JP2864896B2 - Control unit for diesel engine - Google Patents
Control unit for diesel engineInfo
- Publication number
- JP2864896B2 JP2864896B2 JP4263570A JP26357092A JP2864896B2 JP 2864896 B2 JP2864896 B2 JP 2864896B2 JP 4263570 A JP4263570 A JP 4263570A JP 26357092 A JP26357092 A JP 26357092A JP 2864896 B2 JP2864896 B2 JP 2864896B2
- Authority
- JP
- Japan
- Prior art keywords
- injection timing
- combustion
- intake air
- diesel engine
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/005—Controlling exhaust gas recirculation [EGR] according to engine operating conditions
- F02D41/0057—Specific combustion modes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D23/00—Controlling engines characterised by their being supercharged
- F02D23/02—Controlling engines characterised by their being supercharged the engines being of fuel-injection type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/025—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3017—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
- F02D41/3035—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/401—Controlling injection timing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/406—Electrically controlling a diesel injection pump
- F02D41/408—Electrically controlling a diesel injection pump of the distributing type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B1/00—Engines characterised by fuel-air mixture compression
- F02B1/12—Engines characterised by fuel-air mixture compression with compression ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/32—Air-fuel ratio control in a diesel engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/38—Control for minimising smoke emissions, e.g. by applying smoke limitations on the fuel injection amount
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3076—Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明はディーゼルエンジンの
制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control system for a diesel engine.
【0002】[0002]
【従来の技術】排気ガス中の有害成分であるNOxの発
生を抑制するために、吸気管に不活性の排出ガスを再循
環させる、いわゆるEGR(Exhaust Gas
Recirculation)装置が周知である。この
EGR装置では、EGR通路(排出ガスの一部を吸気管
に戻すための通路)にEGR弁を装着しておき、EGR
の必要な領域でEGR弁を開いて一定量の排出ガス(E
GRガス)を吸入空気に混合させることにより燃焼時の
最高温度を下げるのである。2. Description of the Related Art In order to suppress the generation of NOx, which is a harmful component in exhaust gas, a so-called EGR (Exhaust Gas) in which inert exhaust gas is recirculated through an intake pipe.
Recirculation devices are well known. In this EGR device, an EGR valve is mounted on an EGR passage (a passage for returning a part of exhaust gas to an intake pipe), and an EGR valve is provided.
The EGR valve is opened in the area where the required amount of exhaust gas (E
The maximum temperature during combustion is lowered by mixing GR gas) with the intake air.
【0003】ところで、EGR率(=(EGR量/新気
量)×100)[%]が大きくなると、スモークの排出
濃度が増す。このため、特開昭60−162018号公
報では、EGR率が大きくなるのに合わせてスワールを
強化している。When the EGR rate (= (EGR amount / fresh air amount) × 100) [%] increases, the smoke emission concentration increases. For this reason, in JP-A-60-162018, the swirl is strengthened as the EGR rate increases.
【0004】これは、EGR率が大きくなると、スワー
ルを強くして燃焼時の空気と燃料のミキシング(交じり
具合)を改善することで、スモークを低減しようという
のである。[0004] The reason is that when the EGR rate increases, the swirl is strengthened to improve the mixing of air and fuel during combustion, thereby reducing smoke.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記の
装置では、EGR率を大幅に高くしたときのスモークの
増大を抑えることまでは困難である。However, with the above-described apparatus, it is difficult to suppress the increase in smoke when the EGR rate is significantly increased.
【0006】たとえば図22にEGR率に対するNOx
とスモークの各濃度を示すと、EGR率の増加ととも
に、NOx濃度は大きく減少していくのに反し、スモー
ク濃度が急激に大きくなっている。この場合に、スワー
ル比SRを大きくすると、全般的にスモーク濃度を小さ
くできるのであるが、それでもEGR率の高い領域にな
ると、スモーク濃度の限界値を超えている。スワールに
よるスモーク濃度の低減効果は、拡散燃焼時の空気と燃
料の拡散速度を速めることにより得られるため、高EG
R率によって酸素濃度が低い状況下になると、空気中の
酸素不足によりその効果はあまり大きくないのである。
なお、スワール比SRは SR=Vc/N ただし、Vc;スワール流れ切線方向回転速度 N;エンジン回転速度 により定義される値である。[0006] For example, FIG.
When the EGR rate increases, the NOx concentration sharply decreases, whereas the smoke concentration sharply increases. In this case, if the swirl ratio SR is increased, the smoke density can be generally reduced. However, even in a region where the EGR rate is high, the smoke density exceeds the limit value. The effect of reducing the smoke concentration by swirl can be obtained by increasing the diffusion speed of air and fuel during diffusion combustion, so that high EG
When the oxygen concentration is low due to the R rate, the effect is not so large due to lack of oxygen in the air.
Note that the swirl ratio SR is a value defined by SR = Vc / N where Vc; swirl flow cutting direction rotation speed N; engine rotation speed.
【0007】また、スワール比SRを大きくすると、N
Ox濃度も大きくなっている。When the swirl ratio SR is increased, N
The Ox concentration has also increased.
【0008】そこでこの発明は、燃焼温度を低下させる
手段の作動時に、熱発生パターンが単段燃焼の形態とな
るように着火遅れ期間を常識を超えて長引かせることに
より、新燃焼方式を実現して、NOxとスモークをとも
に低減させることを目的とする。なお、特開昭63−
21335号公報には、アイドル状態もしくは低速軽負
荷状態での運転時に、排気再循環を行いつつ運転状態に
応じた噴射時期の遅角制御を行うものが、また特公昭
61−6255号公報に、所定の領域でEGR中に噴射
時期の遅延を行わせるものが提案されている。この場
合、一見して、「燃焼温度を低下させる手段」とはEG
Rに当たり、また「着火遅れ期間を長くする手段」とは
噴射時期の遅延に当たるとみなせば、本願発明と上記
、の従来技術とは類似した技術であるように考えら
れ、しかも、、の従来技術とも、NOxとスモーク
(PM)の同時低減を図る技術のように開示されてい
る。しかしながら、、の従来技術は、NOxとスモ
ークのトレードオフの関係(一方を低減すれば他方が増
加する)を打破した同時低減の技術でない。具体的には
NOx低減手段であるEGRの作動時にスモーク発生を
最小限に抑える技術であり、言い換えれば「従来の燃焼
方式」の枠内でマッチング点(妥協点)を見いだす排気
改善の技術に過ぎない。 Accordingly, the present invention reduces the combustion temperature.
When the means are activated, the heat release pattern will be in the form of a single stage combustion.
By prolonging beyond common sense ignition delay period so that, to achieve new combustion system, and an object thereof to both reduce the NOx and smoke. In addition, JP-A-63-
Japanese Patent No. 21335 discloses an idle state or a low speed load.
When operating in a loaded state, the exhaust
The one that performs the retard control of the injection timing according to
No. 61-6255 discloses that injection is performed during EGR in a predetermined region.
Some have been proposed to delay the timing. This place
At first glance, the “means for lowering the combustion temperature” is EG
R, and "means to extend the ignition delay period"
If it is considered that the injection timing is delayed, the present invention and the above
Seems to be similar to the prior art
In addition, both conventional technology, NOx and smoke
(PM) is disclosed as a technology for simultaneous reduction
You. However, the prior art of NOx and SM
The trade-off relationship of the network (reducing one will increase the other)
It is not a simultaneous reduction technology that breaks down. In particular
Smoke is generated during the operation of EGR, which is a NOx reduction means.
It is a technology that minimizes, in other words,
Exhaust that finds a matching point (compromise) within the framework of "method"
It's just an improvement technique.
【0009】[0009]
【課題を解決するための手段】第1の発明は、第1図に
示したように、エンジンの運転条件に応じてエンジンの
燃焼温度を低下させる手段81と、この燃焼温度を低下
させる手段の作動時に、熱発生パターンが単段燃焼の形
態となるように着火遅れ期間を大幅に長くする手段82
とを設けた。SUMMARY OF THE INVENTION The first aspect of the present invention, as shown in FIG. 1, the means 81 for reducing the combustion temperature of the engine according to operating conditions of the engine, lowering the combustion temperature
When the heating means is activated, the heat generation pattern
Means 82 for significantly increasing the ignition delay period so that
And provided.
【0010】第2の発明は、前記燃焼温度を低下させる
手段81は、吸気の酸素濃度を低減させる手段である。A second invention is <br/> means 81 which causes lowering the combustion temperature is a means for reducing the oxygen concentration of the intake air.
【0011】第3の発明は、前記着火遅れ期間を大幅に
長くする手段82は、燃料の噴射時期を上死点後まで遅
らせる手段である。The third invention greatly reduces the ignition delay period.
The lengthening means 82 is means for delaying the fuel injection timing until after the top dead center.
【0012】第4の発明は、第3の発明において、燃料
の噴射時期を上死点後まで遅らせるときは吸気を過給す
る手段を設けた。In a fourth aspect based on the third aspect, a means for supercharging the intake air is provided when the fuel injection timing is delayed until after the top dead center.
【0013】第5の発明は、第3の発明において、燃料
の噴射時期を上死点後まで遅らせるときはスワールを強
化する手段を設けた。In a fifth aspect based on the third aspect, a means for enhancing swirl is provided when the fuel injection timing is delayed until after the top dead center.
【0014】第6の発明は、第2の発明の酸素濃度低減
手段は、少なくとも2つに分岐された一方の分岐管を流
れる吸気から酸素を除去する酸素除去フィルターと、こ
のフィルターの設けられる分岐通路への吸気流量を調整
する流量制御弁と、この制御弁を運転条件に応じて制御
する手段とからなる。According to a sixth aspect of the present invention, the oxygen concentration reducing means according to the second aspect of the present invention comprises an oxygen removal filter for removing oxygen from intake air flowing through at least one of the branch pipes, and a branch provided with the filter. It comprises a flow control valve for adjusting the flow rate of intake air to the passage, and means for controlling the control valve according to operating conditions.
【0015】[0015]
【作用】「従来の燃焼方式」によれば、燃焼温度を低下
させる手段の作動時に、NOx濃度は減少するものの、
スモーク濃度が急激に上昇する。[Function] According to the “conventional combustion method”, the combustion temperature is lowered
Although the NOx concentration decreases during the operation of the
The smoke concentration rises sharply.
【0016】この同じ作動時に、第1の発明により熱発
生パターンが単段燃焼の形態となるように着火遅れ期間
が大幅に長くされると、NOx濃度だけでなく、スモー
ク濃度もともに小さくなる。これは、「従来の燃焼方
式」による燃焼は、着火遅れ期間に形成される予混合気
が一気に燃え上がる初期燃焼と、この燃焼に引き続いて
起こり、その燃焼速度が燃料と空気の拡散速度によって
制限をうける拡散燃焼(主燃焼)とからなるが、着火遅
れ期間が常識を超えて大幅に長くされると、燃焼のほと
んどが予混合燃焼となり、スモークが発生しにくくなる
からであると思われる。During this same operation , heat is generated according to the first invention.
If the ignition delay period is significantly lengthened so that the raw pattern becomes a single-stage combustion mode , not only the NOx concentration but also the smoke concentration decreases. This is called “the traditional combustion method.
The combustion according to the formula is the initial combustion in which the premixed gas formed during the ignition delay period burns at a stretch, and the combustion that follows the combustion, and the combustion speed is limited by the diffusion speed of fuel and air (main combustion). However, if the ignition delay period is greatly extended beyond the common sense, it is considered that most of the combustion becomes premixed combustion, and smoke is less likely to be generated.
【0017】第2の発明で吸気の酸素濃度が低くなると
燃焼温度が低下し、第3の発明で燃料の噴射時期が上死
点後まで極端に遅らされると、着火遅れ期間が大幅に長
くなる。In the second invention, if the oxygen concentration of the intake air is lowered, the combustion temperature is lowered. If the fuel injection timing is extremely delayed until after the top dead center in the third invention, the ignition delay period is greatly increased. become longer.
【0018】ところで、第3の発明において、燃料の噴
射時期を上死点後まで遅らせると、吸気の酸素濃度が低
減し、燃焼温度が低くなる運転域でNOx濃度、スモー
ク濃度をともに低減できるものの、その一方で酸素の絶
対量が不足するため、HC濃度が上昇する傾向にある。In the third aspect of the invention, if the fuel injection timing is delayed until after the top dead center, the oxygen concentration of the intake air is reduced, and both the NOx concentration and the smoke concentration can be reduced in an operating range where the combustion temperature is low. On the other hand, since the absolute amount of oxygen is insufficient, the HC concentration tends to increase.
【0019】これに対して、第4の発明で吸気が過給さ
れると酸素濃度は低減するものの酸素の絶対量が確保さ
れ、また第5の発明でスワールが強化されることによっ
て燃焼が改善されるため、HC濃度が大幅に低減され
る。On the other hand, in the fourth invention, when the intake air is supercharged, the oxygen concentration is reduced, but the absolute amount of oxygen is secured, and in the fifth invention, the swirl is strengthened to improve the combustion. Therefore, the HC concentration is greatly reduced.
【0020】第2の発明において、吸気の酸素濃度をE
GR装置によって低減させるとすれば、排気中のカーボ
ンによって吸気バルブがスティックすることがある。In the second invention, the oxygen concentration of the intake air is set to E
If reduced by the GR device, the intake valve may stick due to carbon in the exhaust gas.
【0021】これに対して、第6の発明によれば、EG
R装置のように排出ガスを吸気中に還流する必要がない
ため、排気中のカーボンによる吸気バルブのスティック
を防止することができ、また高温の排気による吸気温度
の上昇によるNOx濃度の上昇が抑制される。On the other hand, according to the sixth aspect, the EG
Since there is no need to recirculate exhaust gas into the intake air unlike the R device, sticking of the intake valve due to carbon in the exhaust gas can be prevented, and an increase in NOx concentration due to an increase in the intake air temperature due to high-temperature exhaust gas can be suppressed. Is done.
【0022】[0022]
【実施例】図2において、21はエンジン本体、23は
吸気管、25は排気管、26は排気管25と吸気管23
とを連通するEGR通路、27は制御負圧に応動するダ
イアフラム式のEGR弁である。In FIG. 2, 21 is an engine body, 23 is an intake pipe, 25 is an exhaust pipe, 26 is an exhaust pipe 25 and an intake pipe 23.
An EGR passage 27 communicates with the diaphragm, and a diaphragm type EGR valve 27 that responds to the control negative pressure.
【0023】28は負圧制御弁で、コントロールユニッ
ト31からのデューティ信号に応じて負圧源からの一定
負圧を3段階に調整する。たとえば、負圧調整弁28へ
のOFFデューティ(一定周期のOFF時間割合)が最
大値で一定負圧がそのままEGR弁27に導入されると
きは、排出ガスの50%が還流される。これはEGR率
が100%に相当する。OFFデューティが段階的に小
さくなると、EGR弁27への制御負圧の減少によりE
GR弁開度が小さくなってEGR流量が少なくなる。つ
まり、OFFデューティを小さくするごとにEGR率が
60%、30%と小さくなる。Reference numeral 28 denotes a negative pressure control valve which adjusts a constant negative pressure from a negative pressure source in three stages according to a duty signal from the control unit 31. For example, when the OFF duty (OFF time ratio of a constant cycle) to the negative pressure adjusting valve 28 is the maximum value and a constant negative pressure is directly introduced into the EGR valve 27, 50% of the exhaust gas is recirculated. This corresponds to an EGR rate of 100%. When the OFF duty decreases stepwise, the control negative pressure to the EGR valve 27 decreases and E
The degree of opening of the GR valve decreases, and the EGR flow rate decreases. That is, each time the OFF duty is reduced, the EGR rate decreases to 60% and 30%.
【0024】こうして得られる3段階のEGR率は、運
転条件に対して図3のように設定している。図におい
て、中回転・中負荷域と低回転の全負荷域でEGR率は
100%である。これらの運転域では、スモークの発生
がほぼ0に抑えられるため、EGR率を高くしてもスモ
ークの吸気管23への流入によって引き起こされる吸気
バルブのスティックなどが発生しないからである。これ
に対して、高回転・高負荷域においては、燃焼期間が長
びいてスモークの発生を完全に抑えることができないた
め、さらには排気温度の上昇およびEGR流量の増大で
吸気温度が上昇し、EGRによるNOx低減の効果が減
少することなどのため、EGR率を60%、30%と段
階的に減少させている。The three-stage EGR rates thus obtained are set as shown in FIG. 3 with respect to the operating conditions. In the figure, the EGR rate is 100% in the middle rotation / medium load region and the low rotation full load region. This is because, in these operating ranges, the generation of smoke is suppressed to almost zero, and therefore, even if the EGR rate is increased, sticking of the intake valve caused by the flow of the smoke into the intake pipe 23 does not occur. On the other hand, in the high rotation speed / high load range, the combustion period is long and the generation of smoke cannot be completely suppressed. Therefore, the intake air temperature increases due to the increase in the exhaust gas temperature and the EGR flow rate, To reduce the effect of NOx reduction by EGR, the EGR rate is gradually reduced to 60% and 30%.
【0025】EGR率をエンジンの運転条件に応じて制
御するため、マイコンからなるコントロールユニット3
1が設けられ、コントロールユニット31では、アクセ
ル開度(アクセルペダル開度)を検出するセンサ32、
エアフローメータ33からの信号と、後述するリファレ
ンスパルス、スケールパルスにもとづいてEGR流量を
段階的に制御する。In order to control the EGR rate in accordance with the operating conditions of the engine, a control unit 3 comprising a microcomputer
1, a control unit 31 includes a sensor 32 for detecting an accelerator opening (accelerator pedal opening);
The EGR flow rate is controlled stepwise based on a signal from the air flow meter 33 and a reference pulse and a scale pulse described later.
【0026】エンジンの発生するトルクとエンジン回転
数に対して図3に示したEGR率(目標EGR率)の特
性が得られるように、アクセル開度(エンジン負荷相当
量)Accとエンジン回転数Neをパラメータとするマ
ップ(図示せず)を設定しておき、このマップをルック
アップして、そのときの目標EGR率を求める。これと
エアフローメータ流量(新気量)とからEGR流量を EGR流量=エアフローメータ流量×目標EGR率… により計算し、この流量のEGRガスが流れるように負
圧制御弁28へのOFFデューティを決定するのであ
る。In order to obtain the characteristics of the EGR rate (target EGR rate) shown in FIG. 3 with respect to the torque generated by the engine and the engine speed, the accelerator opening (engine load equivalent) Acc and the engine speed Ne are obtained. Is set as a parameter, and the map is looked up to find the target EGR rate at that time. The EGR flow rate is calculated from this and the air flow meter flow rate (new air flow rate) as follows: EGR flow rate = air flow meter flow rate × target EGR rate... You do it.
【0027】一方、燃料噴射ポンプ20の具体的な構造
を図4に示すと、これは燃料の噴射時期と燃料の噴射量
が電子制御される分配型の燃料噴射ポンプで、公知であ
る。On the other hand, FIG. 4 shows a specific structure of the fuel injection pump 20, which is a well-known distribution type fuel injection pump in which the fuel injection timing and the fuel injection amount are electronically controlled.
【0028】図4において、4はエンジン21の出力軸
と連結される駆動軸、2はこの駆動軸4により駆動され
るベーン型のフィードポンプで、図示しない燃料入口か
らフィードポンプ2により吸引された燃料はハウジング
1内のポンプ室5に供給され、ポンプ室5に開口する吸
込通路6を介してプランジャポンプ3のプランジャ室1
2に送られる。In FIG. 4, reference numeral 4 denotes a drive shaft connected to the output shaft of the engine 21, and reference numeral 2 denotes a vane-type feed pump driven by the drive shaft 4, which is sucked from a fuel inlet (not shown) by the feed pump 2. The fuel is supplied to a pump chamber 5 in the housing 1, and is supplied to a plunger chamber 1 of the plunger pump 3 through a suction passage 6 opened to the pump chamber 5.
Sent to 2.
【0029】駆動軸4の一端(図で右端)には、プラン
ジャ7の左端に固設されたフェイスカム9のツメ9aが
軸方向に摺動自在に連結され、このツメ9aを介して、
フェイスカム9およびプランジャ7が、駆動軸4と同一
軸線上に位置するとともに、プランジャ7については軸
方向に変位可能に構成される。A nail 9a of a face cam 9 fixed to the left end of the plunger 7 is slidably connected to one end (right end in the figure) of the drive shaft 4 in the axial direction.
The face cam 9 and the plunger 7 are located on the same axis as the drive shaft 4, and the plunger 7 is configured to be displaceable in the axial direction.
【0030】前記駆動軸4とフェイスカム9との連結部
外周には、複数のローラ11を担持するローラホルダ1
0が駆動軸4と同心に配置され、またフェイスカム9に
は気筒数に対応した数の不等速度カムをなすカム面9b
が形成されており、このカム面9bは、スプリング15
によりローラ11に圧接されている。A roller holder 1 carrying a plurality of rollers 11 is provided on the outer periphery of the connection between the drive shaft 4 and the face cam 9.
0 is arranged concentrically with the drive shaft 4, and the face cam 9 has a cam surface 9b having a number of unequal speed cams corresponding to the number of cylinders.
The cam surface 9b is provided with a spring 15
To press the roller 11.
【0031】プランジャ7には、その先端にエンジンの
シリンダと同数の吸込溝8が形成され、カム面9bが駆
動軸4とともに回転しながらローラホルダ10に配設さ
れたローラ11を乗り越えて所定のカムリフトだけ往復
運動すると、吸込溝8からプランジャ室12に吸引され
た燃料が、プランジャ室12に通じる図示しない各気筒
毎の分配ポートからデリバリバルブを通って噴射ノズル
へと圧送される。The plunger 7 has the same number of suction grooves 8 at its tip as the number of cylinders of the engine, and the cam surface 9b rotates with the drive shaft 4 so as to ride over the roller 11 provided on the roller holder 10 and to reach a predetermined position. When the cam lift reciprocates, the fuel sucked into the plunger chamber 12 from the suction groove 8 is pressure-fed to the injection nozzle from a distribution port for each cylinder (not shown) communicating with the plunger chamber 12 through a delivery valve.
【0032】13は、プランジャ室12と低圧のポンプ
室5とを連通する燃料戻し通路で、この燃料戻し通路1
3には駆動回路からの信号(駆動パルス)によりエンジ
ンの運転条件に応じて駆動される高速応動型の電磁弁1
4が介装される。この電磁弁14は燃料制御のために設
けられるもので、プランジャ7の圧縮行程中に電磁弁1
4を閉じると燃料の噴射が開始され、電磁弁14を開く
と噴射が終了する。つまり、電磁弁14の閉弁時期によ
り燃料の噴射開始時期が、その閉弁期間に応じて噴射量
が制御される。A fuel return passage 13 communicates the plunger chamber 12 with the low-pressure pump chamber 5.
Reference numeral 3 denotes a high-speed responsive solenoid valve driven in accordance with the operating conditions of the engine by a signal (drive pulse) from a drive circuit.
4 are interposed. The solenoid valve 14 is provided for fuel control, and is operated during the compression stroke of the plunger 7.
When the valve 4 is closed, fuel injection is started, and when the solenoid valve 14 is opened, the fuel injection ends. That is, the fuel injection start timing is controlled by the valve closing timing of the electromagnetic valve 14, and the injection amount is controlled by the valve closing period.
【0033】ところで、EGR率を大きくするとNOx
濃度を低減できるものの、その一方でスモーク濃度が急
激に上昇する。この場合に、スワールを強化することに
よって拡散燃焼時のミキシングを向上させるだけの対策
だと、高EGR率でのスモーク濃度が不十分にしか低減
されない。When the EGR rate is increased, NOx
Although the concentration can be reduced, the smoke concentration sharply increases. In this case, if measures are merely taken to improve the mixing during diffusion combustion by strengthening the swirl, the smoke concentration at a high EGR rate will be reduced only insufficiently.
【0034】これに対処するため、コントロールユニッ
ト31では、高EGR率の運転域になると、着火遅れ期
間が極端に長くなるように燃料の噴射時期を上死点後ま
で遅らせる。EGR率の特性(図3)と対比させて、図
5に燃料の噴射時期の特性を示すと、低回転域での中負
荷から高負荷にかけての運転域で噴射時期を上死点後
(+4ATDCと+2ATDC)にするのである。これ
は、噴射時期の大幅な遅延によって吸気をより低温状態
にし、予混合気燃焼の比率を増大させることによって、
スモークの発生を抑制するためである。In order to cope with this, the control unit 31 delays the fuel injection timing until after the top dead center so that the ignition delay period becomes extremely long in the high EGR rate operation range. FIG. 5 shows the characteristics of the fuel injection timing in comparison with the characteristics of the EGR rate (FIG. 3). In the operation range from a medium load to a high load in a low rotation speed range, the injection timing is changed after the top dead center (+4 ATDC). And + 2ATDC). This is due to a significant delay in the injection timing, making the intake air cooler and increasing the proportion of premixed combustion,
This is for suppressing the generation of smoke.
【0035】図5において中回転から高回転での中高負
荷域になると、エンジン回転数の増加とともに噴射時期
を進めている。これは着火遅れの時間が一定であって
も、着火遅れクランク角度(着火遅れ時間をクランク角
度に換算した値)がエンジン回転数の増加に比例して大
きくなるので、どんな回転数においても着火時期をほぼ
一定に保つため、回転数の増加に伴い噴射時期を進める
のである。たとえば、1200rpmで1msecは
7.2°のクランク角度に相当するが、3倍の3600
rpmになると1msecは2.4°のクランク角度で
ある。つまり1200rpmと3600rpmとで着火
時期を同じにするには、3600rpmの回転数では1
200rpmのときより噴射時期を約5°進角する必要
があるのである。In FIG. 5, when the engine speed is changed from medium rotation to high rotation in the middle to high load range, the injection timing is advanced as the engine speed increases. This is because even if the ignition delay time is constant, the ignition delay crank angle (the value obtained by converting the ignition delay time into a crank angle) increases in proportion to the increase in the engine speed. Is maintained at a substantially constant value, the injection timing is advanced as the rotational speed increases. For example, at 1200 rpm, 1 msec is equivalent to a crank angle of 7.2 °, but tripled to 3600.
At rpm, 1 msec is a crank angle of 2.4 °. That is, in order to make the ignition timing the same at 1200 rpm and 3600 rpm, 1 is required at a rotation speed of 3600 rpm.
It is necessary to advance the injection timing by about 5 ° from 200 rpm.
【0036】一方、図5においてスモークの発生しない
低負荷域ではスモーク発生を抑制する必要がないことお
よび炭化水素HCの急増を抑制することのため噴射時期
を高負荷域より進めている。これは、燃焼室壁温が低く
なる低負荷域で高負荷域と同じ噴射時期にすると、着火
遅れ期間が長びくことに起因して着火時期が遅れ燃焼温
度が低下するためかえってHC濃度が大きくからであ
る。On the other hand, in FIG. 5, the injection timing is advanced from the high load region in order to suppress the occurrence of smoke in the low load region where smoke does not occur and to suppress the rapid increase of hydrocarbon HC. This is because, when the injection timing is the same as that in the high load region in the low load region where the combustion chamber wall temperature is low, the ignition timing is delayed due to the longer ignition delay period, and the combustion temperature is lowered. It is.
【0037】図5に示した噴射時期が得られるように、
コントロールユニット31では図4の電磁弁14の開く
タイミング(噴射時期相当量)を制御する。In order to obtain the injection timing shown in FIG.
The control unit 31 controls the opening timing (equivalent amount of injection timing) of the solenoid valve 14 in FIG.
【0038】図6は燃料の噴射時期と噴射期間(噴射
量)を制御するための流れ図で、一定周期で実行する。FIG. 6 is a flowchart for controlling the fuel injection timing and the injection period (injection amount), which are executed at a constant cycle.
【0039】まず、エンジン回転数Ne、アクセル開度
Acc、冷却水温TWおよび燃料温度TFを読み込む
(図6のステップ1)。なお、エンジン回転数Neは、
リファレンスパルス(噴射ポンプ20の1回転当たり1
個のパルス)とスケールパルス(噴射ポンプ20の1回
転当たり36個のパルス)から計算する。冷却水温TW
と燃料温度TFは各センサ34,35で検出している。First, the engine speed Ne, accelerator opening Acc, cooling water temperature TW and fuel temperature TF are read (step 1 in FIG. 6). The engine speed Ne is
Reference pulse (1 per rotation of injection pump 20)
) And a scale pulse (36 pulses per revolution of the injection pump 20). Cooling water temperature TW
And the fuel temperature TF are detected by the respective sensors 34 and 35.
【0040】読み込まれたエンジン回転数Neとアクセ
ル開度Accからは燃料の基本噴射時期Itmと燃料の
基本噴射期間Avmの各マップをそれぞれルックアップ
して求める(図6のステップ2)。Based on the read engine speed Ne and the accelerator opening Acc, the maps of the basic fuel injection timing Itm and the basic fuel injection period Avm are respectively looked up and obtained (step 2 in FIG. 6).
【0041】基本噴射時期Itmのマップは、図5の噴
射時期特性が得られるようにアクセル開度Accとエン
ジン回転数Neをパラメータとして定めたマップ(図示
せず)である。基本噴射期間Avmは、図7のようにア
クセル開度Accが大きくなるほど長くしている。The map of the basic injection timing Itm is a map (not shown) in which the accelerator opening Acc and the engine speed Ne are defined as parameters so as to obtain the injection timing characteristics of FIG. As shown in FIG. 7, the basic injection period Avm becomes longer as the accelerator opening Acc increases.
【0042】一方、燃料温度TFと冷却水温TWからは
噴射時期補正量ΔItmを求め、これを基本噴射時期I
tmに加算することによって噴射時期を補正する(図6
のステップ3,4)。On the other hand, an injection timing correction amount ΔItm is obtained from the fuel temperature TF and the cooling water temperature TW.
The injection timing is corrected by adding to tm (see FIG. 6).
Steps 3 and 4).
【0043】噴射時期補正量ΔItmは2つの補正量Δ
Itm1、ΔItm2の和で、図8が燃料温度補正量ΔI
tm1の特性、図9が水温補正量ΔItm2の特性であ
る。いずれの特性においても低温になるほど進角補正量
を大きくするのは、低温になるほど燃焼速度が遅くなる
からである。言い換えると温度補償を行うのである。The injection timing correction amount ΔItm has two correction amounts Δ
FIG. 8 shows the fuel temperature correction amount ΔI as the sum of Itm 1 and ΔItm 2 .
Characteristics of tm 1, FIG. 9 is a characteristic of the water temperature correction amount ΔItm 2. In any of the characteristics, the reason why the advance angle correction amount is increased as the temperature becomes lower is that the combustion speed becomes lower as the temperature becomes lower. In other words, temperature compensation is performed.
【0044】こうして得た噴射時期IT(=Itm+Δ
Itm)と基本噴射期間Avmとは所定のアドレスに格
納する(図6のステップ5)。この噴射時期ITで上記
の電磁弁14が閉じられ、その閉弁タイミングより基本
噴射期間Avmが経過したタイミングで電磁弁14が開
かれるのである。The injection timing IT (= Itm + Δ) thus obtained
Itm) and the basic injection period Avm are stored at predetermined addresses (step 5 in FIG. 6). The solenoid valve 14 is closed at the injection timing IT, and the solenoid valve 14 is opened at a timing when the basic injection period Avm has elapsed from the closing timing.
【0045】ここで、この例の作用を図10を参照しな
がら説明する。Here, the operation of this example will be described with reference to FIG.
【0046】同図は燃料の噴射時期を上死点前にした場
合と上死点後にした場合のEGR率に対するNOxとス
モークの各濃度特性を示し、上死点前の噴射時期(IT
=−4ATDC)ではEGR率が高くなるのに伴い、N
Ox濃度は減少するもののスモーク濃度が急激なカーブ
で上昇している。FIG. 3 shows the NOx and smoke concentration characteristics with respect to the EGR rate when the fuel injection timing is before the top dead center and after the top dead center, and shows the injection timing (IT
= −4ATDC), the NGR increases as the EGR rate increases.
Although the Ox concentration decreases, the smoke concentration increases in a sharp curve.
【0047】これに対して、上死点後の噴射時期(IT
=+4ATDC)になると、スモーク濃度までが低下傾
向を示している。スモーク濃度がこのように減少するの
は、図中に示した熱発生パターンをみれば分かるよう
に、噴射時期の極端な遅延と高EGR率の組み合わせに
より、着火遅れ期間が大幅に長くなり、燃焼の大半が予
混合気燃焼になっているためと思われる。つまり、EG
R率があまり高くない従来例で噴射時期を上死点後まで
遅らせたのでは、図11に示したようにスモーク濃度の
上昇傾向を抑制することはできないのであるが、この例
では燃焼の大半が予混合気燃焼となるため、高EGR率
の運転域でもスモーク濃度を大幅に低減できるのであ
る。On the other hand, the injection timing after the top dead center (IT
= + 4ATDC), there is a tendency to decrease to smoke concentration. As can be seen from the heat generation pattern shown in the figure, the combination of the extreme delay of the injection timing and the high EGR rate significantly increases the ignition delay period, and the combustion concentration is reduced. This is probably because most of the fuel was premixed gas combustion. That is, EG
If the injection timing is delayed until after the top dead center in the conventional example in which the R rate is not so high, the tendency of the smoke concentration to increase cannot be suppressed as shown in FIG. 11, but in this example, most of the combustion is performed. Is premixed gas combustion, so that the smoke concentration can be significantly reduced even in an operation region with a high EGR rate.
【0048】図10には上死点後のクランク角度が4度
の例で示しているが、予混合気燃焼と拡散燃焼の臨界点
はエンジンの機種により異なるので、上死点後何度にす
るかはエンジンごとにマッチングにより定めることにな
る。FIG. 10 shows an example in which the crank angle after the top dead center is 4 degrees. However, since the critical points of the premixed gas combustion and the diffusion combustion differ depending on the type of engine, the number of times after the top dead center increases. This is determined by matching for each engine.
【0049】また、図12に燃料消費率の特性を示す
と、この例での噴射時期の遅延により等容度は悪化する
ものの、その一方で燃焼温度の低下によって冷却損失が
大幅に低減するため、噴射時期を遅延させるからといっ
て燃料消費率が悪化することはない。なお、等容度とは
仕事変換効率を意味させており、仕事変換効率は 仕事変換効率=図示仕事/熱発生量=図示効率/(1−
冷却損失) により定義される値のことである。FIG. 12 shows the characteristics of the fuel consumption rate. In this example, although the isovolume is deteriorated due to the delay of the injection timing, the cooling loss is greatly reduced due to the decrease in the combustion temperature. However, delaying the injection timing does not deteriorate the fuel consumption rate. The equivalent volume means the work conversion efficiency, and the work conversion efficiency is: work conversion efficiency = work shown / heat generation = working efficiency / (1−
Cooling loss).
【0050】また、この例では燃料温度や冷却水温が低
くなるほど噴射時期を進角補正することで温度補償を行
い、これによって低温時にも高温時と同じ着火時期が得
られる。Further, in this example, as the fuel temperature or the cooling water temperature becomes lower, the injection timing is advanced to correct the temperature, so that the temperature is compensated, so that the same ignition timing can be obtained even at a low temperature as at a high temperature.
【0051】図13は第2実施例で、これはEGR装置
に加えて、機械式の過給機42や可変プーリ43などか
らなる過給装置41と、スワール比を制御する装置とを
設けたものである。FIG. 13 shows a second embodiment in which, in addition to the EGR device, a supercharging device 41 comprising a mechanical supercharger 42 and a variable pulley 43 and a device for controlling the swirl ratio are provided. Things.
【0052】EGRガスの合流後の吸気通路23に設け
られる過給機42は、エンジンのクランクシャフトに固
定されるプーリ45、可変速プーリ43、2つのプーリ
にかけ回されるベルト44を介してエンジン21と連結
されており、可変速プーリ43がコントロールユニット
51からの信号により図示しないアクチュエータを介し
てプーリ外形を変化させると、エンジン21と過給機4
2の速度比が大きくなったり小さくなったりする。The supercharger 42 provided in the intake passage 23 after the EGR gas merges has a pulley 45 fixed to the crankshaft of the engine, a variable speed pulley 43, and a belt 44 wound around the two pulleys. When the variable speed pulley 43 changes the pulley outer shape via an actuator (not shown) according to a signal from the control unit 51, the engine 21 and the supercharger 4 are connected.
The speed ratio of 2 becomes larger or smaller.
【0053】コントロールユニット51では両者のこの
速度比を制御して全回転域で400〜500mmHgと
ほぼ一定の過給圧を保つ。速度比の特性を図14に示す
と、エンジン回転数が低いときは3対1と速度比を大き
くして過給機42の回転数を上げることで過給圧を高
め、高回転域になると、EGR率が低くなりHC濃度も
減少し、また筒内最高圧力も上昇するため、速度比を1
対1と小さくして過給圧を上げないようにするのであ
る。The control unit 51 controls the speed ratio between the two to maintain a substantially constant supercharging pressure of 400 to 500 mmHg over the entire rotation range. FIG. 14 shows the characteristics of the speed ratio. As shown in FIG. 14, when the engine speed is low, the supercharging pressure is increased by increasing the speed ratio to 3: 1 and increasing the speed of the supercharger 42. , The EGR rate decreases, the HC concentration decreases, and the maximum cylinder pressure also increases.
The boost pressure should not be increased by reducing the pressure to one.
【0054】また、排出ガスの混入した吸気が過給機4
2に流入すると、排気中のカーボンなどによりスティッ
クが発生するので、これを防止するため、過給機42に
はブレードの剛性が高く、ケーシングと線で接するスク
リュー式のものが用いられている。The intake air containing the exhaust gas is supplied to the turbocharger 4
When the gas flows into the cylinder 2, a stick is generated due to carbon or the like in the exhaust gas. To prevent this, a screw type having a high blade rigidity and being in line with the casing is used for the supercharger 42.
【0055】一方、回転ブレード方式のスワール制御装
置は、図15と図16のように、いわゆるヘリカル型の
吸気ポート46(略直線状の吸気路46aと吸気弁軸回
りの渦巻状路46bとで形成される)の渦巻状路46b
の近くに位置して回転自在に設けられる回転ブレード4
7と、このブレード47に連結させたリンク機構49、
このリンク機構49を駆動するアクチュエータ48から
なり、ブレード47の回転位置でスワール比の調整が可
能である。たとえば、図15のブレード位置で高スワー
ル比となり、ブレード47が図16の位置までくると低
スワール比になる。この回転ブレード方式はレスポンス
も早く、広範囲でスワール制御が可能である。そのた
め、スワール比に敏感に反応するHCの制御に適してい
る。On the other hand, as shown in FIGS. 15 and 16, the swirl control device of the rotary blade type has a so-called helical intake port 46 (a substantially straight intake passage 46a and a spiral passage 46b around the intake valve axis). Formed spiral path 46b
Rotatable blade 4 that is rotatably provided near the
7, and a link mechanism 49 connected to the blade 47,
The swirl ratio can be adjusted at the rotational position of the blade 47 by an actuator 48 that drives the link mechanism 49. For example, the swirl ratio is high at the blade position in FIG. 15, and the swirl ratio is low when the blade 47 reaches the position in FIG. This rotating blade system has a quick response and enables swirl control over a wide range. Therefore, it is suitable for controlling HC that is sensitive to the swirl ratio.
【0056】運転条件に対するスワール比の特性を図1
7に示すと、低回転になるほどスワール比を高くしてい
る。高回転域では高スワール比に伴う体積効率の低下が
あらわになるし、噴射圧の高圧化による燃焼改善がスワ
ールの必要性を弱めることから、回転数が大きくなるほ
ど段階的にスワール比を減少させるのである。FIG. 1 shows the characteristics of the swirl ratio with respect to the operating conditions.
As shown in FIG. 7, the swirl ratio increases as the rotation speed decreases. In the high rotation range, the volume efficiency decreases with the high swirl ratio, and the improvement of combustion by increasing the injection pressure weakens the necessity of swirl, so the swirl ratio gradually decreases as the rotation speed increases. It is.
【0057】なお、可変スワール用のアクチュエータ4
8は、図示しないが2ステージスプリング付きのダイア
フラム式アクチュエータと、このアクチュエータに負圧
源からの一定負圧に大気を希釈することにより3段階に
制御負圧を作り出す負圧制御弁とから構成する。The variable swirl actuator 4
Numeral 8 denotes a diaphragm type actuator (not shown) having a two-stage spring, and a negative pressure control valve for producing a control negative pressure in three stages by diluting the atmosphere to a constant negative pressure from a negative pressure source. .
【0058】コントロールユニット51では、図17に
示したスワール比が得られるように、エンジン回転数N
eとアクセル開度Accに対して割り付けたスワール比
(基本スワール比)のマップ(図示せず)をルックアッ
プして基本スワール比を求め、このスワール比に応じて
負圧制御弁の開度Vbを読みだし、これを所定のアドレ
スに格納する(図18のステップ11〜14)。In the control unit 51, the engine speed N is adjusted so that the swirl ratio shown in FIG. 17 is obtained.
Look up a map (not shown) of the swirl ratio (basic swirl ratio) allocated to e and the accelerator opening Acc to obtain the basic swirl ratio, and according to this swirl ratio, the opening Vb of the negative pressure control valve. Is read and stored at a predetermined address (steps 11 to 14 in FIG. 18).
【0059】図19に、EGR率に対するHC、スモー
ク、NOxの各濃度特性を示す。図に示した記号R、R
+C、R+C+Sは R;燃料の噴射時期を上死点後に遅延させたもの(先の
実施例に相当)、R+C;Rに過給を加えたもの、R+
C+S;Rに過給とスワール制御を加えたもののことで
ある。ただし、過給圧は400〜500mmHgでスワ
ール比は5の例である。FIG. 19 shows the concentration characteristics of HC, smoke, and NOx with respect to the EGR rate. Symbols R, R shown in the figure
+ C, R + C + S are: R; fuel injection timing delayed after top dead center (corresponding to the previous embodiment), R + C; R supercharged, R +
C + S; R is obtained by adding supercharging and swirl control. However, the supercharging pressure is 400 to 500 mmHg and the swirl ratio is an example of 5.
【0060】先の実施例ではHCについて述べなかった
が、高EGR率と噴射時期の極端な遅延の組み合わせに
より燃焼温度が低くなり、NOx濃度、スモーク濃度は
ともに大幅に低減できるものの、その一方で酸素の絶対
量が不足し、図19のRで示したようにHC濃度が上昇
傾向にある。このHC濃度の上昇を抑えるため、先の実
施例では図2に示したように、排気管25に従来使用さ
れている酸化触媒40を装着しなければならなかった。Although HC has not been described in the previous embodiment, the combustion temperature is lowered by the combination of the high EGR rate and the extreme delay of the injection timing, and both the NOx concentration and the smoke concentration can be greatly reduced. The absolute amount of oxygen is insufficient, and the HC concentration tends to increase as shown by R in FIG. In order to suppress this increase in the HC concentration, in the previous embodiment, as shown in FIG. 2, an oxidation catalyst 40 conventionally used had to be mounted on the exhaust pipe 25.
【0061】これに対して、この実施例では図19のよ
うに高EGR率の運転域でNOx、スモーク濃度に加え
て、HC濃度をも大幅に低減できている。つまり、この
実施例では先の実施例で装着された酸化触媒40が必要
でない。低回転域での過給によって酸素の絶対量が確保
されるのに加えて、スワール強化により燃焼が改善され
るため、酸化触媒を使用せずに規制値をクリアできるレ
ベルにまでHC濃度を大幅に低減できるのである。On the other hand, in this embodiment, in addition to the NOx and smoke concentrations, the HC concentration can be greatly reduced in the high EGR rate operation region as shown in FIG. That is, in this embodiment, the oxidation catalyst 40 mounted in the previous embodiment is not required. In addition to securing the absolute amount of oxygen by supercharging in the low speed range, and improving the combustion by strengthening the swirl, the HC concentration is greatly increased to a level that can clear the regulation value without using an oxidation catalyst. It can be reduced to
【0062】図20は第3実施例で、この実施例は、E
GR装置により不活性のEGRガスを吸気管に導入する
ことで吸気中の酸素濃度を減少させる代わりに、酸素除
去フィルター(酸素貧化膜ともいわれる)を用いて吸気
中の酸素濃度を減少させるようにしたものである。FIG. 20 shows a third embodiment.
Instead of reducing the oxygen concentration in the intake air by introducing inert EGR gas into the intake pipe by the GR device, the oxygen concentration in the intake air is reduced by using an oxygen removal filter (also called an oxygen-depleted membrane). It was made.
【0063】図20において、吸気通路23は、機械式
過給機42の下流で2つに分岐され、一方の分岐通路6
1に酸素除去フィルター63が設けられる。酸素除去フ
ィルター63はたとえば中空糸を用いて窒素と酸素の分
子の大きさの違いにより、酸素は通過させるものの窒素
は通過させない構造のものが公知である。フィルター6
3により除去された酸素は連絡通路64を介して排気通
路25に捨てられる。In FIG. 20, the intake passage 23 is branched into two downstream of the mechanical supercharger 42,
1 is provided with an oxygen removal filter 63. It is known that the oxygen removing filter 63 has a structure in which oxygen is passed but nitrogen is not passed due to a difference in molecular size between nitrogen and oxygen, for example, using a hollow fiber. Filter 6
The oxygen removed by 3 is discarded to the exhaust passage 25 via the communication passage 64.
【0064】このフィルター63の設けられる側の分岐
通路61を流れる吸気流量を調整するため、分岐部に流
量制御弁65が設けられる。流量制御弁65は、図示し
ないバタフライ弁とこのバタフライ弁の開度位置をコン
トロールユニット71からの信号に応じて3段階に調整
する電磁弁とから構成され、バタフライ弁が全閉位置に
あるときは吸気の全量が分岐通路51に導かれ、バタフ
ライ弁の開度が増すごとに分岐通路51に導かれる吸気
流量が減少する。つまり、分岐通路51に100%の吸
気を流すと吸気の酸素濃度が15%となり、分岐通路5
2にバイパスさせる吸気流量を増加させることで17
%、19%と段階的に吸気の酸素濃度が増加していく
(大気中の酸素濃度は21%である)。In order to adjust the flow rate of the intake air flowing through the branch passage 61 on the side where the filter 63 is provided, a flow control valve 65 is provided at the branch portion. The flow control valve 65 includes a butterfly valve (not shown) and an electromagnetic valve that adjusts the opening position of the butterfly valve in three stages according to a signal from the control unit 71. When the butterfly valve is at the fully closed position, The entire amount of intake air is guided to the branch passage 51, and the flow rate of intake air guided to the branch passage 51 decreases as the opening of the butterfly valve increases. That is, when 100% of the intake air flows through the branch passage 51, the oxygen concentration of the intake air becomes 15%, and the branch passage 5
By increasing the intake air flow to be bypassed to 2, 17
% And 19%, the oxygen concentration of the intake air increases stepwise (the oxygen concentration in the atmosphere is 21%).
【0065】こうして得られる3段階の酸素濃度は、運
転条件に対して図21のように設定している。この酸素
濃度の段階的特性はEGR率の段階的特性(図3)に対
応する。酸素濃度が15%、17%、19%の各状態は
それぞれEGR率100%、60%、30%に相当する
わけである。The three levels of oxygen concentration thus obtained are set as shown in FIG. 21 with respect to the operating conditions. The step characteristics of the oxygen concentration correspond to the step characteristics of the EGR rate (FIG. 3). The states where the oxygen concentration is 15%, 17%, and 19% correspond to the EGR rates of 100%, 60%, and 30%, respectively.
【0066】このため、過給圧が400mmHgのもと
で酸素濃度を15%まで低減できるように酸素除去フィ
ルター63の膜の量を設定している。なお、酸素除去フ
ィルター63の入口圧が400mmHgとなるように過
給機42を用いて過給圧一定制御を行うことはいうまで
もない。For this reason, the amount of the film of the oxygen removal filter 63 is set so that the oxygen concentration can be reduced to 15% under a supercharging pressure of 400 mmHg. Needless to say, the supercharging pressure is controlled to be constant using the supercharger 42 so that the inlet pressure of the oxygen removal filter 63 becomes 400 mmHg.
【0067】この例によれば、酸素除去フィルター63
と流量制御弁65が、第2実施例のEGR装置と同様に
働く。EGR装置との違いは、排出ガスを吸気中に還流
する必要がないことである。このため、排気中のカーボ
ンによって吸気バルブや過給機42がスティックするこ
とがなく、また高温の排気による吸気温度の上昇による
NOxの増加も抑制することができる。According to this example, the oxygen removal filter 63
And the flow control valve 65 operate similarly to the EGR device of the second embodiment. The difference from the EGR device is that it is not necessary to recirculate the exhaust gas into the intake air. For this reason, the intake valve and the supercharger 42 do not stick due to carbon in the exhaust gas, and an increase in NOx due to an increase in the intake air temperature due to the high-temperature exhaust gas can be suppressed.
【0068】燃焼温度を低下させるには、EGR装置や
酸素除去フィルターを用いて吸気の酸素濃度を低減させ
るほかに、圧縮比を小さくしたり、吸気をあらかじめ冷
却することなどが考えられる。In order to lower the combustion temperature, it is conceivable to reduce the oxygen concentration of the intake air by using an EGR device or an oxygen removal filter, to reduce the compression ratio, or to cool the intake air in advance.
【0069】[0069]
【発明の効果】第1の発明では、エンジンの運転条件に
応じてエンジンの燃焼温度を低下させる手段と、この燃
焼温度を低下させる手段の作動時に、熱発生パターンが
単段燃焼の形態となるように着火遅れ期間を大幅に長く
する手段とを設けたため、従来の燃焼方式と全く異なる
新燃焼方式を実現でき、これによって、従来の燃焼方式
では不可能であったNOxとスモークの同時低減を実現
できる。EFFECTS OF THE INVENTION] A first aspect of the present invention, the means for reducing the combustion temperature of the engine in response to operating conditions of the engine, the fuel
When the means for lowering the baking temperature is activated, the heat generation pattern
Means to greatly increase the ignition delay period so as to form a single-stage combustion are provided, which is completely different from the conventional combustion method
A new combustion system can be realized, which enables the conventional combustion system
Simultaneous reduction of NOx and smoke, which was impossible in the above, can be realized .
【0070】第2の発明は、前記燃焼温度を低下させる
手段は、吸気の酸素濃度を低減させる手段であるため、
着火遅れ期間を常識を超えて大幅に長くすることに寄与
させることができる。[0070] For the second invention, <br/> means causes decrease of the combustion temperature is a means for reducing the oxygen concentration of the intake air,
Contributes to significantly extending the ignition delay period beyond common sense
Can be done .
【0071】第3の発明は、前記着火遅れ期間を大幅に
長くする手段は、燃料の噴射時期を上死点後まで遅らせ
る手段であるため、着火遅れ期間を常識を超えて大幅に
長くすることに寄与させることができる。In the third invention, the ignition delay period is greatly reduced.
Because the means for lengthening the fuel is a means for delaying the fuel injection timing until after the top dead center, the ignition delay period exceeds the common sense and greatly
It can contribute to lengthening .
【0072】第4の発明は、第3の発明において、燃料
の噴射時期を上死点後まで遅らせるときは吸気を過給す
る手段を設けたため、第3の発明の効果に加えて、HC
濃度をも大幅に低減できる。According to a fourth aspect, in the third aspect, a means for supercharging the intake air is provided when the fuel injection timing is delayed until after the top dead center.
The concentration can also be significantly reduced.
【0073】第5の発明は、第3の発明において、燃料
の噴射時期を上死点後まで遅らせるときはスワールを強
化する手段を設けたため、スモーク濃度とHC濃度を上
昇させることなく、NOx濃度を低減できる。According to a fifth aspect of the present invention, in the third aspect, a means for enhancing the swirl is provided when the fuel injection timing is delayed until after the top dead center, so that the NOx concentration can be increased without increasing the smoke concentration and the HC concentration. Can be reduced.
【0074】第6の発明は、第2の発明の酸素濃度低減
手段は、少なくとも2つに分岐された一方の分岐管を流
れる吸気から酸素を除去する酸素除去フィルターと、こ
のフィルターの設けられる分岐通路への吸気流量を調整
する流量制御弁と、この制御弁を運転条件に応じて制御
する手段とからなるため、排気中のカーボンによる吸気
バルブのスティックを防止できるとともに、高温の排気
による吸気温度の上昇によるNOx濃度の上昇を抑制で
きる。According to a sixth aspect of the present invention, the oxygen concentration reducing means according to the second aspect of the present invention comprises an oxygen removing filter for removing oxygen from intake air flowing through at least one of the branch pipes, and a branch provided with the filter. A flow control valve that adjusts the flow rate of intake air to the passage, and means for controlling this control valve according to operating conditions can prevent sticking of the intake valve due to carbon in the exhaust gas, and can reduce the intake air temperature due to the high-temperature exhaust gas. The increase in NOx concentration due to the increase in NO can be suppressed.
【図1】第1の発明のクレーム対応図である。FIG. 1 is a diagram corresponding to a claim of the first invention.
【図2】一実施例の概略構成図である。FIG. 2 is a schematic configuration diagram of one embodiment.
【図3】EGR率の特性図である。FIG. 3 is a characteristic diagram of an EGR rate.
【図4】燃料噴射ポンプの断面図である。FIG. 4 is a sectional view of a fuel injection pump.
【図5】噴射時期の特性図である。FIG. 5 is a characteristic diagram of injection timing.
【図6】前記実施例の噴射時期と噴射期間の制御を説明
するための流れ図である。FIG. 6 is a flowchart for explaining control of an injection timing and an injection period in the embodiment.
【図7】基本噴射期間Avmの特性図である。FIG. 7 is a characteristic diagram of a basic injection period Avm.
【図8】燃料温度補正量ΔItm1の特性図である。8 is a characteristic diagram of a fuel temperature correction amount ΔItm 1.
【図9】燃料温度補正量ΔItm2の特性図である。FIG. 9 is a characteristic diagram of a fuel temperature correction amount ΔItm 2 .
【図10】EGR率に対するスモークとNOxの各濃度
特性図である。FIG. 10 is a graph showing each concentration characteristic of smoke and NOx with respect to the EGR rate.
【図11】噴射時期に対するスモークとNOxの各濃度
特性図である。FIG. 11 is a graph showing the respective concentration characteristics of smoke and NOx with respect to the injection timing.
【図12】EGR率に対する冷却損失、等容度、燃料消
費率の各特性図である。FIG. 12 is a characteristic diagram of a cooling loss, an equal volume, and a fuel consumption rate with respect to an EGR rate.
【図13】第2実施例の概略構成図である。FIG. 13 is a schematic configuration diagram of a second embodiment.
【図14】エンジン回転数に対する速度比の特性図であ
る。FIG. 14 is a characteristic diagram of a speed ratio with respect to an engine speed.
【図15】高スワール時の回転ブレード位置を示す斜視
図である。FIG. 15 is a perspective view showing the position of the rotating blade when the swirl is high.
【図16】低スワール時の回転ブレード位置を示す斜視
図である。FIG. 16 is a perspective view showing the position of the rotating blade when the swirl is low.
【図17】スワール比の特性図である。FIG. 17 is a characteristic diagram of a swirl ratio.
【図18】スワール比の制御を説明するための流れ図で
ある。FIG. 18 is a flowchart for explaining control of a swirl ratio.
【図19】EGR率に対するHC、スモーク、NOxの
各濃度特性図である。FIG. 19 is a diagram showing concentration characteristics of HC, smoke, and NOx with respect to an EGR rate.
【図20】第3実施例の概略構成図である。FIG. 20 is a schematic configuration diagram of a third embodiment.
【図21】運転条件に対する酸素濃度の特性図である。FIG. 21 is a characteristic diagram of oxygen concentration with respect to operating conditions.
【図22】従来例のEGR率に対するスモーク、NOx
の各濃度特性図である。FIG. 22 shows smoke and NOx relative to the EGR rate in a conventional example.
FIG. 4 is a density characteristic diagram of FIG.
20 燃料噴射ポンプ 23 吸気管 25 排気管 26 EGR通路 27 EGR弁 28 負圧制御弁 31 コントロールユニット 41 過給装置 42 機械式過給機 47 回転ブレード 48 アクチュエータ 51 コントロールユニット 61,62 分岐通路 63 酸素除去フィルター 65 流量制御弁 71 コントロールユニット 81 燃焼温度低下手段 82 着火遅れ期間増大手段 Reference Signs List 20 fuel injection pump 23 intake pipe 25 exhaust pipe 26 EGR passage 27 EGR valve 28 negative pressure control valve 31 control unit 41 supercharger 42 mechanical supercharger 47 rotating blade 48 actuator 51 control unit 61, 62 branch passage 63 oxygen removal Filter 65 Flow control valve 71 Control unit 81 Combustion temperature lowering means 82 Ignition delay period increasing means
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02D 43/00 301 F02D 43/00 301R 301U F02M 25/07 570 F02M 25/07 570J 33/00 33/00 Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F02D 43/00 301 F02D 43/00 301R 301U F02M 25/07 570 F02M 25/07 570J 33/00 33/00 Z
Claims (6)
焼温度を低下させる手段と、この燃焼温度を低下させる
手段の作動時に、熱発生パターンが単段燃焼の形態とな
るように着火遅れ期間を大幅に長くする手段とを設けた
ことを特徴とするディーゼルエンジンの制御装置。And 1. A means for reducing the combustion temperature of the engine according to operating conditions of the engine, during the operation of the means for reducing the combustion temperature of this ignition delay period, as the heat generation pattern is in the form of a single-stage combustion A control device for a diesel engine, comprising:
酸素濃度を低減させる手段であることを特徴とする請求
項1に記載のディーゼルエンジンの制御装置。Wherein means for causing lowering the combustion temperature, the control device for a diesel engine according to claim 1, characterized in that the means for reducing the oxygen concentration of the intake air.
は、燃料の噴射時期を上死点後まで遅らせる手段である
ことを特徴とする請求項1に記載のディーゼルエンジン
の制御装置。3. The control device for a diesel engine according to claim 1, wherein the means for significantly lengthening the ignition delay period is means for delaying the fuel injection timing until after the top dead center.
きは吸気を過給する手段を設けたことを特徴とする請求
項3に記載のディーゼルエンジンの制御装置。4. The diesel engine control device according to claim 3, further comprising means for supercharging the intake air when the fuel injection timing is delayed until after the top dead center.
きはスワールを強化する手段を設けたことを特徴とする
請求項3に記載のディーゼルエンジンの制御装置。5. The control system for a diesel engine according to claim 3, further comprising means for strengthening the swirl when the fuel injection timing is delayed until after the top dead center.
に分岐された一方の分岐管を流れる吸気から酸素を除去
する酸素除去フィルターと、このフィルターの設けられ
る分岐通路への吸気流量を調整する流量制御弁と、この
制御弁を運転条件に応じて制御する手段とからなること
を特徴とする請求項2に記載のディーゼルエンジンの制
御装置。6. The oxygen concentration reducing means adjusts an oxygen removal filter for removing oxygen from intake air flowing through one of at least two branch pipes, and an intake flow rate to a branch passage provided with the filter. 3. The control device for a diesel engine according to claim 2, comprising a flow control valve and means for controlling the control valve in accordance with operating conditions.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4263570A JP2864896B2 (en) | 1992-10-01 | 1992-10-01 | Control unit for diesel engine |
DE4333424A DE4333424B4 (en) | 1992-10-01 | 1993-09-30 | Method for controlling a diesel engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4263570A JP2864896B2 (en) | 1992-10-01 | 1992-10-01 | Control unit for diesel engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH074287A JPH074287A (en) | 1995-01-10 |
JP2864896B2 true JP2864896B2 (en) | 1999-03-08 |
Family
ID=17391389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4263570A Expired - Lifetime JP2864896B2 (en) | 1992-10-01 | 1992-10-01 | Control unit for diesel engine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2864896B2 (en) |
DE (1) | DE4333424B4 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6338245B1 (en) | 1999-09-17 | 2002-01-15 | Hino Motors, Ltd. | Internal combustion engine |
EP1221544A2 (en) | 2001-01-09 | 2002-07-10 | Nissan Motor Co., Ltd. | Fuel injection control for diesel engine |
JP2003065116A (en) * | 2001-08-24 | 2003-03-05 | Nissan Motor Co Ltd | Exhaust emission control device for internal combustion engine |
EP1321650A2 (en) | 2001-12-18 | 2003-06-25 | Nissan Motor Co., Ltd. | An apparatus and a method for controlling a diesel engine |
US7069907B2 (en) | 2003-11-04 | 2006-07-04 | Denso Corporation | Compression ignition internal combustion engine |
CN103868639A (en) * | 2012-12-12 | 2014-06-18 | 浙江盾安人工环境股份有限公司 | Pressure transmitter |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19517168B4 (en) * | 1994-05-10 | 2004-06-24 | Mitsubishi Jidosha Kogyo K.K. | Device and method for controlling an internal combustion engine |
JP3339197B2 (en) * | 1994-09-19 | 2002-10-28 | 日産自動車株式会社 | diesel engine |
JP3061019B2 (en) * | 1997-08-04 | 2000-07-10 | トヨタ自動車株式会社 | Internal combustion engine |
JP3094974B2 (en) * | 1997-09-16 | 2000-10-03 | トヨタ自動車株式会社 | Compression ignition type internal combustion engine |
JP3092552B2 (en) * | 1997-09-16 | 2000-09-25 | トヨタ自動車株式会社 | Compression ignition type internal combustion engine |
JP3622446B2 (en) | 1997-09-30 | 2005-02-23 | 日産自動車株式会社 | Diesel engine combustion control system |
JP3092569B2 (en) * | 1997-11-25 | 2000-09-25 | トヨタ自動車株式会社 | Compression ignition type internal combustion engine |
JP3331935B2 (en) | 1997-12-04 | 2002-10-07 | トヨタ自動車株式会社 | Compression ignition type internal combustion engine |
US6161519A (en) * | 1998-03-03 | 2000-12-19 | Nissan Motor Co., Ltd. | Combustion control device for diesel engine |
JP3334596B2 (en) * | 1998-03-17 | 2002-10-15 | トヨタ自動車株式会社 | Compression ignition type internal combustion engine |
JP3334597B2 (en) * | 1998-03-17 | 2002-10-15 | トヨタ自動車株式会社 | Compression ignition type internal combustion engine |
WO1999047801A1 (en) | 1998-03-19 | 1999-09-23 | Hitachi, Ltd. | Hybrid car |
JP3405183B2 (en) * | 1998-03-30 | 2003-05-12 | トヨタ自動車株式会社 | Compression ignition type internal combustion engine |
EP0952323B1 (en) * | 1998-04-15 | 2004-03-31 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine |
EP0952321B1 (en) * | 1998-04-15 | 2004-08-25 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine |
JP3336976B2 (en) * | 1998-10-21 | 2002-10-21 | トヨタ自動車株式会社 | Internal combustion engine |
US6152118A (en) * | 1998-06-22 | 2000-11-28 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine |
DE19830300C2 (en) | 1998-07-07 | 2000-05-18 | Bosch Gmbh Robert | Method for operating an internal combustion engine, in particular a motor vehicle |
DE69922888T2 (en) * | 1998-08-19 | 2005-12-15 | Toyota Jidosha K.K., Toyota | Internal combustion engine |
US6240721B1 (en) * | 1998-09-17 | 2001-06-05 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine and method for controlling an internal combustion engine |
DE69917405T2 (en) * | 1998-10-02 | 2005-05-12 | Toyota Jidosha K.K., Toyota | Internal combustion engine |
DE69919473T2 (en) * | 1998-10-06 | 2005-09-08 | Toyota Jidosha K.K., Toyota | Internal combustion engine |
JP3348663B2 (en) * | 1998-11-11 | 2002-11-20 | トヨタ自動車株式会社 | Internal combustion engine |
US6216676B1 (en) * | 1998-10-07 | 2001-04-17 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine system |
EP0997625B1 (en) * | 1998-10-29 | 2006-03-08 | Toyota Jidosha Kabushiki Kaisha | An internal combustion engine |
JP2000274286A (en) * | 1999-03-19 | 2000-10-03 | Nissan Motor Co Ltd | Direct injection type diesel engine |
JP2000352326A (en) | 1999-06-10 | 2000-12-19 | Nissan Motor Co Ltd | Control unit for diesel engine |
JP3873580B2 (en) | 2000-06-15 | 2007-01-24 | 日産自動車株式会社 | Compression self-ignition internal combustion engine |
JP3972599B2 (en) | 2001-04-27 | 2007-09-05 | 日産自動車株式会社 | Diesel engine control device |
JP4524966B2 (en) * | 2001-07-13 | 2010-08-18 | 株式会社デンソー | Diesel engine control system |
AT7207U1 (en) * | 2002-10-22 | 2004-11-25 | Avl List Gmbh | METHOD FOR OPERATING A DIRECTLY INJECTING DIESEL INTERNAL COMBUSTION ENGINE |
CN100436808C (en) * | 2003-04-01 | 2008-11-26 | Avl里斯脱有限公司 | Internal combustion engine with piston injection pump |
CN100476180C (en) * | 2003-10-09 | 2009-04-08 | Avl里斯脱有限公司 | Method for operating an internal combustion engine |
US6968830B2 (en) | 2003-12-30 | 2005-11-29 | General Electric Company | Apparatus and method for suppressing internal combustion ignition engine emissions |
JP2008057449A (en) * | 2006-08-31 | 2008-03-13 | Toyota Motor Corp | Exhaust gas recirculation device for internal combustion engine |
JP5023680B2 (en) * | 2006-12-06 | 2012-09-12 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
US20080156293A1 (en) * | 2006-12-29 | 2008-07-03 | Yiqun Huang | Method for operating a diesel engine in a homogeneous charge compression ignition combustion mode under idle and light-load operating conditions |
JP5035366B2 (en) | 2010-03-02 | 2012-09-26 | トヨタ自動車株式会社 | Fuel injection control device and internal combustion engine |
DE102011017036B4 (en) * | 2011-04-14 | 2015-02-19 | Mtu Friedrichshafen Gmbh | Method for controlling the NOx concentration in the exhaust gas of an internal combustion engine |
DE102011102047A1 (en) * | 2011-05-19 | 2012-11-22 | Man Truck & Bus Ag | Method and apparatus for desulfating a arranged in a diesel engine exhaust purification device |
JP6467149B2 (en) * | 2014-03-26 | 2019-02-06 | 日本特殊陶業株式会社 | Diesel engine control device design method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5872636A (en) * | 1981-10-26 | 1983-04-30 | Nissan Motor Co Ltd | Direct-injection type gasoline engine |
JPS58178835A (en) * | 1982-04-14 | 1983-10-19 | Nissan Motor Co Ltd | Fuel injection control device for direct-injection type internal-combustion engine |
JPS60162018A (en) * | 1984-02-03 | 1985-08-23 | Nissan Motor Co Ltd | Intake device for internal-combustion engine |
DE3428371A1 (en) * | 1984-08-01 | 1986-02-13 | Robert Bosch Gmbh, 7000 Stuttgart | METHOD FOR MEASURING AND REGULATING OPERATING DATA OF COMBUSTION ENGINES |
-
1992
- 1992-10-01 JP JP4263570A patent/JP2864896B2/en not_active Expired - Lifetime
-
1993
- 1993-09-30 DE DE4333424A patent/DE4333424B4/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6338245B1 (en) | 1999-09-17 | 2002-01-15 | Hino Motors, Ltd. | Internal combustion engine |
EP1221544A2 (en) | 2001-01-09 | 2002-07-10 | Nissan Motor Co., Ltd. | Fuel injection control for diesel engine |
US6612292B2 (en) | 2001-01-09 | 2003-09-02 | Nissan Motor Co., Ltd. | Fuel injection control for diesel engine |
JP2003065116A (en) * | 2001-08-24 | 2003-03-05 | Nissan Motor Co Ltd | Exhaust emission control device for internal combustion engine |
WO2003018972A1 (en) * | 2001-08-24 | 2003-03-06 | Nissan Motor Co., Ltd. | Exhaust gas purification system and method for internal combustion engine |
US6796118B2 (en) | 2001-08-24 | 2004-09-28 | Nissan Motor Co., Ltd. | Exhaust gas purification system and method for internal combustion engine |
EP1321650A2 (en) | 2001-12-18 | 2003-06-25 | Nissan Motor Co., Ltd. | An apparatus and a method for controlling a diesel engine |
US7069907B2 (en) | 2003-11-04 | 2006-07-04 | Denso Corporation | Compression ignition internal combustion engine |
CN100350145C (en) * | 2003-11-04 | 2007-11-21 | 株式会社电装 | Compression ignition internal combustion engine |
DE102004053123B4 (en) * | 2003-11-04 | 2015-10-01 | Denso Corporation | Compression ignition internal combustion engine |
CN103868639A (en) * | 2012-12-12 | 2014-06-18 | 浙江盾安人工环境股份有限公司 | Pressure transmitter |
Also Published As
Publication number | Publication date |
---|---|
JPH074287A (en) | 1995-01-10 |
DE4333424A1 (en) | 1994-04-14 |
DE4333424B4 (en) | 2004-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2864896B2 (en) | Control unit for diesel engine | |
JP3298352B2 (en) | diesel engine | |
JP4320859B2 (en) | Control device for turbocharged engine | |
EP1816326A1 (en) | Control of supercharged engine with variable geometry turbocharger and electric supercharger | |
JP2005180458A (en) | Multi-cylinder diesel engine with variably actuated valve | |
US8074630B2 (en) | Internal combustion engine control device and internal combustion engine control system | |
JP2002180864A (en) | Compression self-ignition type internal combustion engine with supercharger | |
JPH0886251A (en) | Diesel engine | |
JP2002188474A (en) | Control device for diesel engine with turbosupercharger | |
JP2000328986A (en) | Stopping device for diesel engine | |
JP4442643B2 (en) | Exhaust gas purification control device for internal combustion engine | |
US20120037133A1 (en) | Compressor comprising a swirl generator, for a motor vehicle | |
JP3237308B2 (en) | Control unit for diesel engine | |
JP4048656B2 (en) | Engine supercharging pressure control device | |
JP3493981B2 (en) | Supercharging pressure control device for internal combustion engine with EGR control device | |
JP4250824B2 (en) | Control device for turbocharged engine | |
JP3826592B2 (en) | Control device for turbocharged engine | |
JP2001132466A (en) | Boost pressure control device for engine | |
JP2017166456A (en) | Engine control device | |
CN116838505A (en) | EGR (exhaust gas recirculation) system of hybrid supercharged engine and control method | |
JPH08303309A (en) | Egr device of diesel engine with supercharger | |
JPH10318047A (en) | Controller for diesel engine | |
JP3409722B2 (en) | Exhaust gas recirculation control valve | |
JP2000282880A (en) | Gasoline engine | |
JP2004019462A (en) | Internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071218 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081218 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091218 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101218 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111218 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121218 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term |