JP3666952B2 - CVD equipment - Google Patents

CVD equipment Download PDF

Info

Publication number
JP3666952B2
JP3666952B2 JP26483295A JP26483295A JP3666952B2 JP 3666952 B2 JP3666952 B2 JP 3666952B2 JP 26483295 A JP26483295 A JP 26483295A JP 26483295 A JP26483295 A JP 26483295A JP 3666952 B2 JP3666952 B2 JP 3666952B2
Authority
JP
Japan
Prior art keywords
substrate
ring
gas
film
ring plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26483295A
Other languages
Japanese (ja)
Other versions
JPH0982653A (en
Inventor
茂 水野
好弘 勝俣
信行 高橋
Original Assignee
アネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アネルバ株式会社 filed Critical アネルバ株式会社
Priority to JP26483295A priority Critical patent/JP3666952B2/en
Publication of JPH0982653A publication Critical patent/JPH0982653A/en
Application granted granted Critical
Publication of JP3666952B2 publication Critical patent/JP3666952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains
    • C23C16/45521Inert gas curtains the gas, other than thermal contact gas, being introduced the rear of the substrate to flow around its periphery

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はCVD装置に関し、特に、CVD法(化学的気相成長法)により基板表面にタングステン、窒化チタン、銅等の薄膜を形成する装置に関する。
【0002】
【従来の技術】
近年半導体の高集積化が進むにつれ、その製造方法も変化しつつある。特に配線材料(例えばAl,Ti,TiNなど)の薄膜形成は、これまでスパッタリング法によって行われてきたが、微細ホール部分の埋込みはホール径が縮小し、その径に対する深さの比(アスペクト比)が1を超えた段階でのスパッタリング法による埋込みが非常に困難となってきた。その結果、ホール部分で断線が起こりやすく、デバイスの信頼性を維持することが難しくなっている。
【0003】
現在、微細ホール埋設を巡ってCVD法による薄膜形成、とりわけタングステン(W)薄膜が注目されている。このCVD法によれば集積度が16M(メガ)以降のデバイス中に使用されるアスペクト比2以上のホールにおいても良好な段差被覆性で薄膜を形成することができ、デバイスの信頼性を大幅に向上することが可能となる。
【0004】
図2を参照して従来のタングステン膜形成用CVD装置を説明する。図2は当該CVD装置の要部構造を示す。図示されない真空ポンプで排気されて内部が減圧状態になっている反応容器11内の反応室12に設置された基板保持体13上に基板14が配置される。基板保持体13は、反応容器11の下壁15に気密に取り付けられた石英窓16を通して加熱ランプ17により光照射によって加熱される。基板14は、基板保持体13からの熱伝導によって加熱される。基板14の温度制御は、基板保持体13の温度が熱電対18によって測定され、その測定信号が加熱ランプ制御部(図示されず)にフィードバックされることによって、行われる。基板保持体13上に配置された基板14は、その外周縁部が、その上側に配置されたリング板19によって覆われる。リング板19は、その内周縁部が基板14の外周縁部に上下の空間的位置関係において重なるように配置される。リング板19は、複数箇所を支持部20で支持され、かつ支持部20が上下動するように構成されることによって、リング板19自体が昇降動作を行うように設けられる。リング板19の周囲には、さらに反応容器11の下壁に固定されたシールドリング21が設けられる。リング板19が下方位置にあるとき、リング板19の外縁部全周の下部は、シールドリング21の上端全周に接触する。またリング板19およびその支持部20の内部には、温度を下げることによってリング板19への膜付着をできるだけ少なくするための冷却通路22が形成され、この冷却通路22には例えば水等の冷却媒体が矢印23のごとく流れる。これにより、リング板19の温度は、膜付着が起こらない程度の好ましい一定温度に保持される。
【0005】
一方、基板14の上方位置には基板14に対向したガス供給部24が配置される。ガス供給部24より反応ガス25が反応室内に導入され、基板14の表面に所望の膜が形成される。成膜工程で生成された未反応ガスおよび副生成ガスは、排気部26を通して外部へ排気される。
【0006】
また、反応ガスがリング板19と基板14および基板保持体13との間の隙間に入り込んで基板14の縁・裏面や基板保持体13の裏面にW膜が付着しないように、リング板19は、その下面と基板14の外縁表面とが一定距離(隙間A)に保たれるように基板14の外周囲付近に配置され、さらにリング板19と基板保持体13の隙間および上記隙間Aを通して、下側から供給された不活性ガスをパージガスとして吹き出している。不活性ガスは、反応ガスが上記隙間に侵入するのを阻止する作用を有する。27は、上記不活性ガスを供給するためのパージガス供給装置である。不活性ガスはリング板19と基板保持体13との間からのみ吹き出るように、リング板19の外周縁部はシールドリング21に圧接され、密閉状態が形成される。
【0007】
上記のような従来のCVD装置で多数の基板を処理する場合、基板は成膜処理終了後、次の基板と交換され、1つの反応室内で1枚ずつか、または複数枚ずつ、次々と連続して処理されていく。毎回の基板処理条件であるガス流量、圧力、温度などは常に一定に保持される。
【0008】
成膜条件は、通常、成膜ガス流量として水素H2 =300〜1000sccm、六フッ化タングステンWF6 =50〜200sccm、成膜圧力は30〜100Torr、成膜温度は400〜500℃であり、膜の用途によって成膜条件が定まる。膜の用途に応じた成膜条件としては、例えば、ホール埋込み膜ではH2 /WF6 の比が小さく、温度は低い400℃程度が有利であるとか、あるいは配線用膜では逆にH2 /WF6 の比を大きくし、できるだけ高温で成膜することによって膜応力を低下させるとか、である。また通常、成膜の前に核形成の成膜ステップが設けられ、通常の条件として成膜ガス流量としてWF6 =5〜10sccm,SiH=1〜4sccm、成膜圧力は0.1〜5Torr、成膜温度は400〜500℃である。
【0009】
【発明が解決しようとする課題】
従来のCVD装置では、各基板に対して繰返して成膜を行うことによって、当該基板以外のリング板19へのW膜28の付着を引き起こす。リング板19への付着したW膜28の堆積量が増加すると、剥れなどを生じ、半導体生産で歩留り低下の最大原因である微小なゴミすなわちパーティクルを発生し、問題となる。W膜の成膜は成膜反応が生じる所定温度以上であれば起こるので、リング板19へのW膜付着の原因は、リング板19が上記所定温度以上の部分を有すること、および反応ガスにさらされる部分を有すること、に存する。特に従来装置では、リング板の基板近傍である内縁部付近に、顕著なW膜付着が起きていた。
【0010】
またリング板へのW膜付着は、リング板の近傍に位置する基板外周部での成膜速度を低下させ、成膜の分布劣下を引き起こす原因となっていた。リング板での成膜反応は、基板外周部の近傍で成膜反応が基板上と同様に行われていることになり、基板外周付近での反応副生成物の増加による成膜反応の抑制や、リング板上での反応ガス(特にWF6 ガス)の消費によるガス供給不足等を引き起こす。このため基板における成膜分布が徐々に劣化すると考えられる。
【0011】
リング板へのW膜付着に対する従来の対策としては、各基板の処理ごとに、プラズマによるRIEクリーニングや強反応制ガスによるケミカルエッチング等を行い、クリーニングによって付着したW膜を除去していた。しかし、この方法では、成膜時間の他にクリーニング時間がプロセス時間として必要となり、処理時間が全体として長くなり、単位時間当りの基板処理量が低下する。また使用ガスによっては排ガス処理設備に莫大な投資を必要とする等、生産性の点で問題があった。
【0012】
またRIEクリーニングや強反応性ガスを用いたクリーニングでは、上記の問題以外に、プラズマや反応性ガスによってチャンバ内の部品が損傷を受け、そのためチャンバ内の部品の劣化や摩耗が激しく、部品交換の頻度が多くなり、生産コストが増大するという問題があった。
【0013】
さらに、上記クリーニングガスの処理でも特別な排ガス処理施設を設置して行う場合が多く、そのような場合、排ガス処理施設の設置や保守費用が増大して生産性を下げる。
【0014】
本発明の目的は、上記の問題を解決することにあり、生産性を高め、良好かつ安定した成膜分布、膜抵抗の再現性を得ることができるCVD装置を提供することにある。
【0015】
【課題を解決するための手段および作用】
第1の本発明(請求項1に対応)に係るCVD装置は、上記目的を達成するため、反応室に設けられた基板保持体上に配置された基板の周囲に配置され、かつ基板の外周縁部を覆うようにされたリング状部材を設け、成膜工程時に基板保持体とリング状部材との間の隙間を通して不活性ガスをパージガスとして基板の外周縁付近に吹き出すように構成され、上記リング状部材は少なくとも2つの板状部材(リング板)を隙間を設けて重ねることにより形成され、かつ2つの板状部材の隙間を通して不活性ガスを基板の外周縁付近に吹き出すように構成される。少なくとも2つの板状部材の間には0.1〜3mmの隙間が形成されることが好ましい。
【0016】
第2の本発明(請求項2に対応)に係るCVD装置は、上記第1の発明において、下側の板状部材の上部表面は、上側の板状部材によって覆われるように構成される。
【0017】
第3の本発明(請求項3に対応)に係るCVD装置は、上記第1の発明において、不活性ガスをリング状部材の内縁の円周に沿って均一に吹き出すように構成される。
【0018】
第4の本発明(請求項4に対応)に係るCVD装置は、上記第1の発明において、不活性ガスが、ヘリウムガス、アルゴンガス、キセノンガス、クリプトンガスのうちいずれかであるように構成される。
【0019】
本発明によるCVD装置では、基板は従来通り成膜処理され、さらにパーティクル発生や分布劣下などの原因であったリング状部材の膜付着が抑制される。すなわち、リング状部材を構成する少なくとも2枚のリング板のうち、基板の成膜中、反応ガスに露出されるリング板は最外部に位置するリング板のみであり、最外部のリング板上にW膜が成膜すると、分布が劣化する。しかし、このリング板は、加熱された基板保持体に直接向かい合っていないこと、リング板とリング板との間には隙間が形成され、直接に接触がなく、減圧下ということもあって熱伝導が遅く断熱されていること、さらに、当該隙間に不活性ガスを流すことによって、基板成膜中における反応ガスの侵入を防ぐと共に、リング板を冷却していることから、従来のように、成膜が起こる温度まで温度が上昇せず、従来起こっていたリング状部材への成膜が非常に抑制され、分布の劣下が抑制される。
【0020】
【発明の実施の形態】
以下に、本発明の好適な実施形態を添付図面に基づいて説明する。
【0021】
図1は、本発明によるCVD装置の実施形態を示す要部断面図を示す。図1において、図2で説明した要素と実質的に同一の要素には同一の符号を付し、詳細な説明は省略する。反応容器11の内部には反応室12が形成され、この反応室12に、基板14を載置するための基板保持体13、ガス供給部24、前述のリング板19に相当するリング状部材を構成する例えば2枚のリング板31,32の組、リング板31を支持する複数の支持部20、シールドリング21が設けられる。基板保持体13上の基板14は、基板保持体内に設けられた静電吸着機構あるいは真空チャック機構(図示されず)によって固定される。リング板31,32からなるリング状部材は、基板14の外周縁部との間で所要の隙間を形成するために、基板の上側に配置される。反応容器11には、真空ポンプ(図示せず)につながる排気部26が形成され、さらにその下壁に石英窓16が設けられる。石英窓16の下側には、基板保持体13を加熱するための加熱ランプ17が配置される。ガス供給部24にはガス供給管33が接続され、外部から反応ガス25が供給され、反応室12に反応ガスを導入する。下側のリング板31およびリング板の支持部20の内部には冷却通路22が形成され、この冷却通路22には外部から冷却媒体が供給される。本実施形態での冷却媒体は例えば50〜85℃の温水である。リング板31,32への成膜範囲を基板近傍に限定するため、これらのリング板はW成膜が起こらない程度の一定温度に保たれる。また基板保持体13には熱電対18が付加される。
【0022】
成膜工程では、図示しない搬送機構によって反応室12内に搬送された基板14が基板保持体13の上面に配置され、かつ反応室12は真空ポンプによって排気され減圧状態に維持されている。基板14の上側であってその周縁部にリング状部材が配置される。
【0023】
本実施形態では、リング状部材は、隙間Bをあけて上下に重ねられた2つのリング板31,32によって構成され、リング板31,32の内縁の下面と基板14の外周縁の表面とが円周に沿って一定の距離(例えば0.1〜0.5mm)に保たれている。リング板31,32の間の隙間は、不活性ガスを通すための例えば0.1〜3mmの隙間である。上側のリング板32は下側のリング板31を覆う形状を有している。リング板31,32の間に隙間を設けることによってリング状部材の断熱効果を高めることができる。
【0024】
パージガス供給装置27によって、基板保持体13の周囲空間にパージガスとして不活性ガスが供給される。また同時に、パージガス供給装置27から供給される不活性ガスは、ガス供給管35、バルブ34を介して2つのリング板31,32の間の隙間Bにも導入される。下側のリング板31と基板保持体13との隙間から吹き出す不活性ガス、および下側リング板31と上側リング板32との間の隙間から吹き出す不活性ガスによって、下側リング板31では、反応室内に導入された反応ガスにさらされないため、従来W膜が付着し易かった基板に近いその内周部にW膜の付着がなくなり、また上側リング板32では、従来のリング板の温度よりも格段に温度が低く維持されるため、W膜の付着量も格段に減少する。なおバルブ34の開度を調整することによって、最適な不活性ガスの吹出し量を調整することができる。
【0025】
下側リング板31と上側リング板32の隙間に供給される不活性ガスの流量が十分大きければ、不活性ガスはリング板31,32の内周に沿って均一に吹き出され、W膜の付着に関する効果もリング板31,32の内周に沿って均一に得られる。
【0026】
上記実施形態で、例えば、不活性ガス(Arガス)の流量100〜500sccmに対し、リング板31,32の隙間の間隔は0.1〜0.5mmである。隙間としては0.2mm程度がもっとも望ましい。
【0027】
なお不活性ガスが、基板14および基板保持体13と、2つのリング板31,32からなるリング状部材との間からのみ吹き出るようにするため、リング板31の外周部がシールドリング21によって密閉される。またリング板31,32の間も気密に保たれており、不活性ガスは基板4の近傍の2つのリング板31,32の間の隙間からのみ吹き出す。この場合、不活性ガスの吹出し方向が基板の表面に対してほぼ垂直になるように、2つのリング板31,32の隙間の開口部が形成されている。なお、2つのリング板31,32の隙間の開口部によるガスの吹出し方向は任意に設計することができる。
【0028】
以上の構成によって、通常の成膜条件によっても、リング板32上へのW膜の成膜は従来の1/10〜1/20に減少し、基板14において良好な成膜分布の再現性が得られた。
【0029】
W膜形成条件としては、

Figure 0003666952
であり、約0.6μmの膜厚のW膜が基板上に形成される。
【0030】
上記実施形態によれば、上側のリング板32の上面へのW膜付着量が従来に比べ各段に減少し、リング板31,32の交換のためのメンテナンスサイクルも従来の2倍以上になる。従って、従来1000枚処理ごとにリング板を交換していたのに対して、2000枚処理ごとの交換で済むようになった。
【0031】
なお不活性ガスの種類としては、好ましくは、ヘリウムガス、アルゴンガス、キセノンガス、クリプトンガスのうちいずれかが使用される。またリング状部材を構成するリング板の枚数は2枚に限定されず、2枚よりも多くすることもできる。リング板の枚数が増え、それらの重なりが増すほど断熱効果、および冷却効果が高くなる。なお隣合う2枚のリング板の間では、下位のリング板の上面が上位に位置するリング板によって覆われるように構成されることが好ましい。
【0032】
【発明の効果】
以上の説明で明らかなように本発明によれば、CVD装置による基板成膜において、基板の外周縁部に配置されるリング状部材を、重ね合わされた少なくとも2枚のリング板で構成し、かつリング板の間の隙間に不活性ガスを流し、基板の外周縁部近傍に吹出すようにしたため、生産性を高め、良好かつ安定した成膜分布、膜抵抗の再現性を得ることができる。
【図面の簡単な説明】
【図1】本発明に係るCVD装置の実施形態を示す要部縦断面図である。
【図2】従来のCVD装置の一例を示す要部縦断面図である。
【符号の説明】
11 反応容器
12 反応室
13 基板保持体
14 基板
16 石英窓
17 加熱ランプ
21 シールドリング
27 パージガス供給装置
31,32 リング板
33 ガス供給管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a CVD apparatus, and more particularly to an apparatus for forming a thin film of tungsten, titanium nitride, copper, or the like on a substrate surface by a CVD method (chemical vapor deposition method).
[0002]
[Prior art]
In recent years, as semiconductors are highly integrated, their manufacturing methods are also changing. In particular, thin film formation of wiring materials (for example, Al, Ti, TiN, etc.) has been carried out by sputtering, but the embedding of fine hole portions has reduced the hole diameter, and the ratio of the depth to the diameter (aspect ratio) ) Has become very difficult to embed by the sputtering method at a stage exceeding 1. As a result, disconnection is likely to occur at the hole, making it difficult to maintain device reliability.
[0003]
At present, attention is focused on the formation of thin films by CVD, particularly tungsten (W) thin films, around the filling of fine holes. According to this CVD method, a thin film can be formed with a good step coverage even in a hole having an aspect ratio of 2 or more used in a device having an integration degree of 16 M (mega) or more, and the reliability of the device is greatly improved. It becomes possible to improve.
[0004]
A conventional CVD apparatus for forming a tungsten film will be described with reference to FIG. FIG. 2 shows the main structure of the CVD apparatus. A substrate 14 is placed on a substrate holder 13 installed in a reaction chamber 12 in a reaction vessel 11 that is evacuated by a vacuum pump (not shown) and is in a reduced pressure state. The substrate holder 13 is heated by light irradiation by a heating lamp 17 through a quartz window 16 that is airtightly attached to the lower wall 15 of the reaction vessel 11. The substrate 14 is heated by heat conduction from the substrate holder 13. The temperature control of the substrate 14 is performed by measuring the temperature of the substrate holder 13 by the thermocouple 18 and feeding back the measurement signal to a heating lamp control unit (not shown). The substrate 14 disposed on the substrate holder 13 is covered at its outer peripheral edge by a ring plate 19 disposed on the upper side. The ring plate 19 is arranged so that its inner peripheral edge overlaps with the outer peripheral edge of the substrate 14 in the vertical spatial relationship. The ring plate 19 is provided such that the ring plate 19 itself moves up and down by being configured such that a plurality of locations are supported by the support portion 20 and the support portion 20 moves up and down. A shield ring 21 fixed to the lower wall of the reaction vessel 11 is further provided around the ring plate 19. When the ring plate 19 is in the lower position, the lower part of the entire outer edge of the ring plate 19 contacts the entire upper end of the shield ring 21. Further, a cooling passage 22 is formed in the ring plate 19 and its support portion 20 to reduce film adhesion to the ring plate 19 as much as possible by lowering the temperature. The medium flows as indicated by the arrow 23. Thereby, the temperature of the ring plate 19 is maintained at a preferable constant temperature at which film adhesion does not occur.
[0005]
On the other hand, a gas supply unit 24 facing the substrate 14 is disposed above the substrate 14. A reaction gas 25 is introduced into the reaction chamber from the gas supply unit 24, and a desired film is formed on the surface of the substrate 14. Unreacted gas and by-product gas generated in the film forming process are exhausted to the outside through the exhaust unit 26.
[0006]
Further, the ring plate 19 prevents the W gas from adhering to the edge / back surface of the substrate 14 or the back surface of the substrate holder 13 by the reaction gas entering the gap between the ring plate 19 and the substrate 14 and the substrate holder 13. The lower surface thereof and the outer edge surface of the substrate 14 are arranged in the vicinity of the outer periphery of the substrate 14 so as to be maintained at a constant distance (gap A), and further, through the gap between the ring plate 19 and the substrate holder 13 and the gap A, The inert gas supplied from the lower side is blown out as a purge gas. The inert gas has an action of preventing the reaction gas from entering the gap. 27 is a purge gas supply device for supplying the inert gas. The outer peripheral edge of the ring plate 19 is pressed against the shield ring 21 so that the inert gas is blown out only from between the ring plate 19 and the substrate holder 13, thereby forming a sealed state.
[0007]
When a large number of substrates are processed by the conventional CVD apparatus as described above, the substrate is replaced with the next substrate after the film forming process is completed, and one substrate or a plurality of substrates in a reaction chamber. It will be processed. The gas flow rate, pressure, temperature, etc., which are substrate processing conditions each time, are always kept constant.
[0008]
The film forming conditions are usually as follows: hydrogen H 2 = 300 to 1000 sccm, tungsten hexafluoride WF 6 = 50 to 200 sccm, film forming pressure is 30 to 100 Torr, and film forming temperature is 400 to 500 ° C. The film formation conditions are determined by the use of the film. As film formation conditions according to the use of the film, for example, it is advantageous that the ratio of H 2 / WF 6 is small and the temperature is low at about 400 ° C. in the hole buried film, or conversely in the film for wiring, H 2 / The film stress is reduced by increasing the ratio of WF 6 and forming the film at as high a temperature as possible. Usually, a nucleation film forming step is provided before film formation, and under normal conditions, the film formation gas flow rate is WF 6 = 5 to 10 sccm, SiH = 1 to 4 sccm, the film formation pressure is 0.1 to 5 Torr, The film forming temperature is 400 to 500 ° C.
[0009]
[Problems to be solved by the invention]
In the conventional CVD apparatus, the film is repeatedly formed on each substrate, thereby causing the W film 28 to adhere to the ring plate 19 other than the substrate. When the deposition amount of the W film 28 adhering to the ring plate 19 increases, peeling occurs, which causes a problem of generating fine dust, that is, particles, which are the largest cause of yield reduction in semiconductor production. Since the W film is formed at a predetermined temperature or higher at which the film formation reaction occurs, the cause of the W film adhesion to the ring plate 19 is that the ring plate 19 has a portion having the predetermined temperature or higher, and the reaction gas. Having exposed portions. In particular, in the conventional apparatus, remarkable W film adhesion occurred in the vicinity of the inner edge near the substrate of the ring plate.
[0010]
Also, the W film adhesion to the ring plate has caused the film formation rate at the outer peripheral portion of the substrate located in the vicinity of the ring plate to decrease, resulting in poor distribution of the film formation. In the film formation reaction on the ring plate, the film formation reaction is performed in the vicinity of the outer periphery of the substrate in the same manner as on the substrate, and it is possible to suppress the film formation reaction due to the increase of reaction byproducts in the vicinity of the outer periphery of the substrate. Insufficient gas supply due to consumption of reaction gas (especially WF 6 gas) on the ring plate. For this reason, it is considered that the film formation distribution on the substrate gradually deteriorates.
[0011]
As a conventional measure against adhesion of the W film to the ring plate, RIE cleaning using plasma or chemical etching using a strong reaction control gas is performed for each substrate processing, and the W film adhered by the cleaning is removed. However, this method requires a cleaning time as a process time in addition to the film formation time, and the processing time becomes longer as a whole, and the amount of substrate processing per unit time decreases. Also, depending on the gas used, there was a problem in terms of productivity, such as requiring a huge investment in the exhaust gas treatment facility.
[0012]
In addition to the above problems, in RIE cleaning and cleaning using strong reactive gas, the components in the chamber are damaged by the plasma and reactive gas, so that the components in the chamber are severely deteriorated and worn. There was a problem that the frequency increased and the production cost increased.
[0013]
Furthermore, the cleaning gas treatment is often performed by installing a special exhaust gas treatment facility. In such a case, the installation and maintenance costs of the exhaust gas treatment facility are increased and productivity is lowered.
[0014]
An object of the present invention is to solve the above problems, and to provide a CVD apparatus capable of improving productivity and obtaining good and stable film formation distribution and reproducibility of film resistance.
[0015]
[Means and Actions for Solving the Problems]
In order to achieve the above object, a CVD apparatus according to the first aspect of the present invention (corresponding to claim 1) is disposed around a substrate disposed on a substrate holder provided in a reaction chamber, and is provided outside the substrate. A ring-shaped member is provided so as to cover the peripheral portion, and is configured to blow out an inert gas as a purge gas to the vicinity of the outer peripheral edge of the substrate through a gap between the substrate holder and the ring-shaped member during the film forming process. The ring-shaped member is formed by overlapping at least two plate-shaped members (ring plates) with a gap therebetween, and is configured to blow inert gas to the vicinity of the outer peripheral edge of the substrate through the gap between the two plate-shaped members. . It is preferable that a gap of 0.1 to 3 mm is formed between at least two plate-like members.
[0016]
The CVD apparatus according to the second aspect of the present invention (corresponding to claim 2) in the first aspect is configured such that the upper surface of the lower plate-like member is covered with the upper plate-like member.
[0017]
The CVD apparatus according to the third aspect of the present invention (corresponding to claim 3) is configured to blow off the inert gas uniformly along the circumference of the inner edge of the ring-shaped member in the first aspect.
[0018]
A CVD apparatus according to a fourth aspect of the present invention (corresponding to claim 4) is configured such that, in the first aspect, the inert gas is any one of helium gas, argon gas, xenon gas, and krypton gas. Is done.
[0019]
In the CVD apparatus according to the present invention, the substrate is subjected to a film formation process as in the past, and the film adhesion of the ring-shaped member, which is the cause of the generation of particles and the inferior distribution, is suppressed. That is, of the at least two ring plates constituting the ring-shaped member, the ring plate exposed to the reaction gas during the film formation of the substrate is only the ring plate located at the outermost portion, and is on the outermost ring plate. When the W film is formed, the distribution deteriorates. However, this ring plate does not directly face the heated substrate holder, and there is a gap between the ring plate and the ring plate, so there is no direct contact, and there is a possibility of under reduced pressure. Insulating gas is slow and insulated, and in addition, by flowing an inert gas through the gap, reaction gas is prevented from entering during film formation of the substrate and the ring plate is cooled. The temperature does not rise to the temperature at which the film is formed, and the conventional film formation on the ring-shaped member is greatly suppressed, and the deterioration of the distribution is suppressed.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
[0021]
FIG. 1 is a cross-sectional view of a principal part showing an embodiment of a CVD apparatus according to the present invention. In FIG. 1, elements that are substantially the same as those described in FIG. 2 are given the same reference numerals, and detailed descriptions thereof are omitted. A reaction chamber 12 is formed inside the reaction vessel 11, and a ring-shaped member corresponding to the substrate holder 13 for placing the substrate 14, the gas supply unit 24, and the ring plate 19 is placed in the reaction chamber 12. For example, a set of two ring plates 31 and 32, a plurality of support portions 20 that support the ring plate 31, and a shield ring 21 are provided. The substrate 14 on the substrate holder 13 is fixed by an electrostatic attraction mechanism or a vacuum chuck mechanism (not shown) provided in the substrate holder. The ring-shaped member composed of the ring plates 31 and 32 is disposed on the upper side of the substrate in order to form a required gap with the outer peripheral edge of the substrate 14. The reaction vessel 11 is formed with an exhaust portion 26 connected to a vacuum pump (not shown), and further provided with a quartz window 16 on the lower wall thereof. A heating lamp 17 for heating the substrate holder 13 is disposed below the quartz window 16. A gas supply pipe 33 is connected to the gas supply unit 24, a reaction gas 25 is supplied from the outside, and the reaction gas is introduced into the reaction chamber 12. A cooling passage 22 is formed inside the lower ring plate 31 and the support portion 20 of the ring plate, and a cooling medium is supplied to the cooling passage 22 from the outside. The cooling medium in this embodiment is hot water of 50 to 85 ° C., for example. In order to limit the film formation range on the ring plates 31 and 32 to the vicinity of the substrate, these ring plates are maintained at a constant temperature at which W film formation does not occur. A thermocouple 18 is added to the substrate holder 13.
[0022]
In the film forming process, the substrate 14 transferred into the reaction chamber 12 by a transfer mechanism (not shown) is disposed on the upper surface of the substrate holder 13, and the reaction chamber 12 is evacuated by a vacuum pump and maintained in a reduced pressure state. A ring-shaped member is arranged on the upper side of the substrate 14 and on the peripheral edge thereof.
[0023]
In the present embodiment, the ring-shaped member is composed of two ring plates 31 and 32 that are stacked one above the other with a gap B between the lower surface of the inner edge of the ring plates 31 and 32 and the surface of the outer peripheral edge of the substrate 14. It is kept at a certain distance (for example, 0.1 to 0.5 mm) along the circumference. The gap between the ring plates 31 and 32 is, for example, a gap of 0.1 to 3 mm for passing an inert gas. The upper ring plate 32 has a shape that covers the lower ring plate 31. By providing a gap between the ring plates 31 and 32, the heat insulating effect of the ring-shaped member can be enhanced.
[0024]
The purge gas supply device 27 supplies an inert gas as a purge gas to the space around the substrate holder 13. At the same time, the inert gas supplied from the purge gas supply device 27 is also introduced into the gap B between the two ring plates 31 and 32 via the gas supply pipe 35 and the valve 34. In the lower ring plate 31, the inert gas blown out from the gap between the lower ring plate 31 and the substrate holder 13 and the inert gas blown out from the gap between the lower ring plate 31 and the upper ring plate 32, Since it is not exposed to the reaction gas introduced into the reaction chamber, the W film does not adhere to the inner peripheral portion near the substrate where the W film has been easily attached, and the upper ring plate 32 has a temperature higher than that of the conventional ring plate. However, since the temperature is kept extremely low, the adhesion amount of the W film is also greatly reduced. By adjusting the opening of the valve 34, the optimum amount of inert gas can be adjusted.
[0025]
If the flow rate of the inert gas supplied to the gap between the lower ring plate 31 and the upper ring plate 32 is sufficiently large, the inert gas is blown uniformly along the inner circumference of the ring plates 31 and 32, and the W film adheres. The effect on is also obtained uniformly along the inner periphery of the ring plates 31 and 32.
[0026]
In the said embodiment, the space | interval of the clearance gap between the ring plates 31 and 32 is 0.1-0.5 mm with respect to the flow rate of 100-500 sccm of inert gas (Ar gas), for example. The clearance is most preferably about 0.2 mm.
[0027]
The outer periphery of the ring plate 31 is hermetically sealed by the shield ring 21 so that the inert gas is blown out only from between the substrate 14 and the substrate holder 13 and the ring-shaped member composed of the two ring plates 31 and 32. Is done. The space between the ring plates 31 and 32 is also kept airtight, and the inert gas blows out only from the gap between the two ring plates 31 and 32 in the vicinity of the substrate 4. In this case, the opening of the gap between the two ring plates 31 and 32 is formed so that the blowing direction of the inert gas is substantially perpendicular to the surface of the substrate. In addition, the blowing direction of the gas by the opening part of the clearance gap between the two ring plates 31 and 32 can be designed arbitrarily.
[0028]
With the above configuration, the film formation of the W film on the ring plate 32 is reduced to 1/10 to 1/20 of the conventional film formation condition even under normal film formation conditions, and the reproducibility of the good film formation distribution on the substrate 14 is achieved. Obtained.
[0029]
As W film formation conditions,
Figure 0003666952
A W film having a thickness of about 0.6 μm is formed on the substrate.
[0030]
According to the above embodiment, the amount of W film adhering to the upper surface of the upper ring plate 32 is reduced to each stage as compared with the prior art, and the maintenance cycle for exchanging the ring plates 31 and 32 is more than twice the conventional one. . Therefore, the ring plate has been replaced every 1000 sheets processing, but can be replaced every 2000 sheets processing.
[0031]
As the kind of inert gas, preferably, helium gas, argon gas, xenon gas, or krypton gas is used. Further, the number of ring plates constituting the ring-shaped member is not limited to two, and can be more than two. As the number of ring plates increases and their overlap increases, the heat insulation effect and the cooling effect increase. It is preferable that the upper surface of the lower ring plate is covered with the upper ring plate between two adjacent ring plates.
[0032]
【The invention's effect】
As is apparent from the above description, according to the present invention, in the substrate film formation by the CVD apparatus, the ring-shaped member disposed on the outer peripheral edge portion of the substrate is constituted by at least two overlapping ring plates, and Since an inert gas is allowed to flow through the gap between the ring plates and blown out in the vicinity of the outer peripheral edge of the substrate, productivity can be improved, and good and stable film distribution and reproducibility of film resistance can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an essential part showing an embodiment of a CVD apparatus according to the present invention.
FIG. 2 is a longitudinal sectional view of an essential part showing an example of a conventional CVD apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Reaction container 12 Reaction chamber 13 Substrate holder 14 Substrate 16 Quartz window 17 Heating lamp 21 Shield ring 27 Purge gas supply devices 31 and 32 Ring plate 33 Gas supply pipe

Claims (4)

基板保持体上に配置された基板の周囲に、前記基板の外周縁部を覆うように配置されたリング状部材を設け、成膜工程時に前記基板保持体と前記リング状部材との間の隙間を通して不活性ガスを前記基板の外周縁付近に吹き出すようにしたCVD装置において、
前記リング状部材は、少なくとも2つの板状部材を隙間を設けて重ねて構成され、前記2つの板状部材の間の前記隙間を通して不活性ガスを前記基板の外周縁付近に吹き出すようにしたことを特徴とするCVD装置。
A ring-shaped member disposed so as to cover the outer peripheral edge of the substrate is provided around the substrate disposed on the substrate holder, and a gap between the substrate holder and the ring-shaped member is formed during the film forming process. In a CVD apparatus in which an inert gas is blown out to the vicinity of the outer peripheral edge of the substrate,
The ring-shaped member is configured by overlapping at least two plate-shaped members with a gap, and the inert gas is blown out to the vicinity of the outer peripheral edge of the substrate through the gap between the two plate-shaped members. A CVD apparatus characterized by the above.
下側の前記板状部材の上部表面は、上側の前記板状部材によって覆われることを特徴とする請求項1記載のCVD装置。2. The CVD apparatus according to claim 1, wherein an upper surface of the lower plate member is covered with the upper plate member. 前記不活性ガスは前記リング状部材の内縁の円周に沿って均一に吹き出すようにしたことを特徴とする請求項1記載のCVD装置。2. The CVD apparatus according to claim 1, wherein the inert gas is blown out uniformly along the circumference of the inner edge of the ring-shaped member. 前記不活性ガスは、ヘリウムガス、アルゴンガス、キセノンガス、クリプトンガスのうちいずれかであることを特徴とする請求項1記載のCVD装置。The CVD apparatus according to claim 1, wherein the inert gas is one of helium gas, argon gas, xenon gas, and krypton gas.
JP26483295A 1995-09-19 1995-09-19 CVD equipment Expired - Fee Related JP3666952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26483295A JP3666952B2 (en) 1995-09-19 1995-09-19 CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26483295A JP3666952B2 (en) 1995-09-19 1995-09-19 CVD equipment

Publications (2)

Publication Number Publication Date
JPH0982653A JPH0982653A (en) 1997-03-28
JP3666952B2 true JP3666952B2 (en) 2005-06-29

Family

ID=17408834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26483295A Expired - Fee Related JP3666952B2 (en) 1995-09-19 1995-09-19 CVD equipment

Country Status (1)

Country Link
JP (1) JP3666952B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284052B2 (en) * 1998-08-19 2001-09-04 Sharp Laboratories Of America, Inc. In-situ method of cleaning a metal-organic chemical vapor deposition chamber
US6409837B1 (en) * 1999-01-13 2002-06-25 Tokyo Electron Limited Processing system and method for chemical vapor deposition of a metal layer using a liquid precursor
JP4602598B2 (en) * 2001-06-11 2010-12-22 キヤノンアネルバ株式会社 Chemical vapor deposition equipment
KR100775960B1 (en) * 2005-09-15 2007-11-16 삼성전자주식회사 Plasma CVD film formation apparatus provided with mask
WO2008139871A1 (en) * 2007-05-09 2008-11-20 Ulvac, Inc. Purge gas assembly
WO2012092064A1 (en) 2010-12-30 2012-07-05 Veeco Instruments Inc. Wafer processing with carrier extension
KR101312544B1 (en) * 2011-12-26 2013-09-30 주식회사 엘지실트론 Epitaxial Reactor
JP6530228B2 (en) * 2015-04-28 2019-06-12 日本特殊陶業株式会社 Electrostatic chuck
TWI822764B (en) * 2018-04-20 2023-11-21 美商蘭姆研究公司 Apparatus and method for semiconductor processing

Also Published As

Publication number Publication date
JPH0982653A (en) 1997-03-28

Similar Documents

Publication Publication Date Title
US5676758A (en) CVD apparatus
JP2532401Y2 (en) Bias ECR plasma CVD equipment
US5534072A (en) Integrated module multi-chamber CVD processing system and its method for processing subtrates
US6129046A (en) Substrate processing apparatus
JP3780364B2 (en) Heating element CVD equipment
US20060137607A1 (en) Combination of showerhead and temperature control means for controlling the temperature of the showerhead, and deposition apparatus having the same
JPH0830273B2 (en) Thin film forming method and apparatus
JPH08302474A (en) Heater for cvd apparatus
JP3585606B2 (en) Electrode device of CVD equipment
JP3666952B2 (en) CVD equipment
JP4251887B2 (en) Vacuum processing equipment
WO2012117888A1 (en) Catalytic chemical vapor deposition device, and deposition method and catalyst body surface treatment method using same
JP5542584B2 (en) Film forming apparatus and film forming method
JP3162955B2 (en) Plasma processing equipment
JP4545955B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP3131860B2 (en) Film processing equipment
JP4933979B2 (en) Cleaning method for film forming apparatus
US20030175426A1 (en) Heat treatment apparatus and method for processing substrates
JPH07283292A (en) Sealing mechanism besides treatment device and treatment method using this sealing mechanism
JPH1041251A (en) Device and method for cvd
JPH0270066A (en) Plasma cvd device
JP5903666B2 (en) Film forming apparatus and film forming method using the same
JP2003158081A (en) Substrate processor
JPH04345022A (en) Blanket metal cvd device
JP2963145B2 (en) Method and apparatus for forming CVD film

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees