JP3696930B2 - New optical resolution method - Google Patents

New optical resolution method Download PDF

Info

Publication number
JP3696930B2
JP3696930B2 JP15890795A JP15890795A JP3696930B2 JP 3696930 B2 JP3696930 B2 JP 3696930B2 JP 15890795 A JP15890795 A JP 15890795A JP 15890795 A JP15890795 A JP 15890795A JP 3696930 B2 JP3696930 B2 JP 3696930B2
Authority
JP
Japan
Prior art keywords
temperature
optically active
copolymer
isobutylacrylamide
isopropylacrylamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15890795A
Other languages
Japanese (ja)
Other versions
JPH0912482A (en
Inventor
直哉 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP15890795A priority Critical patent/JP3696930B2/en
Publication of JPH0912482A publication Critical patent/JPH0912482A/en
Application granted granted Critical
Publication of JP3696930B2 publication Critical patent/JP3696930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Indole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は新規な光学分割法に関し、詳しくは、光学活性基を有する温度応答性ポリマーを用いることを特徴とする新規な光学分割法に関するものである。ここにいう温度応答性ポリマーとは、溶液中で、ある温度で可逆的に可溶←→不溶になる性質をもつポリマーのことである。本発明に用いる光学活性基を有する温度応答性ポリマーは、溶液に溶解しているポリマーが、ある温度で不溶化するときに光学異性体混合物の中の一方の光学異性体を選択的に取り込むという特異な性質を有するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
有機化合物の中には、不斉中心を持つものが多くあり、それに由来する光学異性体が存在する。光学異性体は、沸点や溶解度などの物理的性質にはほとんど差が見られない。
しかし、生理活性には多くの違いが見出されることがしばしばある。したがって、光学異性体の一方(D体またはL体)を得ることは、医薬品、農薬、食品などの分野に関しては非常に有用なことである。
【0003】
例えば、グルタミン酸の場合、L体(S体)には旨味はあるが、D体(R体)には旨味がない。また、甘味料アスパルテームの場合には、S体は甘味を呈するが、R体は苦味を呈すると言われている。
医薬品の場合においても、D体、L体でその薬効、毒性において、顕著な差を示す場合もあるため、厚生省は、1985年度版医薬品製造指針において、「当該薬物がラセミ体である場合には、それぞれの異性体について、吸収、分布、代謝、排泄動態を検討しておくことが望ましい。」と記載している。
【0004】
このような社会的要請に基づき、ラセミ体から光学活性体を得る種々の手段が考案されている。光学活性体をラセミ体から得る方法としては、優先晶出法、ジアステレオマー法、酵素法、クロマトグラフィー法、膜分離法などがある。
優先晶出法は、ラセミ体の過飽和溶液に希望の結晶を接種し、その結晶のみを成長させ、析出させる方法である。これは、優れた方法にもかかわらず、その実績が少ないのは、次のような理由による。すなわち、あるラセミ体を優先晶出法で分割しようとするには、先ず、ラセミ体と両活性体の溶解度を測定し、ラセミ体>活性体であること、沸点は活性体の方がラセミ体より高いこと、ラセミ体の過飽和溶液には活性体は溶けないこと、更には、ラセミ体と活性体の赤外線吸収スペクトルが一致することなどを確かめておく必要がある(山中宏、田代泰久、季刊化学総説、No.6, 1989, P4-5) 。また、固−液分離のタイミングと濾過時間を短縮することが、技術的に重要な問題であることなどからして、優先晶出法は、特殊な結晶にのみ適用可能な技術である。
ジアステレオマー法は、ラセミ体に光学活性な酸または塩基を作用させて、生成したジアステレオマー塩の溶解度の差により、分別結晶によって分ける方法である。この方法は、分割剤がラセミ体と容易に塩、または誘導体を形成するものでなければならないことによる分割剤の選定の困難さが付随する。また、高純度の光学活性体を得るのも困難であることや、ラセミ体と等量の分割剤が必要であるという制約がある。
【0005】
酵素を用いる光学分割法は、酵素の持つ基質に対する立体特異性を利用している。この方法は、光学活性体を大量に得る方法としては適しており、例えば、ヒダントイナーゼ反応と化学的脱カルバミル化反応を組み合わせた酵素法によるD−アミノ酸の工業的規模の生産技術が確立している(S. TAKAHASHI, "Biotechnology of Aminoacid Production", H. YAMADA et al., Kodansya Ltd., (1986), P.289)。また、米国特許第4,800,162 号には、酵素をキャピラリー型膜に固定化することにより、光学活性体を得る方法が記載されている。しかしながら、酵素法の場合には、光学分割しようとする対象ラセミ体に適合する酵素を見つけることが極度に困難であり、したがって、非常に限定されたラセミ体にしか適用できないという欠点を有している。
クロマトグラフィー法は、キラルな化合物を固定相とし、D体、L体と固定相(充填剤)との相互作用によって光学分割する方法である。HPLC(高性能液体クロマトグラフィー)法の進歩及び大きな光学認識能を持つ充填剤の開発によって、対象化合物の範囲が拡大するとともに、処理能力も向上しているが、まだ工業規模で経済的に行われる域には達していない。
【0006】
膜による光学異性体の分離は、効率良く、連続して光学活性体を得ることができるという利点がある。このため、膜による光学分割法も近年、研究が盛んになされてきている。その例を挙げるならば、特開昭61−50603号公報や特開昭62−180701号公報に不斉認識能を持つクラウン化合物を含浸させた多孔質膜を用いる方法が、英国特許公開第2,233,248 号公報に光学活性ポリマー膜を用いる方法が、開示されている。しかし、これまでの膜による光学分割法は、膜の一方の側にラセミ体溶液、他方の側に溶媒を接触させるという濃度勾配法がとられている。この場合、光学分割対象物によっては、透過性や分離性に問題があることがあった。
【0007】
従って、本発明が解決しようとする課題は、上記の各種光学分割法の欠点に鑑みて、大量の光学活性体を経済的、汎用的に得るのに適した新規な光学分割法を提供することである。
【0008】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を行い、本発明を完成するに至った。
すなわち、本発明は、光学異性体混合物を光学分割するに際し、分離対象の光学異性体混合物水溶液に光学活性基を有する温度応答性ポリマーを溶解し、相転移温度以上に温度を上げて前記光学活性基を有する温度応答性ポリマーを固化析出させて、同時に一方の光学異性体を吸着分離することを特徴とする新規な光学分割法であり、前記光学活性基を有する温度応答性ポリマーが、N− n- プロピルアクリルアミド、N−イソプロピルアクリルアミド又はN−シクロプロピルアクリルアミドと光学活性基を有する重合性モノマーとの共重合体である新規な光学分割法に係わるものである。
【0009】
水溶性ポリマーの中には、水溶液状態において、低温で溶解、高温で不溶となり、冷却されると再度溶解するという可逆的な溶解挙動を示すものがある。これらのポリマーの分子構造は、親水性部と疎水性部から成り立っている両親媒性物質である。これらポリマーは、水溶液状態にあるとき、温度に敏感にしかも可逆的に応答するので、温度応答性ポリマーと呼ばれ機能性材料として注目されている。このような温度応答性ポリマーとしては、ポリビニルアルコール部分酸化物、ポリビニルメチルエーテル、メチルセルロース、ポリエチレンオキシド、ポリビニルメチルオキソゾリジノン、ポリN−アルキルアクリルアミドなどが知られている。中でもポリN−アルキルアクリルアミドについては多くの研究がなされており、その水溶液は熱刺激に対する応答性がよく、固有の相転移温度を有する。このようなポリN−アルキルアクリルアミドの具体例としては、ポリN−n-プロピルアクリルアミド、ポリN−イソプロピルアクリルアミド、ポリN−シクロプロピルアクリルアミド等が挙げられる。
【0010】
本発明に用いる光学活性基を有する温度応答性ポリマーは、溶液に溶解しているポリマーが、ある温度で不溶化するときに光学異性体混合物の一方を選択的に取り込むという特異な性質を有するものである。本発明に用いる光学活性基を有する温度応答性ポリマーとしては、このような性質を有するものであればどのようなものでもよいが、具体的には、N−置換アクリルアミド誘導体と光学活性基を有する重合性モノマーとの共重合体が挙げられる。特に好ましいものとしては、N−イソプロピルアクリルアミドと光学活性イソブチルアクリルアミドとの共重合体が挙げられる。ポリN−イソプロピルアクリルアミド水溶液は、低温では溶液が透明になり、高温になると溶液が白濁する。これは、低温では親水性であるカルボニル基が水和サイトとして働き、ある温度以上になると疎水性であるイソプロピル基の運動性の増大によって脱水和効果が現れ白濁すると考えられる。本発明は、このポリN−イソプロピルアクリルアミドのようなN−置換アクリルアミド誘導体に光学活性基を導入し、光学分割への応用を図ったものである。
【0011】
本発明において好ましく用いられる、N−イソプロピルアクリルアミドと光学活性イソブチルアクリルアミドとの共重合体を製造するには、先ず、塩化アクリロイルと光学活性ブチルアミンとから光学活性イソブチルアクリルアミドを合成し、次いで、重合開始剤としてアゾイソブチロニトリル(AIBN)を用いて、N−イソプロピルアクリルアミドと光学活性イソブチルアクリルアミドとを共重合させる。共重合体の分子量は 5,000〜100,000 程度が好ましい。
【0012】
本発明の光学活性基を有する温度応答性ポリマーを用いてラセミ体を光学分割するには、分離対象のラセミ体水溶液に温度応答性ポリマーを溶解後、相転移(液体→固体)温度以上に温度を上げてポリマーを固化析出させて、同時に一方の光学異性体を吸着分離する。
【0013】
【実施例】
以下に、製造例及び実施例により本発明を更に詳細に説明するが、本発明は、これらの実施例に限定されるものではない。
尚、例中の%は特記しない限り重量基準である。
【0014】
製造例1
((S)−イソブチルアクリルアミドの製造)
下記式(1) で表される塩化アクリロイル3.09g(34mmol)を塩化メチレン20mlに溶解し、氷冷下で激しく攪拌しながら、下記式(2) で表される(S)−(+)−ブチルアミン 5.0g(68mmol)をゆっくりと滴下した。滴下終了後、氷冷下で4時間攪拌して反応させた。反応物の精製として、まず水で分液し、後は5%の炭酸水素ナトリウム、水、飽和食塩水、硫酸水素ナトリウムの順に投入することで不純物を取り除き、残った濾液をエバポレーターにかけて溶媒を留去し、下記式(3) で表される(S)−イソブチルアクリルアミド3.21g(28mmol)を得た。
この生成物の元素分析値、IRスペクトル、MSスペクトル、 1H−NMRスペクトルをそれぞれ表1、図1、図2、図3に示した。
この製造における反応スキームは下記のとおりである。
【0015】
【化1】

Figure 0003696930
【0016】
【表1】
Figure 0003696930
【0017】
製造例2
(N−イソプロピルアクリルアミドと(S)−イソブチルアクリルアミドとの共重合体の製造)
下記式(4) で表されるN−イソプロピルアクリルアミド0.21g(1.83mmol)と製造例1で得られた(S)−イソブチルアクリルアミド0.10g(0.79mmol)とをジメチルホルムアミド(DMF)に溶解し、重合開始剤としてAIBNを加えた後、真空ラインを使って重合管を封管し、70℃で25時間振とうして重合反応を行った。次いで、重合管を開管し、減圧蒸留してDMFを留去した後、ジエチルエーテルを用いて沈澱させ、減圧乾燥して粉末を得た。この粉末を酢酸エチルに溶解してからジエチルエーテルで再沈し、下記式(5) で表されるN−イソプロピルアクリルアミドと(S)−イソブチルアクリルアミドとの共重合体 0.3gの白色粉末を得た。
得られた共重合体の 1H−NMRスペクトルを図4に示した。共重合体中の(S)−イソブチルアクリルアミドの含有率は 30mol%であった。
この製造における反応スキームは下記のとおりである。
【0018】
【化2】
Figure 0003696930
【0019】
製造例3
((R)−イソブチルアクリルアミドの製造)
S体のブチルアミンの代わりにR体のブチルアミンを用い、製造例1と全く同様にして、(R)−イソブチルアクリルアミドを製造した。
【0020】
製造例4
(N−イソプロピルアクリルアミドと(R)−イソブチルアクリルアミドとの共重合体の製造)
N−イソプロピルアクリルアミドと製造例3で得られた(R)−イソブチルアクリルアミドを用いて、製造例2と全く同様にして、N−イソプロピルアクリルアミドと(R)−イソブチルアクリルアミドとの共重合体を製造した。
【0021】
実施例1
(N−イソプロピルアクリルアミドと(S)−イソブチルアクリルアミドとの共重合体による光学異性体の吸着分離)
製造例2で得られたN−イソプロピルアクリルアミドと(S)−イソブチルアクリルアミドとの共重合体(以下共重合体Aと略記)を用いて光学異性体の吸着分離実験を行った。なお、この実験におけるUV測定に関して、セルは石英製ブラックセルを、UV計は島津製作所製UV1200を使用し、波長は 190〜350nm で行った。
先ず、共重合体A 0.1gをD−トリプトファン水溶液10ml(濃度 0.1%) に室温で混合し、直後に混合液のUVスペクトルを測定し、図5の昇温前の結果を得た。その後、これを昇温し、50℃で10分間放置し白濁させ、遠心分離器にかけて沈澱後、その上澄み液をとり、UVスペクトルを測定し、図5の昇温後の結果を得た。昇温前後のUVの差からD−トリプトファン水溶液の昇温前後の濃度差は 1.2×10-2mmol/リットル(5.3%)であった。
【0022】
次に、共重合体A 0.1gをL−トリプトファン水溶液10ml(濃度 0.1%) に室温で混合し、直後に混合液のUVスペクトルを測定し、図6の昇温前の結果を得た。その後、これを昇温し、50℃で10分間放置し白濁させ、遠心分離器にかけて沈澱後、その上澄み液をとり、UVスペクトルを測定し、図6の昇温後の結果を得た。昇温前後のUVの差からL−トリプトファン水溶液の昇温前後の濃度差は 0.0mmol/リットル(0.0%) であった。
この実験から、N−イソプロピルアクリルアミドと(S)−イソブチルアクリルアミドとの共重合体は、D−トリプトファンは吸着するが、L−トリプトファンは吸着しないことがわかる。
【0023】
実施例2
(N−イソプロピルアクリルアミドと(S)−イソブチルアクリルアミドとの共重合体による光学分割)
製造例2で得られたN−イソプロピルアクリルアミドと(S)−イソブチルアクリルアミドとの共重合体(共重合体A)を用いて光学分割実験を行った。
共重合体A 0.1gをラセミ体のトリプトファン水溶液10ml(濃度 0.1%) に室温で混合した。その後、これを昇温し、50℃で10分間放置し白濁させ、遠心分離器にかけて沈澱後、その上澄み液をとり、光学分割カラムによりD体とL体の組成割合を分析した結果、D体0%、L体 100%であった。
【0024】
実施例3
(N−イソプロピルアクリルアミドと(R)−イソブチルアクリルアミドとの共重合体による光学分割)
製造例4で得られたN−イソプロピルアクリルアミドと(R)−イソブチルアクリルアミドとの共重合体(以下共重合体Bと略記)を用いて光学分割実験を行った。
共重合体B 0.1gをラセミ体のトリプトファン水溶液10ml(濃度 0.1%) に室温で混合した。その後、これを昇温し、50℃で10分間放置し白濁させ、遠心分離器にかけて沈澱後、その上澄み液をとり、光学分割カラムによりD体とL体の組成割合を分析した結果、D体 100%、L体0%であった。
【0025】
【発明の効果】
本発明の光学活性基を有する温度応答性ポリマーを用いることを特徴とする新規な光学分割法は、分離対象のラセミ体水溶液にこのポリマーを溶解後、温度を上げてポリマーを固化析出させて、同時に一方の光学異性体を吸着分離するというものである。それゆえ、本発明の光学分割法は、装置及び操作が簡単で、大量の光学活性体を経済的、汎用的に得るのに適しており、工業化に有利な方法である。
【図面の簡単な説明】
【図1】 製造例1で得られた(S)−イソブチルアクリルアミドのIRスペクトルである。
【図2】 製造例1で得られた(S)−イソブチルアクリルアミドのMSスペクトルである。
【図3】 製造例1で得られた(S)−イソブチルアクリルアミドの 1H−NMRスペクトルである。
【図4】 製造例2で得られたN−イソプロピルアクリルアミドと(S)−イソブチルアクリルアミドとの共重合体の 1H−NMRスペクトルである。
【図5】 N−イソプロピルアクリルアミドと(S)−イソブチルアクリルアミドとの共重合体と、D−トリプトファン水溶液との混合液の昇温前後のUVスペクトルである。
【図6】 N−イソプロピルアクリルアミドと(S)−イソブチルアクリルアミドとの共重合体と、L−トリプトファン水溶液との混合液の昇温前後のUVスペクトルである。[0001]
[Industrial application fields]
The present invention relates to a novel optical resolution method, and more particularly to a novel optical resolution method characterized by using a temperature-responsive polymer having an optically active group. The temperature-responsive polymer referred to here is a polymer having a property of being reversibly soluble and insoluble at a certain temperature in a solution. The temperature-responsive polymer having an optically active group used in the present invention is a unique in that a polymer dissolved in a solution selectively incorporates one optical isomer in an optical isomer mixture when insolubilized at a certain temperature. It has these properties.
[0002]
[Prior art and problems to be solved by the invention]
Many organic compounds have asymmetric centers, and there are optical isomers derived from them. Optical isomers show little difference in physical properties such as boiling point and solubility.
However, many differences are often found in physiological activity. Therefore, obtaining one of the optical isomers (D-form or L-form) is very useful in the fields of pharmaceuticals, agricultural chemicals, foods and the like.
[0003]
For example, in the case of glutamic acid, the L form (S form) has umami, but the D form (R form) has no umami. In addition, in the case of the sweetener aspartame, it is said that the S form exhibits sweetness, while the R form exhibits bitterness.
Even in the case of pharmaceutical products, the D-form and L-form may show significant differences in their efficacy and toxicity. Therefore, the Ministry of Health and Welfare stated in the 1985 edition of the pharmaceutical production guidelines that “If the drug is a racemate, It is desirable to study the absorption, distribution, metabolism, and excretion dynamics of each isomer. "
[0004]
Based on such social demands, various means for obtaining optically active substances from racemates have been devised. Examples of the method for obtaining an optically active substance from a racemate include a preferential crystallization method, a diastereomer method, an enzyme method, a chromatography method, and a membrane separation method.
The preferential crystallization method is a method in which a desired crystal is inoculated into a racemic supersaturated solution, and only the crystal is grown and precipitated. This is because of the following reason that the method has not been proven despite the excellent method. That is, in order to resolve a racemate by the preferential crystallization method, first, the solubility of the racemate and both active substances is measured, and the racemic body> active body, and the boiling point of the active body is the racemic body. It is necessary to make sure that the active substance does not dissolve in the supersaturated solution of the racemic body, and that the infrared absorption spectrum of the racemic body and the active body match (Hiroshi Yamanaka, Yasuhisa Tashiro, Quarterly) Chemical Review, No. 6, 1989, P4-5). Moreover, since it is a technically important problem to shorten the timing of solid-liquid separation and the filtration time, the preferential crystallization method is a technique that can be applied only to special crystals.
The diastereomer method is a method in which an optically active acid or base is allowed to act on a racemate and separated by fractional crystallization according to the difference in solubility of the produced diastereomeric salt. This method is associated with the difficulty in selecting the resolving agent because it must readily form a salt or derivative with the racemate. In addition, there are limitations that it is difficult to obtain a high-purity optically active substance and that a resolving agent in the same amount as the racemic body is required.
[0005]
The optical resolution method using an enzyme utilizes the stereospecificity of the enzyme with respect to the substrate. This method is suitable as a method for obtaining optically active substances in large quantities. For example, an industrial-scale production technique for D-amino acids by an enzymatic method combining a hydantoinase reaction and a chemical decarbamylation reaction has been established. (S. TAKAHASHI, “Biotechnology of Aminoacid Production”, H. YAMADA et al., Kodansya Ltd., (1986), P.289). US Pat. No. 4,800,162 describes a method for obtaining an optically active substance by immobilizing an enzyme on a capillary membrane. However, in the case of the enzymatic method, it is extremely difficult to find an enzyme that matches the target racemate to be optically resolved, and therefore has the disadvantage that it can only be applied to very limited racemates. Yes.
The chromatographic method is a method in which a chiral compound is used as a stationary phase and optical resolution is performed by the interaction between D-form and L-form and a stationary phase (filler). Advances in HPLC (High Performance Liquid Chromatography) methods and the development of packing materials with large optical recognition capabilities have expanded the range of target compounds and improved processing capabilities. It has not reached the area to be called.
[0006]
Separation of optical isomers by a membrane has an advantage that optically active substances can be obtained efficiently and continuously. For this reason, research on optical resolution using a film has been actively conducted in recent years. For example, Japanese Patent Application Laid-Open No. 61-50603 and Japanese Patent Application Laid-Open No. 62-180701 employ a method of using a porous membrane impregnated with a crown compound having asymmetric recognition ability. A method using an optically active polymer film is disclosed in US Pat. However, the conventional optical resolution method using a film employs a concentration gradient method in which a racemic solution is brought into contact with one side of the film and a solvent is brought into contact with the other side. In this case, depending on the optical division object, there is a problem in permeability and separability.
[0007]
Accordingly, the problem to be solved by the present invention is to provide a novel optical resolution method suitable for obtaining a large amount of optically active substances economically and universally in view of the drawbacks of the various optical resolution methods described above. It is.
[0008]
[Means for Solving the Problems]
The present inventors have intensively studied to solve the above problems and have completed the present invention.
That is, in the present invention, when optically isolating an optical isomer mixture , a temperature-responsive polymer having an optically active group is dissolved in an optical isomer mixture aqueous solution to be separated, and the temperature is raised to a temperature higher than the phase transition temperature to increase the optical activity. A temperature-responsive polymer having a group is solidified and precipitated, and at the same time, one optical isomer is adsorbed and separated. The temperature-responsive polymer having an optically active group is N- The present invention relates to a novel optical resolution method which is a copolymer of n- propylacrylamide, N-isopropylacrylamide or N-cyclopropylacrylamide and a polymerizable monomer having an optically active group .
[0009]
Some water-soluble polymers exhibit reversible dissolution behavior in an aqueous solution state, which dissolves at a low temperature, becomes insoluble at a high temperature, and dissolves again when cooled. The molecular structure of these polymers is an amphiphilic substance composed of a hydrophilic part and a hydrophobic part. Since these polymers are sensitive to temperature and reversibly respond when they are in an aqueous solution state, they are called temperature-responsive polymers and attract attention as functional materials. As such a temperature-responsive polymer, polyvinyl alcohol partial oxide, polyvinyl methyl ether, methyl cellulose, polyethylene oxide, polyvinyl methyl oxozolidinone, poly N-alkylacrylamide, and the like are known. In particular, many studies have been made on poly N-alkylacrylamide, and the aqueous solution has good response to thermal stimulation and has an intrinsic phase transition temperature. Specific examples of such poly N-alkyl acrylamide include poly Nn-propyl acrylamide, poly N-isopropyl acrylamide, poly N-cyclopropyl acrylamide and the like.
[0010]
The temperature-responsive polymer having an optically active group used in the present invention has a unique property that a polymer dissolved in a solution selectively incorporates one of the optical isomer mixture when insolubilized at a certain temperature. is there. The temperature-responsive polymer having an optically active group used in the present invention may be any polymer as long as it has such properties. Specifically, it has an N-substituted acrylamide derivative and an optically active group. Examples thereof include a copolymer with a polymerizable monomer. Particularly preferred is a copolymer of N-isopropylacrylamide and optically active isobutylacrylamide. The poly N-isopropylacrylamide aqueous solution becomes transparent at low temperatures and becomes cloudy at high temperatures. This is thought to be because the carbonyl group, which is hydrophilic at low temperatures, acts as a hydration site, and when the temperature rises above a certain temperature, the dehydration effect appears due to the increased mobility of the hydrophobic isopropyl group, and it becomes cloudy. In the present invention, an optically active group is introduced into an N-substituted acrylamide derivative such as poly-N-isopropylacrylamide to achieve application to optical resolution.
[0011]
In order to produce a copolymer of N-isopropylacrylamide and optically active isobutylacrylamide, which is preferably used in the present invention, first, optically active isobutylacrylamide is synthesized from acryloyl chloride and optically active butylamine, and then a polymerization initiator. N-isopropylacrylamide and optically active isobutylacrylamide are copolymerized using azoisobutyronitrile (AIBN) as The molecular weight of the copolymer is preferably about 5,000 to 100,000.
[0012]
In order to optically resolve a racemate using the temperature-responsive polymer having an optically active group of the present invention, the temperature-responsive polymer is dissolved in a racemic aqueous solution to be separated, and then the temperature is higher than the phase transition (liquid → solid) temperature. To solidify and precipitate the polymer, and at the same time, one optical isomer is adsorbed and separated.
[0013]
【Example】
Hereinafter, the present invention will be described in more detail with reference to production examples and examples, but the present invention is not limited to these examples.
In the examples, “%” is based on weight unless otherwise specified.
[0014]
Production Example 1
(Production of (S) -isobutylacrylamide)
(S)-(+)-represented by the following formula (2) is obtained by dissolving 3.09 g (34 mmol) of acryloyl chloride represented by the following formula (1) in 20 ml of methylene chloride and stirring vigorously under ice cooling. Butylamine 5.0 g (68 mmol) was slowly added dropwise. After completion of the dropping, the reaction was allowed to stir for 4 hours under ice cooling. To purify the reaction product, the solution was first separated with water, and then 5% sodium hydrogen carbonate, water, saturated brine, and sodium hydrogen sulfate were added in that order to remove impurities, and the remaining filtrate was applied to an evaporator to remove the solvent. To give 3.21 g (28 mmol) of (S) -isobutylacrylamide represented by the following formula (3).
The elemental analysis value, IR spectrum, MS spectrum, and 1 H-NMR spectrum of this product are shown in Table 1, FIG. 1, FIG. 2, and FIG. 3, respectively.
The reaction scheme in this production is as follows.
[0015]
[Chemical 1]
Figure 0003696930
[0016]
[Table 1]
Figure 0003696930
[0017]
Production Example 2
(Production of copolymer of N-isopropylacrylamide and (S) -isobutylacrylamide)
N-isopropylacrylamide 0.21 g (1.83 mmol) represented by the following formula (4) and (S) -isobutylacrylamide 0.10 g (0.79 mmol) obtained in Production Example 1 are dissolved in dimethylformamide (DMF), After AIBN was added as a polymerization initiator, the polymerization tube was sealed using a vacuum line, and the polymerization reaction was carried out by shaking at 70 ° C. for 25 hours. Next, the polymerization tube was opened, distilled under reduced pressure to distill off DMF, precipitated with diethyl ether, and dried under reduced pressure to obtain a powder. This powder was dissolved in ethyl acetate and then reprecipitated with diethyl ether to obtain a white powder of 0.3 g of a copolymer of N-isopropylacrylamide and (S) -isobutylacrylamide represented by the following formula (5). .
The 1 H-NMR spectrum of the resulting copolymer is shown in FIG. The content of (S) -isobutylacrylamide in the copolymer was 30 mol%.
The reaction scheme in this production is as follows.
[0018]
[Chemical formula 2]
Figure 0003696930
[0019]
Production Example 3
(Production of (R) -isobutylacrylamide)
(R) -isobutylacrylamide was produced in exactly the same manner as in Production Example 1, except that R-form butylamine was used instead of S-form butylamine.
[0020]
Production Example 4
(Production of copolymer of N-isopropylacrylamide and (R) -isobutylacrylamide)
Using N-isopropylacrylamide and (R) -isobutylacrylamide obtained in Production Example 3, a copolymer of N-isopropylacrylamide and (R) -isobutylacrylamide was produced in exactly the same manner as in Production Example 2. .
[0021]
Example 1
(Adsorption and separation of optical isomers by a copolymer of N-isopropylacrylamide and (S) -isobutylacrylamide)
Using the copolymer of N-isopropylacrylamide and (S) -isobutylacrylamide obtained in Production Example 2 (hereinafter abbreviated as Copolymer A), an optical isomer adsorption separation experiment was conducted. Regarding UV measurement in this experiment, a quartz black cell was used as the cell, a UV 1200 manufactured by Shimadzu Corporation was used as the UV meter, and the wavelength was 190 to 350 nm.
First, 0.1 g of copolymer A was mixed with 10 ml of D-tryptophan aqueous solution (concentration 0.1%) at room temperature, and immediately after that, the UV spectrum of the mixed solution was measured, and the result before the temperature increase in FIG. 5 was obtained. Thereafter, the temperature was raised, and the mixture was allowed to stand at 50 ° C. for 10 minutes to be clouded. After centrifuging, the supernatant was taken and the UV spectrum was measured to obtain the result after raising the temperature in FIG. From the difference in UV before and after the temperature rise, the difference in concentration of the D-tryptophan aqueous solution before and after the temperature rise was 1.2 × 10 −2 mmol / liter (5.3%).
[0022]
Next, 0.1 g of copolymer A was mixed with 10 ml of L-tryptophan aqueous solution (concentration 0.1%) at room temperature, and immediately after that, the UV spectrum of the mixed solution was measured, and the result before the temperature increase in FIG. 6 was obtained. Thereafter, the temperature was raised, the mixture was left to stand at 50 ° C. for 10 minutes to be clouded, and after centrifuging, the supernatant was taken and the UV spectrum was measured to obtain the result after raising the temperature in FIG. From the difference in UV before and after the temperature increase, the difference in concentration of the L-tryptophan aqueous solution before and after the temperature increase was 0.0 mmol / liter (0.0%).
From this experiment, it can be seen that the copolymer of N-isopropylacrylamide and (S) -isobutylacrylamide adsorbs D-tryptophan but not L-tryptophan.
[0023]
Example 2
(Optical resolution by a copolymer of N-isopropylacrylamide and (S) -isobutylacrylamide)
An optical resolution experiment was carried out using the copolymer (copolymer A) of N-isopropylacrylamide and (S) -isobutylacrylamide obtained in Production Example 2.
0.1 g of copolymer A was mixed with 10 ml of a racemic tryptophan aqueous solution (concentration 0.1%) at room temperature. Thereafter, the temperature was raised, the mixture was left to stand at 50 ° C. for 10 minutes to be clouded, and after centrifuging, the supernatant was taken and analyzed for the composition ratio of D-form and L-form using an optical resolution column. They were 0% and L form 100%.
[0024]
Example 3
(Optical resolution by a copolymer of N-isopropylacrylamide and (R) -isobutylacrylamide)
An optical resolution experiment was conducted using the copolymer of N-isopropylacrylamide and (R) -isobutylacrylamide obtained in Production Example 4 (hereinafter abbreviated as copolymer B).
0.1 g of copolymer B was mixed with 10 ml of racemic tryptophan aqueous solution (concentration 0.1%) at room temperature. Thereafter, the temperature was raised, the mixture was left to stand at 50 ° C. for 10 minutes to be clouded, and after centrifuging, the supernatant was taken, and the composition ratio of D-form and L-form was analyzed using an optical resolution column. 100%, L form 0%.
[0025]
【The invention's effect】
The novel optical resolution method using the temperature-responsive polymer having the optically active group of the present invention is obtained by dissolving the polymer in a racemic aqueous solution to be separated, and raising the temperature to solidify and precipitate the polymer. At the same time, one optical isomer is adsorbed and separated. Therefore, the optical resolution method of the present invention is simple in apparatus and operation, suitable for obtaining a large amount of optically active substance economically and generally, and is an advantageous method for industrialization.
[Brief description of the drawings]
1 is an IR spectrum of (S) -isobutylacrylamide obtained in Production Example 1. FIG.
2 is an MS spectrum of (S) -isobutylacrylamide obtained in Production Example 1. FIG.
3 is a 1 H-NMR spectrum of (S) -isobutylacrylamide obtained in Production Example 1. FIG.
4 is a 1 H-NMR spectrum of a copolymer of N-isopropylacrylamide and (S) -isobutylacrylamide obtained in Production Example 2. FIG.
FIG. 5 is a UV spectrum before and after the temperature rise of a mixed solution of a copolymer of N-isopropylacrylamide and (S) -isobutylacrylamide and an aqueous D-tryptophan solution.
FIG. 6 is a UV spectrum before and after heating of a mixed solution of a copolymer of N-isopropylacrylamide and (S) -isobutylacrylamide and an aqueous L-tryptophan solution.

Claims (2)

光学異性体混合物を光学分割するに際し、分離対象の光学異性体混合物水溶液に光学活性基を有する温度応答性ポリマーを溶解後、相転移温度以上に温度を上げて前記光学活性基を有する温度応答性ポリマーを固化析出させて、同時に一方の光学異性体を吸着分離することを特徴とする新規な光学分割法であり、前記光学活性基を有する温度応答性ポリマーが、N− n- プロピルアクリルアミド、N−イソプロピルアクリルアミド又はN−シクロプロピルアクリルアミドと光学活性基を有する重合性モノマーとの共重合体である新規な光学分割法。 When the optical isomer mixture is optically resolved, the temperature responsive polymer having the optically active group is obtained by dissolving the temperature responsive polymer having the optically active group in the aqueous solution of the optical isomer mixture to be separated and then raising the temperature to the phase transition temperature or higher. A novel optical resolution method characterized by solidifying and precipitating a polymer and simultaneously adsorbing and separating one optical isomer , wherein the temperature-responsive polymer having an optically active group is N -n- propylacrylamide, N -A novel optical resolution method which is a copolymer of isopropylacrylamide or N-cyclopropylacrylamide and a polymerizable monomer having an optically active group. 光学活性基を有する温度応答性ポリマーが、N−イソプロピルアクリルアミドと光学活性イソブチルアクリルアミドとの共重合体である請求項1記載の新規な光学分割法。  The novel optical resolution method according to claim 1, wherein the temperature-responsive polymer having an optically active group is a copolymer of N-isopropylacrylamide and optically active isobutylacrylamide.
JP15890795A 1995-06-26 1995-06-26 New optical resolution method Expired - Fee Related JP3696930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15890795A JP3696930B2 (en) 1995-06-26 1995-06-26 New optical resolution method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15890795A JP3696930B2 (en) 1995-06-26 1995-06-26 New optical resolution method

Publications (2)

Publication Number Publication Date
JPH0912482A JPH0912482A (en) 1997-01-14
JP3696930B2 true JP3696930B2 (en) 2005-09-21

Family

ID=15681965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15890795A Expired - Fee Related JP3696930B2 (en) 1995-06-26 1995-06-26 New optical resolution method

Country Status (1)

Country Link
JP (1) JP3696930B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706839B1 (en) 1999-02-10 2004-03-16 University Of Pittsburgh Chemical partitioning agents and methods of using same
CN1883438A (en) * 2005-06-21 2006-12-27 香港理工大学 Temperature responsive intelligent facial mask and method for preparing same
CN102659981A (en) * 2012-05-21 2012-09-12 天津工业大学 Temperature sensitive type microgel modified by L-amino acid

Also Published As

Publication number Publication date
JPH0912482A (en) 1997-01-14

Similar Documents

Publication Publication Date Title
Ishihara et al. Controlled release of organic substances using polymer membrane with responsive function for amino compounds
US20020188084A1 (en) Stimuli-responsive polymer utilizing keto-enol tautomerization and stimuli-responsive separating material and chemical-releasing capsule comprising the same
JP4217804B2 (en) Thermally responsive separation material and drug release capsule using thermoresponsive polymer derivative having upper limit solution critical temperature
JP3696930B2 (en) New optical resolution method
US5739383A (en) Resolution of racemic mixtures using polymers containing chiral units
JP2008291207A (en) Helical polymer including basic amino acid
JP2002241317A (en) Optical activity-recognizing agent, optical resolution column by using the same agent, and method for optical resolution
KR20000064500A (en) Optical separation method of 3- (para-chlorophenyl) -glutaramide
JPH0613580B2 (en) Hydrophilic-hydrophobic thermoreversible polymer compound and method for producing the same
JPH03137110A (en) Hydrophilic monomer, polymer therefrom, and use of them
JPH08323155A (en) Optical resolving method using membrane
JP3910275B2 (en) Phase transition type optically active polymer and process for producing the same
JP2898723B2 (en) Optical splitting separation membrane
JPH0613578B2 (en) Hydrophilic-hydrophobic thermoreversible polymer compound and method for producing the same
JPH01221345A (en) Optical resolution of mandelic acid derivative
KR100503639B1 (en) A purification process of Tamsulosin
US5449728A (en) Optically active acetylene polymer, membrane thereof and optical resolution method using the same
JPH064686B2 (en) Water and alcohol solvent dependent thermoreversible material and method for producing the same
JPH115753A (en) Agent for optical resolution and optical resolution using the same
JPS6291509A (en) Thermoreversibly hydrophilic and hydrophobic polymer and its production
JPH0613579B2 (en) Hydrophilic-hydrophobic thermoreversible polymer compound and method for producing the same
JPH11335306A (en) Optically resolving agent and optical resolution using the same
JPH11255831A (en) Complex stimulation-responsive polymeric derivative
KR100949758B1 (en) Chiral stationary phase based on antibiotics cefaclor and chiral column
JPH03275682A (en) New vinyl compound

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050701

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees