JP3510469B2 - Copper alloy for conductive spring and method for producing the same - Google Patents
Copper alloy for conductive spring and method for producing the sameInfo
- Publication number
- JP3510469B2 JP3510469B2 JP03362898A JP3362898A JP3510469B2 JP 3510469 B2 JP3510469 B2 JP 3510469B2 JP 03362898 A JP03362898 A JP 03362898A JP 3362898 A JP3362898 A JP 3362898A JP 3510469 B2 JP3510469 B2 JP 3510469B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- copper alloy
- less
- stress relaxation
- cold working
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Conductive Materials (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、導電性ばね用銅合
金及びその製造方法に関し、特に端子・コネクター材、
スイッチ材等に適する導電性ばね用銅合金とその製造方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy for conductive springs and a method for manufacturing the same, and more particularly to a terminal / connector material,
TECHNICAL FIELD The present invention relates to a copper alloy for a conductive spring suitable for a switch material and the like and a method for manufacturing the same.
【0002】[0002]
【従来の技術】従来より端子、コネクター用材料として
銅合金が用いられ、Cu−Zn系合金、耐熱性に優れた
Cu−Fe系合金、Cu−Sn系合金が多く用いられて
いる。特に、自動車等の用途では安価なCu−Zn系合
金が多く使用されているが、近年の自動車用端子、コネ
クターは小型化傾向が著しく、またエンジンルーム内な
どの過酷な環境にさらされる場合が多いため、Cu−Z
n系合金ではもちろんのこと、Cu−Fe系合金、Cu
−Sn系合金でも対応出来なくなってきているのが現状
である。2. Description of the Related Art Conventionally, copper alloys have been used as materials for terminals and connectors, and Cu--Zn alloys, Cu--Fe alloys and Cu--Sn alloys having excellent heat resistance have been widely used. In particular, inexpensive Cu-Zn based alloys are often used in applications such as automobiles, but in recent years, automobile terminals and connectors have been significantly miniaturized and may be exposed to a harsh environment such as in an engine room. Cu-Z because there are many
Not to mention n-based alloys, Cu-Fe-based alloys, Cu
The current situation is that even Sn-based alloys are no longer available.
【0003】このように、使用されている環境の変化に
伴い、端子、コネクター用材料に求められる特性もより
厳しくなってきている。このような用途に使用される銅
合金には、応力緩和特性、機械的強度、熱伝導性、曲げ
加工性、耐熱性、Snメッキの接続信頼性、マイグレー
ション特性など多岐に渡っているが、特に機械的強度や
応力緩和特性、熱・電気の伝導性、曲げ加工性が重要な
特性である。As described above, the characteristics required for materials for terminals and connectors have become more severe as the environment in which they are used changes. Copper alloys used for such applications have various properties such as stress relaxation characteristics, mechanical strength, thermal conductivity, bending workability, heat resistance, Sn plating connection reliability, and migration characteristics. Mechanical strength, stress relaxation characteristics, thermal / electrical conductivity, and bendability are important characteristics.
【0004】これらの厳しい要求特性を満たす銅系材料
として、Cu−Ni−Si系合金が注目されており、例
えば、特開昭61−127842号公報が知られてい
る。しかしながら、このようなCu−Ni−Si系合金
でも使用に耐え得ない状態に陥っている。具体的には部
品の小型化、例えば一般的な箱型端子において、挿入さ
れるオス端子のタブ幅が約2mmである090端子から
約1mmである040端子へ小型化されると、バネ部の
幅が1mm程度であり、このように部品が小型化される
と、充分な接続強度を得ることが困難になっている。ま
た、小型化に関連してバネ部での接続強度を確保するた
めに、端子の構造にも多くの工夫がなされているが、そ
の結果、材料に要求される曲げ加工性もより厳しくなっ
ており、従来のCu−Ni−Siでは曲げ部にクラック
が生じる場合も多い。応力緩和特性も同様であり、材料
に負荷される応力の増大、使用環境の高温化により従来
のCu−Ni−Si系合金では長時間の使用は不可能な
状況である。As a copper-based material satisfying these strict requirements, a Cu-Ni-Si-based alloy is drawing attention, and for example, Japanese Patent Laid-Open No. 61-127842 is known. However, even such a Cu—Ni—Si alloy has fallen into a state where it cannot be used. Specifically, when the size of a component is reduced, for example, in a general box-shaped terminal, when the tab width of the male terminal to be inserted is reduced from 090 terminal which is about 2 mm to 040 terminal which is about 1 mm, the spring portion of the spring portion is The width is about 1 mm, and it is difficult to obtain sufficient connection strength when the components are downsized in this way. Also, in order to secure the connection strength in the spring part in connection with the miniaturization, many improvements have been made to the structure of the terminal, but as a result, the bending workability required for the material becomes more severe. However, in the conventional Cu-Ni-Si, cracks often occur in the bent portion. The stress relaxation property is also the same, and it is impossible to use the conventional Cu-Ni-Si alloy for a long time due to an increase in stress applied to the material and an increase in operating environment.
【0005】このような状況下、例えば応力緩和特性を
改善するためにMgの添加が有効であり、例えば、特開
昭61−250134号公報、特開平5−59468号
公報などにもMgの有効性が示されている。しかしなが
らMg添加により応力緩和特性は向上するものの、曲げ
加工性が劣化し、180°密着曲げには耐え得ないもの
であり自動車コネクターなどに使用するには曲げ加工性
の改善が不可欠である。また曲げ加工性を改善するため
の検討もされているが、これは強度の低い材料であるた
めに所望の特性が得られないものであった。さらに、熱
・電気の伝導性が悪いと、応力緩和特性が良くとも、自
己の発熱で応力緩和を促進するため、伝導性と応力緩和
特性のバランスが重要である。Under these circumstances, it is effective to add Mg in order to improve, for example, stress relaxation characteristics. For example, JP-A 61-250134 and JP-A 5-59468 are also effective in adding Mg. Sex is shown. However, the addition of Mg improves the stress relaxation property, but the bending workability deteriorates, and it cannot withstand 180 ° contact bending. Therefore, it is indispensable to improve the bending workability for use in automobile connectors and the like. Further, studies have been conducted to improve bending workability, but since this is a material having low strength, desired properties cannot be obtained. Further, if the thermal / electrical conductivity is poor, even if the stress relaxation characteristic is good, the stress relaxation is promoted by self-heating, so that the balance between the conductivity and the stress relaxation characteristic is important.
【0006】[0006]
【発明が解決しようとする課題】上述したように、曲げ
加工性、応力緩和特性等について検討し、厳しい要求特
性を満たす銅系材料が提案されているが、本発明は、優
れた機械的特性、伝導性、応力緩和特性と曲げ加工性を
兼ね備えた銅合金であり、端子、コネクターに好適な銅
合金を提供するものである。As described above, bending workability, stress relaxation characteristics, etc. have been investigated and copper-based materials satisfying strict required characteristics have been proposed. However, the present invention has excellent mechanical characteristics. The present invention provides a copper alloy having both conductivity, stress relaxation characteristics and bending workability, which is suitable for terminals and connectors.
【0007】[0007]
【問題を解決するための手段】本発明は、上記課題を解
決するもので、主成分としてNiを1.0〜3.5ma
ss%、Siを0.2〜0.9mass%、Mgを0.
01〜0.20mass%、Snを0.05〜1.5m
ass%含み、S、O含有量をそれぞれ0.005ma
ss%未満に制限し、残部Cu及び不可避的不純物から
なり、その結晶粒度が1μmを越え25μm以下である
ことを特徴とする強度、導電性および応力緩和特性、並
びに内側曲げ半径が0Rの180°密着曲げにおいてク
ラックを生じない曲げ加工性に優れた導電性ばね用銅合
金である。また、上記構成において、本発明の特性に悪
影響を与えない範囲で、他の添加元素、例えば0.2%
未満のZnを添加しても差し支えないものである。ま
た、本発明は、主成分としてNiを1.0〜3.5ma
ss%、Siを0.2〜0.9mass%、Mgを0.
01mass%以上0.20mass%未満、Snを
0.05〜1.5mass%、Znを0.2〜1.5m
ass%含み、S、O含有量をそれぞれ0.005ma
ss%未満に制限し、残部Cu及び不可避的不純物から
なり、その結晶粒度が1μmを越え25μm以下である
ことを特徴とする強度、導電性および応力緩和特性、並
びに内側曲げ半径が0Rの180°密着曲げにおいてク
ラックを生じない曲げ加工性に優れた導電性ばね用銅合
金である。SUMMARY OF THE INVENTION The present invention is to solve the above-mentioned problems, in which Ni as the main component is 1.0 to 3.5 ma.
ss% , Si 0.2-0.9 mass% , Mg 0.
01 to 0.20 mass% , Sn 0.05 to 1.5 m
including ass% and S and O contents of 0.005 ma each
The strength, the conductivity and the stress relaxation property are not limited to less than ss% , and the balance is Cu and unavoidable impurities, and the grain size is more than 1 μm and 25 μm or less.
And the inner bending radius is 0R.
It is a copper alloy for conductive springs that does not produce racks and has excellent bendability . Further, in the above-mentioned constitution, other additive elements, for example, 0.2%, are added within a range not adversely affecting the characteristics of the present invention.
There is no problem even if less than Zn is added. Further, in the present invention, Ni as a main component is 1.0 to 3.5 ma.
ss% , Si 0.2-0.9 mass% , Mg 0.
01 mass% or more and less than 0.20 mass% , Sn 0.05 to 1.5 mass% , Zn 0.2 to 1.5 m
including ass% and S and O contents of 0.005 ma each
The strength, the conductivity and the stress relaxation property are not limited to less than ss% , and the balance is Cu and unavoidable impurities, and the grain size is more than 1 μm and 25 μm or less.
And the inner bending radius is 0R.
It is a copper alloy for conductive springs that does not produce racks and has excellent bendability .
【0008】また、本発明は、上記の銅合金に、さらに
Ag、Mn、Fe、Cr、Co、Pの中から選ばれ1種
または2種以上を総量で0.005mass%〜2.0
mass%含むことを特徴とする銅合金である。具体的
には、主成分としてNiを1.0〜3.5mass%、
Siを0.2〜0.9mass%、Mgを0.01〜
0.20mass%、Snを0.05〜1.5mass
%含み、さらに0.005〜0.3mass%Ag、
0.01〜0.5mass%Mn、それぞれ0.005
〜0.2mass%のFe、Cr、0.05〜2.0m
ass%Co、0.005〜0.1mass%Pの中か
ら選ばれ1種または2種以上を総量で0.005mas
s%〜2.0mass%含み、S、O含有量をそれぞれ
0.005mass%未満に制限し、残部Cu及び不可
避的不純物からなり、その結晶粒度が1μmを越え25
μm以下であることを特徴とする強度、導電性および応
力緩和特性、並びに内側曲げ半径が0Rの180°密着
曲げにおいてクラックを生じない曲げ加工性に優れた導
電性ばね用銅合金である。また、主成分としてNiを
1.0〜3.5mass%、Siを0.2〜0.9ma
ss%、Mgを0.01〜0.20mass%、Snを
0.05〜1.5mass%、Znを0.2〜1.5m
ass%含み、さらに0.005〜0.3mass%A
g、0.01〜0.5mass%Mn、それぞれ0.0
05〜0.2mass%のFe、Cr、0.05〜2.
0mass%Co、0.005〜0.1mass%Pの
中から選ばれ1種または2種以上を総量で0.005m
ass%〜2.0mass%含み、S、O含有量をそれ
ぞれ0.005mass%未満に制限し、残部Cu及び
不可避的不純物からなり、その結晶粒度が1μmを越え
25μm以下であることを特徴とする強度、導電性およ
び応力緩和特性、並びに内側曲げ半径が0Rの180°
密着曲げにおいてクラックを生じない曲げ加工性に優れ
た導電性ばね用銅合金である。The present invention further comprises, in addition to the above copper alloy, one or more selected from Ag, Mn, Fe, Cr, Co and P in a total amount of 0.005 mass% to 2.0.
It is a copper alloy characterized by containing mass% . Specifically, Ni as the main component is 1.0 to 3.5 mass% ,
Si is 0.2 to 0.9 mass% , Mg is 0.01 to
0.20 mass% , Sn 0.05 to 1.5 mass
% , And further 0.005-0.3 mass% Ag,
0.01-0.5 mass% Mn, 0.005 each
~ 0.2 mass% Fe, Cr, 0.05-2.0 m
ass% Co, 0.005 to 0.1 mass% P, and one or more kinds selected from the total amount of 0.005 mas
s% to 2.0 mass% , S and O contents are limited to less than 0.005 mass% each, the balance Cu and inevitable impurities, and the crystal grain size exceeds 1 μm 25
strength, conductivity and response characterized by being less than μm
180 ° close contact with force relaxation characteristics and inner bending radius of 0R
It is a copper alloy for conductive springs, which is excellent in bending workability and does not cause cracks in bending . Further, as the main component, Ni is 1.0 to 3.5 mass% and Si is 0.2 to 0.9 ma.
ss% , Mg 0.01 to 0.20 mass% , Sn 0.05 to 1.5 mass% , Zn 0.2 to 1.5 m
including ass% , and further 0.005-0.3 mass% A
g, 0.01 to 0.5 mass% Mn, 0.0 each
05-0.2 mass% Fe, Cr, 0.05-2.
0 mass% Co, 0.005-0.1 mass% P selected from the group of 1 or 2 or more in a total amount of 0.005 m
It is characterized by containing ass% to 2.0 mass% , limiting the S and O contents to less than 0.005 mass% each, the balance Cu and unavoidable impurities, and having a crystal grain size of more than 1 μm and 25 μm or less. Strength, conductivity and
And stress relaxation characteristics, and 180 ° with inner bending radius of 0R
Excellent bending workability that does not cause cracks in tight bending
And a conductive spring copper alloy.
【0009】また、本発明は、上記の銅合金に、さらに
Pb、Biの1種または2種を総量で0.005〜0.
13mass%含むことを特徴とする銅合金である。具
体的には、主成分としてNiを1.0〜3.5mass
%、Siを0.2〜0.9mass%、Mgを0.01
〜0.20mass%、Snを0.05〜1.5mas
s%含み、さらに0.005〜0.1mass%Pb、
0.005〜0.03mass%Biの1種または2種
を総量で0.005〜0.13mass%含み、S、O
含有量をそれぞれ0.005mass%未満に制限し、
残部Cu及び不可避的不純物からなり、その結晶粒度が
1μmを越え25μm以下であることを特徴とする強
度、導電性および応力緩和特性、並びに内側曲げ半径が
0Rの180°密着曲げにおいてクラックを生じない曲
げ加工性に優れた導電性ばね用銅合金である。また、主
成分としてNiを1.0〜3.5mass%、Siを
0.2〜0.9mass%、Mgを0.01〜0.20
mass%、Snを0.05〜1.5mass%、Zn
を0.2〜1.5mass%含み、さらに0.005〜
0.1mass%Pb、0.005〜0.03mass
%Biの1種または2種を総量で0.005〜0.13
mass%含み、S、O含有量をそれぞれ0.005m
ass%未満に制限し、残部Cu及び不可避的不純物か
らなり、その結晶粒度が1μmを越え25μm以下であ
ることを特徴とする強度、導電性および応力緩和特性、
並びに内側曲げ半径が0Rの180°密着曲げにおいて
クラックを生じない曲げ加工性に優れた導電性ばね用銅
合金である。In the present invention, the above copper alloy is further added with one or two of Pb and Bi in a total amount of 0.005 to 0.
It is a copper alloy containing 13 mass% . Specifically, Ni as the main component is 1.0 to 3.5 mass.
% , Si 0.2 to 0.9 mass% , Mg 0.01
~0.20 mass%, the Sn 0.05~1.5 mas
s% included, and 0.005 to 0.1 mass% Pb,
0.005 to 0.03 mass% Bi of 1 type or 2 types is contained in a total amount of 0.005 to 0.13 mass% , S, O
Each content is limited to less than 0.005 mass% ,
A strong characteristic that the balance consists of Cu and unavoidable impurities, and the crystal grain size is more than 1 μm and 25 μm or less.
Degree, conductivity and stress relaxation characteristics, and inner bend radius
A curve that does not cause cracks in 0 ° 180 ° close contact bending
It is a copper alloy for conductive springs that has excellent buffing workability . Further, as main components, Ni is 1.0 to 3.5 mass% , Si is 0.2 to 0.9 mass% , and Mg is 0.01 to 0.20.
mass% , Sn 0.05 to 1.5 mass% , Zn
0.2 to 1.5 mass% , and further 0.005
0.1 mass% Pb, 0.005-0.03 mass
% Bi in a total amount of 0.005 to 0.13
mass% and S and O contents of 0.005 m each
strength, conductivity and stress relaxation characteristics, characterized in that the crystal grain size is more than 1 μm and 25 μm or less, with the balance being Cu and unavoidable impurities, the content of which is limited to less than ass% .
And 180 ° contact bending with an inner bending radius of 0R
This is a copper alloy for conductive springs that does not cause cracks and has excellent bendability .
【0010】また、上記の銅合金に、さらにAg、M
n、Fe、Cr、Co、Pの中から選ばれ1種または2
種以上、及びPb、Biの1種または2種を総量で0.
005mass%〜2.0mass%含むことを特徴と
する銅合金である。具体的には、主成分としてNiを
1.0〜3.5mass%、Siを0.2〜0.9ma
ss%、Mgを0.01〜0.20mass%、Snを
0.05〜1.5mass%含み、さらに0.005〜
0.3mass%Ag、0.01〜0.5mass%M
n、それぞれ0.005〜0.2mass%のFe、C
r、0.05〜2.0mass%Co、0.005〜
0.1mass%Pの中から選ばれ1種または2種以
上、及び0.005〜0.1mass%Pb、0.00
5〜0.03mass%Biの1種または2種を総量で
0.005mass%〜2.0mass%含み、S、O
含有量をそれぞれ0.005mass%未満に制限し、
残部Cu及び不可避的不純物からなり、その結晶粒度が
1μmを越え25μm以下であることを特徴とする強
度、導電性および応力緩和特性、並びに内側曲げ半径が
0Rの180°密着曲げにおいてクラックを生じない曲
げ加工性に優れた導電性ばね用銅合金である。また、主
成分としてNiを1.0〜3.5mass%、Siを
0.2〜0.9mass%、Mgを0.01〜0.20
mass%、Snを0.05〜1.5mass%、Zn
を0.2〜1.5mass%含み、さらに0.005〜
0.3mass%Ag、0.01〜0.5mass%M
n、それぞれ0.005〜0.2mass%のFe、C
r、0.05〜2.0mass%Co、0.005〜
0.1mass%Pの中から選ばれ1種または2種以
上、及び0.005〜0.1mass%Pb、0.00
5〜0.03mass%Biの1種または2種を総量で
0.005mass%〜2.0mass%含み、S、O
含有量をそれぞれ0.005mass%未満に制限し、
残部Cu及び不可避的不純物からなり、その結晶粒度が
1μmを越え25μm以下であることを特徴とする強
度、導電性および応力緩和特性、並びに内側曲げ半径が
0Rの180°密着曲げにおいてクラックを生じない曲
げ加工性に優れた導電性ばね用銅合金である。In addition to the above copper alloy, Ag, M
1 or 2 selected from n, Fe, Cr, Co and P
Or more, and one or two of Pb and Bi in a total amount of 0.
It is a copper alloy characterized by containing 005 mass% to 2.0 mass% . Specifically, Ni is 1.0 to 3.5 mass% and Si is 0.2 to 0.9 ma as main components.
ss%, a Mg 0.01 to 0.20 mass%, wherein the Sn 0.05 to 1.5 mass%, further 0.005
0.3 mass% Ag, 0.01 to 0.5 mass% M
n, 0.005-0.2 mass% of Fe and C, respectively
r, 0.05 to 2.0 mass% Co, 0.005
One or two or more selected from 0.1 mass% P, and 0.005 to 0.1 mass% Pb, 0.00
5 to 0.03 mass% Bi of 1 type or 2 types in a total amount of 0.005 mass% to 2.0 mass% is contained, and S, O
Each content is limited to less than 0.005 mass% ,
A strong characteristic that the balance consists of Cu and unavoidable impurities, and the crystal grain size is more than 1 μm and 25 μm or less.
Degree, conductivity and stress relaxation characteristics, and inner bend radius
A curve that does not cause cracks in 0 ° 180 ° close contact bending
It is a copper alloy for conductive springs that has excellent buffing workability . Further, as main components, Ni is 1.0 to 3.5 mass% , Si is 0.2 to 0.9 mass% , and Mg is 0.01 to 0.20.
mass% , Sn 0.05 to 1.5 mass% , Zn
0.2 to 1.5 mass% , and further 0.005
0.3 mass% Ag, 0.01 to 0.5 mass% M
n, 0.005-0.2 mass% of Fe and C, respectively
r, 0.05 to 2.0 mass% Co, 0.005
One or two or more selected from 0.1 mass% P, and 0.005 to 0.1 mass% Pb, 0.00
5 to 0.03 mass% Bi of 1 type or 2 types in a total amount of 0.005 mass% to 2.0 mass% is contained, and S, O
Each content is limited to less than 0.005 mass% ,
A strong characteristic that the balance consists of Cu and unavoidable impurities, and the crystal grain size is more than 1 μm and 25 μm or less.
Degree, conductivity and stress relaxation characteristics, and inner bend radius
A curve that does not cause cracks in 0 ° 180 ° close contact bending
It is a copper alloy for conductive springs that has excellent buffing workability .
【0011】また、本発明の上記銅合金は、端子、コネ
クター材、スイッチ材のいずれかに用いられるものであ
ることを特徴とするものである。また、本発明は、冷間
加工後に再結晶処理を700〜920℃で行うことを特
徴とする導電性ばね用銅合金の製造方法である。また、
冷間加工後に再結晶処理を700〜920℃で行った後
に、420〜550℃で時効処理を行うことを特徴とす
る導電性ばね用銅合金の製造方法であるまた、冷間加工
後に再結晶処理を700〜920℃で行い、さらに25
%以下の冷間加工を行った後に、420〜550℃で時
効処理を行うことを特徴とする導電性ばね用銅合金の製
造方法である。さらに、冷間加工後に再結晶処理を70
0〜920℃で行い、次に25%以下の冷間加工、42
0〜550℃での時効処理を行った後に、さらに25%
以下の冷間加工、及び低温焼鈍を行うことを特徴とする
導電性ばね用銅合金の製造方法である。The copper alloy of the present invention is characterized in that it is used for any of terminals, connector materials and switch materials. Further, the present invention is a method for producing a copper alloy for a conductive spring, which comprises performing recrystallization treatment at 700 to 920 ° C. after cold working. Also,
A method for producing a copper alloy for a conductive spring, which comprises performing recrystallization treatment at 700 to 920 ° C. after cold working and then performing aging treatment at 420 to 550 ° C. Further, recrystallization after cold working The treatment is carried out at 700 to 920 ° C. for another 25
% Of cold working, and then aging treatment at 420 to 550 ° C. is a method for producing a copper alloy for a conductive spring. Furthermore, after cold working, recrystallization treatment is performed 70 times.
Perform at 0-920 ° C, then cold work up to 25%, 42
25% after aging treatment at 0-550 ° C
The method for producing a copper alloy for a conductive spring is characterized by performing the following cold working and low temperature annealing.
【0012】[0012]
【作用】本発明の銅合金は、Cuマトリックス中にNi
とSiの化合物を析出させ、適当な機械的強度及び熱・
電気導電性を有する銅合金に、Sn、Mg、Znを特定
量添加し、S、O含有量を制限して、かつ結晶粒度を1
μmを越え25μm以下として応力緩和特性と曲げ加工
性を改善することを骨子としている。本発明者らは、こ
の銅合金成分の含有量を詳細に規定することで実用的に
優れた特性を有する導電性ばね用銅合金、特に端子、コ
ネクター用として優れた特性を有する材料を実現させる
ことができることを見いだし、その結果本発明の銅合金
を得たものである。The copper alloy of the present invention has a Ni matrix in a Cu matrix.
And a compound of Si are deposited to obtain appropriate mechanical strength and heat.
A specific amount of Sn, Mg, and Zn is added to a copper alloy having electrical conductivity, the S and O contents are limited, and the grain size is 1
The main idea is to improve the stress relaxation characteristics and bending workability by making the thickness more than 25 μm and less than 25 μm. The present inventors realize a copper alloy for conductive springs having practically excellent properties, particularly a material having excellent properties for terminals and connectors, by defining the content of the copper alloy component in detail. It was found that the copper alloy of the present invention was obtained as a result.
【0013】以下に本発明の銅合金の成分限定理由を説
明する。CuにNiとSiを含有させるとNi−Si化
合物を作り、これをCu中に析出させ強度及び導電率を
向上させるものである。Ni量が1.0mass%未満
であると析出量が少なく目標とする強度が得られない。
逆にNi量が3.5mass%を越えると鋳造、熱間加
工時に強度上昇に寄与しない析出が生じ含有量に見合う
強度を得ることができないばかりか、熱間加工性、曲げ
加工性にも悪影響を与えることになる。Si量は析出す
るNiとSiの化合物がNi2Si相であると考えられ
るため、Ni量を決定すると最適なSi含有量が決ま
る。Si量が0.2mass%未満であるとNi量が少
ないときと同様充分な強度を得ることができない。逆に
Si含有量が0.9mass%を越えるときもNi量が
多い場合と同様の問題が生ずる。好ましくは、Niを
1.7〜2.8mass%、Siを0.4〜0.7ma
ss%に調整することが望ましい。The reasons for limiting the components of the copper alloy of the present invention will be described below. When Ni and Si are contained in Cu, a Ni-Si compound is produced and this is precipitated in Cu to improve strength and conductivity. If the Ni content is less than 1.0 mass% , the amount of precipitation is small and the target strength cannot be obtained.
On the other hand, if the Ni content exceeds 3.5 mass% , precipitation that does not contribute to the increase in strength occurs during casting and hot working, and not only the strength commensurate with the content cannot be obtained, but also the hot workability and bending workability. It will have an adverse effect. The amount of Si is considered to be the compound of precipitated Ni and Si in the Ni2Si phase. Therefore, determining the amount of Ni determines the optimum Si content. If the Si content is less than 0.2 mass% , sufficient strength cannot be obtained as in the case where the Ni content is small. On the contrary, when the Si content exceeds 0.9 mass% , the same problem occurs as when the Ni content is large. Preferably, Ni is 1.7 to 2.8 mass% and Si is 0.4 to 0.7 ma.
It is desirable to adjust to ss% .
【0014】Mg、Snは本発明の銅合金を構成する重
要な添加元素である。これらの元素は相互に関係しあっ
て良好な特性バランスを実現している。次に、これら元
素の限定理由を説明する。Mgは応力緩和特性を大幅に
改善するが、曲げ加工性には悪影響を及ぼす。応力緩和
特性の観点からは、0.01mass%以上で含有量は
多いほどよい。逆に曲げ加工性の観点からは、含有量が
0.20mass%を越えると良好な曲げ加工性を得る
ことは困難である。このような観点から、Mgの含有範
囲は0.01〜0.20mass%において良好なバラ
ンスを示す。曲げ加工性の観点からより好ましいMgの
含有範囲は、0.01〜0.1mass%である。Mg and Sn are important additive elements constituting the copper alloy of the present invention. These elements are related to each other to achieve a good property balance. Next, the reasons for limiting these elements will be described. Mg significantly improves the stress relaxation property, but adversely affects the bending workability. From the viewpoint of stress relaxation characteristics, the content is preferably as high as 0.01 mass% or more. On the contrary, from the viewpoint of bending workability, if the content exceeds 0.20 mass% , it is difficult to obtain good bending workability. From such a viewpoint, the Mg content shows a good balance in the range of 0.01 to 0.20 mass% . A more preferable Mg content range from the viewpoint of bending workability is 0.01 to 0.1 mass% .
【0015】さらに、Snを加えることにより、良好な
曲げ加工性を保ったまま、より応力緩和特性を改善でき
ることを見いだした。Snは、応力緩和特性の改善効果
を有するものの、その効果はMgほど大きくないが、M
gと相互に関係しあって良好な特性バランスを示すもの
である。Snを1.5mass%を越えて含有すると、
熱及び電気の伝導性が劣化し、実用上問題を来たす。S
n含有量はMg量との兼ね合いもあるが、0.05〜
1.5mass%で良好な特性バランスを示す。具体的
には、Mgが0.01〜0.05mass%の場合に
は、Snは0.8〜1.5mass%が好ましく、Mg
量が0.05〜0.1mass%の場合には、Snは
0.05〜0.8mass%が好ましい。Further, it was found that by adding Sn, the stress relaxation characteristics can be further improved while maintaining good bending workability. Although Sn has the effect of improving the stress relaxation characteristics, its effect is not as great as that of Mg.
It has a good characteristic balance by being interrelated with g. When Sn is contained in an amount of more than 1.5 mass% ,
The thermal and electrical conductivity deteriorates, causing practical problems. S
Although the n content has a trade-off with the Mg content, it is 0.05 to
A good property balance is exhibited at 1.5 mass% . More specifically, when Mg is 0.01 to 0.05 mass% is, Sn is preferably 0.8 to 1.5 mass%, Mg
When the amount is 0.05 to 0.1 mass% , Sn is preferably 0.05 to 0.8 mass% .
【0016】Znは応力緩和特性に寄与しないが、曲げ
加工性を改善することができる。Znを0.2〜1.5
mass%、好ましくは0.3〜1.0mass%含有
することにより、Mgを最大0.20mass%まで含
有させても実用上問題ないレベルの曲げ加工性を達成で
きる。またZnはSnメッキやハンダメッキの耐熱剥離
性、マイグレーション特性を改善する効果を有し、打ち
抜き加工性を改善する作用も有し、実用上の観点からZ
nを0.2mass%、好ましくは0.3mass%以
上含有させることが望ましい。打ち抜き加工性を改善す
る元素としては、Pb、Biがあるが、Pb、Biは多
量に添加すると熱間加工性を阻害するが、Znは製造性
に悪影響を及ぼさずに、打ち抜き加工性を改善できるた
め有効な添加元素である。その上限は熱・電気の伝導性
を考慮し、1.5mass%、好ましくは1.0mas
s%である。なお、本実施例からも、Mgとの共添でよ
り良い傾向にあることが示されている。Zn does not contribute to stress relaxation characteristics, but can improve bending workability. 0.2 to 1.5 for Zn
By containing the mass% , preferably 0.3 to 1.0 mass% , it is possible to achieve a bending workability of a level practically no problem even if Mg is contained up to 0.20 mass% at the maximum. Further, Zn has the effect of improving the heat-resistant peeling property of Sn plating or solder plating and the migration property, and also has the effect of improving the punching workability.
It is desirable that n is contained in an amount of 0.2 mass% , preferably 0.3 mass% or more. Elements that improve punching workability include Pb and Bi. If Pb and Bi are added in a large amount, hot workability is impaired, but Zn does not adversely affect productivity and improves punching workability. Since it is possible, it is an effective additive element. Its upper limit considering the conductive heat and electrical, 1.5 mass%, preferably 1.0 mas
s% . It should be noted that this example also shows that co-addition with Mg has a better tendency.
【0017】以上、Mg、Sn、Znの添加範囲を限定
した理由を詳述したが、これらの元素の限定範囲内でそ
れぞれ最大含有量とすることは好ましくない。実用上、
最もバランスの良好な含有量の範囲は、Mg:0.05
〜0.15mass%、Sn:0.2〜0.5mass
%、Zn:0.3〜0.8mass%である。The reasons for limiting the addition ranges of Mg, Sn, and Zn have been described in detail above, but it is not preferable to set the maximum contents of each of these elements within the limited ranges. In practice,
The most balanced content range is Mg: 0.05
~ 0.15 mass% , Sn: 0.2-0.5 mass
% , Zn: 0.3 to 0.8 mass% .
【0018】次に、Ag、Mn、Fe、Cr、Co、P
の含有量の範囲を限定した理由を説明する。Ag、M
n、Fe、Cr、Co、Pは、加工性を改善するという
点で類似の機能を有しているものであり、Ag、Mn、
Fe、Cr、Co、Pの中から選ばれ1種または2種以
上を0.005mass%〜2.0mass%含有させ
るものである。Next, Ag, Mn, Fe, Cr, Co, P
The reason for limiting the content range of will be described. Ag, M
n, Fe, Cr, Co and P have similar functions in terms of improving workability, and Ag, Mn,
One or two or more selected from Fe, Cr, Co and P are contained in an amount of 0.005 mass% to 2.0 mass% .
【0019】Agは、耐熱性を上げ、強度を上昇させる
と同時に、結晶粒の粗大化を阻止し、曲げ加工性を改善
することができる。従来より、Cu−Ni−Si系合金
の強度を上昇させるために種々の第三元素を添加するこ
とが試みられている処であるが、それらは大幅に導電率
を下げたり、曲げ成形性が劣化し、電子機器用用途とし
て好ましくない特性が現れるものであった。本発明は、
強度を向上し、且つその他の特性に悪影響を及ぼさない
元素の検討を繰り返した結果、Agが有効であることを
見いだしたものである。含有量が0.005mass%
未満であるとその効果が現れず、逆に0.3mass%
越えて含有すると特性上の悪影響はないものの、コスト
高となるので、Agの最適含有量は0.005〜0.3
mass%であり、より好ましくは0.005〜0.1
mass%である。Ag increases heat resistance and strength, and at the same time prevents coarsening of crystal grains and improves bending workability. Conventionally, it has been attempted to add various third elements in order to increase the strength of Cu-Ni-Si alloys, but they significantly reduce the electrical conductivity and the bend formability. It deteriorated and exhibited properties unfavorable for use in electronic devices. The present invention is
As a result of repeated examination of elements that improve strength and do not adversely affect other properties, it was found that Ag is effective. Content is 0.005 mass%
If it is less than 0.3 % , the effect does not appear, and conversely 0.3 mass%
If it is contained in excess, there is no adverse effect on the characteristics, but the cost increases, so the optimum content of Ag is 0.005-0.3.
mass% , and more preferably 0.005 to 0.1
mass% .
【0020】Mnは、強度を上昇させると同時に熱間加
工性を改善する効果があり、0.01mass%未満で
あるとその効果が小さく、0.5mass%を越えて含
有しても、含有量に見合った効果が得られないばかりで
なく、伝導性を劣化させる。よってMnの最適含有範囲
は、0.01〜0.5mass%であり、より好ましく
は0.03〜0.3mass%である。Mn has the effect of increasing the strength and at the same time improving the hot workability. If it is less than 0.01 mass% , the effect is small, and if it exceeds 0.5 mass% , Not only the effect commensurate with the content cannot be obtained, but also the conductivity is deteriorated. Therefore, the optimal content range of Mn is 0.01 to 0.5 mass% , and more preferably 0.03 to 0.3 mass% .
【0021】Fe、Crは、Siと結合し、Fe−Si
化合物、Cr−Si化合物を形成し強度を上昇させる。
またNiとの化合物を形成せずに銅マトリックス中に残
存するSiをトラップし、導電性を改善する効果があ
る。Fe−Si化合物、Cr−Si化合物は析出硬化能
が低いため、多くの化合物を生成させることは得策でな
い。また、0.2mass%を越えて含有すると曲げ加
工性が劣化してくる。これらの観点から、Fe、Crを
含有する場合の添加量は、0.005〜0.2mass
%であり、より好ましくは0.005〜0.1mass
%である。Fe and Cr are combined with Si to form Fe--Si.
A compound and a Cr-Si compound are formed to increase the strength.
It also has the effect of trapping Si remaining in the copper matrix without forming a compound with Ni, and improving the conductivity. Since Fe-Si compounds and Cr-Si compounds have low precipitation hardening ability, it is not a good idea to produce many compounds. Further, if the content exceeds 0.2 mass% , bending workability deteriorates. From these viewpoints, when Fe and Cr are contained, the addition amount is 0.005 to 0.2 mass.
% , And more preferably 0.005 to 0.1 mass
% .
【0022】Coは、Niと同様にSiと化合物を形成
し、機械的強度を向上させる。Coは、Niに比し高価
であるため、本発明ではCu−Ni−Si系合金を利用
しているが、コスト的に許されるのであれば、Cu−C
o−Si系やCu−Ni−Co−Si系を選択しても良
い。Cu−Co−Si系は時効析出させた場合に、Cu
−Ni−Si系より機械的強度、導電性共に僅かに良く
なる。したがって熱・電気の伝導性をが重視される部材
には有効である。また、Co−Si化合物は析出硬化能
が僅かに高いため、応力緩和特性も若干改善される傾向
にある。これらの観点から、Coを添加する場合の最適
添加量は、0.05〜2.0mass%である。Co, like Ni, forms a compound with Si and improves the mechanical strength. Since Co is more expensive than Ni, a Cu—Ni—Si alloy is used in the present invention, but if cost permits, Cu—C is used.
You may select o-Si type | system | group or Cu-Ni-Co-Si type | system | group. The Cu-Co-Si system is Cu when it is aged and precipitated.
Both mechanical strength and conductivity are slightly better than those of the Ni-Si system. Therefore, it is effective for members in which heat and electricity conductivity are important. Further, since the Co—Si compound has a slightly high precipitation hardening ability, the stress relaxation property tends to be slightly improved. From these points of view, the optimum amount of addition of Co is 0.05 to 2.0 mass% .
【0023】Pは、強度を上昇させると同時に導電性を
改善する効果を有する。多量の含有は粒界析出を助長し
て曲げ加工性を低下させる。よってPを添加する場合の
最適含有範囲は、0.005〜0.1mass%であ
り、より好ましくは0.005〜0.05mass%で
ある。これらを2種以上同時に添加する場合には、求め
られる特性に応じて適宜決定すれば良いが、耐熱性、S
nメッキ、ハンダメッキ耐熱剥離性、伝導性などの観点
から総量で0.005〜2.0mass%とした。P has the effect of increasing the strength and at the same time improving the conductivity. A large content promotes grain boundary precipitation and reduces bending workability. Therefore, when P is added, the optimum content range is 0.005 to 0.1 mass% , and more preferably 0.005 to 0.05 mass% . When two or more of these are added at the same time, it may be appropriately determined according to the required characteristics, but heat resistance, S
The total amount is 0.005 to 2.0 mass% from the viewpoints of n-plating, solder plating heat-resistant peeling property, conductivity, and the like.
【0024】次に、Pb、Biの含有量の範囲を限定し
た理由を説明する。Pb、Biは、打ち抜き加工性を改
善するもので、Pb、Biの1種または2種を0.00
5〜0.13mass%含有するものである。Pbは打
ち抜き加工性を改善する添加元素である。近年のプレス
高速化にともない、端子用材料にはより優れた加工性が
求められている。Pbは銅マトリックス中に分散し、破
壊の起点になるため打ち抜き加工性を改善する。Pb量
が0.005mass%未満であると特性改善効果がな
く、0.1mass%を越えて添加すると熱間加工性を
低下させるばかりでなく、曲げ加工性をも劣化させるた
め、0.005〜0.1mass%が最適であり、より
好ましくは0.005〜0.05mass%である。B
iも打ち抜き加工性を改善する添加元素である。0.0
05mass%未満であると特性改善効果が小さく、
0.03mass%を越えて添加するとPbと同様の特
性低下を来す。よってBiの最適含有範囲は、0.00
5〜0.03mass%であり、より好ましくは0.0
05〜0.02mass%である。Next, the reason why the range of Pb and Bi contents is limited will be described. Pb and Bi improve punching workability, and Pb and Bi are 0.001% or less.
5 to 0.13 mass% is contained. Pb is an additive element that improves punching workability. With the recent increase in press speed, terminal materials are required to have better workability. Pb is dispersed in the copper matrix and becomes the starting point of fracture, improving the punching workability. If the amount of Pb is less than 0.005 mass% , there is no property improving effect, and if it is added in excess of 0.1 mass% , not only the hot workability is deteriorated, but also the bendability is deteriorated. from 005 to .1 mass% is optimal, and more preferably from 0.005 to 0.05 mass%. B
i is also an additional element that improves punching workability. 0.0
If it is less than 05 mass% , the effect of improving the characteristics is small,
If it is added in excess of 0.03 mass% , the same characteristic deterioration as Pb will occur. Therefore, the optimum Bi content range is 0.00
5 to 0.03 mass% , more preferably 0.0
It is 05 to 0.02 mass% .
【0025】これらAg、Mn、Fe、Cr、Co、P
の中から選ばれ1種または2種以上、及びPb、Biの
1種または2種を同時に含有する場合には、求められる
特性に応じて適宜決定すれば良いが、耐熱性、Snメッ
キ、ハンダメッキ耐熱剥離性、伝導性などの観点から総
量で0.005〜2.0mass%とした。These Ag, Mn, Fe, Cr, Co and P
In the case of simultaneously containing one or more selected from the above, and one or two of Pb and Bi at the same time, the heat resistance, Sn plating, and solder may be appropriately determined according to the required characteristics. The total amount was 0.005 to 2.0 mass% from the viewpoints of plating heat resistance peeling property and conductivity.
【0026】次に、S、O含有量を0.005mass
%未満に制限しした理由を説明する。通常、工業的な銅
材料にはS、O2等が微量含まれるが、本発明はこれら
の含有量を厳密に制限することで上述した合金成分と後
述する結晶粒度の規定と相まって優れた特性の実現を図
るものである。Sは、熱間加工性を悪化させる元素であ
り、その含有量を0.005mass%未満と規定する
ことで、熱間加工性を向上させる。特にS含有量を0.
002mass%未満にすることが望ましい。Oは、そ
の含有量が0.005mass%以上であると、Mgが
酸化されて曲げ加工性が劣化する。O含有量を0.00
5mass%以下、特に0.002mass%未満にす
ることが望ましい。以上説明したS、Oは、通常の銅系
材料中に微量に含有される場合が多いが、本発明の銅合
金においては特に重要であり、その含有量を規定するこ
とで優れた特性が得られるもので、端子、コネクター用
材料に好適な特性を実現することを見いだしたのであ
る。Next, the S and O contents are set to 0.005 mass.
Explain the reason why it is limited to less than % . Usually, industrial copper materials contain a small amount of S, O 2, etc., but the present invention has excellent characteristics in combination with the alloy components described above and the grain size regulation described later by strictly limiting the contents thereof. It is intended to realize. S is an element that deteriorates hot workability, and improves the hot workability by defining its content to be less than 0.005 mass% . In particular, the S content should be 0.
It is desirable to set it to less than 002 mass% . When the content of O is 0.005 mass% or more, Mg is oxidized and bending workability deteriorates. O content 0.00
It is preferably 5 mass% or less, and particularly preferably less than 0.002 mass% . Although S and O described above are often contained in a small amount in ordinary copper-based materials, they are particularly important in the copper alloy of the present invention, and by defining their contents, excellent characteristics can be obtained. Therefore, they have found that they have suitable characteristics for materials for terminals and connectors.
【0027】上述した本発明の銅合金の構成において、
その特性を好適に実現するためには、結晶粒度が1μm
を越え25μm以下とすることが必要である。結晶粒度
が1μm以下であると、再結晶組織において混粒と成り
易く、曲げ加工性が低下すると同時に応力緩和特性が低
下する。逆に結晶粒度が25μmを越えて成長しても、
曲げ加工性に悪影響を及ぼす。従って、結晶粒度は1μ
mを越え25μm以下に調整する必要がある。In the above-mentioned composition of the copper alloy of the present invention,
In order to realize those characteristics properly, the crystal grain size is 1 μm
Over 25 μm or less. When the grain size is 1 μm or less, mixed grains are likely to be formed in the recrystallized structure, bending workability is deteriorated, and at the same time, stress relaxation property is deteriorated. Conversely, even if the grain size grows beyond 25 μm,
Bendability is adversely affected. Therefore, the grain size is 1μ
It is necessary to adjust to exceed 25 m and less than m.
【0028】次いで、本発明の銅合金の製造法について
説明する。本発明の銅合金は、冷間加工、例えば冷間圧
延した後に、再結晶と溶体化させる目的で熱処理を行
い、直ちに焼き入れを行う。また必要に応じて時効処理
を行うものである。本発明の銅合金における結晶粒度を
1μmを越え25μm以下の範囲に調整するためには、
再結晶処理の条件を詳細に制御する必要がある。700
℃未満の温度での熱処理は、混粒となり易く、920℃
を越える温度では結晶粒が粗大に成長しやすいので、冷
間加工後に再結晶処理を700〜920℃で行うもので
ある。また、冷却速度は出来るだけ素早く、10℃/s
以上の速度で冷却することが望ましい。Next, the method for producing the copper alloy of the present invention will be described. The copper alloy of the present invention is cold-worked, for example, cold-rolled, then heat-treated for the purpose of recrystallization and solution treatment, and immediately quenched. In addition, aging treatment is performed as necessary. In order to adjust the crystal grain size in the copper alloy of the present invention to a range of more than 1 μm and 25 μm or less,
It is necessary to control the conditions of the recrystallization process in detail. 700
Heat treatment at a temperature below ℃ tends to cause mixed grains,
Since the crystal grains are likely to grow coarsely at a temperature exceeding 1, the recrystallization treatment is performed at 700 to 920 ° C. after the cold working. Also, the cooling rate is as fast as possible, 10 ℃ / s
It is desirable to cool at the above rate.
【0029】次に、時効熱処理の条件については、時効
温度が420℃未満であると、析出硬化量が不十分であ
り、充分な特性を引き出すことができない。逆に550
℃を越える温度で処理すると、析出相が粗大に成長し、
強度が低下するばかりでなく、応力緩和特性も低下させ
てしまう。よって、時効処理温度は420〜550℃と
した。さらには、応力緩和特性は析出相の状態に大きく
影響を受けることが判っており、時効強度がピークを示
す温度近傍が最良条件である。一方、曲げ加工性は時効
強度がピークを示す温度から若干過時効側で熱処理を行
うことが望ましい。このような観点から好ましくは46
0〜530℃での処理が最適である。Next, as for the condition of the aging heat treatment, if the aging temperature is less than 420 ° C., the amount of precipitation hardening is insufficient and sufficient characteristics cannot be obtained. On the contrary, 550
When treated at a temperature above ℃, the precipitate phase grows coarsely,
Not only the strength is lowered, but also the stress relaxation property is lowered. Therefore, the aging treatment temperature was set to 420 to 550 ° C. Furthermore, it has been known that the stress relaxation characteristics are greatly affected by the state of the precipitation phase, and the best condition is near the temperature at which the aging strength shows a peak. On the other hand, regarding bending workability, it is desirable that the heat treatment is performed slightly on the overaging side from the temperature at which the aging strength shows a peak. From this viewpoint, it is preferably 46
The treatment at 0 to 530 ° C is optimal.
【0030】また、冷間加工後に再結晶処理(溶体化)
を700〜920℃で行い、さらに冷間加工(25%以
下)を行った後に420〜550℃で時効処理を行うも
のである。 後に述べる実施例では、溶体化後直ぐに時
効処理を行ったが、溶体化と時効の間に冷間加工を施す
ことも有効である。この場合には、曲げ加工性を劣化さ
せない断面減少率25%以下の加工が望ましい。また、
冷間加工後に再結晶処理(溶体化)を700〜920℃
で行い、冷間加工(25%以下)、420〜550℃で
時効処理を行った後に、さらに25%以下の冷間加工、
及び低温焼鈍を行うものである。このように時効処理後
に冷間加工を施しても構わない。この場合は本発明の特
徴である曲げ加工性を劣化させないために、断面減少率
25%以下の加工が望ましい。更に、前述の時効処理後
の冷間加工を行う場合には、その後に比較的低温での焼
鈍を行うことが推奨される。この焼鈍をバッチ式焼鈍で
行う場合には、250〜400℃の温度で0.5〜5h
r、走間焼鈍で行う場合には600〜800℃の温度で
5〜60sの条件で行うことが望ましい。この焼鈍は冷
間加工で導入された転位を再配列し、結果的には転位の
移動を抑制する作用を有する。従って、前述の冷間加工
を行った場合には、焼鈍を行うことにより応力緩和特性
を改善することができる。必要に応じて最終の熱処理前
若しくは後にテンションレベラーやローラーベラー等の
矯正を行っても良い。Recrystallization treatment (solution treatment) after cold working
At 700 to 920 ° C., cold working (25% or less), and then aging treatment at 420 to 550 ° C. In the examples described later, the aging treatment was performed immediately after the solution treatment, but it is also effective to perform the cold working between the solution treatment and the aging. In this case, it is desirable that the cross-section reduction rate is 25% or less so that bending workability is not deteriorated. Also,
Recrystallization treatment (solution treatment) after cold working is 700 to 920 ° C.
After cold working (25% or less), aging treatment at 420 to 550 ° C., further cold working of 25% or less,
And low temperature annealing. Thus, cold working may be performed after the aging treatment. In this case, in order to prevent the bending workability, which is a feature of the present invention, from deteriorating, it is desirable that the cross-section reduction rate be 25% or less. Furthermore, when performing the cold working after the above-mentioned aging treatment, it is recommended to perform annealing at a relatively low temperature after that. When this annealing is performed by batch type annealing, the temperature is 250 to 400 ° C. for 0.5 to 5 hours.
In the case of r and annealing during running, it is desirable to perform the annealing at a temperature of 600 to 800 ° C. for 5 to 60 s. This annealing rearranges the dislocations introduced by cold working, and consequently has the effect of suppressing the movement of dislocations. Therefore, when the cold working described above is performed, the stress relaxation characteristics can be improved by performing the annealing. If necessary, straightening such as a tension leveler or a roller leveler may be performed before or after the final heat treatment.
【0031】[0031]
【発明の実施の形態】本発明の銅合金は、優れた機械的
強度、曲げ加工性、応力緩和特性、Snメッキ剥離性、
打ち抜き性等を有し、特に、端子・コネクター材、スイ
ッチ材、リレー材等、一般導電材料等に求められる特性
を備えたものであり、実施例により詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The copper alloy of the present invention has excellent mechanical strength, bending workability, stress relaxation property, Sn plating peelability,
It has punching properties and the like, and in particular, has properties required for general conductive materials such as terminal / connector materials, switch materials, relay materials, etc., which will be described in detail with reference to Examples.
【0032】[0032]
【実施例1】本発明の第1の実施例を表1〜6に示し説
明する。表1は本発明例の合金組成、表2、表3は比較
例、従来例の合金組成であり、表4は本発明例合金の特
性、表5、表6は比較例、従来例の合金の特性を示すも
のである。なお、なお、表中の矢印は上の欄と同じこと
を示すものであり、(*)は耐力値が低く、試料セット
段階で塑性変形を起こしたために試験中止したものであ
る。[Embodiment 1] A first embodiment of the present invention will be described with reference to Tables 1-6. Table 1 shows the alloy composition of the present invention, Tables 2 and 3 show the alloy compositions of the comparative examples and the conventional example, Table 4 shows the characteristics of the inventive alloy, and Tables 5 and 6 show the alloys of the comparative example and the conventional example. It shows the characteristics of. The arrows in the table indicate the same as in the upper column, and (*) indicates that the test was stopped because the yield strength was low and plastic deformation occurred at the sample setting stage.
【0033】まず、高周波溶解炉にて、表1〜表3に記
す組成の合金を溶解し、冷却速度6℃/sで鋳込んだ。
鋳塊のサイズは厚さ30mm、幅100mm、長さ15
0mmである。次にこれらの鋳塊を900℃で熱間圧延
をしてから、速やかに冷却を行った。表面の酸化膜を除
去するため厚さ9mmまで面削してから、冷間圧延によ
り厚さ0.25mmに加工した。この後、供試材を再結
晶と溶体化させる目的で、750℃で30sの熱処理を
行い、直ちに15℃/s以上の冷却速度で焼き入れを行
った。時効処理は、不活性雰囲気中で515℃×2時間
の熱処理を施し、試験に供する材料とした。First, alloys having the compositions shown in Tables 1 to 3 were melted in a high frequency melting furnace and cast at a cooling rate of 6 ° C./s.
The ingot has a thickness of 30 mm, a width of 100 mm, and a length of 15
It is 0 mm. Next, these ingots were hot-rolled at 900 ° C. and then rapidly cooled. In order to remove the oxide film on the surface, the surface was ground to a thickness of 9 mm, and then cold rolled to a thickness of 0.25 mm. Then, for the purpose of recrystallizing and solutionizing the test material, heat treatment was performed at 750 ° C. for 30 s, and immediately quenching was performed at a cooling rate of 15 ° C./s or more. As the aging treatment, a heat treatment was performed at 515 ° C. for 2 hours in an inert atmosphere to obtain a material to be tested.
【0034】製造した材料からサンプリングして、結晶
粒度を測定し、TS(引張り強度)N/mm2、El
(伸び)%、EC(導電率)%IACS、曲げ加工性、
S.R.R(応力緩和率)%、Snメッキ剥離性、打ち
抜き性として破断面比率(%)、バリ(μm)の各種特
性評価を行った。Sampling is performed from the manufactured material, and the grain size is measured. TS (tensile strength) N / mm 2 , El
(Elongation)%, EC (conductivity)% IACS, bending workability,
S. R. Various characteristics such as R (stress relaxation rate)%, Sn plating releasability, fracture surface ratio (%) as punching property, and burr (μm) were evaluated.
【0035】結晶粒度、即ち結晶粒の大きさは、JIS
H0501に準じ、比較法と切断法を併用し観察を行っ
た。比較法では試験片を顕微鏡観察(75倍または20
0倍)して測定した。切断法では加工方向に平行な板厚
断面で測定を行った。引っ張り強度はJISZ2241
で、熱・電気の伝導性を示す値として、導電率をJIS
H0505に準じて測定した。The crystal grain size, that is, the size of the crystal grain is determined according to JIS
According to H0501, observation was carried out using both the comparative method and the cutting method. In the comparative method, the test piece was observed under a microscope (75 times or 20 times).
(0 times) and measured. In the cutting method, measurement was performed on a plate thickness cross section parallel to the processing direction. Tensile strength is JISZ2241
The electrical conductivity is defined by JIS as a value showing the conductivity of heat and electricity.
It measured according to H0505.
【0036】曲げ加工性の評価は、内側曲げ半径がOR
の180°密着曲げを行った。評価の指標は、
A.しわもなく良好
B.小さなしわが観察される
C.大きなしわが観察されるが、クラックには至ってい
ない
D.微細なクラックが観察される
E.明瞭にクラックが観察される
の5段階で評価し、評価C以上を実用上問題の無いレベ
ルと判断した。The bending workability was evaluated by determining that the inner bending radius was OR.
180 degree contact bending was performed. The evaluation index is A. No wrinkles and good. Small wrinkles are observed C. Large wrinkles are observed, but cracks have not been reached. E. In which fine cracks are observed The crack was clearly observed and evaluated on a scale of 5 and a rating of C or higher was judged to be a level having no practical problem.
【0037】応力緩和特性の評価は、日本電子材料工業
会標準規格であるEMAS−3003に準拠して行っ
た。ここで片持ちブロック式を採用し、表面最大応力が
450N/mm2となるように負荷応力を設定し、15
0℃の恒温槽で試験を行った。表4〜表6には、100
0hr試験後の緩和率(S.R.R)で示した。The stress relaxation characteristics were evaluated in accordance with EMAS-3003, which is a standard of the Japan Electronic Material Industry Association. Here, the cantilever block type is adopted, and the load stress is set so that the maximum surface stress is 450 N / mm 2.
The test was conducted in a constant temperature bath at 0 ° C. Tables 4 to 6 show 100
The relaxation rate (SR) after the 0 hr test is shown.
【0038】応力緩和の試験方法の片持ちブロック法に
ついて、図1(a)(b)(c)に示す。図1(a)は
斜視図、(b)は側面図であり、サンプル(1)の一方
は基台(2)に保持部材(3)で片持ち状態に支持し、
もう一方はブロック(4)によりサンプル(1)に歪み
δo(初期たわみ変位)を与えた状態にする。この状態
でサンプル(1)を150℃に所定時間(本実施例では
1000hr)加熱する。所定時間経過後、図1(c)
の側面図に示すように、ブロック(4)を取り除いた状
態での歪みδt(永久たわみ変位)を測定し、応力緩和
率(%)は次式で求めた。
応力緩和率(%)=(δt/δo)×100
なお、初期たわみ変位は、表面最大応力が所定の値(4
50N/mm2)になるよう、ヤング率、板厚等から計
算するものである(計算方法はEMAS−3003によ
る)。The cantilever block method of the stress relaxation test method is shown in FIGS. 1 (a), 1 (b) and 1 (c). 1A is a perspective view and FIG. 1B is a side view. One of the samples (1) is supported by a holding member (3) on a base (2) in a cantilevered state,
On the other hand, the sample (1) is given a strain δo (initial flexural displacement) by the block (4). In this state, the sample (1) is heated to 150 ° C. for a predetermined time (1000 hours in this embodiment). After a lapse of a predetermined time, FIG. 1 (c)
Strain δt (permanent flexural displacement) was measured with the block (4) removed, and the stress relaxation rate (%) was calculated by the following equation. Stress relaxation rate (%) = (δt / δo) × 100 In the initial flexural displacement, the maximum surface stress is a predetermined value (4
It is calculated from Young's modulus, plate thickness, etc. so as to be 50 N / mm 2 ) (the calculation method is according to EMAS-3003).
【0039】Snメッキの加熱剥離性は、1μmの光沢
Snメッキを施した試験片を150℃×1000時間の
大気加熱をしてから、180度の密着曲げ、および曲げ
戻しをした後、その部分のメッキ剥離を目視にて評価し
た。半田の剥離が認められる場合、表4〜6に「有」と
記した。The heat releasability of the Sn plating was obtained by heating a test piece plated with 1 μm of bright Sn plating at 150 ° C. for 1000 hours in the atmosphere, bending it 180 degrees, and then bending it back. The peeling of the plating was visually evaluated. When the peeling of the solder was observed, it was described as “Yes” in Tables 4 to 6.
【0040】打ち抜き性は、金型(SKD11製)で打
ち抜き試験(1mm×5mmの角孔を設ける)を行うこ
とにより調べた。そして5001回目から10000回
目の打ち抜き分から20個無作為に抽出したサンプルの
打ち抜き面を観察して破断部の厚さを測定した。表4〜
6には試験片の厚さに対する破断部の厚さの割合の平均
値を%表示で示す(表中でF.A.Rと表示)。バリ測
定についても同様に、5001回目から10000回目
の打ち抜き部分から20個無作為に抽出したサンプルの
バリの高さを接触式形状測定機で求め、平均値を表に記
載した。The punching property was examined by performing a punching test (providing a 1 mm × 5 mm square hole) with a mold (made by SKD11). Then, the thickness of the fractured portion was measured by observing the punched surfaces of the 20 samples randomly sampled from the 5001st to 10000th punching. Table 4-
6 shows the average value of the ratio of the thickness of the fractured part to the thickness of the test piece in% (indicated as FAR in the table). Similarly for the burr measurement, the heights of burrs of 20 samples randomly sampled from the punched portions at the 5001st to 10000th times were determined by a contact type profiler, and the average values are shown in the table.
【表1】 [Table 1]
【表2】 [Table 2]
【表3】 [Table 3]
【表4】 [Table 4]
【表5】 [Table 5]
【表6】 [Table 6]
【0041】表4から明らかなように、本発明例1〜2
1は、TS(引張り強度)、El(伸び)、EC(導電
率)、曲げ加工性、S.R.R(応力緩和率)、Snメ
ッキ剥離性、打ち抜き性の各種特性の何れも優れた特性
を示していることが判る。As is clear from Table 4, the invention examples 1-2
1 is TS (tensile strength), El (elongation), EC (conductivity), bending workability, S.I. R. It can be seen that all of various characteristics such as R (stress relaxation rate), Sn plating releasability, and punchability exhibit excellent characteristics.
【0042】一方、Ni−Si量の少ない比較例No.
22は、目的とする強度が得られず、打ち抜き加工性も
他の材料と比較して劣っている。逆にNi−Si量の多
い比較例No.23は、Ni−Si量の少ない本発明例
No.4と比較し強度の点では差はないが、曲げ加工性
では劣化傾向を示した。即ち、本発明で規定する量以上
のNi−Siを添加することは、曲げ加工性が劣るの
で、端子・コネクター用として不適である。On the other hand, Comparative Example No. 1 having a small amount of Ni-Si.
No. 22 does not have the desired strength and is inferior in punching workability to other materials. On the contrary, Comparative Example No. 1 having a large amount of Ni-Si. No. 23 of the present invention has a small amount of Ni-Si. Although there was no difference in strength as compared with No. 4, there was a tendency for deterioration in bending workability. That is, adding Ni-Si in an amount not less than the amount specified in the present invention is inferior in bending workability, and is not suitable for terminals and connectors.
【0043】Mgの添加量が少ない比較例No.24
は、本発明例のNo.2,No.5と比較し、応力緩和
特性が大幅に劣っている。これと同じ理由で比較例N
o.25は本発明例No.6,No.7より劣ってい
る。このことは、従来のCu−Ni−Si合金(従来例
No.42)にSnを単独で添加しても、応力緩和特性
には大きな改善効果を期待できないことを示すものであ
り、従来のSn入りCu−Ni−Si合金(従来例N
o.43)の特性と一致する。Comparative Example No. 1 containing a small amount of Mg. 24
No. of the present invention example. 2, No. Compared with No. 5, the stress relaxation characteristics are significantly inferior. For the same reason, Comparative Example N
o. No. 25 of the present invention example. 6, No. Inferior to 7. This shows that even if Sn alone is added to the conventional Cu-Ni-Si alloy (conventional example No. 42), a large improvement effect on the stress relaxation characteristics cannot be expected. Cu-Ni-Si alloy (conventional example N
o. It matches the characteristic of 43).
【0044】Mgの添加量が、本発明の規定量以上であ
る比較例No.26は、曲げ加工性が劣化している。こ
れは端子・コネクター材としては不適である。曲げ加工
性を若干改善できるZnを1mass%以上添加しても
良好な曲げ加工性は確保できなかった。Snの添加量が
少ない比較例No.27は、本発明例のNo.2と比較
し、応力緩和特性の点で劣っている。逆にSnの添加量
が多い比較例No.28は、Mgの効果と相まり、今回
製造を行った中で最も優れた応力緩和特性を示した組成
の一つであった。しかしながら、導電率が最も低くな
り、バランス的に優れているとは言えない。Znの添加
量が多い比較例No.29も導電率が低くなり、特性バ
ランスに優れない。Comparative Example No. 3 in which the added amount of Mg was more than the specified amount of the present invention. No. 26 has deteriorated bending workability. This is unsuitable as a terminal / connector material. Even if Zn was added in an amount of 1 mass% or more, which can slightly improve the bending workability, good bending workability could not be secured. Comparative example No. with a small addition amount of Sn. No. 27 of the example of the present invention. 2 is inferior to that of No. 2 in stress relaxation characteristics. On the contrary, the comparative example No. 1 containing a large amount of Sn. No. 28 was one of the compositions that showed the most excellent stress relaxation property in the production this time in combination with the effect of Mg. However, it has the lowest conductivity, and cannot be said to be excellent in balance. Comparative Example No. 1 in which the amount of Zn added was large. No. 29 also has a low electric conductivity and is not excellent in property balance.
【0045】Feの添加量が規定量以上である比較例N
o.30は、Fe−Si化合物が多量に生成し、析出硬
化量が低下したばかりでなく、曲げ加工性にも悪影響を
及ぼした。Pbの添加量を多くした比較例No.31は
熱間加工中に割れを生じ、正常に製造することが出来な
かった。その他、Sが本発明範囲外にある比較例No.
32は、熱間加工時に割れが生じ、その後の特性評価を
行えなかった。また、Oが多い比較例No.33は、M
gの酸化物が生成しており、曲げ加工性が劣化した。Comparative Example N in which the added amount of Fe is more than the specified amount
o. In No. 30, not only the Fe—Si compound was produced in a large amount, the precipitation hardening amount was lowered, but also the bending workability was adversely affected. Comparative example No. 1 in which the amount of Pb added was increased. No. 31 was cracked during hot working and could not be manufactured normally. In addition, Comparative Example No. S in which S is outside the scope of the present invention.
In No. 32, cracking occurred during hot working, and subsequent characteristic evaluation could not be performed. In addition, Comparative Example No. 1 containing a large amount of O. 33 is M
Since the oxide of g was generated, the bending workability was deteriorated.
【0046】比較例No.34は、再結晶させるための
焼鈍を680℃×30sで行った。その結果、平均結晶
粒は1μm以下で、比較的大きな結晶粒と小さな結晶粒
が混在する組織となった。不均一な組織のため、曲げ加
工性を行う試験片を採取する場所によっては、クラック
を生ずる結果となった。逆に、比較例No.35は93
0℃×30sで熱処理を行ったため、結晶粒はおよそ3
0μmとなった。粗大な結晶粒となったため、曲げ加工
性に悪影響を及ぼすばかりでなく、若干応力緩和特性も
低下した。Comparative Example No. In No. 34, annealing for recrystallization was performed at 680 ° C. for 30 seconds. As a result, the average crystal grain was 1 μm or less, and the structure was such that relatively large crystal grains and small crystal grains were mixed. Due to the non-uniform structure, cracks were generated depending on the place where the bending test piece was sampled. On the contrary, Comparative Example No. 35 is 93
Since the heat treatment was performed at 0 ° C for 30 s, the crystal grains were about 3
It became 0 μm. The coarse crystal grains not only adversely affect the bending workability but also slightly deteriorate the stress relaxation characteristics.
【0047】また比較例No.36〜No.41は、C
u−Ni−Si−Mg−Zn合金にSn以外の元素を添
加した比較例である。これらいずれの合金の応力緩和特
性もSnの添加量が少ない比較例No.27と同程度の
応力緩和特性であり、これらの元素の添加は応力緩和に
ほとんど寄与しないことが判る。Comparative Example No. 36-No. 41 is C
This is a comparative example in which an element other than Sn is added to the u-Ni-Si-Mg-Zn alloy. The stress relaxation characteristics of all of these alloys are those of Comparative Example No. 1 in which the addition amount of Sn is small. The stress relaxation characteristics are similar to those of No. 27, and it can be seen that the addition of these elements hardly contributes to stress relaxation.
【0048】次に、従来から存在する合金についてみる
と、従来例No.42は、Cu−Ni−Si合金であ
り、その他の添加元素は含まれていない。この場合、応
力緩和特性が良くない点と、Znを含まないため、Sn
メッキの加熱剥離性に問題がある。従来例No.43は
先述のとおり、Cu−Ni−Si系合金にSnとZnを
添加した材料である。Snメッキの加熱剥離性は改善さ
れているが、応力緩和特性は従来例No.41と同等で
あり不十分である。Next, looking at conventional alloys, the conventional example No. 42 is a Cu-Ni-Si alloy, and does not contain other additive elements. In this case, since the stress relaxation property is not good and Zn is not contained, Sn
There is a problem with the heat releasability of the plating. Conventional example No. As described above, 43 is a material in which Sn and Zn are added to the Cu-Ni-Si based alloy. Although the heat releasability of the Sn plating is improved, the stress relaxation characteristics of the conventional example No. It is equivalent to 41 and is insufficient.
【0049】No.44は、Mgを添加し、応力緩和特
性の改善を図った材料である。Mgの効果により応力緩
和特性は改善されているが、曲げ加工性に問題がある。
この従来例No.44と同等の応力緩和特性と良好な曲
げ加工性を得るためには、本発明例No.2のように、
Mg量を減らし、Snを添加し、更に曲げ加工性を改善
するZnを添加することで達成される。Zn添加効果に
より、Snメッキの加熱剥離性も改善される。No. 44 is a material in which Mg is added to improve the stress relaxation characteristic. Although the stress relaxation property is improved by the effect of Mg, there is a problem in bending workability.
This conventional example No. In order to obtain stress relaxation characteristics equivalent to those of No. 44 and good bending workability, the invention sample No. Like 2,
This is achieved by reducing the amount of Mg, adding Sn, and further adding Zn that improves bending workability. The effect of adding Zn also improves the heat peelability of Sn plating.
【0050】[0050]
【実施例2】本発明の第2の実施例を表7、表8で説明
する。第2の実施例は、上記実施例1に示した本発明例
No.2の組成からなる合金を、表7よる工程で製造し
て、表8に示すように、TS(引張り強度)N/m
m2、El(伸び)%、EC(導電率)%IACS、曲
げ加工性、S.R.R(応力緩和率)%、Snメッキ剥
離性、打ち抜き性としてF.A.R(%)、バリ(μ
m)の各種特性評価を行った。評価方法は実施例1と同
様である。[Embodiment 2] A second embodiment of the present invention will be described with reference to Tables 7 and 8. The second example is the same as Example No. 1 of the present invention shown in the first example. An alloy having the composition of No. 2 was manufactured by the process shown in Table 7, and as shown in Table 8, TS (tensile strength) N / m
m 2 , El (elongation)%, EC (conductivity)% IACS, bending workability, S.M. R. R (stress relaxation rate)%, Sn plating releasability, and F. A. R (%), burr (μ
Various characteristics of m) were evaluated. The evaluation method is the same as in Example 1.
【表7】 [Table 7]
【表8】 [Table 8]
【0051】表7、表8から明らかなように、本発明例
の工程で製造した合金である本発明例No.45〜N
o.53は何れも優れた特性を示した。しかしながら、
比較例No.54は熱処理温度が低く、結果的に、結晶
粒が均一でなく、曲げ加工性が劣化した。比較例No.
55は930℃×30sで熱処理を行ったために、結晶
粒はおよそ30μmとなった。粗大な結晶粒であるた
め、曲げ加工性に悪影響を及ぼすばかりでなく、若干応
力緩和特性も低下した。As is apparent from Tables 7 and 8, the invention example No. 1 which is an alloy produced in the steps of the invention example. 45-N
o. All of 53 showed excellent characteristics. However,
Comparative Example No. In No. 54, the heat treatment temperature was low, and as a result, the crystal grains were not uniform and bending workability deteriorated. Comparative Example No.
Since No. 55 was heat-treated at 930 ° C. × 30 s, the crystal grain became about 30 μm. The coarse crystal grains not only adversely affect bending workability, but also slightly deteriorated stress relaxation characteristics.
【0052】比較例No.56は時効温度が低く、析出
が不十分なため強度特性が劣化した。同時に応力緩和特
性も大幅に低下した。逆にNo.57は時効温度が高
く、析出物が粗大化したため、応力緩和特性が大幅に低
下した。比較例No.58は時効後に本発明で規定する
以上の加工率で冷間加工を行った例である。応力緩和特
性はむしろ優れるが、曲げ加工性が低下した。比較例N
o.59は時効後の冷間加工率は高くないが、その後熱
処理を行わなかった例である。伸びが低く曲げ加工性が
低下したばかりでなく、応力緩和特性も若干低下した。Comparative Example No. In No. 56, the aging temperature was low and the precipitation was insufficient, so that the strength characteristics deteriorated. At the same time, the stress relaxation characteristics were significantly reduced. Conversely, No. In No. 57, the aging temperature was high and the precipitate was coarsened, so that the stress relaxation characteristic was significantly lowered. Comparative Example No. Reference numeral 58 is an example in which cold working was performed after aging at a working rate higher than that specified in the present invention. The stress relaxation property was rather excellent, but the bending workability decreased. Comparative Example N
o. In No. 59, the cold workability after aging is not high, but no heat treatment is performed thereafter. Not only the elongation was low and bending workability was deteriorated, but also the stress relaxation property was slightly deteriorated.
【0053】[0053]
【発明の効果】以上記述したように、本発明の銅合金
は、Cuマトリックス中にNiとSiの化合物を析出さ
せ、Sn、Mg、或いは更にZnを特定量添加し、S、
O含有量を制限して、かつ結晶粒度を1μmを越え25
μm以下としたことにより、優れた機械的特性、伝導
性、応力緩和特性と曲げ加工性を兼ね備えた銅合金が得
られるという効果を奏するものである。特に、端子・コ
ネクター用として、強度や伝導性、応力緩和特性、曲げ
成形性に優れ、またSnメッキの耐加熱剥離性や打ち抜
き性にも優れるものであるから、近年の傾向である小
型、高性能化に好適に対応できる。また本発明は端子・
コネクター用途に好適なものであるが、その他スイッ
チ、リレー材等、一般導電材料としても好適な銅合金を
提供するという効果を奏するものである。As described above, in the copper alloy of the present invention, a compound of Ni and Si is precipitated in a Cu matrix, and Sn, Mg, or Zn is added in a specific amount, and S,
O content is limited and the grain size exceeds 1 μm 25
When the thickness is less than or equal to μm, a copper alloy having excellent mechanical characteristics, conductivity, stress relaxation characteristics, and bending workability can be obtained. In particular, for terminals and connectors, it is excellent in strength, conductivity, stress relaxation characteristics, bend formability, and also has excellent heat peeling resistance and punching resistance for Sn plating. Suitable for performance improvement. In addition, the present invention is
Although it is suitable for use in connectors, it also has the effect of providing a copper alloy suitable for general conductive materials such as switches and relay materials.
【図1】 本発明実施例の応力緩和の試験を説明する図FIG. 1 is a diagram illustrating a stress relaxation test according to an embodiment of the present invention.
1 サンプル 2 基台 3 保持部材 4 ブロック 1 sample 2 bases 3 holding member 4 blocks
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22F 1/00 661 C22F 1/00 661A 685 685Z 686 686A 686B 691 691B 694 694A (72)発明者 大山 好正 東京都千代田区丸の内2丁目6番1号古 河電気工業株式 会社内 (56)参考文献 特開 平3−188247(JP,A) 特開 平5−59468(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 9/00 C22F 1/00 - 3/02 H01B 1/02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C22F 1/00 661 C22F 1/00 661A 685 685Z 686 686A 686B 691 691B 694 694A (72) Inventor Yoshiyama Omasa Marunouchi, Chiyoda-ku, Tokyo 2-6-1, Furukawa Electric Co., Ltd. (56) Reference JP-A-3-188247 (JP, A) JP-A-5-59468 (JP, A) (58) Fields investigated (Int.Cl . 7 , DB name) C22C 9/00 C22F 1/00-3/02 H01B 1/02
Claims (11)
ss%、Siを0.2〜0.9mass%、Mgを0.
01〜0.20mass%、Snを0.05〜1.5m
ass%含み、S、O含有量をそれぞれ0.005ma
ss%未満に制限し、残部Cu及び不可避的不純物から
なり、その結晶粒度が1μmを越え25μm以下である
ことを特徴とする強度、導電性および応力緩和特性、並
びに内側曲げ半径が0Rの180°密着曲げにおいてク
ラックを生じない曲げ加工性に優れた導電性ばね用銅合
金(ただし、Niを1.6mass%、Siを0.4m
ass%、Snを0.5mass%、Mgを0.2ma
ss%、Pを0.01mass%含むものを除く)。1. Ni as the main component is 1.0 to 3.5 ma.
ss% , Si 0.2-0.9 mass% , Mg 0.
01 to 0.20 mass% , Sn 0.05 to 1.5 m
including ass% and S and O contents of 0.005 ma each
The strength, the conductivity and the stress relaxation property are not limited to less than ss% , and the balance is Cu and unavoidable impurities, and the grain size is more than 1 μm and 25 μm or less.
And the inner bending radius is 0R.
A copper alloy for conductive springs that does not cause racks and has excellent bending workability (however, Ni is 1.6 mass% and Si is 0.4 m).
ass%, Sn 0.5 mass%, Mg 0.2 ma
(Excluding those containing 0.01% by mass of ss% and P) .
ss%、Siを0.2〜0.9mass%、Mgを0.ss%, Si 0.2 to 0.9 mass%, Mg 0.
01mass%以上0.20mass%未満、Snを01 mass% or more and less than 0.20 mass%, Sn
0.05〜1.5mass%含み、S、O含有量をそれ0.05 ~ 1.5mass%, S, O content
ぞれ0.005mass%未満に制限し、残部Cu及びEach is limited to less than 0.005 mass% and the balance Cu and
不可避的不純物からなり、その結晶粒度が1μmを越えConsists of unavoidable impurities and its grain size exceeds 1 μm
25μm以下であることを特徴とする強度、導電性およ25 μm or less, strength, conductivity and
び応力緩和特性、並びに内側曲げ半径が0Rの180°And stress relaxation characteristics, and 180 ° with inner bending radius of 0R
密着曲げにおいてクラックを生じない曲げ加工性に優れExcellent bending workability that does not cause cracks in tight bending
た導電性ばね用銅合金。Copper alloy for conductive springs.
ss%、Siを0.2〜0.9mass%、Mgを0.
01mass%以上0.20mass%未満、Snを
0.05〜1.5mass%、Znを0.2〜1.5m
ass%含み、S、O含有量をそれぞれ0.005ma
ss%未満に制限し、残部Cu及び不可避的不純物から
なり、その結晶粒度が1μmを越え25μm以下である
ことを特徴とする強度、導電性および応力緩和特性、並
びに内側曲げ半径が0Rの180°密着曲げにおいてク
ラックを生じない曲げ加工性に優れた導電性ばね用銅合
金。3. Ni as the main component is 1.0 to 3.5 ma.
ss% , Si 0.2-0.9 mass% , Mg 0.
01 mass% or more and less than 0.20 mass% , Sn 0.05 to 1.5 mass% , Zn 0.2 to 1.5 m
including ass% and S and O contents of 0.005 ma each
The strength, the conductivity and the stress relaxation property are not limited to less than ss% , and the balance is Cu and unavoidable impurities, and the grain size is more than 1 μm and 25 μm or less.
And the inner bending radius is 0R.
Copper alloy for conductive springs that does not produce racks and has excellent bendability .
合金に、さらに0.005〜0.3mass%Ag、
0.01〜0.5mass%Mn、それぞれ0.005
〜0.2mass%のFe、Cr、0.05〜2.0m
ass%Co、0.005〜0.1mass%Pの中か
ら選ばれた1種または2種以上を総量で0.005ma
ss%〜2.0mass%含むことを特徴とする導電性
ばね用銅合金。4. A copper alloy according to any one of claims 1-3, further 0.005 to 0.3 mass% Ag,
0.01-0.5 mass% Mn, 0.005 each
~ 0.2 mass% Fe, Cr, 0.05-2.0 m
ass% Co, 0.005 ma with one or total of two or more selected from among 0.005 to 0.1 mass% P
A copper alloy for conductive springs, characterized by containing ss% to 2.0 mass% .
合金に、さらに0.005〜0.1mass%Pb、
0.005〜0.03mass%Biの1種または2種
を総量で0.005〜0.13mass%含むことを特
徴とする導電性ばね用銅合金。5. A copper alloy according to any one of claims 1-3, further 0.005 to 0.1 mass% Pb,
0.005-0.03 mass% Bi 1 type or 2 types are contained in 0.005-0.13 mass% in total amount, The copper alloy for electroconductive springs characterized by the above-mentioned.
合金に、さらに0.005〜0.3mass%Ag、
0.01〜0.5mass%Mn、それぞれ0.005
〜0.2mass%のFe、Cr、0.05〜2.0m
ass%Co、0.005〜0.1mass%Pの中か
ら選ばれた1種または2種以上、及び0.005〜0.
1mass%Pb、0.005〜0.03mass%B
iの1種または2種を総量で0.005mass%〜
2.0mass%含むことを特徴とする導電性ばね用銅
合金。6. A copper alloy according to any one of claims 1-3, further 0.005 to 0.3 mass% Ag,
0.01-0.5 mass% Mn, 0.005 each
~ 0.2 mass% Fe, Cr, 0.05-2.0 m
ass% Co, 1 kind or 2 or more selected from among 0.005 to 0.1 mass% P, and 0.005 to 0.
1 mass% Pb, 0.005-0.03 mass% B
The total amount of 1 type or 2 types of i is 0.005 mass% -
A copper alloy for conductive springs, which contains 2.0 mass% .
れかに用いられるものであることを特徴とする請求項1
乃至6のいずれかに記載の導電性ばね用銅合金。7. The material for use in any of a terminal, a connector material and a switch material.
7. A copper alloy for conductive springs according to any one of 6 to 6 .
0℃で行うことを特徴とする請求項1乃至7のいずれか
に記載の導電性ばね用銅合金の製造方法。8. The recrystallization treatment after cold working is 700 to 92.
It carries out at 0 degreeC, The manufacturing method of the copper alloy for electroconductive springs in any one of the Claims 1 thru | or 7 characterized by the above-mentioned.
0℃で行った後に、420〜550℃で時効処理を行う
ことを特徴とする請求項1乃至7のいずれかに記載の導
電性ばね用銅合金の製造方法。9. The recrystallization treatment after cold working is 700 to 92.
The method for producing a copper alloy for a conductive spring according to any one of claims 1 to 7 , wherein the aging treatment is performed at 420 to 550 ° C after the treatment at 0 ° C.
20℃で行い、さらに25%以下の冷間加工を行った後
に、420〜550℃で時効処理を行うことを特徴とす
る請求項1乃至7のいずれかに記載の導電性ばね用銅合
金の製造方法。10. The recrystallization treatment after cold working is 700-9.
Carried out at 20 ° C., after carrying out the processing for 25% or less of cold, the copper alloy for the conductive spring according to any one of claims 1 to 7, characterized in that the aging treatment at four hundred and twenty to five hundred fifty ° C. Production method.
20℃で行い、次に25%以下の冷間加工、420〜5
50℃での時効処理を行った後に、さらに25%以下の
冷間加工、及びバッチ式焼鈍で行う場合には250〜4
00℃の温度で0.5〜5hr、走間焼鈍で行う場合に
は600〜800℃の温度で5〜60sの条件で焼鈍を
行うことを特徴とする請求項1乃至7のいずれかに記載
の導電性ばね用銅合金の製造方法。11. The recrystallization treatment after cold working is 700 to 9
Performed at 20 ° C, then cold working up to 25%, 420-5
After aging treatment at 50 ° C., 250 to 4 if further cold working at 25% or less and batch annealing.
When performing annealing for 5 to 5 hours at a temperature of 00 ° C during running
The method for producing a copper alloy for a conductive spring according to any one of claims 1 to 7 , wherein annealing is performed at a temperature of 600 to 800 ° C for 5 to 60 seconds .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03362898A JP3510469B2 (en) | 1998-01-30 | 1998-01-30 | Copper alloy for conductive spring and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03362898A JP3510469B2 (en) | 1998-01-30 | 1998-01-30 | Copper alloy for conductive spring and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11222641A JPH11222641A (en) | 1999-08-17 |
JP3510469B2 true JP3510469B2 (en) | 2004-03-29 |
Family
ID=12391726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03362898A Expired - Fee Related JP3510469B2 (en) | 1998-01-30 | 1998-01-30 | Copper alloy for conductive spring and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3510469B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8070893B2 (en) | 2005-03-31 | 2011-12-06 | Jx Nippon Mining & Metals Corporation | Cu—Ni—Si—Co—Cr copper alloy for electronic materials and method for manufacturing same |
US8317948B2 (en) | 2005-03-24 | 2012-11-27 | Jx Nippon Mining & Metals Corporation | Copper alloy for electronic materials |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4329967B2 (en) | 2000-04-28 | 2009-09-09 | 古河電気工業株式会社 | Copper alloy wire suitable for IC lead pins for pin grid array provided on plastic substrate |
JP3520034B2 (en) * | 2000-07-25 | 2004-04-19 | 古河電気工業株式会社 | Copper alloy materials for electronic and electrical equipment parts |
JP3520046B2 (en) | 2000-12-15 | 2004-04-19 | 古河電気工業株式会社 | High strength copper alloy |
US7090732B2 (en) | 2000-12-15 | 2006-08-15 | The Furukawa Electric, Co., Ltd. | High-mechanical strength copper alloy |
JP4123330B2 (en) * | 2001-03-13 | 2008-07-23 | 三菱マテリアル株式会社 | Phosphorus copper anode for electroplating |
KR100513943B1 (en) * | 2001-03-27 | 2005-09-09 | 닛꼬 긴조꾸 가꼬 가부시키가이샤 | Copper and copper alloy, and method for production of the same |
US7182823B2 (en) * | 2002-07-05 | 2007-02-27 | Olin Corporation | Copper alloy containing cobalt, nickel and silicon |
JP4255330B2 (en) | 2003-07-31 | 2009-04-15 | 日鉱金属株式会社 | Cu-Ni-Si alloy member with excellent fatigue characteristics |
JP4566048B2 (en) * | 2005-03-31 | 2010-10-20 | 株式会社神戸製鋼所 | High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof |
JP5170881B2 (en) * | 2007-03-26 | 2013-03-27 | 古河電気工業株式会社 | Copper alloy material for electrical and electronic equipment and method for producing the same |
JP4926856B2 (en) * | 2007-06-29 | 2012-05-09 | 三菱伸銅株式会社 | Copper alloy strip for terminal and manufacturing method thereof |
CN101743333A (en) * | 2007-08-07 | 2010-06-16 | 株式会社神户制钢所 | copper alloy sheet |
AU2008305239B2 (en) * | 2007-09-28 | 2010-04-22 | Jx Nippon Mining & Metals Corporation | Cu-Ni-Si-Co-base copper alloy for electronic material and process for producing the copper alloy |
EP2333127A4 (en) * | 2008-08-05 | 2012-07-04 | Furukawa Electric Co Ltd | Copper alloy material for electrical/electronic component |
JP5550228B2 (en) * | 2008-10-24 | 2014-07-16 | 三菱伸銅株式会社 | Copper alloy deformed strip and method for producing copper alloy deformed strip |
JP4708485B2 (en) | 2009-03-31 | 2011-06-22 | Jx日鉱日石金属株式会社 | Cu-Co-Si based copper alloy for electronic materials and method for producing the same |
WO2011019042A1 (en) * | 2009-08-10 | 2011-02-17 | 古河電気工業株式会社 | Copper alloy material for electrical/electronic components |
JP4948678B2 (en) * | 2009-12-02 | 2012-06-06 | 古河電気工業株式会社 | Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same |
EP2508633A4 (en) * | 2009-12-02 | 2014-07-23 | Furukawa Electric Co Ltd | Copper alloy sheet and process for producing same |
JP4830035B2 (en) | 2010-04-14 | 2011-12-07 | Jx日鉱日石金属株式会社 | Cu-Si-Co alloy for electronic materials and method for producing the same |
JP2012072470A (en) | 2010-09-29 | 2012-04-12 | Jx Nippon Mining & Metals Corp | Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING THE SAME |
-
1998
- 1998-01-30 JP JP03362898A patent/JP3510469B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8317948B2 (en) | 2005-03-24 | 2012-11-27 | Jx Nippon Mining & Metals Corporation | Copper alloy for electronic materials |
US8070893B2 (en) | 2005-03-31 | 2011-12-06 | Jx Nippon Mining & Metals Corporation | Cu—Ni—Si—Co—Cr copper alloy for electronic materials and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
JPH11222641A (en) | 1999-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3510469B2 (en) | Copper alloy for conductive spring and method for producing the same | |
JP3520034B2 (en) | Copper alloy materials for electronic and electrical equipment parts | |
EP0579278B1 (en) | Processing of copper alloys with moderate conductivity and high strength | |
CN103282525B (en) | Copper alloy for electronic/electric devices, copper alloy thin plate, and conductive member | |
JP3699701B2 (en) | Easy-to-process high-strength, high-conductivity copper alloy | |
JP3520046B2 (en) | High strength copper alloy | |
JPH0841612A (en) | Copper alloy and its preparation | |
JP2002180165A (en) | Copper based alloy having excellent press blanking property and its production method | |
US4728372A (en) | Multipurpose copper alloys and processing therefor with moderate conductivity and high strength | |
JP4503696B2 (en) | Electronic parts made of copper alloy sheets with excellent bending workability | |
JP3797882B2 (en) | Copper alloy sheet with excellent bending workability | |
JP3408021B2 (en) | Copper alloy for electronic and electric parts and method for producing the same | |
KR101917416B1 (en) | Copper-cobalt-silicon alloy for electrode material | |
JP4393663B2 (en) | Copper-based alloy strip for terminal and manufacturing method thereof | |
CN112055756A (en) | Cu-co-si-fe-p-based alloy having excellent bending formability and method for producing the same | |
JP2019507252A (en) | Copper alloy material for automobile and electric / electronic parts and method for producing the same | |
JP2000256814A (en) | Manufacture of copper-based alloy bar for terminal | |
US7090732B2 (en) | High-mechanical strength copper alloy | |
JPH10195562A (en) | Copper alloy for electrical and electronic equipment, excellent in blanking workability, and its production | |
JP2006200042A (en) | Electronic component composed of copper alloy sheet having excellent bending workability | |
JP6246454B2 (en) | Cu-Ni-Si alloy and method for producing the same | |
JPH10265873A (en) | Copper alloy for electrical/electronic parts and its production | |
JPH10280072A (en) | Copper alloy for semiconductor lead frame | |
JP3094045U (en) | Copper alloy conductive spring | |
JPH11335800A (en) | Production of copper base alloy with excellent stress relaxation resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20031209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20031225 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080109 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090109 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090109 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100109 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110109 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |