であるから、前記比ΔT2/ΔT1は6(=90/15)となり温度分布ムラの発生が懸念される。
【0038】
図1の実施例では、低温流体と同量の高温流体とが流入する熱交換器を直列に接続した多段熱交換器を予熱器6、7とし、各熱交換器における前記比ΔT2/ΔT1を4以下、好ましくは3程度とすることにより、被処理液Aの温度分布ムラの発生を予防している。すなわち、図1の前段予熱器6では交換温度差ΔT2は45℃(=75℃−30℃)、低温流体の入口温度と高温流体の出口温度との温度差ΔT1は15℃(45℃−30℃)であるから前記比ΔT2/ΔT1は3(=45/15)となる。また、後段予熱器7においても交換温度差ΔT2は45℃(=120℃−75℃)、低温流体の入口温度と高温流体の出口温度との温度差ΔT1は15℃(90℃−75℃)であるから前記比ΔT2/ΔT1は3(=45/15)となる。被処理液Aの温度分布ムラの発生を予防することにより、滅菌温度に加熱できない部分の発生の防止が期待できる。
【0039】
図1における加熱器2、及び予熱器6、7として使う熱交換器に特に制限はないが、例えばスパイラル式熱交換器とすることができる。スパイラル式熱交換器は多管式熱交換器に比し流路が単一で滑らかである。このため、熱交換器の配管内にスケールが付着すると付着箇所の断面積が小さくなることによって流速が増大し、スケールを剥離させる自己浄化作用が働く。従ってスパイラル式熱交換器の使用により、スケールが付着し難くメンテナンスが容易な装置とすることが期待できる。
【0040】
更に図1の実施例では、加熱器2へ送る被処理液Aの貯液槽19にpH調整装置32を設け、被処理液Aを微生物及び/又はウィルスの構成蛋白質やその他の有機物が滅菌による変性後も沈澱しないpHとすることにより、輸液路内への蛋白質の沈澱を抑制している。また、輸液路内に蛋白質又は無機物等のスケールが沈澱・付着した場合の対策として、予熱器6、7通過後の処理済液Eの排液路13と送入路11との間に弁V8、V9、V10を介してライン洗浄ユニット16を接続している。送入路11と滅菌路4と放出路12と予熱装置6、7とからなる輸液路の洗浄時に、弁V8、V9、V10の切替により、前記輸液路とライン洗浄ユニット16とからなる閉流路を形成する。
【0041】
例えば滅菌処理の開始前又は中断時に、開閉弁V3を閉鎖して弁V10を開放することによりライン洗浄ユニット16を送入路11に接続し、切替手段V8、V9を洗浄路15側へ切り替え、前記閉流路にスケール除去剤その他の薬液を循環させることにより前記輸液路内を洗浄する。切替手段V8、V9の一例も一対の開閉弁又は切替弁である。好ましくは前記輸液路をステンレス製とし、硝酸を循環させる。硝酸はスケールを溶解すると共にステンレス配管に不動態皮膜を形成し耐食性を増加させる。不動態皮膜の形成により寿命の長い装置とすることが期待できる。ただし、薬液は硝酸に限定されず他の適当な酸又はアルカリ等を利用することができる。
【0042】
ライン洗浄ユニット16は、前記輸液路のあらゆる部分に十分な量の適切な温度の洗浄液又は蒸気を行き渡らせる従来技術のCIPユニットとすることができる。加熱器2を熱交換器とした場合は、加熱器2の出口蒸気をライン洗浄ユニット16へ導いて再利用することにより、全ての輸液路及び装置を熱洗浄ないし熱滅菌(Sterilization-in-place、SIP)することが可能である。薬液のみでなく蒸気を用いた簡易滅菌により、装置の開放点検などの頻度を減らし、メンテナンスの更なる容易化を図ることができる。
【0043】
【発明の効果】
以上詳細に説明した通り、本発明による被処理液の加熱滅菌方法及び装置は、被処理液を加熱器で滅菌温度に加熱のうえ保持手段で所要時間保持し且つ保持後の処理済液を予熱器に導いて加熱前の被処理液の予熱に用いる加熱滅菌において、保持手段と予熱器との間に抜取路を切替手段経由で接続し、加熱器出口の温度不足検出時に加熱器への被処理液の流入を停止すると共に前記切替手段を抜取路側へ切り替えて加熱器及び保持手段内の残留液を抜き取るので、次の顕著な効果を奏する。
【0044】
(イ)滅菌不十分な被処理液が滅菌装置の下流路へ流出するのを防止できるので、下流路の微生物及び/又はウィルスによる汚染を確実に防止できる。
(ロ)抜き取った残留液を加熱前の被処理液の貯液槽等に戻し、容易に再滅菌処理することが可能である。
(ハ)被処理液を加熱器出口で滅菌温度となる初期流量で流入させ、加熱器出口の温度上昇に応じて流量を増加させる被処理液の流量制御と組合わせることにより、滅菌不十分な被処理液の発生を極力防止しながら被処理液を連続的に処理することができる。
(ニ)大量の被処理液を連続的に処理することが可能であり、省スペースかつコンパクトな装置とすることができる。
【0045】
(ホ)被処理液を蛋白質が沈澱しないpHとすることにより、配管の閉塞等を避けつつ、大量の被処理液を連続的に処理することが可能である。
(ヘ)加熱器経由で流入させた洗浄液で残留液を抜き取る場合は、洗浄液を蛋白質が沈澱しないpHとすることにより、抜き取り時の蛋白質の沈澱等を避けることができる。
(ト)高温の処理済液を加熱前の被処理液の予熱に用いるので、直接蒸気投入等のバッチ式熱処理法に比し、外部から供給するエネルギーを減らして省エネルギーが図れる。
【0046】
(チ)加熱処理により滅菌するので、薬液では充分に滅菌できない細菌・ウィルスも、滅菌温度及び時間の調整により確実に不活化することが可能である。
(リ)薬剤による滅菌処理に比し環境を汚染するおそれが少ない。また、薬剤コストが削減できるのでランニングコストを大幅に削減できる。
(ヌ)例えば蒸気圧力を変えることで任意に滅菌温度(不活化温度)を変更することが可能であり、将来の未知の細菌やウィルスを含む排水の滅菌処理にも容易に対応可能である。
【図面の簡単な説明】
【図1】は、本発明装置の一実施例のブロック図である。
【図2】は、本発明方法を示す流れ図の一例である。
【図3】は、従来の滅菌装置の説明図である。
【符号の説明】
1…滅菌装置 2…加熱器
3…保持手段 4…滅菌路
5…送入手段 6…前段予熱器
7…後段予熱器 8…温度検出器
9…圧力検出器 10…抜取手段
11…送入路 12…放出路
13…排液路 14…抜取路
15…洗浄路 16…ライン洗浄ユニット
17…洗浄液槽 18…排液溜
19…貯液槽 20…流量制御手段
31…原水受槽 32…pH調整装置
33…熱交換装置 34…熱交換器
35…ホールディングチューブ
36…温度センサ 37…圧力センサ
38…送水管 39…輸液ポンプ
40…温度センサ 41…放水管
42…予熱装置 43…予熱装置
44…管路洗浄ユニット 45…弁
46…弁
A…被処理液 E…処理済液
G…熱媒 I…洗浄液
A'…微生物及び/又はウィルス含有排水
B'…昇温排水 C'…昇温排水
D'…高温排水 E'…滅菌済排水
F'…低温排水 G'…蒸気
H'…処理水[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for heat sterilization of a liquid to be treated, and particularly refers to one or more microorganisms and / or viruses (bacteria, filamentous fungi, yeast, cyanobacterium, protozoa, virus / phage, prion, etc.). The same shall apply hereinafter.) The present invention relates to a heat sterilization method and apparatus for inactivating waste liquid, waste water and other liquids to be treated.
[0002]
[Prior art]
In facilities such as pharmaceutical factories and hospitals for blood products that discharge waste liquids and wastewater (hereinafter sometimes referred to as liquids to be treated) that are concerned about the presence of microorganisms and / or viruses, In addition to preventing infection, inactivation of the liquid to be treated discharged outside the facility is required. The inactivation of the liquid to be treated is to suppress the activities of microorganisms and viruses in the liquid to be treated, and the conditions vary depending on the types of microorganisms and viruses, but sterilization, sterilization, disinfection, etc. Is achieved.)
[0003]
Conventionally, the liquid to be treated is (1) separated and incinerated by pH adjustment and coagulation precipitation, and the liquid phase is sterilized with a chemical such as sodium hypochlorite and then neutralized with excess chemicals. Sterilization such as a method of discharging outside the facility, (2) a method of storing in a kill tank, autoclave, etc., direct injection of steam or chemicals by batch processing, heat treatment or chemical treatment, and discharging outside the facility . However, since sterilization with chemicals requires a large amount of chemicals and incineration energy, there is a problem that running costs increase. In addition, since sterilization using a kill tank or autoclave is a batch type, a large-scale device is required, and there is a problem that equipment costs increase.
[0004]
On the other hand, if a heat exchanger is used, the liquid to be treated can be continuously processed with a relatively small apparatus, so that economical sterilization can be expected. However, in sterilization using a heat exchanger, microorganisms, viruses, and other organic substances (for example, plasma proteins in the liquid to be treated such as blood products) that are solidified and denatured during heat treatment are transmitted (electrical) in the heat plate or piping. There is a risk that the pipe will be blocked by sedimentation.
[0005]
The present inventor has developed a sterilization method and apparatus using a heat exchanger that does not cause clogging of piping by passing the liquid to be treated through a heat exchanger at a pH at which protein does not precipitate, and disclosed in Japanese Patent Application No. 2000-165344. . Referring to FIG. 3, the sterilization apparatus of the same application includes a raw water receiving tank 31 for storing microorganisms and / or virus-containing waste water A ′, a pH adjusting device 32 for adjusting the pH of the waste water A ′ in the raw water receiving tank 31, and a waste water A ′. A heat exchange device 33 for holding the sterilization temperature for a required time, and a water supply pipe 38 for sending the waste water A ′ in the raw water receiving tank 31 to the heat exchange device 33, and the waste water A ′ is microorganisms and / or viruses by the pH adjustment device 32. After the pH is adjusted such that the constituent protein of the protein does not precipitate even after denaturation by sterilization, the protein is sent to the heat exchanger 33. The heat exchanging device 33 raises the waste water A ′ to the sterilization temperature by the heat exchanger 34 and holds the high temperature waste water D ′ at the sterilization temperature by the holding tube 35 for a required time. The sterilization effect by the heat exchange device 33 is not affected by the pH of the drainage A ′. According to the sterilization apparatus shown in the figure, protein precipitation can be suppressed, so that maintenance and management can be facilitated and running costs can be reduced.
[0006]
Furthermore, by providing preheating devices 42 and 43 for raising the temperature by exchanging heat with the sterilized waste water E ′ after maintaining the waste water A ′ before passing to the heat exchange device 33 at the sterilization temperature in the water pipe 38, the heat exchange device The energy required for the temperature increase at 33 and the temperature decrease of the sterilized waste water E ′ can be reduced and the energy required for the temperature increase can be recovered and reused, thereby further reducing the running cost. Reference numeral 36 in the figure denotes a temperature sensor that measures the liquid temperature at the outlet of the heat exchanger 34, and reference numeral 37 denotes a pressure sensor that measures the pressure in the holding tube 35.
[0007]
[Problems to be solved by the invention]
However, in the sterilizer that continuously treats the wastewater A ′ as shown in FIG. 3, the wastewater A ′ is insufficiently heated at the initial stage of the inflow of the wastewater A ′ or at any abnormality (when the flow control is malfunctioning or the pump is broken). There is a problem to get. Generally, Sterility Assurance Level is the initial viable count N 0 Survival rate of viable bacterial count N after sterilization (= N / N 0 ) Is one millionth (10 -6 ) It is defined as follows (Masayoshi Furuhashi, “Sterilization and Disinfection Manual”, Nihon Hoshin Shinposha, January 1999, p37, hereinafter referred to as 6-digit sterilization). For example, 6-digit sterilization of general bacteria requires holding at 121 ° C. for 9 minutes (preferably 15 minutes) or more, and at 134 ° C. for 0.45 minutes (preferably 3 minutes) or more. In addition, 6-digit sterilization of hepatitis B virus requires holding at 98 ° C for 2 minutes, and at 108 ° C for 72 seconds (see "Sterilization and disinfection manual" above, p49. Sterilization method and microbial killing method "Japanese Standards Association, February 1998, p19). Thus, securing 6-digit sterilization requires heating to the sterilization temperature and maintaining the sterilization temperature for the required time. Therefore, if the sterilization temperature cannot be obtained due to insufficient heating of the heat exchanger 34, the holding tube 35 is used. With this holding time, 6-digit sterilization cannot be secured, and the drainage A ′ may flow out to the preheating devices 42 and 43 and the downstream discharge pipe 41 with insufficient sterilization.
[0008]
If the drainage A ′ flows out of the holding tube 35 with insufficient sterilization, simply collecting the drainage A ′ does not solve the problem, and the pipe line downstream of the holding tube 35 (hereinafter referred to as the lower flow path of the sterilizer). There is a problem of contamination by microorganisms and viruses. When the lower flow path is contaminated with microorganisms or viruses, the sterilized drainage E ′ from the holding tube 35 passes through the lower flow path even if the heating of the heat exchange device 33 recovers and 6-digit sterilization can be secured. The process can be recontaminated by microorganisms and / or viruses. In particular, in the example of FIG. 3 in which the preheating devices 42 and 43 are provided, the temperature of the sterilized waste water E ′ is lowered in the preheating devices 42 and 43, so that the sterilization action of the lower flow path by the sterilized waste water E ′ cannot be expected. Therefore, when the lower flow path of the sterilizer is contaminated, a large-scale disinfection operation or construction such as decomposition and sterilization of the lower flow path is required. In the continuous heat sterilization treatment of the liquid to be treated, it is necessary to take measures to prevent contamination by microorganisms and / or viruses in the lower flow path of the sterilizer and avoid recontamination in the lower flow path.
[0009]
SUMMARY OF THE INVENTION An object of the present invention is to provide a heat sterilization method and apparatus that can reliably prevent contamination of a downstream path of a sterilization apparatus that continuously sterilizes a liquid to be treated.
[0010]
[Means for Solving the Problems]
Referring to the block diagram of FIG. 1 and the flowchart of FIG. 2, the method for heat sterilization of the liquid to be treated according to the present invention is to heat the liquid A to be sterilized by the heater 2 and hold it for the required time by the holding means 3. In the heat sterilization method used for preheating the treated liquid A before heating by introducing the treated liquid E after holding to the preheaters 6 and 7, a drainage reservoir 18 is provided between the holding means 3 and the preheaters 6 and 7. Is connected via switching means V1 and V2 to stop the inflow of liquid A into the heater 2 and detect the switching means V1 and V2 when the temperature is detected at the outlet of the heater 2 Switch to the 14 side, drain the residual liquid in the heater 2 and the holding means 3 to the drainage reservoir 18, return the switching means V1 and V2 when sterilization resumes, and resume the inflow of the liquid A to be treated into the heater 2 It will be.
[0011]
Preferably, the residual liquid is pushed out to the drainage reservoir 18 by the cleaning liquid I introduced via the heater 2 when the temperature shortage at the outlet of the heater 2 is detected. More preferably, at the start or resumption of the inflow of the liquid A or the cleaning liquid I into the heater 2, the inflow liquid is caused to flow at an initial flow rate at a sterilization temperature at the outlet of the heater 2, and the liquid at the outlet of the heater 2 is discharged. The flow rate of the liquid A or the cleaning liquid I is controlled so that the temperature becomes the sterilization temperature.
[0012]
Referring to the block diagram of FIG. 1, the apparatus for heat sterilization of a liquid to be processed according to the present invention includes a heater 2 for heating the liquid A to be sterilized and a liquid A to be processed communicating with the inlet of the heater 2. The opening / closing valve V3 provided in the inlet 11 and the outlet of the heater 2 hold the liquid A to be processed at the sterilization temperature for a required time. The processed liquid E after passing through the holding means 3 is heated before being heated. Preheaters 6 and 7 for raising the temperature of the processing liquid A, drainage reservoir 18, extraction means 14 connected to holding means 3 and preheaters 6 and 7 via switching means V 1 and V 2, heater 2 Temperature detector 8 for detecting the liquid temperature at the outlet of the gas generator, and when temperature shortage is detected by the temperature detector 8, the on-off valve V3 is closed and the switching means V1 and V2 are switched to the extraction path 14 side to heat the heater 2 and the holding means 3 It is provided with extraction means 10 for extracting the residual liquid in the waste liquid reservoir 18.
[0013]
Preferably, a cleaning liquid tank 17 communicating with the inlet 11 via the cleaning liquid valve V4 is provided, and when the temperature shortage is detected, the cleaning liquid valve V4 is opened and the residual liquid is drained by the cleaning liquid I introduced via the heater 2. Extrude to reservoir 18 More preferably, when the inflow of the liquid to be treated A or the cleaning liquid I into the heater 2 is started or resumed, the inflow liquid flows into the inlet path 11 at an initial flow rate at a sterilization temperature at the outlet of the heater 2 and is heated. A flow rate control means 20 is provided for controlling the flow rate of the liquid A or the cleaning liquid I so that the liquid temperature at the outlet of the vessel 2 becomes the sterilization temperature.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Figure 1 shows CIP (Cleaning in Place) in a pharmaceutical facility / factory, hospital, etc. for blood products, etc., and automatic cleaning that is performed without any additional equipment or disassembling the production equipment. The same applies hereinafter.) A block diagram of an embodiment in which the present invention is applied to the sterilization of the liquid A to be treated, such as waste water, washing waste water from a washing room, floor waste water and the like. Referring to the figure, the heat sterilization apparatus of the present invention is connected to the heater 2 for heating the liquid A to be sterilized to the sterilization temperature, and holds the liquid A to be processed at the sterilization temperature for the required time. Holding means 3 such as a holding tube, and preheaters 6 and 7 for raising the temperature of the liquid A to be processed before being heated by the processed liquid E after passing through the holding means 3.
[0015]
The heater 2 and the holding means 3 constitute a sterilization path 4 that holds the liquid A to be processed at a sterilization temperature corresponding to the type of microorganism / virus for a required time. An example of the heater 2 is a heat exchanger, but the present invention is not limited to heating by a heat exchanger. Preferably, the heating temperature by the heater 2 and the holding time by the holding means 3 can be adjusted, and 6-digit sterilization can be secured in the sterilization path 4 according to the type of microorganism / virus.
[0016]
The present inventor maintains the liquid A to be treated from a pharmaceutical facility of blood products at 135 ° C. for 90 seconds or more in the sterilization path 4 so that the risk of mixing cannot be denied and human immunodeficiency virus (HIV) , Hepatitis viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV), and all other viruses (WHO: GLOBAL BLOOD SAFETY INITIATIVE) that are currently confirmed to be infected with blood and blood products. In 1992, p374) was experimentally confirmed to be capable of 6-digit sterilization.
[0017]
Furthermore, the heat sterilization apparatus according to the present invention detects the liquid temperature at the outlet 14 of the heater 2 and the extraction path 14 connected between the holding means 3 and the preheaters 6 and 7 via the switching means V1 and V2. When the temperature insufficiency is detected by the heater 8 and the temperature detector 8, the on-off valve V3 of the inlet passage 11 is closed and the switching means V1 and V2 are switched to the extraction path 14 side to remove residual liquid in the heater 2 and the holding means 3 And a draining means 10 for draining into the drainage reservoir 18. An example of the switching means V1 and V2 is a pair of on-off valves or switching valves, which close or open the valve V2 when the valve V1 is opened or closed.
[0018]
At the time of sterilization, the opening / closing valve V3 of the inlet path 11 communicating with the inlet of the heater 2 is opened, and the liquid A to be processed is sent to the sterilization path 4 via the preheaters 6 and 7 by, for example, the flow rate control means 20 described later. . Further, the switching means V1 and V2 between the holding means 3 and the preheaters 6 and 7 are switched to the discharge path 12 side, and the high temperature treated liquid E sterilized in the sterilization path 4 is discharged through the discharge path 12 to the preheater 6 and Returning to 7, the temperature is lowered by heat exchange with the relatively low temperature liquid A to be treated on the inlet path 11, and sent to the drain path 13. The treated liquid E sent to the drainage channel 13 is subjected to neutralization treatment and BOD removal treatment as necessary, and then discharged out of the facility together with general waste liquid / drainage. By utilizing heat exchange between the processed liquid E and the liquid to be processed A, it is possible to minimize the energy required to raise and lower the temperature of the liquid A to be processed.
[0019]
[Table 1]
Figure 0003919161
[0020]
FIG. 2 shows an example of a flow chart of the sterilization method of the present invention. The sterilization method of the present invention will be described below with reference to the block diagram of FIG. 1 and the flowchart of FIG. First, in step 201, the inflow of the liquid A to be treated into the heater 2 is started while adding a heat amount that can obtain a sterilization temperature to the heater 2. Although the heating of the heater 2 tends to be insufficient at the start of the inflow of the liquid A to be treated, the present inventor raised the inflow of the liquid A to the sterilization temperature in a one-pass process (one pass) of the heater 2. It was noted that by starting with an initial flow rate that can be warmed, the generation of the liquid A to be treated which is not sufficiently sterilized can be avoided. If the liquid A to be treated can be heated to the sterilization temperature at the start of the inflow, then the preheaters 6 and 7 are operated by the processed liquid E returned from the holding means 3, so that the outlet of the heater 2 gradually rises above the sterilization temperature. . By controlling the flow rate of the liquid A to be processed according to this temperature rise, the flow rate of the liquid A to be processed is reduced to the steady flow rate of the sterilization path 4 (for example, the sterilization path 4 The maximum flow rate that can be maintained at 135 ° C for 90 seconds or more) can be increased. In this case, although it is possible to avoid heating shortage at the initial stage of the inflow by increasing the capacity of the heater 2, it is more preferable to control the flow rate of the liquid A to be processed from the viewpoint of space saving and energy saving.
[0021]
In step 201 of FIG. 2, the liquid A to be treated is introduced at an initial flow rate at a sterilization temperature at the outlet of the heater 2 at the start of inflow into the heater 2 so that the liquid temperature at the outlet of the heater 2 becomes the sterilization temperature. To control the flow rate. Such flow rate processing can be realized by the flow rate control means 20 provided in the inflow path 11 of FIG. An example of the flow rate control means 20 is a cascade controller configured to control the flow rate of the inlet / outlet path 11 according to a given target value and to change the target value of the flow rate according to the output signal of the temperature detector 8. For example, the flow rate target value is changed as the output signal of the temperature detector 8 increases by 1 to 2 ° C. Reference numeral 5 in FIG. 1 indicates a delivery means such as a pump that can be controlled by the flow rate control means 20.
[0022]
After starting the inflow of the liquid A to be processed into the heater 2, the outlet temperature of the heater 2 is continuously detected by the temperature detector 8 in step 202, and whether or not the outlet temperature is insufficient in step 203. to decide. Step 202 and subsequent steps can be continuously performed not only after increasing to the steady flow rate but also while increasing to the steady flow rate. For example, if the liquid temperature at the outlet of the heater is equal to or higher than the sterilization temperature, it is determined that there is no temperature shortage and the process proceeds to step 207 and the flow rate of the liquid A to be processed and / or the heater 2 is maintained. Controls the amount of heat applied to the. In the example of FIG. 1 in which the heater 2 is a heat exchanger, in step 207, the outlet temperature of the heater 2 is controlled by adjusting the opening of the heat medium input valve V7. However, the control in step 207 is not limited to the illustrated example, and other control techniques belonging to the prior art can be used.
[0023]
If it is determined in step 203 that the temperature is insufficient, the process proceeds to step 204, where the extraction means 10 closes the on-off valve V3 of the delivery path 11, and the liquid A to be treated that is insufficiently sterilized flows out into the lower flow path of the sterilization path 4. To prevent. Lowering or maintaining the liquid temperature at the outlet of the heater 2 where 6-digit sterilization cannot be ensured with the holding time by the holding means 3, for example, maintaining the liquid temperature at (sterilization temperature-2 ° C.) for 1 minute or more corresponds to insufficient temperature. To do. Moreover, even if it judges that the liquid A to be treated is heated to about 2 ° C. higher than the sterilization temperature by the heater 2 and the liquid temperature of about (sterilization temperature −2 ° C.) is detected at the outlet of the heater, the temperature is insufficient. Good. Further, in step 205, the cause of the temperature shortage is investigated and, for example, it is confirmed that there is no abnormality in the devices and instruments such as the heating medium input valve V7, the flow rate control means 20, and the feeding means 5. If necessary, repair or adjust the equipment and instruments.
[0024]
After confirming that there is no abnormality in the device / apparatus, in step 206, the switching means V1 and V2 are switched to the extraction path 14 side by the extraction means 10, and the sterilized insufficient liquid in the heater 2 and the holding means 3 is discharged. Drain into reservoir 18. For example, the waste liquid reservoir 18 can be used as a storage tank 19 (see FIG. 1) of the liquid A to be processed before heating, and the extracted residual liquid can be returned to the sterilization path 4 together with other liquids A to be processed. It is also possible to use a line cleaning unit 16 to be described later as a drainage reservoir 18 and to heat sterilize or chemically sterilize the residual liquid extracted in the drainage reservoir 18 by batch processing in the line cleaning unit 16. When the line cleaning unit 16 is used as the drainage reservoir 18, the switching means V5 and V6 provided on the extraction path 14 are switched to the cleaning unit 16 side by the extraction means 10. An example of the switching means V5, V6 is also a pair of on-off valves or switching valves similar to the switching means V1, V2.
[0025]
The residual liquid in the heater 2 and the holding means 3 can be drawn out to the drainage reservoir 18 by, for example, a drawing pump (not shown) provided on the drawing path 14. In addition, a cleaning liquid tank 17 (see FIG. 1) is provided in the inlet path 11 via the cleaning liquid V4, and the residual liquid is removed by the cleaning liquid I flowing into the heater 2 from the inlet path 11 by opening the cleaning liquid valve V4. It may be pushed out into the drainage reservoir 18. In this case, wash liquid I is sodium hydroxide (NaOH), calcium hydroxide (Ca (OH) 2 It is desirable that the aqueous solution is adjusted to a pH at which no protein is precipitated by addition of the above and the like, and the protein precipitation in the heater 2 and the holding means 3 is suppressed when the residual liquid is pushed out. Similarly to the flow rate control of the liquid A to be processed in step 201, the inflow of the cleaning liquid I is started at an initial flow rate at which the sterilization temperature is reached at the outlet of the heater 2, and the liquid temperature at the outlet of the heater 2 becomes the sterilization temperature. Thus, by controlling the flow rate of the cleaning liquid I, the residual liquid can be pushed out while sterilizing the cleaning liquid I. Such flow control of the cleaning liquid I can also be realized by the flow control means 20 of FIG. After removing the residual liquid, the cleaning liquid valve V4 is closed.
[0026]
After removing the residual liquid in the heater 2 and the holding means 3, the process returns to step 201, and the inflow of the liquid to be processed A is restarted. Even when the inflow is resumed, the liquid A to be treated is caused to flow at the initial flow rate, and the flow rate is controlled according to the temperature rise at the outlet of the heater 2, thereby avoiding the generation of the liquid A to be treated that is not sufficiently sterilized. That is, according to the flowchart of FIG. 2, the generation of the liquid A to be treated which is not sufficiently sterilized can be suppressed as much as possible, and even if it occurs, the outflow to the lower flow path of the sterilization path 4 can be prevented. It is possible to reliably prevent contamination by viruses.
[0027]
In this way, the object of the present invention can be provided as “a heat sterilization method and apparatus capable of reliably preventing the contamination of the lower flow path of the sterilization apparatus for continuously heat sterilizing the liquid to be treated”.
[0028]
For example, when the liquid A to be treated is heated to about 2 ° C. higher than the sterilization temperature by the heater 2 and a liquid temperature of about (sterilization temperature −2 ° C.) is detected at the outlet of the heater, Since the residual liquid in the heater 2 and the holding means 3 has already reached the sterilization temperature when the temperature shortage is detected, if the temperature of the residual liquid does not decrease in steps 204 to 205, the removal of the residual liquid in step 206 is omitted. However, the process may return from step 205 to step 201. Further, for example, if the heating by the heater 2 is continued even when the inlet path 11 is closed, the temperature of the residual liquid can be prevented from decreasing. Generation of the processing liquid A can be prevented.
[0029]
【Example】
90m Three Assuming that the liquid A to be processed / day is sterilized in 10 hours, the apparatus shown in FIG. 1 was trial-designed, and it was confirmed that the sterilization process according to the flowchart of FIG. 2 was possible. First, based on the fact that the temperature of the liquid A to be processed is 30 ° C., the flow rate control means 20 allows the liquid A to be processed to ensure a minimum flow rate of 0.06 m / sec at which the heat transfer plate of the heater 2 does not burn. The initial flow rate of was adjusted to 20 liters / minute, and flow into the heater 2 was started. The time from the flow of the liquid A to be treated flowing into the heater 2 to the discharge thereof (passing time of the heater 2) is 7.5 minutes, and a sterilization temperature of 135 ° C. is reached at the outlet of the heater 2. It could be confirmed. Moreover, even when the temperature of the liquid A to be treated was 20 ° C., the sterilization temperature of 135 ° C. could be achieved at the outlet of the heater 2 by adjusting the initial flow rate.
[0030]
After the inflow at the initial flow rate was continued for 7.5 minutes or more, the flow shifted to cascade control in which the target value of the flow rate control means 20 was changed by the output signal of the temperature detector 8. The maximum flow rate that can secure a holding time of 90 seconds in the holding means 3 of this design is 150 liters / minute, and the flow rate of the liquid A to be treated is maintained at the outlet of the heater 2 while maintaining a sterilization temperature of 135 ° C. by the cascade control. It could be gradually increased to 150 liters / minute (step 201).
[0031]
Assuming that the temperature at the outlet of the heater 2 is insufficient, the extraction means 10 closes the on-off valve V3 of the inlet path 11 and switches the switching means V1 and V2 to the extraction path 14 side. And the residual liquid inadequately sterilized in the holding means 3 was extracted to the drainage reservoir 18 (steps 202 to 206). After extracting the residual liquid, the inflow of the liquid A to be processed at 30 ° C. was restarted at an initial flow rate of 20 liters / minute, and the flow rate of the liquid A to be processed was increased to 150 liters / minute by the cascade control.
[0032]
It was confirmed that a sterilization temperature of 135 ° C. was maintained at the outlet of the heater 2 even during this resumption process. Further, when the number of viable bacteria in the treated liquid E discharged from the drainage channel 13 after resumption was confirmed, it was confirmed that 6-digit sterilization could be secured. From this, it was confirmed that contamination by the microorganisms and / or viruses in the lower flow path of the sterilization path 4 could be prevented by cascade control of the flow rate and extraction of the residual liquid.
[0033]
For comparison, the apparatus shown in FIG. Three When the liquid A to be processed (temperature 30 ° C.) was introduced at a flow rate of 150 liters / minute, the temperature detector 8 at the outlet of the heater 2 was only up to about 90 ° C. It did not rise. The outlet temperature of the heater 2 rose to a sterilization temperature of 135 ° C due to the continued inflow of the liquid to be treated A, but when the number of viable bacteria in the treated liquid E was confirmed after the temperature reached the sterilization temperature, 6-digit sterilization could be secured. Not confirmed. This is because the liquid A, which is not sufficiently sterilized at the initial stage of inflow, flows out to the lower flow path of the sterilization path 4, and the lower flow path is contaminated with microorganisms and viruses. It is thought that it happens. From this comparative experiment, it was confirmed that the cascade control of the flow rate of the liquid A to be treated and the extraction of the residual liquid in the present invention are extremely effective for ensuring 6-digit sterilization.
[0034]
In the embodiment of FIG. 1, the heater 2 is a heat exchanger between the heat medium (steam) and the liquid A to be processed, and the two stages of preheaters 6 and 7 are processed liquid E having the same amount as the liquid A to be processed. It is a heat exchanger that flows in. For example, the receiving temperature of the liquid A to be treated is 30 ° C, 90m Three / Day When the liquid A to be treated is heated to 135 ° C. with the heater 2 and held for 90 seconds, the heat transfer area of the preheaters 6 and 7 is 45 m. 2 , Heat transfer area of heater 2 is 8m 2 Then, the liquid A to be treated is heated to 75 ° C. by the pre-stage preheater 6, raised to 120 ° C. by the post-stage preheater 7, and becomes 135 ° C. by the heater 2. Further, the treated liquid E discharged from the holding means 3 is cooled to 90 ° C. by the rear stage preheater 7 and is lowered to 45 ° C. by the front stage preheater 6. In this case, it is sufficient to put 300 kg / hour of heat medium (steam) at a steam pressure of 4 KG in the heater 2.
[0035]
On the other hand, 90m Three / Day When liquid A to be treated is sterilized at 135 ° C for 90 seconds using a kill tank (direct steam input sealed container) or a single direct heat exchanger, the required steam volume is 2,200 kg. / It becomes time. Furthermore, in this case, in order to lower the temperature of the treated liquid E after passing through the holding means 3, it is necessary to separately add temperature-decreasing energy or to take time and space for temperature-decreasing. From this, it has been confirmed that by providing the preheaters 6 and 7 as in the present invention, it is possible to save energy by saving energy supplied from the outside.
[0036]
The present invention can be applied to the case where the preheater is a single heat exchanger, but it is necessary to increase the heat transfer surface when the temperature of the liquid A to be treated at 30 ° C is increased to 120 ° C with one heat exchanger. If the heat transfer surface becomes large, drift is likely to occur, and the drift causes uneven temperature distribution of the liquid A to be treated. Occurrence of uneven temperature distribution of the liquid A to be treated in heat sterilization is not preferable because a portion that cannot be heated to the sterilization temperature may be generated.
[0037]
In the heat exchanger in which the same amount of the high temperature fluid flows as the low temperature fluid, the present inventor has the rising temperature of the low temperature fluid or the decreasing temperature of the high temperature fluid with respect to the temperature difference ΔT1 between the inlet temperature of the low temperature fluid and the outlet temperature of the high temperature fluid. It was experimentally found that when the ratio (ΔT2 / ΔT1) of ΔT2 (exchange temperature difference) is larger than 4, the temperature distribution unevenness is likely to occur. For example, when the preheater in FIG. 1 is a single heat exchanger, the exchange temperature difference ΔT2 (the rising temperature of the liquid A to be processed which is a low temperature fluid or the falling temperature of the processed liquid E which is a high temperature fluid) is 90 ° C. = 120 ° C-30 ° C), and the temperature difference ΔT1 between the inlet temperature of the liquid A to be processed which is a low temperature fluid and the outlet temperature of the processed liquid E which is a high temperature fluid is 15 ° C (45 ° C-30 ° C). Therefore, the ratio ΔT2 / ΔT1 is 6 (= 90/15), and there is a concern about the occurrence of uneven temperature distribution.
[0038]
In the embodiment of FIG. 1, multistage heat exchangers in which heat exchangers into which a low temperature fluid and the same amount of high temperature fluid flow are connected in series are preheaters 6 and 7, and the ratio ΔT2 / ΔT1 in each heat exchanger is The occurrence of uneven temperature distribution in the liquid A to be treated is prevented by setting it to 4 or less, preferably about 3. That is, in the pre-stage preheater 6 of FIG. 1, the exchange temperature difference ΔT2 is 45 ° C. (= 75 ° C.-30 ° C.), and the temperature difference ΔT 1 between the low temperature fluid inlet temperature and the high temperature fluid outlet temperature is 15 ° C. (45 ° C.-30 Therefore, the ratio ΔT2 / ΔT1 is 3 (= 45/15). In the second stage preheater 7, the exchange temperature difference ΔT2 is 45 ° C. (= 120 ° C.-75 ° C.), and the temperature difference ΔT 1 between the low temperature fluid inlet temperature and the high temperature fluid outlet temperature is 15 ° C. (90 ° C.-75 ° C.). Therefore, the ratio ΔT2 / ΔT1 is 3 (= 45/15). By preventing the occurrence of uneven temperature distribution in the liquid A to be treated, it is possible to prevent the occurrence of a portion that cannot be heated to the sterilization temperature.
[0039]
Although there is no restriction | limiting in particular in the heat exchanger used as the heater 2 in FIG. 1, and the preheaters 6 and 7, For example, it can be set as a spiral type heat exchanger. The spiral heat exchanger has a single flow path and is smoother than the multi-tube heat exchanger. For this reason, when a scale adheres in the pipe of the heat exchanger, the cross-sectional area of the adhering portion decreases, thereby increasing the flow velocity, and the self-purifying action for peeling the scale works. Therefore, the use of a spiral heat exchanger can be expected to provide an apparatus that is difficult to scale and easy to maintain.
[0040]
Further, in the embodiment of FIG. 1, a pH adjusting device 32 is provided in the storage tank 19 of the liquid A to be processed to be sent to the heater 2, and the liquid A is sterilized by sterilized proteins and other organic substances of microorganisms and / or viruses. By setting the pH so that it does not precipitate even after denaturation, protein precipitation in the infusion route is suppressed. Further, as a countermeasure when protein or inorganic scale or the like is deposited or adhered in the infusion channel, a valve V8 is provided between the drainage channel 13 and the feeding channel 11 of the treated liquid E after passing through the preheaters 6 and 7. The line washing unit 16 is connected via V9 and V10. When the infusion path consisting of the inlet path 11, the sterilization path 4, the discharge path 12, and the preheating devices 6 and 7 is cleaned, the closed flow consisting of the infusion path and the line cleaning unit 16 is switched by switching the valves V8, V9 and V10. Form a road.
[0041]
For example, before or when sterilization is started or interrupted, the line cleaning unit 16 is connected to the inlet path 11 by closing the on-off valve V3 and opening the valve V10, and the switching means V8 and V9 are switched to the cleaning path 15 side. The infusion channel is washed by circulating a scale remover and other chemicals through the closed channel. An example of the switching means V8, V9 is also a pair of on-off valves or switching valves. Preferably, the infusion channel is made of stainless steel and nitric acid is circulated. Nitric acid dissolves the scale and forms a passive film on the stainless steel pipe to increase the corrosion resistance. By forming a passive film, it can be expected that the apparatus has a long life. However, the chemical solution is not limited to nitric acid, and other suitable acid or alkali can be used.
[0042]
The line cleaning unit 16 may be a prior art CIP unit that distributes a sufficient amount of a suitable temperature of cleaning liquid or vapor to any part of the infusion path. When the heater 2 is a heat exchanger, all the infusion channels and devices are heated and sterilized (Sterilization-in-place) by introducing the outlet steam of the heater 2 to the line cleaning unit 16 and reusing it. , SIP) is possible. By simple sterilization using not only chemicals but also steam, the frequency of equipment open inspections can be reduced and maintenance can be further facilitated.
[0043]
【The invention's effect】
As described in detail above, the method and apparatus for heat sterilization of a liquid to be processed according to the present invention is to heat the liquid to be sterilized with a heater and hold it for a required time with a holding means and preheat the processed liquid after holding. In heat sterilization used for preheating the liquid to be treated before heating by heating, a sampling path is connected between the holding means and the preheater via the switching means, and when the temperature at the outlet of the heater is detected as insufficient, Since the inflow of the processing liquid is stopped and the switching means is switched to the extraction path side and the residual liquid in the heater and the holding means is extracted, the following remarkable effects are obtained.
[0044]
(A) Since the liquid to be treated that is not sufficiently sterilized can be prevented from flowing out to the lower flow path of the sterilization apparatus, contamination by microorganisms and / or viruses in the lower flow path can be surely prevented.
(B) The extracted residual liquid can be returned to the storage tank of the liquid to be treated before heating and re-sterilized easily.
(C) Insufficient sterilization by injecting the liquid to be treated at the initial flow rate at the sterilization temperature at the heater outlet and combining with the flow rate control of the liquid to be treated to increase the flow rate in response to the temperature rise at the heater outlet. The liquid to be processed can be continuously processed while preventing the generation of the liquid to be processed as much as possible.
(D) A large amount of liquid to be processed can be continuously processed, and a space-saving and compact apparatus can be obtained.
[0045]
(E) By setting the liquid to be treated to a pH at which no protein precipitates, it is possible to continuously treat a large amount of the liquid to be treated while avoiding clogging of piping.
(F) When removing the residual liquid with the washing liquid introduced via the heater, it is possible to avoid precipitation of the protein at the time of extraction by setting the washing liquid to a pH at which the protein does not precipitate.
(G) Since the high-temperature treated liquid is used for preheating the liquid to be treated before heating, it is possible to save energy by reducing the energy supplied from the outside as compared with a batch heat treatment method such as direct steam injection.
[0046]
(H) Since sterilization is performed by heat treatment, bacteria and viruses that cannot be sufficiently sterilized by a chemical solution can be reliably inactivated by adjusting the sterilization temperature and time.
(I) There is less risk of polluting the environment than sterilization with chemicals. Moreover, since the medicine cost can be reduced, the running cost can be greatly reduced.
(N) For example, it is possible to arbitrarily change the sterilization temperature (inactivation temperature) by changing the steam pressure, and it is possible to easily deal with sterilization of waste water containing unknown bacteria and viruses in the future.
[Brief description of the drawings]
FIG. 1 is a block diagram of an embodiment of the apparatus of the present invention.
FIG. 2 is an example of a flow diagram illustrating the method of the present invention.
FIG. 3 is an explanatory view of a conventional sterilization apparatus.
[Explanation of symbols]
1 ... Sterilizer 2 ... Heater
3 ... Holding means 4 ... Sterilization path
5 ... Feeding means 6 ... Pre-stage preheater
7 ... latter stage preheater 8 ... temperature detector
9 ... Pressure detector 10 ... Extraction means
11 ... Incoming and outgoing route 12 ... Discharging route
13 ... Drainage path 14 ... Drainage path
15 ... Cleaning path 16 ... Line cleaning unit
17 ... Cleaning tank 18 ... Drainage reservoir
19 ... Storage tank 20 ... Flow control means
31 ... Raw water receiving tank 32 ... pH adjuster
33 ... Heat exchanger 34 ... Heat exchanger
35 ... Holding tube
36… Temperature sensor 37… Pressure sensor
38 ... Water pipe 39 ... Infusion pump
40 ... Temperature sensor 41 ... Water discharge pipe
42 ... Preheating device 43 ... Preheating device
44… Pipe cleaning unit 45… Valve
46 ... Valve
A ... Processed liquid E ... Processed liquid
G ... Heat medium I ... Cleaning liquid
A '... Wastewater containing microorganisms and / or viruses
B '... Temperature drainage C' ... Temperature drainage
D '... High temperature drainage E' ... Sterilized drainage
F '... Low temperature drainage G' ... Steam
H '... treated water

Claims (12)

被処理液を加熱器により滅菌温度に加熱のうえ保持手段で所要時間保持し且つ保持後の処理済液を予熱器に導いて加熱前の被処理液の予熱に用いる加熱滅菌方法において、保持手段と予熱器との間に排液溜へ連通する抜取路を切替手段経由で接続し、加熱器出口の温度不足検出時に加熱器への被処理液の流入を停止すると共に前記切替手段を抜取路側へ切り替えて加熱器及び保持手段内の残留液を排液溜へ抜き取り、滅菌再開時に前記切替手段を戻して加熱器への被処理液の流入を再開してなる被処理液の加熱滅菌方法。In a heat sterilization method in which a liquid to be treated is heated to a sterilization temperature by a heater and held for a required time by a holding means, and the treated liquid after holding is guided to a preheater and used for preheating the liquid to be processed before heating. A drainage path communicating with the waste liquid reservoir between the heater and the preheater via the switching means, and when the temperature of the outlet of the heater is detected to be insufficient, the flow of the liquid to be treated into the heater is stopped and the switching means is connected to the drainage path side. A method for heat sterilization of the liquid to be processed, which is obtained by switching to, extracting the residual liquid in the heater and holding means to the drainage reservoir, returning the switching means to resume the flow of the liquid to be processed into the heater when sterilization is resumed. 請求項1の加熱滅菌方法において、加熱器出口の温度不足検出時に加熱器経由で流入させた洗浄液により前記残留液を排液溜へ押し出してなる被処理液の加熱滅菌方法。2. The heat sterilization method according to claim 1, wherein the residual liquid is pushed out to a drainage reservoir by a cleaning liquid introduced via a heater when temperature shortage at the heater outlet is detected. 請求項1又は2の加熱滅菌方法において、加熱器への被処理液又は洗浄液の流入開始時又は再開時に該流入液を加熱器出口で滅菌温度となる初期流量で流入させ、加熱器出口の液温が滅菌温度となるように被処理液又は洗浄液の流量を制御してなる被処理液の加熱滅菌方法。3. The heat sterilization method according to claim 1 or 2, wherein at the start or restart of inflow of the liquid to be treated or the cleaning liquid into the heater, the inflow liquid is caused to flow at an initial flow rate at a sterilization temperature at the heater outlet, and the liquid at the heater outlet is A method for heat sterilization of a liquid to be processed, wherein the flow rate of the liquid to be processed or the cleaning liquid is controlled so that the temperature becomes a sterilization temperature. 請求項1から3の何れかの加熱滅菌方法において、被処理液又は洗浄液を蛋白質が沈澱しないpHとして加熱器へ流入させてなる被処理液の加熱滅菌方法。4. The heat sterilization method for a liquid to be treated according to claim 1, wherein the liquid to be treated or the washing liquid is allowed to flow into a heater at a pH at which the protein does not precipitate. 請求項1から4の何れかの加熱滅菌方法において、前記排液溜を前記加熱前の被処理液の貯液槽としてなる被処理液の加熱滅菌方法。The heat sterilization method according to any one of claims 1 to 4, wherein the waste liquid reservoir is used as a storage tank for the liquid to be processed before the heating. 被処理液を滅菌温度に加熱する加熱器、前記加熱器の入口に連通する被処理液の送入路に設けた開閉弁、前記加熱器の出口に連通し滅菌温度の被処理液を所要時間保持する保持手段、前記保持手段通過後の処理済液により加熱前の被処理液を昇温する予熱器、排液溜に連通し前記保持手段と予熱器との間に切替手段を介して接続した抜取路、前記加熱器出口の液温を検出する温度検出器、及び前記温度検出器による温度不足検出時に前記開閉弁を閉鎖し且つ前記切替手段を抜取路側へ切り替えて加熱器及び保持手段内の残留液を排液溜へ抜き取る抜取手段を備えてなる被処理液の加熱滅菌装置。A heater that heats the liquid to be treated to a sterilization temperature, an on-off valve provided in an inflow path of the liquid to be treated that communicates with an inlet of the heater, and a liquid to be treated at a sterilization temperature that communicates with an outlet of the heater Holding means for holding, preheater for raising the temperature of the liquid to be processed before the treatment with the processed liquid after passing through the holding means, connected to the drainage reservoir via a switching means between the holding means and the preheater An extraction path, a temperature detector for detecting the liquid temperature at the heater outlet, and closing the on-off valve when the temperature detector detects a temperature shortage, and switching the switching means to the extraction path side so that the inside of the heater and the holding means A heat sterilization apparatus for a liquid to be treated, which is provided with extraction means for extracting the residual liquid of the liquid into a waste liquid reservoir. 請求項6の加熱滅菌装置において、前記送入路に洗浄液弁を介して連通する洗浄液槽を設け、前記温度不足検出時に洗浄液弁を開放し加熱器経由で流入させた洗浄液により前記残留液を排液溜へ押し出してなる被処理液の加熱滅菌装置。7. The heat sterilization apparatus according to claim 6, wherein a cleaning liquid tank is provided in the inlet passage through a cleaning liquid valve, and the residual liquid is drained by the cleaning liquid that is opened by opening the cleaning liquid valve and detecting the temperature shortage. A device for heat sterilization of the liquid to be treated, which is extruded into a liquid reservoir. 請求項6又は7の加熱滅菌装置において、前記送入路に、前記加熱器への被処理液又は洗浄液の流入開始時又は再開時に該流入液を加熱器出口で滅菌温度となる初期流量で流入させ且つ加熱器出口の液温が滅菌温度となるように被処理液又は洗浄液の流量を制御する流量制御手段を設けてなる被処理液の加熱滅菌装置。8. The heat sterilization apparatus according to claim 6 or 7, wherein the inflow liquid flows into the inlet passage at an initial flow rate at a sterilization temperature at the outlet of the heater at the start or resumption of inflow of the liquid to be treated or the cleaning liquid into the heater. And a heat sterilization apparatus for the liquid to be processed, provided with a flow rate control means for controlling the flow rate of the liquid to be processed or the cleaning liquid so that the liquid temperature at the outlet of the heater becomes the sterilization temperature. 請求項6から8の何れかの加熱滅菌装置において、加熱器へ送る被処理液又は洗浄液を蛋白質が沈澱しないpHに調製するpH調製装置を設けてなる被処理液の加熱滅菌装置。The heat sterilization apparatus for a liquid to be treated according to any one of claims 6 to 8, further comprising a pH adjusting apparatus for adjusting the liquid to be treated or the cleaning liquid to be sent to the heater to a pH at which protein does not precipitate. 請求項6から9の何れかの加熱滅菌装置において、前記残留液溜を前記送入路に連通する被処理液の貯液槽としてなる被処理液の加熱滅菌装置。The heat sterilization apparatus according to any one of claims 6 to 9, wherein the liquid sterilization apparatus serves as a liquid storage tank for the liquid to be processed which communicates the residual liquid reservoir with the feeding path. 請求項6から10の何れかの加熱滅菌装置において、前記予熱器を処理済液と同量の被処理液とが流入する熱交換器又は該熱交換器が直列に接続された多段熱交換器としてなる被処理液の加熱滅菌装置。The heat sterilizer according to any one of claims 6 to 10, wherein the preheater is a heat exchanger into which a treated liquid and an amount of liquid to be treated flow, or a multistage heat exchanger in which the heat exchanger is connected in series A heat sterilization apparatus for the liquid to be treated. 請求項11の加熱滅菌装置において、各熱交換器における被処理液の入口温度と処理済液の出口温度との温度差ΔT1に対する被処理液の上昇温度又は処理済液の下降温度ΔT2の比(ΔT2/ΔT1)を4以下としてなる被処理液の加熱滅菌装置。12. The heat sterilization apparatus according to claim 11, wherein the ratio of the rise temperature of the liquid to be treated or the fall temperature ΔT2 of the liquid to be treated to the temperature difference ΔT1 between the inlet temperature of the liquid to be treated and the outlet temperature of the liquid to be treated in each heat exchanger ( An apparatus for heat sterilization of a liquid to be treated with ΔT2 / ΔT1) of 4 or less.
JP2001303034A 2001-09-28 2001-09-28 Method and apparatus for heat sterilization of liquid to be treated Expired - Lifetime JP3919161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001303034A JP3919161B2 (en) 2001-09-28 2001-09-28 Method and apparatus for heat sterilization of liquid to be treated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001303034A JP3919161B2 (en) 2001-09-28 2001-09-28 Method and apparatus for heat sterilization of liquid to be treated

Publications (2)

Publication Number Publication Date
JP2003103252A JP2003103252A (en) 2003-04-08
JP3919161B2 true JP3919161B2 (en) 2007-05-23

Family

ID=19123183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001303034A Expired - Lifetime JP3919161B2 (en) 2001-09-28 2001-09-28 Method and apparatus for heat sterilization of liquid to be treated

Country Status (1)

Country Link
JP (1) JP3919161B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5268031B2 (en) * 2009-07-10 2013-08-21 株式会社日立プラントテクノロジー Ballast water treatment method and ballast water treatment apparatus
CN102933498B (en) * 2011-10-11 2014-09-17 鹿岛建设株式会社 Method and system for inactivating waste water
SG11202013147VA (en) * 2020-01-10 2021-08-30 Kajima Corp System for decontaminating liquid waste containing microorganism and/or virus

Also Published As

Publication number Publication date
JP2003103252A (en) 2003-04-08

Similar Documents

Publication Publication Date Title
EP0462606B1 (en) Method and system for producing sterile aqueous solutions
US5932171A (en) Sterilization apparatus utilizing catholyte and anolyte solutions produced by electrolysis of water
US9440015B2 (en) Blood purification machine comprising heated fluid circuit
US8025807B2 (en) Method for treating rinse water in decontamination devices
SE500294C2 (en) Set the respective system for the preparation of a sterile dialysis fluid
JP3919161B2 (en) Method and apparatus for heat sterilization of liquid to be treated
JP3676728B2 (en) Waste water heat sterilization method and apparatus
JP3297419B2 (en) Method and apparatus for sterilizing wastewater containing microorganisms and / or viruses
JP7190703B2 (en) Continuous sterilizer and continuous sterilization method
JP6761149B1 (en) Decontamination system for microbial and / or virus-containing waste liquids
JP5110493B1 (en) Wastewater inactivation method and system
JP2000015241A (en) Medical waste water treatment equipment and treatment method thereof
JP3748839B2 (en) Sewage sterilizer
AU2011203220B2 (en) Heat recovery in biowaste sterilization
KR102500623B1 (en) Infectious wastewater treatment system
CN113975419B (en) Oral cavity inspection instrument degassing unit for department of stomatology
CN115092981A (en) Continuous vaporous high-temperature sterilization biological wastewater inactivation treatment device and method
JP3506493B2 (en) Sterilization method of membrane separation device
JP2607525Y2 (en) Sterilizer
CN101612411B (en) Method for heat sterilization of membrane of reverse osmosis device for blood purification
JPH1128452A (en) Device for treating pathogenic microorganism containing waste water and treatment thereof
JPH10180241A (en) Medical waste water treating system
CN106075506A (en) A kind of medical towel cleaning and sterilizing system and control method thereof
JP2958365B2 (en) Sterilizer
CN116354491A (en) Water dispenser disinfection method and water dispenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160223

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250