JP3403449B2 - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JP3403449B2 JP3403449B2 JP13649693A JP13649693A JP3403449B2 JP 3403449 B2 JP3403449 B2 JP 3403449B2 JP 13649693 A JP13649693 A JP 13649693A JP 13649693 A JP13649693 A JP 13649693A JP 3403449 B2 JP3403449 B2 JP 3403449B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- aqueous electrolyte
- secondary battery
- electrolyte secondary
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、非水電解質二次電池、
特にその負極の改良に関するものである。The present invention relates to a non-aqueous electrolyte secondary battery,
Particularly, it relates to improvement of the negative electrode.
【0002】[0002]
【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解質二次電池は、高電圧で高エネルギー密度
が期待され、多くの研究が行われている。これまで非水
電解質二次電池の正極活物質には、LiCoO2、V2O
5、Cr2O5、MnO2、TiS2、MoS2などの遷移金
属の酸化物やカルコゲン化合物が知られている。これら
は層状もしくはトンネル構造を有し、リチウムイオンが
出入りできる結晶構造を持っている。一方、負極活物質
としては金属リチウムが多く検討されてきた。しかしな
がら、充電時にリチウム表面に樹枝状にリチウムが析出
することから、充放電効率が低下したり、正極と接して
内部短絡を生じたりするという問題点を有していた。2. Description of the Related Art Non-aqueous electrolyte secondary batteries using lithium or a lithium compound as a negative electrode are expected to have high energy density at high voltage, and many studies have been conducted. Hitherto, LiCoO 2 , V 2 O have been used as positive electrode active materials for non-aqueous electrolyte secondary batteries.
Oxides of transition metals such as 5 , Cr 2 O 5 , MnO 2 , TiS 2 and MoS 2 and chalcogen compounds are known. These have a layered structure or a tunnel structure, and have a crystal structure that allows lithium ions to enter and exit. On the other hand, as a negative electrode active material, many metallic lithiums have been studied. However, since lithium is dendritically deposited on the surface of lithium during charging, there are problems that the charge / discharge efficiency is reduced and an internal short circuit occurs in contact with the positive electrode.
【0003】[0003]
【発明が解決しようとする課題】このような問題を解決
する手段として、リチウムの樹枝状成長を抑制し、リチ
ウムを吸蔵・放出することのできるリチウム−アルミニ
ウムなどのリチウム合金板を負極を用いる検討がなされ
ている。しかしながら、リチウム合金板を用いた場合、
深い充放電を繰り返すと、電極の微細化が生じるので、
サイクル特性に問題があった。そこで、アルミニウムに
さらに他の元素を添加した合金を電極とすることで、電
極の微細化を抑制する提案がなされている(特開昭62
−119856号、特開平4−109562号公報な
ど)。しかし、十分な特性改善がなされていないのが現
状である。本発明は、このような問題を解決し、充放電
サイクル特性に優れた非水電解質二次電池を提供するこ
とを目的とする。As a means for solving such a problem, a study using a negative electrode of a lithium alloy plate such as lithium-aluminum capable of suppressing dendritic growth of lithium and inserting and extracting lithium. Has been done. However, when using a lithium alloy plate,
Repeated deep charge and discharge will cause miniaturization of the electrodes, so
There was a problem with cycle characteristics. Therefore, a proposal has been made to suppress the miniaturization of the electrode by using an alloy in which aluminum is further added with another element as an electrode (Japanese Patent Laid-Open No. 62-62160).
-1119856, JP-A-4-109562, etc.). However, the current situation is that the characteristics have not been sufficiently improved. An object of the present invention is to solve such problems and provide a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics.
【0004】[0004]
【課題を解決するための手段】本発明は、上記課題を解
決するために、充放電可能な正極と、非水電解質と、充
放電可能な負極を具備する非水電解質二次電池におい
て、前記負極にリチウムを可逆的に吸蔵・放出できるA
l−Si−Fe合金を用い、前記Al−Si−Fe合金
のSi含量を10〜50wt%、Fe含量を0.1〜8
wt%とすることを特徴とするものである。In order to solve the above-mentioned problems, the present invention provides a non-aqueous electrolyte secondary battery comprising a chargeable / dischargeable positive electrode, a non-aqueous electrolyte, and a chargeable / dischargeable negative electrode. A that can reversibly store and release lithium in the negative electrode
Using the 1-Si-Fe alloy , the Al-Si-Fe alloy
Si content of 10 to 50 wt%, Fe content of 0.1 to 8
and it is characterized in wt% and to Rukoto.
【0005】[0005]
【作用】AlにSiとFeを添加した合金を用いること
により、まずAlの硬度が増加し、機械的強度が向上す
る。従って、充放電の繰り返しによる微細化を抑制でき
る。ただし、Al−SiあるいはAl−Fe合金では、
充分な効果は得られず、両者を同時に添加する必要があ
る。SiはFeと異なりAl同様リチウムを吸蔵する能
力があり、硬度を高めるとともに、添加による合金重量
当りのリチウム収容能力の低下を抑えることができる。
添加量としては、Al−Si−Fe合金総重量に対し
て、Siが10〜50%、Feが0.1〜8%が好まし
い。Si、Feの量がそれぞれ10%、0.1%未満で
は機械的強度が不十分で十分なサイクル寿命が得られな
い。逆に添加量を多くすると、Siに関しては50%を
超えてもサイクル性の向上は認められない。またFeに
関しては8%を超えると合金重量当りのリチウム吸蔵能
力が低下するためか、逆にサイクル寿命は低下する。By using an alloy in which Si and Fe are added to Al, hardness of Al is first increased and mechanical strength is improved. Therefore, miniaturization due to repeated charging and discharging can be suppressed. However, in Al-Si or Al-Fe alloy,
It is not possible to obtain a sufficient effect, and it is necessary to add both at the same time. Unlike Fe, Si has the ability to occlude lithium similarly to Al, so that the hardness can be increased and the reduction of the lithium storage capacity per alloy weight due to the addition can be suppressed.
The addition amount is preferably 10 to 50% of Si and 0.1 to 8% of Fe with respect to the total weight of the Al-Si-Fe alloy. If the amounts of Si and Fe are less than 10 % and 0.1%, respectively, the mechanical strength is insufficient and sufficient cycle life cannot be obtained. When increasing the addition amount Conversely, improved cycle properties shall not be permitted even if more than 50% for Si. On the other hand, if Fe exceeds 8%, the lithium storage capacity per alloy weight will decrease, and conversely the cycle life will decrease.
【0006】一方、このAl−Si−Fe合金は硬いた
め、従来の圧延により厚さ数100μm程度のシートと
するのは困難になる場合がある。しかし、上記合金を粉
末にし、さらに炭素材粉末と結着剤を混合して電極を構
成することにより、数100μm程度までの厚みの電極
は作製可能となり、工程上の問題は解決できる。On the other hand, since this Al-Si-Fe alloy is hard, it may be difficult to form a sheet having a thickness of about 100 μm by conventional rolling. However, by forming the above alloy into powder and further mixing the carbon material powder and the binder to form the electrode, an electrode having a thickness up to about several hundreds of μm can be produced, and the process problem can be solved.
【0007】[0007]
【実施例】以下、本発明の実施例について詳細に説明す
る。Al−Si−Fe合金の特性を評価するため、図1
に示したコイン形電池を作製して特性を調べた。充電・
放電に対して可逆性を有する正極活物質として、LiM
n2O4を用いた。正極活物質100gに対して、導電剤
としてのアセチレンブラック7gおよび結着剤としての
ポリ4フッ化エチレン7gを加え、混合して正極合剤と
する。この正極合剤1gを直径17.5mmの円板に加圧
成型して正極1とし、ケース2の中央に配置する。この
上に微孔性ポリプロピレンのセパレータ3を置き、非水
電解質を注液する。非水電解質には、エチレンカーボネ
ートとジメトキシエタンの体積比1:1の混合溶媒に1
モル/lの過塩素酸リチウム(LiClO4)を溶解し
たものを用いた。EXAMPLES Examples of the present invention will be described in detail below. To evaluate the characteristics of the Al-Si-Fe alloy, FIG.
The coin-shaped battery shown in was prepared and the characteristics were investigated. charging·
As a positive electrode active material having reversibility to discharge, LiM
n 2 O 4 was used. To 100 g of the positive electrode active material, 7 g of acetylene black as a conductive agent and 7 g of polytetrafluoroethylene as a binder were added and mixed to obtain a positive electrode mixture. 1 g of this positive electrode mixture is pressure-molded into a disk having a diameter of 17.5 mm to form a positive electrode 1, which is placed in the center of the case 2. A microporous polypropylene separator 3 is placed on this, and a non-aqueous electrolyte is injected. For the non-aqueous electrolyte, 1: 1 in a mixed solvent of ethylene carbonate and dimethoxyethane in a volume ratio of 1: 1.
It was prepared by dissolving lithium perchlorate mol / l (LiClO 4).
【0008】表1に示す各種組成の平均粒径50μmの
Al−Si−Fe合金粉末60gに黒鉛粉末30gと結
着剤としてスチレンブタジエンゴム粉末10gを混合し
て負極合剤とし、この合剤0.1gを直径17.5mmの
円板に加圧成型して負極4とする。この負極をセパレー
タ上にのせ、さらにその上に、外周部にポリプロピレン
のガスケット5を付けた封口板6を組み合わせて封口
し、電池とする。比較例として、同様にAl粉末、Al
−Fe合金粉末、Al−Si合金粉末をそれぞれ用いて
構成した負極を用いた電池も作製した。[0008] 60g of Al-Si-Fe alloy powder having an average particle diameter of 50μm of various compositions shown in Table 1 was mixed with 30g of graphite powder and 10g of styrene-butadiene rubber powder as a binder to prepare a negative electrode mixture. A negative electrode 4 is obtained by pressure molding 1 g of a circular plate having a diameter of 17.5 mm. This negative electrode is placed on a separator, and a sealing plate 6 having a polypropylene gasket 5 on the outer peripheral portion is further combined and sealed thereon to form a battery. As a comparative example, similarly, Al powder, Al
A battery using a negative electrode constituted by using —Fe alloy powder and Al—Si alloy powder was also manufactured.
【0009】これらの電池について、電圧範囲4.2〜
3Vにおいて、2mAの電流で充放電を行った。表1な
らびに図2、図3に、放電容量が初期放電容量の50%
まで低下した時のサイクル数を示す。For these batteries, the voltage range 4.2-
Charging / discharging was performed at a current of 2 mA at 3V. In Table 1 and FIGS. 2 and 3, the discharge capacity is 50% of the initial discharge capacity.
It shows the number of cycles when it has dropped to.
【0010】[0010]
【表1】 [Table 1]
【0011】表1、図2、図3に示すように、負極合金
中のSi含量が増えるにしたがってサイクル性は向上
し、50wt%あたりまでサイクル性は伸びる。50w
t%を超えるとほとんどサイクルは向上しない。また、
Feに関しても、含量が8wt%あたりまで含量が増え
るにしたがってサイクル性は向上する。逆に15wt%
まで増えると容量は低下する。さらにSi、Fe両者が
同時に添加されていることで、サイクル性は大きく向上
している。As shown in Table 1, FIG. 2 and FIG. 3, the cycle property is improved as the Si content in the negative electrode alloy is increased, and the cycle property is extended up to about 50 wt%. 50w
When it exceeds t%, the cycle hardly improves. Also,
Regarding Fe, the cycleability is improved as the content increases up to around 8 wt%. Conversely, 15 wt%
Capacity increases as Furthermore, since both Si and Fe are added at the same time, the cycle property is greatly improved.
【0012】以上の結果から、SiとFeの両方を適切
な量含んだAl−Si−Fe合金がサイクル性を著しく
向上できることがわかる。Si、Feは、Alに比べて
融点が高いことから、合金作製時は、両者の添加量がで
きるだけ少ない方が溶解温度が低くなりコスト的に有利
になる。従って、これらの添加量は、Al−Si−Fe
合金総重量に対して、Siが10〜50%、Feは0.
1〜8%が好ましい。なお、上記実施例では、コイン形
電池に適用した例を説明したが、本発明はこの構造に限
定されるものではなく、円筒型、角型、偏平型などの形
状の二次電池においても同様の効果があることは言うま
でもない。From the above results, it can be seen that the Al-Si-Fe alloy containing appropriate amounts of both Si and Fe can remarkably improve the cycle property. Since Si and Fe have higher melting points than Al, when the alloy is produced, the melting temperature becomes lower and the cost becomes more advantageous when the addition amount of both is as small as possible. Therefore, the addition amount of these is Al-Si-Fe.
With respect to the total weight of the alloy, Si is 10 to 50% and Fe is 0.
1-8% is preferable. In addition, although the example applied to the coin type battery has been described in the above embodiment, the present invention is not limited to this structure, and the same applies to a secondary battery having a shape such as a cylindrical shape, a square shape, and a flat shape. It goes without saying that there is an effect of.
【0013】[0013]
【発明の効果】以上のように、本発明によれば、負極に
リチウムを可逆的に吸蔵・放出できるAl−Si−Fe
合金を用い、前記Al−Si−Fe合金のSi含量を1
0〜50wt%、Fe含量を0.1〜8wt%とするこ
とにより、優れた充放電サイクル特性を有する非水電解
質二次電池を得ることができる。As described above, according to the present invention, Al-Si-Fe capable of reversibly occluding and releasing lithium in the negative electrode.
Alloy, and the Si content of the Al-Si-Fe alloy is 1
0~50Wt%, by 0.1~8Wt% and to Rukoto the Fe content, it is possible to obtain a nonaqueous electrolyte secondary battery having excellent charge-discharge cycle characteristics.
【図1】本発明の実施例における非水電解質二次電池の
縦断面図である。FIG. 1 is a vertical sectional view of a non-aqueous electrolyte secondary battery in an example of the present invention.
【図2】負極合金のSi含量と二次電池のサイクル特性
の関係を示す図である。FIG. 2 is a diagram showing the relationship between the Si content of a negative electrode alloy and the cycle characteristics of a secondary battery.
【図3】負極合金のFe含量と二次電池のサイクル特性
の関係を示す図である。FIG. 3 is a diagram showing the relationship between the Fe content of a negative electrode alloy and the cycle characteristics of a secondary battery.
1 正極 2 ケース 3 セパレータ 4 負極 5 ガスケット 6 封口板 1 positive electrode 2 cases 3 separator 4 Negative electrode 5 gasket 6 sealing plate
───────────────────────────────────────────────────── フロントページの続き (72)発明者 美藤 靖彦 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平4−109562(JP,A) 特開 平1−276563(JP,A) 特開 平4−286875(JP,A) 特表 平4−506434(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/62 H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiko Mito 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-4-109562 (JP, A) JP-A-1-276563 (JP, A) JP-A-4-286875 (JP, A) JP-A-4-506434 ( JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/00-4/62 H01M 10/40
Claims (2)
リチウムを可逆的に吸蔵・放出できるAl−Si−Fe
合金を含む負極を具備し、前記Al−Si−Fe合金の
Si含量が10〜50wt%、Fe含量が0.1〜8w
t%であることを特徴とする非水電解質二次電池。1. A chargeable / dischargeable positive electrode, a non-aqueous electrolyte, and Al-Si-Fe capable of reversibly occluding and releasing lithium.
A negative electrode including an alloy, the Al-Si-Fe alloy
Si content is 10-50wt%, Fe content is 0.1-8w
non-aqueous electrolyte secondary battery, wherein t% der Rukoto.
の粉末と炭素材と結着剤とを含む混合物から構成された
請求項1記載の非水電解質二次電池。Wherein said negative electrode, wherein the Al-Si-Fe alloy powder and the non-aqueous electrolyte secondary battery configured according to claim 1, wherein a mixture containing carbon material and a binder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13649693A JP3403449B2 (en) | 1993-05-13 | 1993-05-13 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13649693A JP3403449B2 (en) | 1993-05-13 | 1993-05-13 | Non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06325764A JPH06325764A (en) | 1994-11-25 |
JP3403449B2 true JP3403449B2 (en) | 2003-05-06 |
Family
ID=15176527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13649693A Expired - Fee Related JP3403449B2 (en) | 1993-05-13 | 1993-05-13 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3403449B2 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0963651A (en) * | 1995-06-12 | 1997-03-07 | Hitachi Ltd | Nonaqueous secondary battery, and its negative electrode material |
JP3713900B2 (en) * | 1996-07-19 | 2005-11-09 | ソニー株式会社 | Negative electrode material and non-aqueous electrolyte secondary battery using the same |
US6203944B1 (en) | 1998-03-26 | 2001-03-20 | 3M Innovative Properties Company | Electrode for a lithium battery |
US6255017B1 (en) | 1998-07-10 | 2001-07-03 | 3M Innovative Properties Co. | Electrode material and compositions including same |
EP1028476A4 (en) | 1998-09-08 | 2007-11-28 | Sumitomo Metal Ind | Negative electrode material for nonaqueous electrode secondary battery and method for producing the same |
US6555272B2 (en) | 1998-09-11 | 2003-04-29 | Nippon Steel Corporation | Lithium secondary battery and active material for negative electrode in lithium secondary battery |
US6428933B1 (en) | 1999-04-01 | 2002-08-06 | 3M Innovative Properties Company | Lithium ion batteries with improved resistance to sustained self-heating |
US6664004B2 (en) | 2000-01-13 | 2003-12-16 | 3M Innovative Properties Company | Electrode compositions having improved cycling behavior |
US6699336B2 (en) | 2000-01-13 | 2004-03-02 | 3M Innovative Properties Company | Amorphous electrode compositions |
JP3895932B2 (en) * | 2001-01-17 | 2007-03-22 | 三洋電機株式会社 | Negative electrode for lithium secondary battery and method for producing the same |
US7498100B2 (en) * | 2003-08-08 | 2009-03-03 | 3M Innovative Properties Company | Multi-phase, silicon-containing electrode for a lithium-ion battery |
JP5021982B2 (en) * | 2005-08-26 | 2012-09-12 | パナソニック株式会社 | Nonaqueous electrolyte secondary battery |
EP1955393B1 (en) * | 2005-12-01 | 2014-08-27 | 3M Innovative Properties Company | Electrode compositions based on an amorphous alloy having a high silicon content |
JP5652161B2 (en) * | 2010-11-26 | 2015-01-14 | 日産自動車株式会社 | Si alloy negative electrode active material for electrical devices |
JP5768967B2 (en) * | 2011-03-07 | 2015-08-26 | 日産自動車株式会社 | Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP5621753B2 (en) | 2011-11-15 | 2014-11-12 | 信越化学工業株式会社 | Anode material for lithium ion battery |
US9306216B2 (en) | 2012-02-01 | 2016-04-05 | Samsung Sdi Co., Ltd. | Negative active material, method of preparing the same, negative electrode for lithium secondary battery including negative active material, and lithium secondary battery including negative electrode |
KR101825920B1 (en) | 2013-07-16 | 2018-03-22 | 삼성에스디아이 주식회사 | Negative active material, negative electrode and lithium battery including the negative active material, and method for manufacturing the negative active material |
KR102152883B1 (en) | 2014-01-27 | 2020-09-07 | 삼성에스디아이 주식회사 | Negative active material, negative electrode and lithium battery including the negative active material, and method for manufacturing the negative active material |
CN105870405B (en) * | 2016-05-02 | 2018-02-09 | 北京工业大学 | A kind of method that alloy is welded and taken off using Alloy by Laser Surface Remelting technology composite diffusion and prepares lithium ion battery silicium cathode |
-
1993
- 1993-05-13 JP JP13649693A patent/JP3403449B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06325764A (en) | 1994-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3403449B2 (en) | Non-aqueous electrolyte secondary battery | |
JP5143852B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3291750B2 (en) | Non-aqueous electrolyte secondary battery and method of manufacturing the same | |
JP4056183B2 (en) | Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
JP3791797B2 (en) | battery | |
JPH1186854A (en) | Lithium secondary battery | |
JPH06318454A (en) | Nonaqueous electrolyte secondary battery | |
JPH08102333A (en) | Nonaqueous electrolytic secondary battery | |
JP3301931B2 (en) | Lithium secondary battery | |
JP3405418B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH10208777A (en) | Non-aqueous electrolyte secondary battery | |
JP2548460B2 (en) | Negative electrode for non-aqueous electrolyte secondary battery | |
JPH04294059A (en) | Negative electrode for secondary battery with non-aqueous electrolyte | |
JP4439660B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3508411B2 (en) | Lithium ion secondary battery | |
JP3565478B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH05251080A (en) | Negative electrode for nonaqueous electrolyte secondary cell and its manufacture | |
JPH08321301A (en) | Lithium secondary battery | |
JP3177257B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH10255766A (en) | Nonaqueous electrolyte secondary battery | |
JP3405419B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2709303B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3168600B2 (en) | Negative electrode for non-aqueous electrolyte secondary batteries | |
JPH113698A (en) | Lithium ion secondary battery | |
JPH1154122A (en) | Lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |