JP3216415B2 - Heated mirror - Google Patents

Heated mirror

Info

Publication number
JP3216415B2
JP3216415B2 JP09581294A JP9581294A JP3216415B2 JP 3216415 B2 JP3216415 B2 JP 3216415B2 JP 09581294 A JP09581294 A JP 09581294A JP 9581294 A JP9581294 A JP 9581294A JP 3216415 B2 JP3216415 B2 JP 3216415B2
Authority
JP
Japan
Prior art keywords
mirror
angle
electrode wire
narrow
feeding point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09581294A
Other languages
Japanese (ja)
Other versions
JPH07277151A (en
Inventor
哲哉 杉山
誠 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP09581294A priority Critical patent/JP3216415B2/en
Priority to PCT/JP1994/001848 priority patent/WO1995012508A1/en
Priority to EP94931674A priority patent/EP0677434B1/en
Priority to CA002153061A priority patent/CA2153061A1/en
Priority to US08/492,083 priority patent/US5990449A/en
Priority to DE69430117T priority patent/DE69430117T2/en
Publication of JPH07277151A publication Critical patent/JPH07277151A/en
Application granted granted Critical
Publication of JP3216415B2 publication Critical patent/JP3216415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rear-View Mirror Devices That Are Mounted On The Exterior Of The Vehicle (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、浴室の鏡や、車両用ド
アミラー等に好適に用いられる、防曇用又はミラーの表
面に付着した水滴、雨滴、露、氷といったものを除去す
るヒーター付ミラーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heater with a heater which is preferably used for bathroom mirrors, vehicle door mirrors and the like, and which removes water droplets, raindrops, dew, ice, etc. for anti-fog or on the mirror surface. About the mirror.

【0002】[0002]

【従来の技術】降雨時や、寒冷地の降雪時の車両の走行
において、バックミラー等に水滴が付着したり氷結した
りすることにより、後方の視認が不十分となり走行安全
性が損なわれることを防ぐことを目的として、ミラー表
面に付着した水滴、氷などを加温して除去するために加
熱できるミラーが種々提案されている。
2. Description of the Related Art When a vehicle travels during rainfall or snowfall in a cold region, water drops adhere to the rearview mirror or the like and freeze, so that the visibility behind the vehicle becomes insufficient and traveling safety is impaired. Various mirrors have been proposed that can be heated to remove water droplets, ice, and the like adhering to the mirror surface by heating them for the purpose of preventing such problems.

【0003】例えば、実公昭58−28937号公報に
は、鏡板の裏面に、熱伝導率の高い均熱板を密着状態で
配置し、この均熱板の裏面に発熱体を接合した車両用バ
ックミラーが開示されている。また、実公昭62−33
648号公報には、ミラー本体の背面に平面上のヒータ
を固着し、ヒーターのパターンをミラーの周縁部を中心
部より密にしたヒーター付ミラーが開示されている。更
に、実開平4−102599号公報には、電極によって
発熱領域が複数に分割されているミラー用面状発熱体が
開示されている。
For example, Japanese Utility Model Publication No. 58-28937 discloses a vehicle back in which a heat equalizing plate having a high thermal conductivity is disposed in close contact with the back surface of a head plate, and a heating element is joined to the back surface of the heat equalizing plate. A mirror is disclosed. 62-33
Japanese Patent Publication No. 648 discloses a mirror with a heater in which a flat heater is fixed to the back surface of a mirror main body, and the pattern of the heater is made closer at the periphery of the mirror than at the center. Further, Japanese Utility Model Application Laid-Open No. 4-102599 discloses a planar heating element for a mirror in which a heating region is divided into a plurality of regions by electrodes.

【0004】上記のミラー又はミラー用面状発熱体にお
いては、良好な視界が得られるようミラー全面を均一に
加温すべく、複雑な発熱抵抗体パターンや複雑な電極パ
ターンを形成した電熱基板をミラー基板裏面へ固着させ
る等の方法が採られていた。しかし、ミラー基板と別体
の電熱基板を用いる方法では、複雑な発熱抵抗体パター
ンや電極パターンを設計・製造しなければならず、コス
トが高くなるという問題があった。また、別体の電熱基
板からの熱伝導によりミラー基板が加温されるため、熱
効率が悪く水滴などの除去に時間が長くかかるという問
題もあった。そこで、実開平5−13872号公報のよ
うに、ミラー基板の表面に、反射膜兼発熱抵抗体を形成
し、この反射膜兼発熱抵抗体の表面に絶縁用オーバーコ
ート層を設けたヒーター付ミラーが提案されている。
[0004] In the above-mentioned mirror or the planar heating element for a mirror, an electric heating substrate on which a complicated heating resistor pattern or a complicated electrode pattern is formed in order to uniformly heat the entire surface of the mirror so that a good view can be obtained. A method such as fixation to the back surface of the mirror substrate has been adopted. However, in the method using an electric heating substrate separate from the mirror substrate, a complicated heating resistor pattern and an electrode pattern must be designed and manufactured, and there is a problem that the cost is increased. Further, since the mirror substrate is heated by heat conduction from the separate electric heating substrate, there is a problem that thermal efficiency is poor and it takes a long time to remove water droplets and the like. Therefore, as disclosed in Japanese Utility Model Laid-Open No. 5-13872, a mirror with a heater in which a reflecting film and a heating resistor are formed on the surface of a mirror substrate and an overcoat layer for insulation is provided on the surface of the reflecting film and the heating resistor. Has been proposed.

【0005】[0005]

【考案が解決しようとする課題】しかし、反射膜兼発熱
抵抗体をミラー基板表面に形成した場合には、熱効率は
改善されるものの、ミラーの中心部のみが昇温し易く、
端部における水滴などの除去には長時間を要する。ま
た、ミラー全面の加温をなすためには、各電極線をミラ
ー基板の周辺部近傍に設けることが行われているが、特
に、車両用のドアミラーはミラー基板の形状として円形
や矩形でなく略平行四辺形、略台形、略楕円形、略菱形
といったような、ミラー基板外縁の作る内角が小さい部
分(狭角部)とこれより大きい部分(広角部)とを有し
ているものが用いられているため、電極線は狭角部と広
角部の双方向に延びることになる。このような場合、特
に狭角部近傍が加温され難く、この狭角部の水滴などの
除去を速やかに行おうとすると、多大の電力を投入せね
ばならず、効率が悪いばかりでなく、中央部の過加熱に
より樹脂ホルダーなど周辺部品の焼失・変形や人間の接
触などによるやけどといった災害をもたらすことにもな
る。
However, when the reflection film and the heating resistor are formed on the surface of the mirror substrate, the thermal efficiency is improved, but only the center of the mirror easily rises in temperature.
It takes a long time to remove water droplets and the like at the end. Further, in order to heat the entire surface of the mirror, each electrode wire is provided in the vicinity of the peripheral portion of the mirror substrate. In particular, a door mirror for a vehicle is not a circular or rectangular shape as a mirror substrate. The one having a small inner angle portion (narrow angle portion) and a larger portion (wide angle portion) formed by the outer edge of the mirror substrate, such as a substantially parallelogram, a substantially trapezoid, a substantially elliptical shape, or a substantially diamond shape, is used. Therefore, the electrode wire extends in both directions of the narrow-angle portion and the wide-angle portion. In such a case, especially in the vicinity of the narrow-angle portion, it is difficult to heat, and in order to quickly remove water droplets and the like in the narrow-angle portion, a large amount of power must be supplied, which is not only inefficient, but also in the center. Overheating of the part may also cause disasters such as burns and deformation of the peripheral parts such as the resin holder and burns due to human contact.

【0006】[0006]

【課題を解決するための手段】本発明は、上述した従来
の課題を解決するためになしたもので、狭角部と広角部
とを有するミラー基板上に反射膜兼発熱抵抗体膜、又は
反射膜及び発熱抵抗体膜を形成し、この発熱抵抗体膜に
通電加温するための電極を設けたヒーター付ミラーにお
いて、前記電極の少なくとも1個を一端が狭角部に、他
端が広角部に在るように配置し、前記電極水平方向の、
給電点に対しミラー基板の狭角部側電極線端部における
電圧降下を、広角部側電極線端部における電圧降下より
小さくなしたことを特徴とするヒーター付ミラーを要旨
とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and comprises a reflection film and a heating resistor film on a mirror substrate having a narrow angle portion and a wide angle portion. In a mirror with a heater in which a reflective film and a heating resistor film are formed, and an electrode for energizing and heating the heating resistor film is provided , at least one of the electrodes has one end in a narrow-angle portion,
End is positioned such that the angle section, of the electrode horizontally,
The gist of the present invention is a mirror with a heater, wherein the voltage drop at the end of the electrode wire on the narrow angle side of the mirror substrate with respect to the feeding point is made smaller than the voltage drop at the end of the electrode wire on the wide angle side.

【0007】図1は本発明の一実施例である車両用ドア
ミラーに用いるヒーター付ミラーの裏面斜視模式図であ
り、図2はその縦断面模式図である。参照符号1は、ガ
ラスなどの透明材料よりなる略平行四辺形のミラー基板
であり、このミラー基板1の四方のR付けされた角は、
ミラー基板1外縁の作る内角が小さい部分(狭角部)1
b、1cとこれより大きい部分(広角部)1a、1dと
なっている。このミラー基板1の裏面には、反射膜兼発
熱抵抗体膜2が形成されている。この反射膜兼発熱抵抗
体膜2はチタン、クロム、ニクロムなどの膜をスパッタ
リング法や真空蒸着法により形成されたものである。な
お、反射膜兼発熱抵抗体膜2は、本実施例のように、ミ
ラー基板1裏面に形成した膜が反射膜と発熱抵抗体膜と
を兼ねているものである場合以外の構成も採用できる。
例えば、複層の膜を形成して、各々の膜に反射膜として
の働きと発熱抵抗体膜としての働きを重ね合せたもの
や、反射膜と発熱抵抗体膜との間に絶縁層を形成し、電
気的に接続されないよう形成したものも採用できる。複
層の膜を形成する場合、第1層は、材料としてアルミニ
ウム、クロム、ニッケル、ニクロム系合金、ニッケル−
燐などを用い、スパッタリング法、真空蒸着法又はめっ
き法などにより形成し、第2層は、材料としてチタン、
チタンシリサイド、クロムシリサイド、窒化タンタル、
炭化チタン、炭化タングステン、ホウ化ニオブ、鉄−ク
ロム−アルミニウム系合金などを用い、スパッタリング
法、真空蒸着法又はめっき法などにより形成することが
できる。また、反射膜と発熱抵抗体膜とを別個に形成す
る場合、反射膜としては材料としてアルミニウム、クロ
ム、ニッケル、ニクロム系合金、ニッケル−燐などを用
い、スパッタリング法、真空蒸着法又はめっき法などに
より形成し、絶縁層としてはシリカを用い、発熱抵抗体
膜としては材料としてチタン、チタンシリサイド、クロ
ムシリサイド、窒化タンタル、炭化チタン、炭化タング
ステン、ホウ化ニオブ、鉄−クロム−アルミニウム系合
金などを用い、スパッタリング法、真空蒸着法又はめっ
き法などにより形成することができる。
FIG. 1 is a schematic rear perspective view of a mirror with a heater used in a vehicle door mirror according to an embodiment of the present invention, and FIG. 2 is a schematic vertical sectional view thereof. Reference numeral 1 denotes a substantially parallelogram-shaped mirror substrate made of a transparent material such as glass.
Mirror substrate 1 Small inner angle part (narrow angle part) 1 formed by outer edge
b, 1c and larger portions (wide-angle portions) 1a, 1d. On the back surface of the mirror substrate 1, a reflection film / heating resistor film 2 is formed. The reflection film / heat generating resistor film 2 is formed by sputtering or vacuum deposition of a film of titanium, chromium, nichrome, or the like. The reflection film / heating resistor film 2 may have a configuration other than the case where the film formed on the back surface of the mirror substrate 1 serves as both the reflection film and the heating resistor film as in the present embodiment. .
For example, a multi-layered film is formed, and each film has a function as a reflection film and a function as a heating resistor film, or an insulating layer is formed between the reflection film and the heating resistor film. However, a member formed so as not to be electrically connected can also be employed. When a multi-layer film is formed, the first layer is made of aluminum, chromium, nickel, a nichrome-based alloy, nickel-
Using phosphorus or the like, formed by a sputtering method, a vacuum evaporation method, a plating method, or the like, and the second layer is formed of titanium,
Titanium silicide, chromium silicide, tantalum nitride,
It can be formed by a sputtering method, a vacuum evaporation method, a plating method, or the like using titanium carbide, tungsten carbide, niobium boride, an iron-chromium-aluminum-based alloy, or the like. When the reflective film and the heating resistor film are formed separately, the reflective film is made of aluminum, chromium, nickel, a nichrome-based alloy, nickel-phosphorus, or the like, and is formed by a sputtering method, a vacuum evaporation method, a plating method, or the like. The insulating layer is made of silica, and the heating resistor film is made of titanium, titanium silicide, chromium silicide, tantalum nitride, titanium carbide, tungsten carbide, niobium boride, iron-chromium-aluminum alloy, or the like. It can be formed by a sputtering method, a vacuum evaporation method, a plating method, or the like.

【0008】さらに、この反射膜兼発熱抵抗体膜2の裏
面には、前記反射膜兼発熱抵抗体膜2に通電するため
の、ミラー基板1の狭角部と広角部の双方向に延在する
一対の対向する電極線3a、3bよりなる電極が設けら
れている。この対向する電極線3a、3bは、ミラー端
部における加温も可能なように、その間隔が、端部近傍
における電極間隔が中央部における電極間隔より狭くな
るように設けられている。電極線3aにおいてE1はミ
ラー基板1の狭角部1b側電極線端部であり、E2はミ
ラー基板1の広角部1a側電極線端部である。また、電
極線3bにおいて、E3はミラー基板1の狭角部1c側
電極線端部であり、E4はミラー基板1の広角部1d側
電極線端部である。この電極線3a、3bは種々の方法
で形成することができる。例えば、銅や銀ペーストを用
いて銅や銀の薄層を形成したり、その上にハンダを施し
たり、ニッケルめっきによりニッケルの薄層を形成した
りなどである。また、ミラー全面の均一な加温をなすた
めに、電極線の材質・幅・厚さなどを変えることによ
り、場所により不均一な抵抗値を持たせた電極であって
も良い。更に、ミラー裏面は、電気的絶縁のため、温度
変化によりクラックが発生しないヤング率の低い樹脂・
ゴム等の絶縁材料4によりコーティングされている。参
照符号5は前記電極線3a、3bと給電回路(不図示)
とを半田付け等により接続するためのリード線であり、
A1、A2は、それぞれの電極線の給電点である。尚、
電極線内における給電点は、複数個であってもよい。
Further, on the back surface of the reflecting film / heating resistor film 2, the mirror substrate 1 extends in both directions of a narrow-angle portion and a wide-angle portion for supplying electricity to the reflecting film / heating resistor film 2. An electrode composed of a pair of opposed electrode lines 3a and 3b is provided. The opposed electrode wires 3a and 3b are provided such that the interval between the electrodes near the end is smaller than the electrode between the central portion so that the mirror can be heated at the end. In the electrode wire 3a, E1 is the end of the electrode wire on the narrow-angle portion 1b side of the mirror substrate 1, and E2 is the end of the electrode wire on the wide-angle portion 1a of the mirror substrate 1. In the electrode wire 3b, E3 is the end of the electrode wire on the narrow angle portion 1c side of the mirror substrate 1, and E4 is the end of the electrode wire on the wide angle portion 1d side of the mirror substrate 1. The electrode wires 3a and 3b can be formed by various methods. For example, a thin layer of copper or silver is formed using a copper or silver paste, solder is applied thereon, or a thin layer of nickel is formed by nickel plating. Further, in order to uniformly heat the entire surface of the mirror, an electrode having a non-uniform resistance value depending on the location may be used by changing the material, width, thickness, etc. of the electrode wire. In addition, the mirror back surface is electrically insulated and has a low Young's modulus resin that does not crack due to temperature changes.
It is coated with an insulating material 4 such as rubber. Reference numeral 5 denotes the electrode lines 3a and 3b and a power supply circuit (not shown).
Are connected by soldering or the like.
A1 and A2 are feeding points of the respective electrode wires. still,
The number of feeding points in the electrode wire may be plural.

【0009】前記電極線3a、3bにおいて、給電点A
1、A2に対しミラー基板1の狭角部1b、1c側電極
線端部E1、E3における電圧降下を、広角部1a、1
d側電極線端部E2、E4における電圧降下より小さく
するためには、たとえば、電極線3a、3bにおける給
電点A1、A2の設置位置を電極線3a、3bの中央よ
り狭角側となしたり、給電点A1、A2より狭角部1
b、1c側の電極線を広角部側1a、1dの電極線より
幅広くしたり、厚くしたり、給電点A1、A2より狭角
部1b、1c側の電極線を広角部側1a、1dの電極線
より抵抗値の低い材料で形成したりすることで達成でき
る。
In the electrode wires 3a and 3b, a feeding point A
The voltage drops at the narrow-angle portions 1b and 1c side electrode wire ends E1 and E3 of the mirror substrate 1 with respect to the wide-angle portions 1a and 1
In order to reduce the voltage drop at the ends E2 and E4 of the d-side electrode wires, for example, the installation positions of the feeding points A1 and A2 in the electrode wires 3a and 3b are set to be narrower than the center of the electrode wires 3a and 3b. , The narrower portion 1 than the feeding points A1 and A2
The electrode wires on the b and 1c sides are wider or thicker than the electrode wires on the wide-angle portions 1a and 1d, and the electrode wires on the narrow-angle portions 1b and 1c from the feeding points A1 and A2 are connected on the wide-angle portion sides 1a and 1d. This can be achieved by forming the material with a lower resistance value than the electrode wire.

【0010】[0010]

【作用】本発明のヒーター付ミラーにおいて、ミラー基
板狭角部を含む全面が所望通りの温度制御の下、均一な
加温が可能になるのは、従来加温され難かった狭角部に
印加される電圧を、広角部に印加される電圧より実質上
高くすることで、発熱を促進し、効率的にミラー基板全
面を加温できるようになしたためである。
In the mirror with a heater according to the present invention, uniform heating can be performed on the entire surface including the mirror substrate narrow-angle portion under desired temperature control because it is applied to the narrow-angle portion which has conventionally been difficult to be heated. This is because, by making the applied voltage substantially higher than the voltage applied to the wide-angle portion, heat generation is promoted, and the entire mirror substrate can be efficiently heated.

【0011】[0011]

【実施例】以下、実施例によってより詳細に説明する。 実施例1 図1に示す車両用ドアミラーにおいて、ガラス製ミラー
基板1上に、チタン膜をスパッタリング法により0.0
5μm厚形成して反射膜兼発熱抵抗体膜2とし、更に銅
ペーストのスクリーン印刷法により抵抗値の均一な銅薄
層を電極3として形成し、この電極3の電極線3a、3
bの中間点より狭角部1b、1c寄りに設定した給電点
A1、A2にリード線5を接続してヒーター付ミラーを
作製した。前記給電点A1−A2間にDC12Vの電圧
を印加したところ2.3Aの電流が流れた。このとき、
給電点A1−狭角部側電極線端部E1、給電点A1−広
角部側電極線端部E2、給電点A2−狭角部側電極線端
部E3、給電点A2−広角部側電極線端部E4間の電圧
降下は、それぞれ0.35V、0.72V、0.34
V、0.75Vで、給電点に対しミラー基板の狭角部側
電極線端部の電圧降下は、広角部側電極線端部のそれよ
り小さく、50%以下であった。このヒーター付ミラー
の加温をサーモスタットにより制御したところ、ミラー
基板の狭角部近傍の温度がやや低くなるも、ミラー表面
の温度を45〜65℃の範囲で設定通り制御することが
できた。
The present invention will be described below in more detail with reference to examples. Example 1 In the vehicle door mirror shown in FIG. 1, a titanium film was formed on a glass mirror substrate 1 by a sputtering method.
The reflective film / heat generating resistor film 2 is formed to a thickness of 5 μm, and a thin copper layer having a uniform resistance value is formed as an electrode 3 by a screen printing method using a copper paste.
The lead wire 5 was connected to the feeding points A1 and A2 set closer to the narrow corners 1b and 1c than the middle point of b, thereby manufacturing a mirror with a heater. When a voltage of 12 V DC was applied between the feeding points A1 and A2, a current of 2.3 A flowed. At this time,
Feeding point A1-Narrow-angle-side electrode wire end E1, Feeding point A1-Wide-angle-side electrode wire end E2, Feeding point A2-Narrow-angle-side electrode wire end E3, Feeding point A2-Wide-angle side electrode wire The voltage drops between the ends E4 are 0.35V, 0.72V, 0.34V, respectively.
At V and 0.75 V, the voltage drop at the end of the electrode wire on the narrow-angle side of the mirror substrate with respect to the feeding point was smaller than that at the end of the electrode wire on the wide-angle side and was 50% or less. When the heating of the mirror with heater was controlled by a thermostat, the temperature of the mirror surface could be controlled as set within the range of 45 to 65 ° C., although the temperature near the narrow-angle portion of the mirror substrate was slightly lowered.

【0012】実施例2 実施例1のヒーター付ミラーにおいて、給電点A1、A
2を実施例1よりミラー基板のより狭角部側に設けた以
外は実施例1と同様になしてヒーター付ミラーを作製し
た。このヒーター付ミラーの給電点A1−A2間にDC
12Vの電圧を印加したところ2.2Aの電流が流れ
た。このとき、給電点A1−狭角部側電極線端部E1、
給電点A1−広角部側電極線端部E2、給電点A2−狭
角部側電極線端部E3、給電点A2−広角部側電極線端
部E4間の電圧降下は、それぞれ0.21V、1.1
V、0.22V、1.2Vで、給電点に対しミラー基板
の狭角部側電極線端部の電圧降下は、広角部側電極線端
部のそれより小さく、20%以下であった。このヒータ
ー付ミラーの加温をサーモスタットにより制御したとこ
ろ、ミラー基板の狭角部近傍も含めて、ミラー表面の温
度を50〜65℃の範囲で設定通り制御することができ
た。
Embodiment 2 In the mirror with heater of the embodiment 1, the feeding points A1, A
A mirror with a heater was manufactured in the same manner as in Example 1 except that No. 2 was provided on the mirror substrate at a narrower angle side than in Example 1. The DC voltage is applied between the feeding points A1 and A2 of the mirror with heater.
When a voltage of 12 V was applied, a current of 2.2 A flowed. At this time, the feeding point A1-the narrow-angle-side electrode wire end E1;
The voltage drops between the feeding point A1-the wide-angle-side electrode wire end E2, the feeding point A2-the narrow-angle-side electrode wire end E3, and the voltage drop between the feeding point A2-the wide-angle side electrode wire end E4 are 0.21 V, respectively. 1.1
At V, 0.22 V, and 1.2 V, the voltage drop at the end of the narrow-angle side electrode wire of the mirror substrate with respect to the feeding point was smaller than that at the end of the wide-angle side electrode wire, and was 20% or less. When the heating of the mirror with the heater was controlled by the thermostat, the temperature of the mirror surface including the vicinity of the narrow angle portion of the mirror substrate could be controlled as set within the range of 50 to 65 ° C.

【0013】実施例3 実施例2のヒーター付ミラーにおいて、給電点A1、A
2を実施例2より更にミラー基板の狭角部寄りに設けた
以外は実施例1と同様になしてヒーター付ミラーを作製
した。このヒーター付ミラーの給電点A1−A2間にD
C12Vの電圧を印加したところ2.1Aの電流が流れ
た。このとき、給電点A1−狭角部側電極線端部E1、
給電点A1−広角部側電極線端部E2、給電点A2−狭
角部側電極線端部E3、給電点A2−広角部側電極線端
部E4間の電圧降下は、それぞれ0.12V、1.3
V、0.13V、1.3Vで、給電点に対しミラー基板
の狭角部側電極線端部の電圧降下は、広角部側電極線端
部のそれより小さく、10%以下であった。このヒータ
ー付ミラーの加温をサーモスタットにより制御したとこ
ろ、ミラー基板の狭角部近傍も含めて、ミラー表面の温
度を50〜60℃の範囲で設定通り制御することができ
た。
Embodiment 3 In the mirror with a heater of Embodiment 2, feed points A1 and A1
A mirror with a heater was manufactured in the same manner as in Example 1 except that No. 2 was further provided near the narrow angle portion of the mirror substrate than in Example 2. D is set between the feeding points A1 and A2 of the mirror with heater.
When a voltage of C12 V was applied, a current of 2.1 A flowed. At this time, the feeding point A1-the narrow-angle-side electrode wire end E1;
The voltage drop between the feeding point A1-the wide-angle-side electrode wire end E2, the feeding point A2-the narrow-angle-side electrode wire end E3, and the voltage drop between the feeding point A2-the wide-angle side electrode wire end E4 is 0.12 V, respectively. 1.3
At V, 0.13 V, and 1.3 V, the voltage drop at the end of the narrow-angle side electrode wire of the mirror substrate with respect to the feeding point was smaller than that of the end of the wide-angle side electrode wire, and was 10% or less. When the heating of the mirror with a heater was controlled by a thermostat, the temperature of the mirror surface including the vicinity of the narrow angle portion of the mirror substrate could be controlled as set within a range of 50 to 60 ° C.

【0014】実施例4 実施例1のヒーター付ミラーにおいて、チタン膜を0.
1μm厚となし、電極を銀ペーストのスクリーン印刷法
により抵抗値の均一な銀薄層により形成した以外は実施
例1と同様になしてヒーター付ミラーを作製した。この
ヒーター付ミラーの給電点A1−A2間にDC12Vの
電圧を印加したところ4.1Aの電流が流れた。このと
き、給電点A1−狭角部側電極線端部E1、給電点A1
−広角部側電極線端部E2、給電点A2−狭角部側電極
線端部E3、給電点A2−広角部側電極線端部E4間の
電圧降下は、それぞれ0.11V、0.74V、0.1
0V、0.67Vで、給電点に対しミラー基板の狭角部
側電極線端部の電圧降下は、広角部側電極線端部のそれ
より小さく、15%以下であった。このヒーター付ミラ
ーの加温をサーモスタットにより制御したところ、ミラ
ー基板の狭角部近傍も含めて、ミラー表面の温度を50
〜65℃の範囲で設定通り制御することができた。
Example 4 In the mirror with heater of Example 1, the titanium film was added to a thickness of 0.1 mm.
A mirror with a heater was produced in the same manner as in Example 1 except that the thickness was set to 1 μm and the electrodes were formed by a silver paste layer having a uniform resistance value by a screen printing method using silver paste. When a voltage of 12 V DC was applied between power supply points A1 and A2 of the mirror with a heater, a current of 4.1 A flowed. At this time, the feeding point A1-the narrow-angle-portion-side electrode wire end E1 and the feeding point A1
The voltage drops between the wide-angle-side electrode wire end E2, the feeding point A2, the narrow-angle-side electrode wire end E3, and the feeding point A2-the wide-angle-side electrode wire end E4 are 0.11 V and 0.74 V, respectively. , 0.1
At 0 V and 0.67 V, the voltage drop at the end of the narrow-angle-side electrode wire of the mirror substrate with respect to the feeding point was smaller than that at the end of the wide-angle-side electrode wire, and was 15% or less. When the heating of the mirror with heater was controlled by a thermostat, the temperature of the mirror surface including the vicinity of the narrow angle portion of the mirror substrate was reduced by 50%.
Control could be performed within the range of ~ 65 ° C as set.

【0015】実施例5 実施例4のヒーター付ミラーにおいて、給電点A1、A
2を実施例4より更にミラー基板の狭角部寄りに設けた
以外は実施例1と同様になしてヒーター付ミラーを作製
した。このヒーター付ミラーの給電点A1−A2間にD
C12Vの電圧を印加したところ4.0Aの電流が流れ
た。このとき、給電点A1−狭角部側電極線端部E1、
給電点A1−広角部側電極線端部E2、給電点A2−狭
角部側電極線端部E3、給電点A2−広角部側電極線端
部E4間の電圧降下は、それぞれ0.04V、0.87
V、0.03V、0.92Vで、給電点に対しミラー基
板の狭角部側電極線端部の電圧降下は、広角部側電極線
端部のそれより小さく、5%以下であった。このヒータ
ー付ミラーの加温をサーモスタットにより制御したとこ
ろ、ミラーミラー基板の狭角部近傍も含めて、ミラー表
面の温度を50〜60℃の範囲で設定通り制御すること
ができた。
Fifth Embodiment In the mirror with heater of the fourth embodiment, feeding points A1, A
A mirror with a heater was manufactured in the same manner as in Example 1 except that No. 2 was further provided near the narrow angle portion of the mirror substrate than in Example 4. D is set between the feeding points A1 and A2 of the mirror with heater.
When a voltage of C12 V was applied, a current of 4.0 A flowed. At this time, the feeding point A1-the narrow-angle-side electrode wire end E1;
The voltage drops between the feeding point A1-the wide-angle-side electrode wire end E2, the feeding point A2-the narrow-angle-side electrode wire end E3, and the voltage drop between the feeding point A2-the wide-angle side electrode wire end E4 are 0.04 V, respectively. 0.87
At V, 0.03 V, and 0.92 V, the voltage drop at the end of the narrow-angle-side electrode wire of the mirror substrate with respect to the feeding point was smaller than that at the end of the wide-angle-side electrode wire, and was 5% or less. When the heating of the mirror with the heater was controlled by the thermostat, the temperature of the mirror surface including the vicinity of the narrow angle portion of the mirror mirror substrate could be controlled as set within the range of 50 to 60 ° C.

【0016】実施例6 実施例1のヒーター付ミラーにおいて、給電点A1、A
2を狭角部側の電極線端部に設けた以外は実施例1と同
様になしてヒーター付ミラーを作製した。このヒーター
付ミラーの給電点A1−A2間にDC12Vの電圧を印
加したところ2.0Aの電流が流れた。このとき、給電
点A1−狭角部側電極線端部E1、給電点A1−広角部
側電極線端部E2、給電点A2−狭角部側電極線端部E
3、給電点A2−広角部側電極線端部E4間の電圧降下
は、それぞれ0V、1.3V、0V、1.3Vで、給電
点に対しミラー基板の狭角部側電極線端部の電圧降下
は、広角部側電極線端部のそれより小さく、0%であっ
た。このヒーター付ミラーの加温をサーモスタットによ
り制御したところ、ミラー基板の狭角部近傍も含めて、
ミラー表面の温度を50〜60℃の範囲で設定通り制御
することができた。
Embodiment 6 In the mirror with heater of Embodiment 1, the feeding points A1, A
A mirror with a heater was produced in the same manner as in Example 1 except that No. 2 was provided at the end of the electrode wire on the narrow angle side. When a voltage of 12 V DC was applied between the feeding points A1 and A2 of the mirror with heater, a current of 2.0 A flowed. At this time, the feeding point A1-the narrow-angle side electrode wire end E1, the feeding point A1-the wide-angle side electrode wire end E2, the feeding point A2-the narrow-angle side electrode wire end E1.
3. The voltage drops between the feeding point A2 and the wide-angle-side electrode wire end E4 are 0 V, 1.3 V, 0 V, and 1.3 V, respectively. The voltage drop was 0%, smaller than that at the end of the wide-angle-side electrode wire. When the heating of the mirror with heater was controlled by a thermostat,
The temperature of the mirror surface could be controlled as set within the range of 50 to 60 ° C.

【0017】実施例7 実施例1のヒーター付ミラーにおいて、反射膜兼発熱抵
抗体膜として、ニクロム膜をスパッタリング法により
0.2μm厚形成し、電極として銀ペーストのスクリー
ン印刷法により銀薄層を形成し、その中心よりミラー基
板の狭角部側部分に更に銀薄層を厚く形成し、更に各電
極線の中心点(銀薄層の厚い部分と薄い部分の境界)を
給電点とした以外は実施例1と同様になしてヒーター付
ミラーを作製した。このヒーター付ミラーの給電点A1
−A2間にDC12Vの電圧を印加したところ3.5A
の電流が流れた。このとき、給電点A1−狭角部側電極
線端部E1、給電点A1−広角部側電極線端部E2、給
電点A2−狭角部側電極線端部E3、給電点A2−広角
部側電極線端部E4間の電圧降下は、それぞれ0.05
V、0.65V、0.06V、0.63Vで、給電点に
対しミラー基板の狭角部側電極線端部の電圧降下は、広
角部側電極線端部のそれより小さく、10%以下であっ
た。このヒーター付ミラーの加温をサーモスタットによ
り制御したところ、ミラー基板の狭角部近傍も含めて、
ミラー表面の温度を50〜60℃の範囲で設定通り制御
することができた。
Example 7 In the mirror with heater of Example 1, a nichrome film was formed to a thickness of 0.2 μm by a sputtering method as a reflecting film and a heating resistor film, and a silver thin layer was formed as an electrode by a screen printing method of silver paste. Except that a thin silver layer is further formed thicker on the side of the mirror substrate at the narrow angle portion than the center thereof, and the center point of each electrode wire (the boundary between the thicker and thinner portions of the silver thin layer) is used as a feeding point. In the same manner as in Example 1, a mirror with a heater was manufactured. Feeding point A1 of this mirror with heater
When a voltage of DC12V is applied between -A2 and 3.5A
Current flowed. At this time, the feeding point A1-the narrow-angle-portion-side electrode wire end E1, the feeding point A1-the wide-angle-portion-side electrode wire end E2, the feeding point A2-the narrow-angle-portion-side electrode wire end E3, and the feeding point A2-the wide-angle portion The voltage drop between the side electrode wire ends E4 is 0.05
At V, 0.65 V, 0.06 V, and 0.63 V, the voltage drop at the narrow-angle-side electrode wire end of the mirror substrate with respect to the feeding point is smaller than that at the wide-angle-side electrode wire end, and is 10% or less. Met. When the heating of the mirror with heater was controlled by a thermostat,
The temperature of the mirror surface could be controlled as set within the range of 50 to 60 ° C.

【0018】実施例8 図3に示す車両用ドアミラーにおいて、ガラス製ミラー
ミラー基板1上に、スパッタリング法によりニクロム膜
及びチタン膜を各々0.05μm厚順次形成して反射膜
兼発熱抵抗体膜2とし、更に銀及び銅ペーストのスクリ
ーン印刷法により銀及び銅の二層構造よりなる薄層を、
ミラー基板1の狭角部1b、1c側に延在する部分が広
角部1a、1d側に延在する部分に比べて幅広くなるよ
う形成し、この電極3の電極線3a、3bの中間点より
狭角部1b、1c寄りに設定した給電点A1、A2にリ
ード線5を接続してヒーター付ミラーを作製した。前記
給電点A1−A2間にDC12Vの電圧を印加したとこ
ろ2.7Aの電流が流れた。このとき、給電点A1−狭
角部側電極線端部E1、給電点A1−広角部側電極線端
部E2、給電点A2−狭角部側電極線端部E3、給電点
A2−広角部側電極線端部E4間の電圧降下は、それぞ
れ0.05V、0.17V、0.05V、0.19V
で、給電点に対しミラー基板の狭角部側電極線端部の電
圧降下は、広角部側電極線端部のそれより小さく、30
%以下であった。このヒーター付ミラーの加温をサーモ
スタットにより制御したところ、ミラー基板の狭角部近
傍の温度がやや低くなるも、ミラー表面の温度を45〜
60℃の範囲で設定通り制御することができた。
Example 8 In the vehicle door mirror shown in FIG. 3, a Nichrome film and a titanium film are sequentially formed on a glass mirror mirror substrate 1 in a thickness of 0.05 μm by sputtering to form a reflection film and a heating resistor film 2. And, further, a thin layer consisting of a two-layer structure of silver and copper by a screen printing method of silver and copper paste,
The portion of the mirror substrate 1 extending toward the narrow-angle portions 1b and 1c is formed to be wider than the portion extending toward the wide-angle portions 1a and 1d. The lead wire 5 was connected to the feeding points A1 and A2 set near the narrow corners 1b and 1c to manufacture a mirror with a heater. When a voltage of 12 V DC was applied between the feeding points A1 and A2, a current of 2.7 A flowed. At this time, the feeding point A1-the narrow-angle-portion-side electrode wire end E1, the feeding point A1-the wide-angle-portion-side electrode wire end E2, the feeding point A2-the narrow-angle-portion-side electrode wire end E3, and the feeding point A2-the wide-angle portion The voltage drops between the side electrode wire ends E4 are 0.05 V, 0.17 V, 0.05 V, and 0.19 V, respectively.
Thus, the voltage drop at the end of the narrow-angle side electrode wire of the mirror substrate with respect to the feeding point is smaller than that at the end of the wide-angle side electrode wire, and is 30
% Or less. When the heating of the mirror with heater was controlled by a thermostat, the temperature near the narrow-angle portion of the mirror substrate was slightly lowered, but the temperature of the mirror surface was 45 to 45.
Control could be performed within the range of 60 ° C. as set.

【0019】実施例9 図4に示す車両用ドアミラーにおいて、略楕円状ガラス
製ミラー基板1上に、チタン膜をスパッタリング法によ
り0.1μm厚形成して反射膜兼発熱抵抗体膜2とし、
更に銀及び銅ペーストのスクリーン印刷法により抵抗値
の均一な銀及び銅の二層構造よりなる薄層を電極3とし
て形成し、この電極3の電極線3a、3bの中間点より
狭角部1b、1c寄りに設定した給電点A1、A2にリ
ード線5を接続してヒーター付ミラーを作製した。この
給電点A1−A2間にDC12Vの電圧を印加したとこ
ろ3.1Aの電流が流れた。このとき、給電点A1−狭
角部側電極線端部E1、給電点A1−広角部側電極線端
部E2、給電点A2−狭角部側電極線端部E3、給電点
A2−広角部側電極線端部E4間の電圧降下は、それぞ
れ0.08V、0.57V、0.08V、0.55V
で、給電点に対しミラー基板の狭角部側電極線端部の電
圧降下は、広角部側電極線端部のそれより小さく、15
%以下であった。このヒーター付ミラーの加温をサーモ
スタットにより制御したところ、ミラー基板の狭角部近
傍も含めて、ミラー表面の温度を50〜65℃の範囲で
設定通り制御することができた。
Embodiment 9 In the vehicle door mirror shown in FIG. 4, a titanium film is formed to a thickness of 0.1 μm on a substantially elliptical glass mirror substrate 1 by a sputtering method to form a reflection film and a heating resistor film 2.
Further, a thin layer having a two-layer structure of silver and copper having a uniform resistance value is formed as an electrode 3 by a screen printing method of silver and copper paste, and a narrower portion 1b is formed from a middle point between the electrode wires 3a and 3b of the electrode 3. The lead wire 5 was connected to the feeding points A1 and A2 set closer to 1c to produce a mirror with a heater. When a voltage of 12 V DC was applied between the feeding points A1 and A2, a current of 3.1 A flowed. At this time, the feeding point A1-the narrow-angle-portion-side electrode wire end E1, the feeding point A1-the wide-angle-portion-side electrode wire end E2, the feeding point A2-the narrow-angle-portion-side electrode wire end E3, and the feeding point A2-the wide-angle portion The voltage drops between the side electrode line ends E4 are 0.08 V, 0.57 V, 0.08 V, and 0.55 V, respectively.
Thus, the voltage drop at the end of the narrow-angle-side electrode wire of the mirror substrate with respect to the feeding point is smaller than that at the end of the wide-angle-portion-side electrode wire.
% Or less. When the heating of the mirror with the heater was controlled by the thermostat, the temperature of the mirror surface including the vicinity of the narrow angle portion of the mirror substrate could be controlled as set within the range of 50 to 65 ° C.

【0020】実施例10 図5に示す車両用ドアミラーにおいて、略台形状ガラス
製ミラー基板1上に、チタン膜をスパッタリング法によ
り0.1μm厚形成して反射膜兼発熱抵抗体膜2とし、
更に銀及び銅ペーストのスクリーン印刷法により抵抗値
の均一な銀及び銅の二層構造よりなる薄層を電極3とし
て形成し、この電極3の電極線3a、3bの中間点より
狭角部1b、1c寄りに設定した給電点A1、A2にリ
ード線5を接続してヒーター付ミラーを作製した。この
給電点A1−A2間にDC12Vの電圧を印加したとこ
ろ4.5Aの電流が流れた。このとき、給電点A1−狭
角部側電極線端部E1、給電点A1−広角部側電極線端
部E2、給電点A2−狭角部側電極線端部E3、給電点
A2−広角部側電極線端部E4間の電圧降下は、それぞ
れ0.11V、0.94V、0.13V、0.87V
で、給電点に対しミラー基板の狭角部側電極線端部の電
圧降下は、広角部側電極線端部のそれより小さく、15
%以下であった。このヒーター付ミラーの加温をサーモ
スタットにより制御したところ、ミラー基板の狭角部近
傍も含めて、ミラー表面の温度を50〜60℃の範囲で
設定通り制御することができた。
Embodiment 10 In the vehicle door mirror shown in FIG. 5, a titanium film is formed to a thickness of 0.1 μm on a substantially trapezoidal glass mirror substrate 1 by a sputtering method to form a reflection film and a heating resistor film 2.
Further, a thin layer having a two-layer structure of silver and copper having a uniform resistance value is formed as an electrode 3 by a screen printing method of silver and copper paste, and a narrower portion 1b is formed from a middle point between the electrode wires 3a and 3b of the electrode 3. The lead wire 5 was connected to the feeding points A1 and A2 set closer to 1c to produce a mirror with a heater. When a voltage of 12 V DC was applied between the feeding points A1 and A2, a current of 4.5 A flowed. At this time, the feeding point A1-the narrow-angle-portion-side electrode wire end E1, the feeding point A1-the wide-angle-portion-side electrode wire end E2, the feeding point A2-the narrow-angle-portion-side electrode wire end E3, and the feeding point A2-the wide-angle portion The voltage drops between the side electrode wire ends E4 are 0.11 V, 0.94 V, 0.13 V, and 0.87 V, respectively.
Thus, the voltage drop at the end of the narrow-angle-side electrode wire of the mirror substrate with respect to the feeding point is smaller than that at the end of the wide-angle-portion-side electrode wire.
% Or less. When the heating of the mirror with a heater was controlled by a thermostat, the temperature of the mirror surface including the vicinity of the narrow angle portion of the mirror substrate could be controlled as set within a range of 50 to 60 ° C.

【0021】実施例11 図6に示す車両用ドアミラーにおいて、片側のみ斜辺の
略台形状ガラス製ミラー基板1上に、チタン膜をスパッ
タリング法により0.1μm厚形成して反射膜兼発熱抵
抗体膜2とし、更に銀及び銅ペーストのスクリーン印刷
法により抵抗値の均一な銀及び銅の二層構造よりなる薄
層を電極3として形成し、この電極3の電極線3a、3
bの中間点より狭角部1b、1c寄りに設定した給電点
A1、A2にリード線5を接続してヒーター付ミラーを
作製した。この給電点A1−A2間にDC12Vの電圧
を印加したところ4.3Aの電流が流れた。このとき、
給電点A1−狭角部側電極線端部E1、給電点A1−広
角部側電極線端部E2、給電点A2−狭角部側電極線端
部E3、給電点A2−広角部側電極線端部E4間の電圧
降下は、それぞれ0.17V、0.88V、0.15
V、0.90Vで、給電点に対しミラー基板の狭角部側
電極線端部の電圧降下は、広角部側電極線端部のそれよ
り小さく、20%以下であった。このヒーター付ミラー
の加温をサーモスタットにより制御したところ、ミラー
基板の狭角部近傍も含めて、ミラー表面の温度を50〜
60℃の範囲で設定通り制御することができた。
Embodiment 11 In the vehicle door mirror shown in FIG. 6, a titanium film is formed to a thickness of 0.1 μm by sputtering on a substantially trapezoidal glass mirror substrate 1 having only one oblique side to form a reflection film and a heating resistor film. 2, and a thin layer having a two-layer structure of silver and copper having a uniform resistance value is formed as the electrode 3 by a screen printing method of silver and copper paste.
The lead wire 5 was connected to the feeding points A1 and A2 set closer to the narrow corners 1b and 1c than the middle point of b, thereby manufacturing a mirror with a heater. When a voltage of 12 V DC was applied between the feeding points A1 and A2, a current of 4.3 A flowed. At this time,
Feeding point A1-Narrow-angle-side electrode wire end E1, Feeding point A1-Wide-angle-side electrode wire end E2, Feeding point A2-Narrow-angle-side electrode wire end E3, Feeding point A2-Wide-angle side electrode wire The voltage drops between the ends E4 are 0.17V, 0.88V, 0.15V, respectively.
At 0.90 V, the voltage drop at the end of the electrode wire on the narrow angle side of the mirror substrate with respect to the feeding point was smaller than that at the end of the electrode wire on the wide angle side, and was 20% or less. When the heating of the mirror with a heater was controlled by a thermostat, the temperature of the mirror surface including the vicinity of the narrow angle portion of the mirror substrate was set to 50 to 50.
Control could be performed within the range of 60 ° C. as set.

【0022】実施例12 図7に示す車両用ドアミラーにおいて、片側のみ斜辺の
略台形状ガラス製ミラー基板1上に、チタン膜をスパッ
タリング法により0.1μm厚形成して反射膜兼発熱抵
抗体膜2とし、更に、ミラー基板1の斜辺及びこの斜辺
に対向する辺に銀及び銅ペーストのスクリーン印刷法に
より抵抗値の均一な銀及び銅の二層構造よりなる薄層を
電極3として形成し、この電極3の電極線3aの中間点
より狭角部1寄りに設定した給電点A1と、電極線3
bの中心(電位的にも中点でA2−E0間の電圧降下と
A2−E00間の電圧降下は等しい。)に設けた給電点
A2にリード線5を接続してヒーター付ミラーを作製し
た。この給電点A1−A2間にDC12Vの電圧を印加
したところ、3.1Aの電流が流れた。このとき、給電
点A1−狭角部側電極線端部E1、給電点A1−広角部
側電極線端部E2、給電点A2−電極線端部E0、給電
点A2−電極線端部E00間の電圧降下は、それぞれ
0.05V、0.51V、0.26V、0.26Vで、
給電点に対しミラー基板の狭角部側電極線端部の電圧降
下は、広角部側電極線端部のそれより小さく、10%以
下であった。このヒーター付ミラーの加温をサーモスタ
ットにより制御したところ、ミラー基板の狭角部近傍も
含めて、ミラー表面の温度を50〜65℃の範囲で設定
通り制御することができた。
Embodiment 12 In the vehicle door mirror shown in FIG. 7, a titanium film is formed to a thickness of 0.1 μm by a sputtering method on a substantially trapezoidal glass mirror substrate 1 having an oblique side only on one side to form a reflection film and a heating resistor film. 2, a thin layer having a two-layer structure of silver and copper having a uniform resistance value is formed as an electrode 3 on the oblique side of the mirror substrate 1 and the side opposite to the oblique side by screen printing of silver and copper paste. a feeding point A1 set in the narrow angle portion 1 b closer than the intermediate point of the electrode line 3a of the electrode 3, the electrode wires 3
The lead wire 5 was connected to the feeding point A2 provided at the center of b (the voltage drop between A2-E0 and the voltage drop between A2-E00 at the middle point in terms of potential) to manufacture a mirror with heater. . When a voltage of 12 V DC was applied between the feeding points A1 and A2, a current of 3.1 A flowed. At this time, between the feeding point A1-the narrow-angle-portion-side electrode wire end E1, the feeding point A1-the wide-angle-portion-side electrode wire end E2, the feeding point A2-the electrode wire end E0, and the feeding point A2-the electrode wire end E00. Are 0.05V, 0.51V, 0.26V and 0.26V, respectively.
The voltage drop at the end of the electrode wire on the narrow angle side of the mirror substrate with respect to the feeding point was smaller than that at the end of the electrode wire on the wide angle side, and was 10% or less. When the heating of the mirror with the heater was controlled by the thermostat, the temperature of the mirror surface including the vicinity of the narrow angle portion of the mirror substrate could be controlled as set within the range of 50 to 65 ° C.

【0023】実施例13 図8に示す車両用ドアミラーにおいて、ガラス製ミラー
基板1上に、スパッタリング法によりクロム膜及びチタ
ン膜をそれぞれ0.02μm、0.03μm厚順次形成
して反射膜兼発熱抵抗体膜2とし、更に銀及び銅ペース
トのスクリーン印刷法により銀及び銅の二層構造よりな
る薄層を電極3として形成し、この電極3の電極線3
a、3bに設定した給電点A1、A3及びA2、A4に
リード線5を接続してヒーター付ミラーを作製した。こ
のヒーター付ミラーの給電点A1、A3−A2、A4間
にDC12Vの電圧を印加したところ4.2Aの電流が
流れた。このとき、給電点A1−狭角部側電極線端部E
1、給電点A3−広角部側電極線端部E2、給電点A2
−狭角部側電極線端部E3、給電点A4−広角部側電極
線端部E4間の電圧降下は、それぞれ0.15V、0.
82V、0.14V、0.81Vで、給電点に対しミラ
ー基板の狭角部側電極線端部の電圧降下は、広角部側電
極線端部のそれより小さく、20%以下であった。この
ヒーター付ミラーの加温をサーモスタットにより制御し
たところ、ミラー基板の狭角部近傍も含めて、ミラー表
面の温度を50〜65℃の範囲で設定通り制御すること
ができた。
Embodiment 13 In the vehicle door mirror shown in FIG. 8, a chromium film and a titanium film are sequentially formed on a glass mirror substrate 1 by a sputtering method so as to have a thickness of 0.02 μm and 0.03 μm, respectively. The body film 2 is formed, and a thin layer having a two-layer structure of silver and copper is formed as an electrode 3 by a screen printing method of silver and copper paste.
The lead wire 5 was connected to the feeding points A1, A3 and A2, A4 set at a and 3b to produce a mirror with a heater. When a voltage of 12 V DC was applied between the feeding points A1, A3-A2, and A4 of the mirror with a heater, a current of 4.2 A flowed. At this time, the feeding point A1-the narrow-angle-portion-side electrode wire end E
1, feeding point A3-wide-angle-side electrode wire end E2, feeding point A2
The voltage drops between the narrow-angle-side electrode wire end E3 and the feeding point A4-the wide-angle-side electrode wire end E4 are 0.15 V and 0.
At 82 V, 0.14 V, and 0.81 V, the voltage drop at the end of the narrow-angle-side electrode wire of the mirror substrate with respect to the feeding point was smaller than that at the end of the wide-angle-side electrode wire, and was 20% or less. When the heating of the mirror with the heater was controlled by the thermostat, the temperature of the mirror surface including the vicinity of the narrow angle portion of the mirror substrate could be controlled as set within the range of 50 to 65 ° C.

【0024】実施例14 図9に示す車両用ドアミラーにおいて、ガラス製ミラー
基板1上に、チタン膜をスパッタリング法により0.1
μm厚形成して反射膜兼発熱抵抗体膜2とし、更に銀及
び銅ペーストのスクリーン印刷法により抵抗値の均一な
銀及び銅の二層構造よりなる薄層を電極線3a及び3b
とし、また中央部の幅広の電極線3cは更に半田を厚盛
りすることにより電極3として形成し、この電極3の電
極線3a、3bの中間点より狭角部1b、1c寄りに設
定した給電点A1、A2にリード線5を接続し、更に、
電極線3cの端部にリード線5を接続し(なお、電極線
3cは実質上電圧降下がないため、給電点A5はこの電
極線上の任意の場所に設定できる)てヒーター付ミラー
を作製した。このヒーター付ミラーの給電点A1、A2
と−A5間にDC12Vの電圧を印加したところ4.7
Aの電流が流れた。このとき、給電点A1−狭角部側電
極線端部E1、給電点A−広角部側電極線端部E2、
給電点A2−狭角部側電極線端部E3、給電点A−広
角部側電極線端部E4間の電圧降下は、それぞれ0.2
1V、0.74V、0.22V、0.76Vで、給電点
に対しミラー基板の狭角部側電極線端部の電圧降下は、
広角部側電極線端部のそれより小さく、30%以下であ
った。このヒーター付ミラーの加温をサーモスタットに
より制御したところ、ミラー基板の狭角部近傍の温度が
やや低くなるも、ミラー表面の温度を45〜65℃の範
囲で設定通り制御することができた。
Embodiment 14 In the vehicle door mirror shown in FIG. 9, a titanium film is formed on a glass mirror substrate 1 by a sputtering method.
The reflective film / heat generating resistor film 2 is formed to a thickness of μm, and a thin layer having a two-layer structure of silver and copper having a uniform resistance value is screen-printed with silver and copper paste to form electrode wires 3a and 3b.
The wide electrode line 3c at the center is formed as an electrode 3 by further thickening the solder, and the power supply is set closer to the narrow corners 1b and 1c than the middle point of the electrode lines 3a and 3b of the electrode 3. Connect the lead wire 5 to the points A1 and A2,
The lead wire 5 was connected to the end of the electrode wire 3c (note that since the electrode wire 3c has substantially no voltage drop, the feeding point A5 can be set at any position on the electrode wire) to produce a mirror with a heater. . Feed points A1, A2 of this mirror with heater
When a voltage of 12 V DC was applied between the capacitor and −A5, it was 4.7.
A current flowed. At this time, the feeding point A1- narrow angle portion side electrode line end E1, the feeding point A 1 - wide angle portion side electrode wire end E2,
Feeding point A2- narrow angle portion side electrode wire end E3, a feeding point A 2 - is the voltage drop between the wide angle portion side electrode wire end E4, respectively 0.2
At 1 V, 0.74 V, 0.22 V, and 0.76 V, the voltage drop at the end of the narrow-angle-side electrode wire of the mirror substrate with respect to the feeding point is:
It was smaller than that of the end of the wide-angle side electrode wire, and was 30% or less. When the heating of the mirror with a heater was controlled by a thermostat, the temperature of the mirror surface could be controlled within the range of 45 to 65 ° C. as set, although the temperature near the narrow angle portion of the mirror substrate was slightly lowered.

【0025】実施例15 図10に示す車両用ドアミラーにおいて、ガラス製ミラ
ー基板1上に、チタン膜をスパッタリング法により0.
15μm厚形成して反射膜兼発熱抵抗体膜2とし、更に
銀及び銅ペーストのスクリーン印刷法により抵抗値の均
一な銀及び銅の二層構造よりなる薄層を電極3として形
成し、この電極3の電極線3a、3bの中間点より狭角
部1b、1c寄りに設定した給電点A1、A2にリード
線5を接続してヒーター付ミラーを作製した。このヒー
ター付ミラーの給電点A1−A2間にDC12Vの電圧
を印加したところ3.7Aの電流が流れた。このとき、
給電点A1−狭角部側電極線端部E1、給電点A1−広
角部側電極線端部E2、給電点A2−狭角部側電極線端
部E3、給電点A2−広角部側電極線端部E4間の電圧
降下は、それぞれ0.11V、0.51V、0.13
V、0.48Vで、給電点に対しミラー基板の狭角部側
電極線端部の電圧降下は、広角部側電極線端部のそれよ
り小さく、30%以下であった。このヒーター付ミラー
の加温をサーモスタットにより制御したところ、ミラー
基板の狭角部近傍の温度がやや低くなるも、ミラー表面
の温度を45〜65℃の範囲で設定通り制御することが
できた。
Embodiment 15 In the vehicle door mirror shown in FIG. 10, a titanium film was formed on a glass mirror substrate 1 by sputtering to a thickness of 0.1 mm.
The reflective film / heat generating resistor film 2 is formed to a thickness of 15 μm, and a thin layer having a two-layer structure of silver and copper having a uniform resistance value is formed as an electrode 3 by a screen printing method of silver and copper paste. The lead wire 5 was connected to the feeding points A1 and A2 set closer to the narrow corners 1b and 1c than the middle point of the third electrode wires 3a and 3b, thereby manufacturing a mirror with a heater. When a voltage of 12 V DC was applied between power supply points A1 and A2 of the mirror with a heater, a current of 3.7 A flowed. At this time,
Feeding point A1-Narrow-angle-side electrode wire end E1, Feeding point A1-Wide-angle-side electrode wire end E2, Feeding point A2-Narrow-angle-side electrode wire end E3, Feeding point A2-Wide-angle side electrode wire The voltage drops between the ends E4 are 0.11 V, 0.51 V, and 0.13 V, respectively.
At V, 0.48 V, the voltage drop at the end of the electrode wire on the narrow angle side of the mirror substrate with respect to the feeding point was smaller than that at the end of the electrode wire on the wide angle side, and was 30% or less. When the heating of the mirror with heater was controlled by a thermostat, the temperature of the mirror surface could be controlled as set within the range of 45 to 65 ° C., although the temperature near the narrow-angle portion of the mirror substrate was slightly lowered.

【0026】実施例16 図11に示す車両用ドアミラーにおいて、ガラス製ミラ
ー基板1上に、チタン膜をスパッタリング法により0.
2μm厚形成して反射膜兼発熱抵抗体膜2とし、更に銅
ペーストのスクリーン印刷法により抵抗値の均一な銅薄
層を電極3として形成し、この電極3の電極線3a、3
bの中間点より狭角部1b、1c寄りに設定した給電点
A1、A2にリード線5を接続してヒーター付ミラーを
作製した。このヒーター付ミラーの給電点A1−A2間
にDC12Vの電圧を印加したところ2.9Aの電流が
流れた。このとき、給電点A1−狭角部側電極線端部E
1、給電点A1−広角部側電極線端部E2、給電点A2
−狭角部側電極線端部E3、給電点A2−広角部側電極
線端部E4間の電圧降下は、それぞれ0.46V、1.
3V、0.51V、1.4Vで、給電点に対しミラー基
板の狭角部側電極線端部の電圧降下は、広角部側電極線
端部のそれより小さく、40%以下であった。このヒー
ター付ミラーの加温をサーモスタットにより制御したと
ころ、ミラー基板の狭角部近傍の温度がやや低くなる
も、ミラー表面の温度を45〜65℃の範囲で設定通り
制御することができた。
Example 16 In the vehicle door mirror shown in FIG. 11, a titanium film was formed on a glass mirror substrate 1 by sputtering to a thickness of 0.1 mm.
The reflective film / heat generating resistor film 2 is formed to a thickness of 2 μm, and a copper thin layer having a uniform resistance value is formed as an electrode 3 by a screen printing method using a copper paste.
The lead wire 5 was connected to the feeding points A1 and A2 set closer to the narrow corners 1b and 1c than the middle point of b, thereby manufacturing a mirror with a heater. When a voltage of 12 V DC was applied between power supply points A1 and A2 of the mirror with a heater, a current of 2.9 A flowed. At this time, the feeding point A1-the narrow-angle-portion-side electrode wire end E
1, feeding point A1-wide-angle part-side electrode wire end E2, feeding point A2
The voltage drops between the narrow-angle-side electrode wire end E3 and the feeding point A2-the wide-angle-side electrode wire end E4 are 0.46 V and 1.
At 3 V, 0.51 V, and 1.4 V, the voltage drop at the end of the narrow-angle side electrode wire of the mirror substrate with respect to the feeding point was smaller than that at the end of the wide-angle side electrode wire, and was 40% or less. When the heating of the mirror with heater was controlled by a thermostat, the temperature of the mirror surface could be controlled as set within the range of 45 to 65 ° C., although the temperature near the narrow-angle portion of the mirror substrate was slightly lowered.

【0027】比較例1 実施例4において、電極3を銅薄層となし、給電点A
1、A2を前記電極3の電極線3a、3bの中間点に設
定した以外は実施例4と同様になしてヒーター付ミラー
を作製した。このヒーター付ミラーの給電点A1−A2
間にDC12Vの電圧を印加したところ3.9Aの電流
が流れた。このとき、給電点A1−狭角部側電極線端部
E1、給電点A1−広角部側電極線端部E2、給電点A
2−狭角部側電極線端部E3、給電点A2−広角部側電
極線端部E4間の電圧降下は、それぞれ2.5V、2.
5V、2.6V、2.6Vで、給電点に対しミラー基板
の狭角部側電極線端部の電圧降下と広角部側電極線端部
の電圧降下とが等しく100%であった。このヒーター
付ミラーの加温をサーモスタットにより制御したとこ
ろ、ミラー基板の狭角部近傍の温度が低く、ミラー表面
の温度が35〜85℃となり、設定通りの温度範囲で制
御することができなかった。
Comparative Example 1 In Example 4, the electrode 3 was a thin copper layer,
A mirror with a heater was manufactured in the same manner as in Example 4 except that 1, A2 was set at an intermediate point between the electrode lines 3a, 3b of the electrode 3. Feeding point A1-A2 of this mirror with heater
When a voltage of 12 V DC was applied during that time, a current of 3.9 A flowed. At this time, the feeding point A1-the narrow-angle-portion-side electrode wire end E1, the feeding point A1-the wide-angle-portion-side electrode wire end E2, and the feeding point A
The voltage drop between the 2-electrode end E3 on the narrow-angle side and the feed point A2-the end E4 on the wide-angle side is 2.5 V and 2.
At 5 V, 2.6 V, and 2.6 V, the voltage drop at the end of the narrow-angle side electrode wire of the mirror substrate and the voltage drop at the end of the wide-angle side electrode wire with respect to the feeding point were 100%. When the heating of the mirror with the heater was controlled by a thermostat, the temperature near the narrow-angle portion of the mirror substrate was low, and the temperature of the mirror surface was 35 to 85 ° C., and could not be controlled within the set temperature range. .

【0028】比較例2 実施例4において、電極3を銀及び銅の二層構造よりな
る薄層となし、給電点A1、A2を前記電極3の電極線
3a、3bの広角部寄りに設定した以外は実施例4と同
様になしてヒーター付ミラーを作製した。このヒーター
付ミラーの給電点A1−A2間にDC12Vの電圧を印
加したところ4.0Aの電流が流れた。このとき、給電
点A1−狭角部側電極線端部E1、給電点A1−広角部
側電極線端部E2、給電点A2−狭角部側電極線端部E
3、給電点A2−広角部側電極線端部E4間の電圧降下
は、それぞれ0.65V、0.25V、0.68V、
0.29Vで、給電点に対しミラー基板の狭角部側電極
線端部の電圧降下が、広角部側電極線端部の電圧降下よ
り大きく200%以上であった。このヒーター付ミラー
の加温をサーモスタットにより制御したところ、ミラー
基板の狭角部近傍の加温が難しく、ミラー表面の温度が
30〜95℃となり、設定通りの温度範囲で制御するこ
とができなかった。
Comparative Example 2 In Example 4, the electrode 3 was formed as a thin layer having a two-layer structure of silver and copper, and the feeding points A1 and A2 were set near the wide-angle portions of the electrode wires 3a and 3b of the electrode 3. A mirror with a heater was manufactured in the same manner as in Example 4 except for the above. When a voltage of 12 V DC was applied between power supply points A1 and A2 of the mirror with a heater, a current of 4.0 A flowed. At this time, the feeding point A1-the narrow-angle side electrode wire end E1, the feeding point A1-the wide-angle side electrode wire end E2, the feeding point A2-the narrow-angle side electrode wire end E1.
3. The voltage drop between the feeding point A2 and the end E4 of the wide-angle side electrode wire is 0.65V, 0.25V, 0.68V, respectively.
At 0.29 V, the voltage drop at the end of the electrode wire on the narrow-angle side of the mirror substrate with respect to the feeding point was larger than the voltage drop at the end of the electrode wire on the wide-angle side and was 200% or more. When the heating of the mirror with heater is controlled by a thermostat, it is difficult to heat the mirror substrate in the vicinity of the narrow-angle portion, and the temperature of the mirror surface becomes 30 to 95 ° C., so that the mirror cannot be controlled within the set temperature range. Was.

【0029】[0029]

【発明の効果】本発明に係わるヒーター付ミラーは、ミ
ラー基板の狭角部の加温が可能なため、狭角部を含めた
ミラー基板全面において均一な加温が得られることから
所望の温度制御が可能であり、ミラー表面に付着した水
滴、氷などを全面にわたって速やかに除去できる。ま
た、特に、大きな電流を流すことによって、降雨時の走
行中にミラーに付着した雨滴の迅速な除去も可能であ
る。
The mirror with heater according to the present invention can heat a narrow angle portion of the mirror substrate, and can uniformly heat the entire mirror substrate including the narrow angle portion. Control is possible, and water droplets, ice, and the like attached to the mirror surface can be quickly removed over the entire surface. In particular, by applying a large current, it is possible to quickly remove raindrops adhered to the mirror during traveling during rainfall.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本考案の実施例1〜7の裏面斜視模式図であ
る。
FIG. 1 is a schematic rear perspective view of Embodiments 1 to 7 of the present invention.

【図2】 図1の縦断面模式図である。FIG. 2 is a schematic longitudinal sectional view of FIG.

【図3】 本考案の実施例8の裏面斜視模式図である。FIG. 3 is a schematic rear perspective view of Embodiment 8 of the present invention.

【図4】 本考案の実施例9の裏面斜視模式図である。FIG. 4 is a schematic rear perspective view of a ninth embodiment of the present invention.

【図5】 本考案の実施例10の裏面斜視模式図であ
る。
FIG. 5 is a schematic rear perspective view of Embodiment 10 of the present invention.

【図6】 本考案の実施例11の裏面斜視模式図であ
る。
FIG. 6 is a schematic rear perspective view of an eleventh embodiment of the present invention.

【図7】 本考案の実施例12の裏面斜視模式図であ
る。
FIG. 7 is a schematic rear perspective view of Embodiment 12 of the present invention.

【図8】 本考案の実施例13の裏面斜視模式図であ
る。
FIG. 8 is a schematic rear perspective view of Embodiment 13 of the present invention.

【図9】 本考案の実施例14の裏面斜視模式図であ
る。
FIG. 9 is a schematic rear perspective view of Embodiment 14 of the present invention.

【図10】 本考案の実施例15の裏面斜視模式図であ
る。
FIG. 10 is a schematic rear perspective view of Embodiment 15 of the present invention.

【図11】 本考案の実施例16の裏面斜視模式図であ
る。
FIG. 11 is a schematic rear perspective view of Embodiment 16 of the present invention;

【符号の説明】[Explanation of symbols]

1 ミラー基板 2 反射膜兼発熱抵抗体膜 3 電極 3a、3b、3c 電極線 4 絶縁材料 5 リード線 1a、1d 広角部 1b、1c 狭角部 A1、A2、A3、A4、A5 給電点 E1、E3 狭角部側電極線端部 E2、E4 広角部側電極線端部 E0、E00 電極線端部 DESCRIPTION OF SYMBOLS 1 Mirror substrate 2 Reflection film and heating resistor film 3 Electrode 3a, 3b, 3c Electrode wire 4 Insulating material 5 Lead wire 1a, 1d Wide angle portion 1b, 1c Narrow angle portion A1, A2, A3, A4, A5 Feeding point E1, E3 Narrow-angle-side electrode wire end E2, E4 Wide-angle-side electrode wire end E0, E00 Electrode wire end

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B60S 1/60 B60R 1/06 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) B60S 1/60 B60R 1/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 狭角部と広角部とを有するミラー基板上
に反射膜兼発熱抵抗体膜、又は反射膜及び発熱抵抗体膜
を形成し、この発熱抵抗体膜に通電加温するための電極
を設けたヒーター付ミラーにおいて、前記電極の少なく
とも1個を一端が狭角部に、他端が広角部に在るように
配置し、前記電極水平方向の、給電点に対しミラー基板
の狭角部側電極線端部における電圧降下を、広角部側電
極線端部における電圧降下より小さくなしたことを特徴
とするヒーター付ミラー。
1. A reflection film / heating resistor film, or a reflection film and a heating resistor film, formed on a mirror substrate having a narrow-angle portion and a wide-angle portion, for heating the heating resistor film by energizing and heating. In a mirror with a heater provided with electrodes , the number of the electrodes is small.
One at the narrow end and the other at the wide end
With the heater, the voltage drop at the end of the narrow-angle-side electrode wire of the mirror substrate with respect to the feeding point in the horizontal direction of the electrode is made smaller than the voltage drop at the end of the wide-angle-side electrode wire. mirror.
JP09581294A 1993-11-04 1994-04-07 Heated mirror Expired - Fee Related JP3216415B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP09581294A JP3216415B2 (en) 1994-04-07 1994-04-07 Heated mirror
PCT/JP1994/001848 WO1995012508A1 (en) 1993-11-04 1994-11-02 Mirror with heater
EP94931674A EP0677434B1 (en) 1993-11-04 1994-11-02 Mirror with heater
CA002153061A CA2153061A1 (en) 1993-11-04 1994-11-02 Mirror with heater
US08/492,083 US5990449A (en) 1993-11-04 1994-11-02 Electric heating device for mirror
DE69430117T DE69430117T2 (en) 1993-11-04 1994-11-02 MIRROR WITH RADIATOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09581294A JP3216415B2 (en) 1994-04-07 1994-04-07 Heated mirror

Publications (2)

Publication Number Publication Date
JPH07277151A JPH07277151A (en) 1995-10-24
JP3216415B2 true JP3216415B2 (en) 2001-10-09

Family

ID=14147844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09581294A Expired - Fee Related JP3216415B2 (en) 1993-11-04 1994-04-07 Heated mirror

Country Status (1)

Country Link
JP (1) JP3216415B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11812845B2 (en) 2020-06-15 2023-11-14 Church & Dwight Co., Inc. Ionic toothbrush

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7517302B2 (en) * 2021-10-15 2024-07-17 株式会社デンソー Film Heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11812845B2 (en) 2020-06-15 2023-11-14 Church & Dwight Co., Inc. Ionic toothbrush

Also Published As

Publication number Publication date
JPH07277151A (en) 1995-10-24

Similar Documents

Publication Publication Date Title
KR100893822B1 (en) Heated mirror
EP0677434B1 (en) Mirror with heater
US4971848A (en) Heatable panels
JP3216415B2 (en) Heated mirror
JPH0450204Y2 (en)
JP3225277B2 (en) Heated mirror
JP3527958B2 (en) Heated mirror
JP3912622B2 (en) Mirror with heater
JPH0853050A (en) Mirror equipped eith heater
JPH0450203Y2 (en)
JPH07223514A (en) Mirror with heater
JP2001171490A (en) Mirror with heater
JP2607552Y2 (en) Heated mirror
JP3477895B2 (en) Heated mirror
JP3804267B2 (en) Mirror with heater
JPH07156758A (en) Mirror with heater
JPH11238575A (en) Heater mirror
JPH07257328A (en) Mirror with heater
KR100342681B1 (en) Heater for large sideview mirror
JPH09240437A (en) Mirror with heater and its manufacture
JP2000177544A (en) Mirror with heater
JP2001010453A (en) Mirror with heater
JP3557566B2 (en) Heated mirror
KR200169882Y1 (en) Heater for large sideview mirror
JP2001247016A (en) Mirror with heater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees