JP3102082B2 - Production method of heat-resistant transition alumina - Google Patents
Production method of heat-resistant transition aluminaInfo
- Publication number
- JP3102082B2 JP3102082B2 JP03247389A JP24738991A JP3102082B2 JP 3102082 B2 JP3102082 B2 JP 3102082B2 JP 03247389 A JP03247389 A JP 03247389A JP 24738991 A JP24738991 A JP 24738991A JP 3102082 B2 JP3102082 B2 JP 3102082B2
- Authority
- JP
- Japan
- Prior art keywords
- alumina
- barium
- transition alumina
- aluminum sulfate
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims description 77
- 230000007704 transition Effects 0.000 title claims description 56
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 35
- 238000010438 heat treatment Methods 0.000 claims description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 229910052788 barium Inorganic materials 0.000 claims description 20
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 15
- 150000001553 barium compounds Chemical class 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 10
- 239000011259 mixed solution Substances 0.000 claims description 7
- 238000002425 crystallisation Methods 0.000 claims description 6
- 230000008025 crystallization Effects 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 3
- 150000004677 hydrates Chemical class 0.000 claims description 2
- 230000007423 decrease Effects 0.000 description 15
- 239000003054 catalyst Substances 0.000 description 14
- 239000013078 crystal Substances 0.000 description 12
- ITHZDDVSAWDQPZ-UHFFFAOYSA-L barium acetate Chemical compound [Ba+2].CC([O-])=O.CC([O-])=O ITHZDDVSAWDQPZ-UHFFFAOYSA-L 0.000 description 10
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 8
- 238000005979 thermal decomposition reaction Methods 0.000 description 8
- 238000010304 firing Methods 0.000 description 7
- 238000000197 pyrolysis Methods 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 6
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000008213 purified water Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000011163 secondary particle Substances 0.000 description 4
- -1 aluminum alkoxide Chemical class 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 2
- 229910001626 barium chloride Inorganic materials 0.000 description 2
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000007084 catalytic combustion reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 150000002604 lanthanum compounds Chemical class 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 229910000873 Beta-alumina solid electrolyte Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- MJWPFSQVORELDX-UHFFFAOYSA-K aluminium formate Chemical compound [Al+3].[O-]C=O.[O-]C=O.[O-]C=O MJWPFSQVORELDX-UHFFFAOYSA-K 0.000 description 1
- TYYRFZAVEXQXSN-UHFFFAOYSA-H aluminium sulfate hexadecahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.[Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O TYYRFZAVEXQXSN-UHFFFAOYSA-H 0.000 description 1
- 229940009827 aluminum acetate Drugs 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 150000001785 cerium compounds Chemical class 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- VQEHIYWBGOJJDM-UHFFFAOYSA-H lanthanum(3+);trisulfate Chemical compound [La+3].[La+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O VQEHIYWBGOJJDM-UHFFFAOYSA-H 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- VXYADVIJALMOEQ-UHFFFAOYSA-K tris(lactato)aluminium Chemical compound CC(O)C(=O)O[Al](OC(=O)C(C)O)OC(=O)C(C)O VXYADVIJALMOEQ-UHFFFAOYSA-K 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 150000003755 zirconium compounds Chemical class 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Catalysts (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は耐熱性組成物、特に接触
燃焼触媒あるいは自動車排気浄化用触媒などに使用され
る触媒担体に適した耐熱性を有する遷移性アルミナ並び
にその製造法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant composition, particularly to a transitional alumina having heat resistance suitable for a catalyst carrier used for a catalytic combustion catalyst or a catalyst for purifying automobile exhaust, and a method for producing the same. .
【0002】[0002]
【従来の技術】自動車排ガス除去、高温水蒸気改質、炭
化水素や水素の接触燃焼などの化学プロセスへの応用、
更には最近では、ガスタ−ビンやボイラ−等の高温下で
の触媒反応分野への触媒或いは触媒担体は、近年ますま
す多用化の傾向にある。2. Description of the Related Art Application to chemical processes such as automobile exhaust gas removal, high-temperature steam reforming, catalytic combustion of hydrocarbons and hydrogen,
Further, recently, catalysts or catalyst carriers for the field of catalytic reaction under high temperatures such as gas turbines and boilers have been increasingly used in recent years.
【0003】これら分野に用いられる担体は触媒成分の
有効利用の点より比表面積の高い触媒担体、通常γ−ア
ルミナを主体とする遷移アルミナが多く使用されている
が、これら担体の使用温度は1000℃以上、時には1
200℃を越える場合もあり、このような条件下の使用
において比表面積の低下が少ない耐熱性に優れた特性を
有する触媒担体が要求されている。As supports used in these fields, catalyst supports having a high specific surface area, usually transition alumina mainly composed of γ-alumina, are often used in view of effective use of catalyst components. ℃ or more, sometimes 1
In some cases, the temperature may exceed 200 ° C., and there is a demand for a catalyst carrier having a characteristic of excellent heat resistance with little decrease in specific surface area under use under such conditions.
【0004】しかし、遷移アルミナは周知のように10
00℃以上の高温下に曝されるとα−アルミナ晶へと結
晶転移を起こし、著しく比表面積が低下する。However, as is well known, transition alumina is 10
When exposed to a high temperature of 00 ° C. or higher, crystal transition occurs to α-alumina crystals, and the specific surface area is significantly reduced.
【0005】また触媒担体として遷移アルミナをペレッ
ト状もしくは他の形態の成形物に被覆し使用する場合に
は、このα−アルミナへの結晶転移による構造変化が被
覆層の脱落あるいは触媒成分のシンタリングを促進させ
る原因となる。When a transition alumina is coated on pellets or other shaped articles as a catalyst carrier and used, the structural change due to the crystal transition to α-alumina is caused by the falling off of the coating layer or the sintering of the catalyst component. May be a cause for promotion.
【0006】従来、この遷移アルミナにおける比表面積
の低下を防止するなど熱安定性の向上を計る方法とし
て、ランタン、プラセオジム、ネオジウム等の希土類元
素やカルシウム、ストロンチウム、バリウム等のアルカ
リ土類元素を添加することは公知である。Heretofore, as a method for improving the thermal stability, for example, by preventing the specific surface area of the transition alumina from lowering, a rare earth element such as lanthanum, praseodymium, neodymium or the like, or an alkaline earth element such as calcium, strontium, barium or the like is added. It is known to do so.
【0007】例えば吸着性のガンマーアルミナをバリウ
ム化合物の液に含浸後、加熱処理を行ない3BaO・1
6Al2 O3 の結晶形のベ−タアルミナを示す吸着性ア
ルミナを得る方法(米国特許第2,422,172号)
や、粒径が500ミクロン以下のアルミナあるいはアル
ミナ水和物に上記希土類物質を沈着させる方法(特開昭
62−176542号公報)等が知られているが高温に
おける熱処理、例えば1200℃、3時間での加熱処理
後のBET比表面積が50m2/gを越えるものは提案さ
れていない。[0007] For example, after impregnating an adsorbing gamma-alumina with a liquid of a barium compound, a heat treatment is performed and 3BaO · 1
Method for obtaining adsorptive alumina showing beta alumina in the crystal form of 6Al 2 O 3 (US Pat. No. 2,422,172)
Also, a method of depositing the above-mentioned rare earth substance on alumina or alumina hydrate having a particle size of 500 μm or less (Japanese Patent Application Laid-Open No. Sho 62-176542) is known, but heat treatment at a high temperature, for example, at 1200 ° C. for 3 hours Those having a BET specific surface area of more than 50 m 2 / g after the heat treatment in the above have not been proposed.
【0008】高比表面積を有するアルミナに酸化バリウ
ムの水溶液を含浸させ、これを1050℃〜1200℃
で焼成してその比表面積が70m2/g以上のものが開示
されている(特開昭62−191043号公報)が、こ
の方法では酸化バリウムがアルミナ中へ固溶するために
は、1050℃〜1200℃で一定時間の高温焼成が必
要であり、そのため製造設備が高価なものとなり経済的
でない。[0008] Alumina having a high specific surface area is impregnated with an aqueous solution of barium oxide.
In baking the specific surface area is disclosed not less than 70m 2 / g (JP 62-191043 JP) is, for barium oxide in this way is dissolved into the alumina, 1050 ° C. It is necessary to perform high-temperature sintering at a temperature of up to 1200 ° C. for a certain period of time, which makes the production equipment expensive and not economical.
【0009】またアルミニウムアルコキシドとバリウム
アルコキシドの混合溶液を複数の官能基を有する含酸素
有機化合物の1種あるいは2種以上の存在下で、加水分
解してゾルを得た後、ゲル化し、これを乾燥焼成する方
法において、1200℃、3時間焼成後のBET比表面
積が97m2/gのものが開示されている(特開昭63−
242917)が、金属アルコキシドや有機物を利用す
る製造法は、原料が高価であり経済的でない。A mixed solution of an aluminum alkoxide and a barium alkoxide is hydrolyzed in the presence of one or more oxygen-containing organic compounds having a plurality of functional groups to obtain a sol, which is then gelled. A method of drying and firing has a BET specific surface area of 97 m 2 / g after firing for 3 hours at 1200 ° C.
242917), however, the production method using a metal alkoxide or an organic substance is expensive and the raw material is not economical.
【0010】一方、硫酸アルミニウムを熱分解して遷移
アルミナを得ることは公知である。(例えば、特公昭4
2−16934号及び窯業協会誌77巻(2)196
9,60〜65頁、現代化学講座18”無機合成化学”
共立出版 第113頁)等。上記の方法で得られた遷移
アルミナは、例えば現代化学講座18”無機合成化学”
共立出版第113頁に示されるように1000℃程度の
加熱においては百数十m2/gの比表面積を示すが、12
00℃を越える場合にはその比表面積は20m2/g以下
に急激に低下すると記載されており、また上記窯業協会
誌にはこの遷移アルミナ(γ−アルミナ)は微粒でα晶
への転移速度は早く焼結性がよいとも記載されている。On the other hand, it is known to thermally decompose aluminum sulfate to obtain transition alumina. (For example, Tokiko 4
No. 2-16934 and Journal of the Ceramic Industry Association, vol. 77 (2) 196
9, 60-65, Contemporary Chemistry 18 “Synthetic Inorganic Chemistry”
Kyoritsu Shuppan, page 113). The transition alumina obtained by the above method can be used, for example, in Modern Chemistry Course 18 “Inorganic Synthetic Chemistry”
As shown in page 113 of Kyoritsu Shuppan, when heated at about 1000 ° C., it shows a specific surface area of more than one hundred and several tens m 2 / g.
When the temperature exceeds 00 ° C., it is described that the specific surface area rapidly decreases to 20 m 2 / g or less. In the above-mentioned journal of the Ceramic Society of Japan, this transition alumina (γ-alumina) is a fine particle and the transition rate to α-crystal. Describes that sinterability is good.
【0011】[0011]
【発明が解決しようとする課題】かかる事情下に鑑み、
本発明者等は、高いBET比表面積を有し、かつ100
0℃以上の高温下においても比表面積の低下が少ない優
れた耐熱性を有し、しかも他の触媒担体等の表面に被覆
せしめた場合も優れた被覆強度を発揮すると伴に、生産
原価も低い耐熱性遷移アルミナを見いだすことを目的と
して鋭意検討した結果、ついに本発明を完成するに至っ
た。In view of such circumstances,
We have a high BET specific surface area and 100
Has excellent heat resistance with little decrease in specific surface area even at high temperatures of 0 ° C or higher, and also exhibits excellent coating strength when coated on the surface of other catalyst supports, etc., and also has low production cost As a result of intensive studies for the purpose of finding a heat-resistant transition alumina, the present invention has finally been completed.
【0012】[0012]
【課題を解決するための手段】すなわち本発明は、アル
ミナ換算100重量部に対してバリウム換算1〜20重
量部よりなる硫酸アルミニウムとバリウム化合物の混合
溶液または硫酸アルミニウムの結晶水に換算して20水
塩以上の水を含有する混合物を加熱後、熱分解せしめる
ことを特徴とする耐熱性遷移アルミナの製造方法を提供
するにある。That is, the present invention relates to a mixed solution of aluminum sulfate and a barium compound comprising 1 to 20 parts by weight of barium with respect to 100 parts by weight of alumina, or 20 parts by weight of water of crystallization of aluminum sulfate. It is another object of the present invention to provide a method for producing a heat-resistant transition alumina, which comprises subjecting a mixture containing water equal to or greater than water salt to thermal decomposition after heating.
【0013】以下、本発明を更に詳細に説明する。本発
明において使用する硫酸アルミニウムは加熱分解後得ら
れる遷移アルミナのBET比表面積が90m2/g以上、
好適には100m2/g以上であれば特に限定されるもの
ではなく、通常一般式 Al2 (SO4 )3 ・nH2 O (式中、n=0〜27である)で表わされる市販の固
体、或は液体の硫酸アルミニウムが使用される。Hereinafter, the present invention will be described in more detail. The aluminum sulfate used in the present invention has a BET specific surface area of at least 90 m 2 / g of transition alumina obtained after thermal decomposition,
It is not particularly limited as long as it is preferably 100 m 2 / g or more, and a commercially available product represented by the general formula Al 2 (SO 4 ) 3 .nH 2 O (where n = 0 to 27) Solid or liquid aluminum sulfate is used.
【0014】また上記物性を有する遷移アルミナの得ら
れる範囲において硫酸アルミニウムに他のアルミニウム
塩、例えば塩化アルミニウム、硝酸アルミニウム、蟻酸
アルミニウム、乳酸アルミニウムおよび酢酸アルミニウ
ムやアルミナ水和物或はアルミニウムアルコキサイド等
を併用しても良い。In the range where the transition alumina having the above physical properties can be obtained, aluminum sulfate may be replaced with other aluminum salts such as aluminum chloride, aluminum nitrate, aluminum formate, aluminum lactate, aluminum acetate, alumina hydrate or aluminum alkoxide. May be used together.
【0015】本発明で使用するバリウム化合物は硫酸ア
ルミニウムとの混合に際し、均一に分散または、溶解す
るものであればよく、例えば、酸化バリウム、酢酸バリ
ウム、硝酸バリウム、硫酸バリウム等が適用される。The barium compound used in the present invention may be any compound that can be uniformly dispersed or dissolved when mixed with aluminum sulfate, and examples thereof include barium oxide, barium acetate, barium nitrate, and barium sulfate.
【0016】硫酸アルミニウムとバリウム化合物の混合
割合は所望温度まで焼成して得た遷移アルミナ中のアル
ミナ100重量部に対してバリウムとして約1〜約20
重量部、好ましくは約2〜約18重量部の範囲に調製す
る。The mixing ratio of aluminum sulfate and barium compound is about 1 to about 20 as barium with respect to 100 parts by weight of alumina in transition alumina obtained by firing to a desired temperature.
Part by weight, preferably in the range of about 2 to about 18 parts by weight.
【0017】アルミナ100重量部に対するバリウムの
添加量が1重量部より少ない場合には高温使用時の比表
面積低下抑制効果が十分でなく、他方添加量が多すぎる
場合には高温使用時においてバリウムとアルミナの複合
酸化物の結晶成長が著しく比表面積の大幅な低下が起こ
る。When the amount of barium added to 100 parts by weight of alumina is less than 1 part by weight, the effect of suppressing the decrease in specific surface area at the time of use at high temperatures is not sufficient. Crystal growth of the composite oxide of alumina is remarkable, and the specific surface area is greatly reduced.
【0018】本発明の実施に際し、原料の硫酸アルミニ
ウムとバリウム化合物は水溶液中で湿式混合しアルミナ
とバリウムを均一に分散させるか、或いは原料の硫酸ア
ルミニウムとバリウム化合物が硫酸アルミニウムの結晶
水に換算して20水塩以上の水を含有する場合には、こ
れら硫酸アルミニウムとランタン化合物をV型ブレンダ
ー等で乾式混合し、アルミナとバリウムを均一に分散さ
せる。In practicing the present invention, the raw material aluminum sulfate and barium compound are wet-mixed in an aqueous solution to uniformly disperse alumina and barium, or the raw material aluminum sulfate and barium compound are converted to water of crystallization of aluminum sulfate. When the water contains more than 20 water salts, the aluminum sulfate and the lanthanum compound are dry-mixed with a V-type blender or the like to uniformly disperse alumina and barium.
【0019】混合操作は溶液を加温、攪拌する方法が好
ましい。それ故、硫酸アルモニウムとバリウム化合物の
混合は両者が固体の場合には何れか一方もしくは両方を
水溶液化し、これに他方を添加して混合させてもよい
し、水中に同時に添加し混合させてもよいし、液体硫酸
アルミニウムを用いる場合にはこれに固体状或いは液状
のバリウム化合物を添加し混合させてもよく、さらには
水酸化アルミニウムに硫酸を添加し硫酸アルミニウム溶
液を作成し、これにバリウム化合物を添加して混合させ
てもよく両者が均一に混合分散した液状を呈するならば
特に湿式混合方法は限定されない。The mixing operation is preferably performed by heating and stirring the solution. Therefore, the mixture of the aluminum sulfate and the barium compound may be prepared by converting one or both of them into an aqueous solution when both are solid, and adding the other to the mixture, or by simultaneously adding and mixing in water. If liquid aluminum sulfate is used, a solid or liquid barium compound may be added thereto and mixed.Additionally, sulfuric acid is added to aluminum hydroxide to prepare an aluminum sulfate solution, and the barium compound is added thereto. The wet mixing method is not particularly limited as long as the two form a liquid in which both are uniformly mixed and dispersed.
【0020】本発明の実施において、混合過程で、ラン
タン化合物、セリウム化合物、ジルコニウム化合物、シ
リコン化合物の1種または2種以上を混合して用いても
よい。In the practice of the present invention, one or more of a lanthanum compound, a cerium compound, a zirconium compound and a silicon compound may be used in a mixing step.
【0021】本発明の実施において、上記混合溶液また
は混合物は次いで加熱、水分を蒸発させる。この場合混
合溶液または混合物は徐々に粘性を増し、発泡が生じ更
に加熱し続けると多孔質の塊状品や凝集粒となる。この
時点での多孔質の程度は水の蒸発速度に左右されるの
で、より多孔質品を得るためには急激な水の蒸発を生じ
せしめればよい。In the practice of the present invention, the mixed solution or mixture is then heated to evaporate water. In this case, the mixed solution or the mixture gradually increases in viscosity, foams, and if further heated, becomes porous masses or aggregated particles. Since the degree of porosity at this point depends on the evaporation rate of water, a more porous product can be obtained by causing rapid evaporation of water.
【0022】加熱方法としてはオ−ブン、オイルバス、
スプレイドライ、流動乾燥、真空乾燥、ニ−ダ−、リボ
ンドライヤ−、パドルドライヤ−等公知の方法が使用で
きる。加熱温度は特に制限されないが約100℃〜硫酸
アルミニウムの熱分解温度以下で行う。通常加熱は混合
溶液や混合物が硫酸アルミニウムの結晶水に換算して6
水塩程度迄実施すればよい。加熱したバリウム物質含有
硫酸アルミニウムはついで熱分解し必要に応じて焼成し
遷移アルミナを得る。As a heating method, an oven, an oil bath,
Known methods such as spray drying, fluidized drying, vacuum drying, kneader, ribbon dryer, and paddle dryer can be used. The heating temperature is not particularly limited, but the heating is performed at about 100 ° C. to the thermal decomposition temperature of aluminum sulfate or lower. Usually, the heating is performed when the mixed solution or mixture is converted to water of crystallization of aluminum sulfate.
What is necessary is just to carry out to about salt. The heated barium substance-containing aluminum sulfate is then thermally decomposed and fired as necessary to obtain transition alumina.
【0023】硫酸アルミニウムを熱分解させる温度は、
バリウム含有硫酸アルミニウムの熱分解温度以上で、か
つ分解生成した遷移アルミナがα晶に結晶転移しない温
度以下であればよく、具体的には大気中で800℃以上
〜1500℃、0.1秒〜24時間、好ましくは約90
0℃以上〜1300℃、0.5秒〜15時間程度行えば
よい。The temperature at which aluminum sulfate is thermally decomposed is
The temperature is not less than the thermal decomposition temperature of barium-containing aluminum sulfate and not more than the temperature at which the transition alumina generated by decomposition does not undergo crystal transition to α-crystal. 24 hours, preferably about 90
It may be performed at 0 ° C. or higher to 1300 ° C. for about 0.5 seconds to 15 hours.
【0024】本発明において遷移アルミナとは、通常当
核分野において使用されている範囲を越えるものではな
く、水酸化アルミニウムを加熱し、αアルミナになる過
程のものを指し、具体的にはγ、δ、η、θ、κ、ρ、
χ等の結晶形態を有するものであり、就中θ、κ、γ晶
の遷移アルミナである。In the present invention, the transition alumina does not exceed the range usually used in the nuclear field, but refers to a process in which aluminum hydroxide is heated to become α-alumina. δ, η, θ, κ, ρ,
It has a crystal form such as χ, and is a transition alumina of θ, κ, and γ crystals.
【0025】本発明の実施に際し、バリウム化合物と硫
酸アルミニウム混合溶液または混合物の加熱および熱分
解は連続操作として実施してもよいが、加熱後熱分解す
るに先立ち加熱を解砕処理する方法が推奨される。In the practice of the present invention, heating and pyrolysis of the mixed solution or mixture of the barium compound and aluminum sulfate may be carried out as a continuous operation, but a method of crushing the heating prior to pyrolysis after heating is recommended. Is done.
【0026】解砕処理の目的は加熱方法による程度の差
はあるものの加熱により発泡し塊状或いは凝集粒となっ
ている粉体をほぐし、次に生じる熱分解時に発生するS
Oxを揮散しやすくするものである。Although the purpose of the crushing treatment varies depending on the heating method, the powder which has been foamed by heating and has become agglomerated or agglomerated particles is loosened, and the S which is generated at the time of the next thermal decomposition is generated.
Ox is easily volatilized.
【0027】解砕に際してはボ−ルミルや振動ミル等の
粉砕媒体を用いない粉砕、例えば自由粉砕機やジェット
ミルのような衝撃強度の少ない粉砕機を用いて、平均二
次粒子径約20μm〜70μm程度まで解砕することが
好ましい。In the pulverization, pulverization without using a pulverizing medium such as a ball mill or a vibration mill, for example, using a pulverizer having a low impact strength such as a free pulverizer or a jet mill, having an average secondary particle diameter of about 20 μm or less. It is preferable to disintegrate to about 70 μm.
【0028】このように熱分解に先立ちバリウム含有硫
酸アルミニウム加熱品を解砕処理することにより理由は
明らかではないが、得られた遷移アルミニウムは未処理
品に比較しその平均一次粒子径は小さく、耐熱性に優
れ、かつ遷移アルミナ中に残存するSOx量も少なくな
る。Although the reason why the barium-containing aluminum sulfate heated product is subjected to the crushing treatment prior to the thermal decomposition is not clear, the obtained transition aluminum has a smaller average primary particle diameter as compared with the untreated product. The heat resistance is excellent, and the amount of SOx remaining in the transition alumina is reduced.
【0029】解砕後の加熱品はついで熱分解するが、熱
分解の条件は上記したようにバリウム含有硫酸アルミニ
ウムが熱分解する温度以上でかつα−アルミナへの転移
が生じない温度で行えばよく、熱分解によって加熱品に
含まれる水及びSOxが乾固品粒子から急激に脱離する
ことによって遷移アルミナが発泡し高比表面積となる。The heated product after the crushing is then thermally decomposed. The pyrolysis condition is, as described above, at a temperature not lower than the temperature at which barium-containing aluminum sulfate is thermally decomposed, and at a temperature at which conversion to α-alumina does not occur. Often, the water and SOx contained in the heated product are rapidly desorbed from the dried product particles by thermal decomposition, whereby the transition alumina foams and has a high specific surface area.
【0030】熱分解方法としては、ロ−タリ−キルン、
瞬間仮焼、流動焼成、静置焼成、トンネル炉、バッチ
炉、雰囲気炉等公知の方法を使用すればよい。The pyrolysis methods include a rotary kiln,
Known methods such as instantaneous calcination, fluidized firing, stationary firing, a tunnel furnace, a batch furnace, and an atmosphere furnace may be used.
【0031】熱分解後のアルミナは熱分解条件(熱分解
温度、時間)を選定することにより所望とする結晶形態
の遷移アルミナと成しえるが、熱分解後、別途焼成する
ことにより、所望とする結晶形態の遷移アルミナとする
方法を採用することも可能である。The alumina after pyrolysis can be formed into a transition alumina having a desired crystal form by selecting the pyrolysis conditions (pyrolysis temperature and time). It is also possible to adopt a method of forming transition alumina in a crystalline form.
【0032】このようにして得られた遷移アルミナは、
1100℃、3時間焼成後のBET比表面積が100m2
/g以上であり、かつ1200℃、3時間焼成後のBE
T比表面積が60m2/g以上、普通には約80m2/g以
上である優れた耐熱性を有しており、そのままであるい
は粉砕した後触媒担体や樹脂充填材として、あるいは各
種形状触媒担体成形用原料として、さらにセラミック質
ハニカム等の既成の成形体表面に被覆する触媒担体とし
て使用可能である。The transition alumina thus obtained is
The BET specific surface area after firing at 1100 ° C. for 3 hours is 100 m 2
/ G or more and BE after firing at 1200 ° C. for 3 hours
It has excellent heat resistance with a T specific surface area of 60 m 2 / g or more, usually about 80 m 2 / g or more, and as it is or after being pulverized, as a catalyst carrier or a resin filler, or a catalyst carrier of various shapes. It can be used as a raw material for molding and as a catalyst carrier for coating the surface of an existing molded body such as a ceramic honeycomb.
【0033】[0033]
【発明の効果】以上詳述したごとく、本発明の耐熱性遷
移アルミナは硫酸アルミニウム等の安価な原料を用い混
合→加熱→熱分解という簡単な操作によって、微粒で被
覆性に優れ、高温においても実質的に初期の転移性アル
ミナの形態を維持し、比表面積の低下の少ない高比表面
積を有する耐熱性遷移アルミナを提供するものでその工
業的価値は頗る大なるものである。As described in detail above, the heat-resistant transition alumina of the present invention is finely divided into particles and has excellent coatability by a simple operation of mixing, heating, and thermal decomposition using an inexpensive raw material such as aluminum sulfate. The present invention provides a heat-resistant transition alumina having a high specific surface area with substantially no decrease in the specific surface area while substantially maintaining the initial form of the transition alumina, and its industrial value is extremely large.
【0034】[0034]
【実施例】以下、本発明を実施例により更に詳細に説明
するが本発明は以下の実施例により制限されるものでは
ない。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
【0035】実施例1 容積500mlのビ−カ−に50mlの浄水を入れ、こ
れに硫酸アルミニウム[Al2 (SO4 )3 ・18H2
O]30gと、最終所望遷移アルミナ中のAl 2 O3 1
00重量部に対してバリウム元素として1.0重量部と
なるように酢酸バリウムを加え室温で1時間撹拌しなが
ら生じた硫酸バリウムの白濁を完全に分散させた。この
分散液(硫酸アルミニウムの結晶水に換算して80水塩
に相当する)を電熱器で粘調状態になるまで沸騰、濃縮
乾燥後、180℃のエアバスに投入し、1時間蒸発乾固
した。このようにして得た乾固品100gをジュ−サ−
(VA−W35日立家電販売株式会社製)で3分間粉砕
することにより平均二次粒子径50μmの粉砕品を得
た。この粉砕品を室温から1050℃まで250℃/時
間の昇温速度で昇温後1050℃・16時間焼成、熱分
解し遷移アルミナ(X線回折の結果、大部分がγ−アル
ミナであった)を得た。このようにして得た遷移アルミ
ナ各2gをムライト製坩堝に入れシリコニット炉中、露
点15℃の含水蒸気大気1.5l/分の気流下で110
0℃、1200℃の温度で各3時間加熱して耐熱試験を
行い、加熱後における比表面積(BET法による)を測
定した。この結果を表1に示す。Example 1 A 500 ml beaker was charged with 50 ml of purified water.
Aluminum sulfate [AlTwo(SOFour)Three・ 18HTwo
O] and 30 g of Al in the final desired transition alumina. TwoOThree1
1.0 part by weight as a barium element with respect to 00 parts by weight
Add barium acetate and stir at room temperature for 1 hour.
The resulting cloudy barium sulfate was completely dispersed. this
Dispersion (80 water salts in terms of water of crystallization of aluminum sulfate)
Boiled with an electric heater until viscous, and concentrated
After drying, put in an air bath at 180 ° C and evaporate to dryness for 1 hour
did. 100 g of the dried product obtained in this manner was quenched with juicer.
(VA-W35 manufactured by Hitachi Home Appliance Sales Co., Ltd.) for 3 minutes
To obtain a pulverized product having an average secondary particle diameter of 50 μm.
Was. 250 ° C / hour from room temperature to 1050 ° C
After heating at a heating rate between 1050 ° C for 16 hours, heat
Transition alumina (mostly γ-Al
Was Mina). Transition aluminum obtained in this way
Put 2 g of each in a mullite crucible,
110 ° C under a steam flow of 1.5 l / min at a steam temperature of 15 ° C.
Heat at 0 ° C and 1200 ° C for 3 hours for heat resistance test
And measure the specific surface area (by BET method) after heating.
Specified. Table 1 shows the results.
【0036】実施例2〜実施例3 実施例1と同様の処理で、最終所望遷移アルミナにおい
てバリウム元素としてAl2 O3 100重量部に対し3
重量部(実施例2)、5重量部(実施例3)となるよう
に酢酸バリウムを用い遷移アルミナを得、実施例1と同
様に加熱による比表面積の低下を調べた。その結果を表
1に示す。Examples 2 to 3 In the same manner as in Example 1, 3 parts per 100 parts by weight of Al 2 O 3 as barium element in the final desired transition alumina was used.
Transition alumina was obtained by using barium acetate to be 5 parts by weight (Example 2) and 5 parts by weight (Example 3), and a decrease in specific surface area due to heating was examined in the same manner as in Example 1. Table 1 shows the results.
【0037】実施例4 容積500mlのビ−カ−に330mlの浄水を入れ、
これに硫酸アルミニウム[Al2 (SO4 )3 ・18H
2 O]184gと、最終所望遷移アルミナ中のAl2 O
3 100重量部に対してバリウム元素として10重量部
となるように酢酸バリウムを加え室温で1時間撹拌しな
がら生じた硫酸バリウムの白濁を完全に分散させた。こ
の分散液(硫酸アルミニウムの結晶水に換算して84水
塩に相当する)を130℃のエアバスで10時間蒸発乾
固した。この乾固品100gをジュ−サ−で3分粉砕す
ることにより平均二次粒子径50μmの粉砕品を得た。
この粉砕品を室温から1000℃まで250℃/時間の
昇温速度で昇温後1050℃・16時間焼成、熱分解し
遷移アルミナ(X線回折の結果、大部分がγ−アルミナ
であった)を得た。実施例1と同様に加熱による比表面
積の低下を調べた。その結果を表1に示す。Example 4 330 ml of purified water was placed in a 500 ml beaker.
To this, aluminum sulfate [Al 2 (SO 4 ) 3 · 18H
2 O] 184 g and Al 2 O in the final desired transition alumina
3 Barium acetate was added so as to be 10 parts by weight as a barium element with respect to 100 parts by weight, and the resulting cloudy barium sulfate was completely dispersed while stirring at room temperature for 1 hour. This dispersion (corresponding to 84 hydrate in terms of water of crystallization of aluminum sulfate) was evaporated to dryness in a 130 ° C. air bath for 10 hours. 100 g of this dried product was ground with a juicer for 3 minutes to obtain a ground product having an average secondary particle diameter of 50 μm.
This pulverized product was heated at a heating rate of 250 ° C./hour from room temperature to 1000 ° C., calcined at 1050 ° C. for 16 hours, thermally decomposed, and transition alumina was obtained (as a result of X-ray diffraction, most was γ-alumina). I got As in Example 1, the decrease in specific surface area due to heating was examined. Table 1 shows the results.
【0038】実施例5〜6 実施例4と同様の処理において最終所望遷移アルミナに
おいてバリウム元素としてAl2 O3 に対し15重量部
(実施例5)、20重量部(実施例6)となるように酢
酸バリウムを用い遷移アルミナを得、実施例1と同様に
加熱による比表面積の低下を調べた。その結果を表1に
示す。Examples 5 to 6 In the same treatment as in Example 4, the final desired transition alumina is adjusted to be 15 parts by weight (Example 5) and 20 parts by weight (Example 6) with respect to Al 2 O 3 as a barium element. Then, transition alumina was obtained using barium acetate, and the decrease in specific surface area due to heating was examined in the same manner as in Example 1. Table 1 shows the results.
【0039】実施例7 容積500mlのビ−カ−に330mlの浄水を入れ、
これに硫酸アルミニウム[Al2 (SO4 )3 ・18H
2 O]184gと、最終所望遷移アルミナ中のAl2 O
3 100重量部に対してバリウム元素として5重量部と
なるように塩化バリウムを加え室温で1時間撹拌しなが
ら生じた硫酸バリウムの白濁を完全に分散させた。この
分散液を400℃のエアバスに投入し急激な沸騰により
撹拌しながら10時間蒸発乾固した。この乾固品100
gをジュ−サ−で3分粉砕することにより平均二次粒子
径50μmの粉砕品を得た。この粉砕品を室温から10
50℃まで250℃/時間の昇温速度で昇温後1050
℃・15時間焼成、熱分解し遷移アルミナ(X線回折の
結果、大部分がγ−アルミナであった)を得た。実施例
1と同様に加熱による比表面積の低下を調べた。その結
果を表1に示す。Example 7 A 500 ml beaker was charged with 330 ml of purified water.
To this, aluminum sulfate [Al 2 (SO 4 ) 3 · 18H
2 O] 184 g and Al 2 O in the final desired transition alumina
3 Barium chloride was added so as to be 5 parts by weight as a barium element with respect to 100 parts by weight, and the resulting cloudy barium sulfate was completely dispersed while stirring at room temperature for 1 hour. This dispersion was put into an air bath at 400 ° C. and evaporated to dryness for 10 hours while stirring by rapid boiling. This dried product 100
g was ground with a juicer for 3 minutes to obtain a ground product having an average secondary particle diameter of 50 μm. This pulverized product is cooled from room temperature to 10
1050 after heating up to 50 ° C at a heating rate of 250 ° C / hour
The mixture was calcined at 15 ° C. for 15 hours and thermally decomposed to obtain transition alumina (mostly γ-alumina as a result of X-ray diffraction). As in Example 1, the decrease in specific surface area due to heating was examined. Table 1 shows the results.
【0040】実施例8 容積500mlのビ−カ−に330mlの浄水を入れ、
これに有水硫酸アルミニウム[Al2 (SO4 )3 ・1
8H2O]184gと、最終所望遷移アルミナにおいて
バリウム元素としてAl2 O3 に対し5.0重量部とな
るように塩化バリウムを加え、室温で1時間撹拌しなが
ら生じた硫酸バリウムの白濁を完全に分散させた。この
分散液を400℃のエアバスに投入し急激な沸騰により
撹拌しながら10時間蒸発乾固した。この乾固品を室温
から1050℃まで250℃/時間の昇温速度で昇温後
1050℃・15時間焼成し転移性アルミナを得た。こ
のものを実施例1と同様に加熱による比表面積の低下を
調べた。その結果を表1に示す。Example 8 330 ml of purified water was placed in a beaker having a volume of 500 ml.
This Arimizu aluminum sulfate [Al 2 (SO 4) 3 · 1
8H 2 O] and 184 g of barium chloride were added to the final desired transition alumina so as to be 5.0 parts by weight with respect to Al 2 O 3 as a barium element. Was dispersed. This dispersion was put into an air bath at 400 ° C. and evaporated to dryness for 10 hours while stirring by rapid boiling. The dried product was heated from room temperature to 1050 ° C. at a heating rate of 250 ° C./hour, and then calcined at 1050 ° C. for 15 hours to obtain transferable alumina. This was examined for the decrease in specific surface area due to heating in the same manner as in Example 1. Table 1 shows the results.
【0041】実施例9 実施例1において酢酸バリウムの他に硫酸ランタンを最
終所望遷移アルミナにおいてランタン元素としてAl2
O3 に対し1.0重量部となるように加え他は同様にし
て遷移アルミナを得、実施例7と同様に加熱による比表
面積の低下を調べた。その結果を表1に示す。[0041] in addition to lanthanum sulfate of barium acetate in Example 9 Example 1 as lanthanum element in the final desired transition alumina Al 2
Transition alumina was obtained in the same manner as above except that the amount became 1.0 part by weight with respect to O 3, and the decrease in specific surface area due to heating was examined in the same manner as in Example 7. Table 1 shows the results.
【0042】実施例10 硫酸アルミニウム[Al2 (SO4 )3 ・16H2 O]
400gを皿型転動造粒機に投入し、最終所望遷移アル
ミナ中のAl2 O3 100重量部に対しバリウム原子と
して5重量部になる量の酢酸バリウムを溶解した水溶液
95ccをスプレーして、硫酸アルミニウム粉末の造粒品
を得た。この造粒品(硫酸アルミニウム結晶水に換算し
て22水塩に相当する)を室温から1050℃まで25
0℃/時間昇温速度で昇温後1050℃・16時間焼
成、熱分解した遷移アルミナ(X線回折の結果、大部分
がγ−アルミナであった)を得た。この遷移アルミナを
用い実施例1と同様に加熱による比表面積の低下を調べ
た。 その結果を表1に示す。Example 10 Aluminum sulfate [Al 2 (SO 4 ) 3 .16H 2 O]
400 g was charged into a dish-type tumbling granulator and sprayed with 95 cc of an aqueous solution in which barium acetate was dissolved in an amount of 5 parts by weight as barium atoms with respect to 100 parts by weight of Al 2 O 3 in the final desired transition alumina. A granulated product of aluminum sulfate powder was obtained. This granulated product (equivalent to 22 hydrates in terms of aluminum sulfate crystal water) is cooled from room temperature to 1050 ° C. for 25 minutes.
After heating at a rate of 0 ° C./hour, calcined at 1050 ° C. for 16 hours and thermally decomposed to obtain transition alumina (mostly γ-alumina as a result of X-ray diffraction). Using this transition alumina, a decrease in the specific surface area due to heating was examined in the same manner as in Example 1. Table 1 shows the results.
【0043】比較例1 実施例1において酢酸バリウムを加えない他は同様にし
て遷移アルミナを得、実施例1と同様に加熱による比表
面積の低下を調べた。その結果を表1に示す。Comparative Example 1 Transition alumina was obtained in the same manner as in Example 1 except that barium acetate was not added, and the decrease in specific surface area due to heating was examined in the same manner as in Example 1. Table 1 shows the results.
【0044】比較例2 容積500mlのビ−カ−に300mlの浄水を入れ、
これに比較例1で得られた遷移アルミナ30gと、バリ
ウム元素としてAl2 O3 に対し2.0重量部となるよ
うに酢酸バリウムを加え90℃で1時間撹拌しながら分
散させた。このスラリ−を加熱しながら水を蒸発させた
後、400℃で10時間乾燥した。次いでこの乾燥品を
室温から1000℃まで250℃/時間の昇温速度で昇
温後1000℃・15時間焼成し遷移アルミナ(X線回
折の結果、大部分がγ−アルミナであった)を得た。こ
の遷移アルミナを用い、実施例1と同様に加熱による比
表面積の低下を調べた。その結果を表1に示す。Comparative Example 2 300 ml of purified water was placed in a beaker having a volume of 500 ml.
To this, 30 g of the transition alumina obtained in Comparative Example 1 and barium acetate as a barium element so as to be 2.0 parts by weight based on Al 2 O 3 were added and dispersed at 90 ° C. for 1 hour with stirring. After the water was evaporated while heating the slurry, the slurry was dried at 400 ° C. for 10 hours. Next, the dried product is heated from room temperature to 1000 ° C. at a rate of 250 ° C./hour, and then calcined at 1000 ° C. for 15 hours to obtain transition alumina (mostly γ-alumina as a result of X-ray diffraction). Was. Using this transition alumina, the decrease in specific surface area due to heating was examined in the same manner as in Example 1. Table 1 shows the results.
【0045】比較例3 実施例7と同様の処理においてに最終所望遷移アルミナ
においてバリウム元素としてAl2 O3 に対し0.5重
量部となるように酢酸バリウムを用い遷移アルミナを
得、実施例1と同様に加熱による比表面積の低下を調べ
た。その結果を表1に示す。Comparative Example 3 In the same treatment as in Example 7, transition alumina was obtained by using barium acetate so that the final desired transition alumina was 0.5 part by weight with respect to Al 2 O 3 as a barium element. In the same manner as described above, the decrease in specific surface area due to heating was examined. Table 1 shows the results.
【0046】[0046]
【表1】 [Table 1]
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 37/36 C01F 7/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) B01J 21/00-37/36 C01F 7/00
Claims (2)
ウム換算1〜20重量部よりなる硫酸アルミニウムとバ
リウム化合物の混合溶液または硫酸アルミニウムの結晶
水に換算して20水塩以上の水を含有する混合物を加熱
後、熱分解せしめることを特徴とする耐熱性遷移アルミ
ナの製造法。1. A mixed solution of aluminum sulfate and a barium compound comprising 1 to 20 parts by weight of barium based on 100 parts by weight of alumina or a mixture containing water of 20 hydrates or more in terms of water of crystallization of aluminum sulfate. A method for producing a heat-resistant transition alumina, comprising thermally decomposing and thermally decomposing a transition alumina.
ことを特徴とする請求項1記載の耐熱性遷移アルミナの
製造法。2. The process for producing heat-resistant transition alumina according to claim 1, wherein the powder after heating is pulverized and then thermally decomposed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03247389A JP3102082B2 (en) | 1990-09-26 | 1991-09-26 | Production method of heat-resistant transition alumina |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25826190 | 1990-09-26 | ||
JP2-258261 | 1990-09-26 | ||
JP03247389A JP3102082B2 (en) | 1990-09-26 | 1991-09-26 | Production method of heat-resistant transition alumina |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH054050A JPH054050A (en) | 1993-01-14 |
JP3102082B2 true JP3102082B2 (en) | 2000-10-23 |
Family
ID=26538243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03247389A Expired - Fee Related JP3102082B2 (en) | 1990-09-26 | 1991-09-26 | Production method of heat-resistant transition alumina |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3102082B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1204596B1 (en) * | 1999-08-11 | 2004-10-27 | Akzo Nobel N.V. | Quasi-crystalline boehmites containing additives |
CN102596403A (en) | 2009-10-30 | 2012-07-18 | 住友大阪水泥股份有限公司 | Exhaust cleaner for internal combustion engine |
US20140245724A1 (en) | 2011-08-26 | 2014-09-04 | Sumitomo Osaka Cement Co., Ltd. | Exhaust purification catalyst, exhaust emissin control device for internal combustion engine, and exhaust gas purification filter |
US10906816B2 (en) | 2016-07-29 | 2021-02-02 | Sumitomo Chemical Company, Limited | Alumina and method for producing automotive catalyst using same |
-
1991
- 1991-09-26 JP JP03247389A patent/JP3102082B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH054050A (en) | 1993-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0180233B1 (en) | Heat resistant transition alumina and process for producing the same | |
RU2302374C2 (en) | Nanoporous ultra-fine powders and the sol-gel from alpha aluminum oxide, the method of their preparation | |
CN1274637C (en) | Method for manufacturing stabilized zirconia | |
US5733840A (en) | Catalyst carrier | |
US6030914A (en) | Zirconia fine powder and method for its production | |
CN1041614C (en) | Method of producing mixed metal oxide powder and mixed metal oxide powder producing according to the method | |
US5106812A (en) | Catalyst carrier for use in high-temperature combustion | |
US5718879A (en) | Lanthanum-stabilized alumina particulates | |
JP6803176B2 (en) | Method for manufacturing porous alumina particle material | |
US4367292A (en) | Method for manufacture of powder composition for cordierite | |
González et al. | Synthesis of high surface area perovskite catalysts by non-conventional routes | |
JP3102082B2 (en) | Production method of heat-resistant transition alumina | |
JP3531299B2 (en) | Method for producing heat-resistant transition alumina | |
JPH05238729A (en) | Production of transitional alumina | |
JPH1045412A (en) | Heat resistant transition alumina and its production | |
JPS62168544A (en) | Zirconia carrier and its preparation | |
US4774068A (en) | Method for production of mullite of high purity | |
JPH04270114A (en) | Heat-resistant transition alumina and its production | |
JPS6283315A (en) | Production of gamma-alumina having superior heat stability | |
KR20190035704A (en) | Alumina and a method for manufacturing an automobile catalyst using the same | |
US20050239645A1 (en) | Thermally stabile materials having high specific surfaces | |
JP3458428B2 (en) | Method for manufacturing porous body | |
EP0808800A2 (en) | Praseodymium-zirconium-oxides for catalyst and washcoat | |
JPH0283033A (en) | Manufacture of heat resisting alumina carrier | |
JPH07291622A (en) | Production of transition alumina from aluminum sulfate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |