JP2831428B2 - Aspherical shape measuring machine - Google Patents
Aspherical shape measuring machineInfo
- Publication number
- JP2831428B2 JP2831428B2 JP7123590A JP7123590A JP2831428B2 JP 2831428 B2 JP2831428 B2 JP 2831428B2 JP 7123590 A JP7123590 A JP 7123590A JP 7123590 A JP7123590 A JP 7123590A JP 2831428 B2 JP2831428 B2 JP 2831428B2
- Authority
- JP
- Japan
- Prior art keywords
- wavefront
- measured
- aspherical
- shape measuring
- aspherical shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レンズ,ミラーなどの面形状、特に非球面
レンズの面形状を波面測定により求める非球面形状測定
機に関するものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aspherical shape measuring instrument for determining a surface shape of a lens, a mirror or the like, in particular, a surface shape of an aspherical lens by wavefront measurement.
干渉計測により被検面からの波面を計測することによ
り該被検面の面形状を測定する場合、測定光学系の製造
誤差による収差(以下自己収差と呼ぶ)の影響をできる
だけ除去・軽減することが必要となる。When measuring the surface shape of the surface to be measured by measuring the wavefront from the surface to be measured by interference measurement, it is necessary to eliminate or reduce the influence of aberration (hereinafter referred to as “self-aberration”) due to a manufacturing error of the measuring optical system as much as possible. Is required.
これを解決する従来の方法としては、(1)マスター
を用いる方法、(2)光線追跡による方法が知られてい
る。(1)の例としては、特開昭63−48406号公報に記
載の方法がある。これは既知の形状のマスターを用いる
方法であって、該マスターにつき測定光学系の射出瞳で
測定された波面のパラメータを用いて入射瞳における波
面収差を多項式展開し、この展開係数を用いてマスター
からの偏差の比較的小さい被検面の射出瞳における波面
の測定値から入射瞳における波面収差の値を算出し、測
定光学系の自己収差を除去・軽減するものである。又、
(2)の例としては、Proc.ICO 14 353−354 1987)“A
spheric Measurement using PhaseShifting Interferom
etry"by K.Creath & J.C.Wyantに記載されている方法
であって、トワインマン・グリーン型の通常の干渉計と
大画素数の光検知器とを用いて干渉縞を取り込み、設計
値通りの理想非球面を置いた時に観測される波面を光線
追跡で求めてこれを参照波面とし、これと測定された波
面との差分をとって縞解析の手法を適用するものであ
る。As conventional methods for solving this, (1) a method using a master and (2) a method using ray tracing are known. As an example of (1), there is a method described in JP-A-63-48406. This is a method using a master having a known shape, and using the parameters of the wavefront measured at the exit pupil of the measurement optical system for the master, performs a polynomial expansion of the wavefront aberration at the entrance pupil, and uses the expansion coefficient to obtain the master. The value of the wavefront aberration at the entrance pupil is calculated from the measured value of the wavefront at the exit pupil of the test surface having a relatively small deviation from, and the self-aberration of the measurement optical system is removed and reduced. or,
As an example of (2), Proc. ICO 14 353-354 1987) “A
spheric Measurement using PhaseShifting Interferom
etry "by K. Creath & JCWyant, which captures interference fringes using a Tweenman-Green normal interferometer and a large number of photodetectors, and captures the ideal non- A wavefront observed when a spherical surface is placed is obtained by ray tracing, this is used as a reference wavefront, and a difference between the reference wavefront and the measured wavefront is used to apply a fringe analysis technique.
(1)の手法は、時間のかかる面倒な計算を必要とし
ないことに特徴があり、(2)の手法は、測定光学系を
できるだけ単純化することによりその自己収差を単純化
し、光線追跡によるシュミレーションと一致させること
により精度の向上を計るものである。後者は、参照波面
に対してヌルフリンジの状態(干渉縞の無い状態)が理
想状態であることから、デジタルヌルメソッドとも呼ば
れている。この手法は、ヌルレンズ(無収差レンズ)や
計算機ホログラムを作成する必要がなく、融通性に富む
利点も持っている。The method (1) is characterized in that it does not require time-consuming and complicated calculations, and the method (2) simplifies the self-aberration by simplifying the measurement optical system as much as possible, and uses ray tracing. Accuracy is improved by matching with the simulation. The latter is also called a digital null method because a null fringe state (a state without interference fringes) with respect to a reference wavefront is an ideal state. This method does not require the creation of a null lens (aberration-free lens) or a computer generated hologram, and has the advantage of being highly versatile.
ところで、上記(1)のマスターを用いる方法は、被
検面とマスターとの偏差が小さい場合は良いが、該偏差
が大きくなると誤差が増大する。又、被検面とマスター
との偏差のみが測定されるために、相対的評価はできて
も面形状の絶対的評価ができないという欠点がある。The method (1) using a master is good when the deviation between the surface to be measured and the master is small, but the error increases when the deviation increases. Further, since only the deviation between the surface to be measured and the master is measured, there is a drawback that the relative evaluation can be performed but the surface shape cannot be absolutely evaluated.
又、上記(2)のデジタルヌルメソッドは、非球面量
の大きい所謂きつい非球面では干渉縞の本数が多くなり
過ぎ、それを検出できる画素数をもつ撮像素子の実現は
かなり遠い先のことであること、また測定光学系の製造
誤差の影響即ち自己収差を除去・軽減するのは困難であ
るなどの欠点を有している。In the digital null method of the above (2), the number of interference fringes is too large for a so-called tight aspheric surface having a large amount of aspheric surface, and the realization of an image sensor having the number of pixels capable of detecting the interference fringe is far away. There is also a drawback that it is difficult to remove and reduce the influence of manufacturing errors of the measurement optical system, that is, the self-aberration.
本発明は、上記問題点に鑑み、マスターが不要で形状
の絶対評価が可能であると共に、非球面量の大きいきつ
い非球面を、特に多い画素数の撮像素子を用いることな
く、測定光学系の製造誤差による影響即ち自己収差を除
去・軽減して測定できる非球面形状測定機を提供するこ
とを目的としている。In view of the above problems, the present invention does not require a master, enables absolute evaluation of the shape, and provides a large aspherical surface with a tight aspherical surface, without using an image sensor having a particularly large number of pixels, and thus has a measurement optical system. It is an object of the present invention to provide an aspherical shape measuring instrument capable of measuring by removing or reducing the influence of manufacturing errors, that is, self-aberration.
本発明による非球面形状測定機は、被検面を照明する
手段と、被検面からの反射波面を縞走査シアリング干渉
法により測定する手段と、被検面の代りに設計値通りの
理想非球面を置いた場合に測定される波面を光線追跡に
より求める手段と、測定された波面と理想の場合の波面
との差分をとり縞解析する手段とを具備して成ることを
特徴としている。The aspherical shape measuring instrument according to the present invention comprises a means for illuminating a surface to be measured, a means for measuring a wavefront reflected from the surface by fringe scanning shearing interferometry, and It is characterized by comprising means for obtaining a wavefront measured when a spherical surface is placed by ray tracing, and means for performing fringe analysis by taking the difference between the measured wavefront and the ideal wavefront.
又、本発明によれば前記被検面を測定光軸のまわりに
回転させる機構を備えたことを特徴としている。Further, according to the present invention, a mechanism is provided for rotating the test surface around the measurement optical axis.
縞走査シアリング干渉法は、測定したい波面とこれを
横ずらし(シア)した波面とを干渉させるものであっ
て、シア量を加減することと縞走査の手法を組合されこ
とにより非球面量の大きいきつい非球面も少ない干渉縞
の本数でトワイマン・グリーン型と同等の精度で測定す
ることができる。従って、縞走査シアリング干渉法とデ
ジタルヌルメソッドとを組み合わせることで前記の従来
法のもつ欠点の殆どを解消でき、また被検面を回転する
機構を付加し、その回転の前後における複数回の測定結
果を利用することにより、測定光学系の製造誤差を含む
収率と被検面の設計値からのずれによる収差とを分離す
ることが可能となり、前記測定光学系の製造誤差の影響
を軽減することができる。The fringe scanning shearing interferometry causes a wavefront to be measured to interfere with a wavefront obtained by laterally shifting (shearing) the wavefront, and has a large amount of aspherical surface by combining the amount of shear and the method of fringe scanning. Even a tight aspheric surface can be measured with the same number of interference fringes and with the same accuracy as the Twyman-Green type. Therefore, by combining the fringe scanning shearing interferometry and the digital null method, most of the drawbacks of the conventional method can be eliminated, and a mechanism for rotating the surface to be inspected is added, and a plurality of measurements before and after the rotation are performed. By utilizing the result, it is possible to separate the yield including the manufacturing error of the measurement optical system and the aberration due to the deviation from the design value of the test surface, and reduce the influence of the manufacturing error of the measurement optical system. be able to.
以下、図示した実施例に基づき本発明を詳細に説明す
る。Hereinafter, the present invention will be described in detail based on illustrated embodiments.
第1図は本発明による非球面形状測定機の構成を示し
ている。1は光源、2は対物レンズ、3はピンホール、
4はビームスプリッタ、5は鏡、6はビームスプリッ
タ、7は鏡、8はコリメータ、9は対物レンズ、10はア
ライメント台11に脱着可能に保持された被検光学素子で
あって、光源1から出た光束は、対物レンズ2で収束さ
れてピンホール3を通り、鏡5,7で反射された後コリメ
ータ8でコリメートされ、対物レンズ9により一旦収束
された後発散して被検光学素子10の被検面22を照明し、
該被検面22により反射された光束は、対物レンズ9,コリ
メータ8,鏡7を経てビームスプリッタ6により反射成分
と透過成分に二分されるようになっている。FIG. 1 shows the configuration of an aspherical shape measuring instrument according to the present invention. 1 is a light source, 2 is an objective lens, 3 is a pinhole,
Reference numeral 4 denotes a beam splitter, 5 denotes a mirror, 6 denotes a beam splitter, 7 denotes a mirror, 8 denotes a collimator, 9 denotes an objective lens, and 10 denotes an optical element to be tested which is detachably held on an alignment table 11. The emitted light beam is converged by the objective lens 2, passes through the pinhole 3, is reflected by the mirrors 5 and 7, is collimated by the collimator 8, is once converged by the objective lens 9, diverges, and diverges Illuminating the surface 22 to be inspected,
The light beam reflected by the test surface 22 passes through an objective lens 9, a collimator 8, and a mirror 7, and is split into a reflected component and a transmitted component by a beam splitter 6.
尚、被検光学素子10を保持するアライメント台11は、
第2図に示した如く、被検光学素子10を脱着可能に保持
するクランプ部23,傾き調整部24,x軸方向スライダー25,
y軸方向スライダー26,回転部27,基部28を上下に積層し
て成り、傾き調整部24,x軸方向スライダー25,y軸方向ス
ライダー26により被検光学素子10のアライメントを行う
ようになっている。即ち、光軸21の回りに被検光学素子
10をテイルト,シフト,回転する機能を持っている。12
は鏡、13,14は縞走査シアリング干渉部を構成する半透
鏡、15は結像レンズ、16は撮像素子、17は干渉縞解析部
であって、鏡14は図示されていないパルスモータ及びピ
エゾ素子からなる駆動部により半透鏡13との間隔を粗及
び微細に変化させることによりシアリングと縞走査の両
方の作用を発揮するようになっている。尚、パルスモー
タはシアリング量を与え、ピエゾ素子は縞走査量を与え
る。そして、ビームスプリッタ6による上記反射成分
は、半透鏡13,14から構成される縞走査シアリング干渉
部で干渉縞を形成し、結像レンズ15により撮像素子16に
結像され、該撮像素子16の出力信号は、干渉縞解析部17
で後述の信号処理がなされるようになっている。The alignment table 11 holding the test optical element 10 is
As shown in FIG. 2, a clamp unit 23 for detachably holding the test optical element 10, a tilt adjusting unit 24, an x-axis direction slider 25,
The y-axis direction slider 26, the rotation unit 27, and the base 28 are vertically stacked, and the tilt adjustment unit 24, the x-axis direction slider 25, and the y-axis direction slider 26 align the optical element 10 to be measured. I have. That is, the optical element to be inspected
It has the function to tilt, shift and rotate 10. 12
Are mirrors, 13 and 14 are semi-transparent mirrors forming a fringe scanning shearing interference unit, 15 is an imaging lens, 16 is an image sensor, 17 is an interference fringe analysis unit, and mirror 14 is a pulse motor and a piezo not shown. The action of both shearing and fringe scanning is exerted by coarsely and finely changing the distance between the semi-transmissive mirror 13 and the driving unit composed of elements. The pulse motor gives a shearing amount, and the piezo element gives a fringe scanning amount. The reflection component from the beam splitter 6 forms interference fringes at a fringe scanning shearing interference unit composed of the semi-transparent mirrors 13 and 14, and forms an image on an image sensor 16 by an imaging lens 15. The output signal is output from the interference fringe analyzer 17
Thus, signal processing described later is performed.
18はビームスプリッタ、29はピンホール、19は光検知
器、20は位置検出光検知器であって、ビームスプリッタ
6を透過した光束は、鏡5,ビームスプリッタ4を経てビ
ームスプリッタ18により二分され、一方はピンホール29
を経て光検知器19に入射し、他方は位置検出光検知器20
に入射し、両者共被検面22のアライメントに用いられる
ようになっている。Reference numeral 18 denotes a beam splitter, 29 denotes a pinhole, 19 denotes a photodetector, and 20 denotes a position detection photodetector. A light beam transmitted through the beam splitter 6 is split into two by a beam splitter 18 via a mirror 5 and a beam splitter 4. , One is pinhole 29
And then enters the photodetector 19, while the other is a position detection photodetector 20.
, And both are used for alignment of the test surface 22.
次に、第3図乃至第6図に基づき本実施例の作用につ
いて説明する。Next, the operation of this embodiment will be described with reference to FIGS.
干渉縞解析部17は、第3図のフローチャートに示す信
号処理を行なう。即ち、予め第4図に示すような被検非
球面22から撮像素子16に至る光学系を仮定して光線追跡
を行ない、被検非球面22の代りに設計値通りの理想的非
球面を置いた場合の撮像素子16でのシアリング波面を求
め、これを参照波面とする。次に、被検非球面22の2方
向(x,y軸方向)のシアリング波面を測定し、波面合成
して2次元の測定波面を得る。これと該参照波面の差分
をとり、積分することにより被検非球面22の設計値から
のずれ量が求められる。The interference fringe analyzer 17 performs signal processing shown in the flowchart of FIG. That is, ray tracing is performed by assuming an optical system from the test aspheric surface 22 to the image sensor 16 as shown in FIG. 4 in advance, and an ideal aspheric surface as designed is placed in place of the test aspheric surface 22. In this case, a shearing wavefront in the image sensor 16 is obtained, and this is used as a reference wavefront. Next, the shearing wavefronts of the test aspheric surface 22 in two directions (x, y-axis directions) are measured, and the wavefronts are combined to obtain a two-dimensional measurement wavefront. By taking the difference between this and the reference wavefront and integrating the difference, the amount of deviation from the design value of the test aspheric surface 22 is obtained.
次に補正についての概念を説明する。上記ずれ量には
測定光学系の加工・組立誤差が含まれており、これを除
去・軽減することが望ましい。デジタルヌルメソッドと
縞走査シアリング干渉により求められた波面をΔWm(r,
θ,β)と表わす。ここで(r,θ)は被検非球面を測定
光学系の入射瞳とした時の入射瞳の座標を表わし、βは
(r,θ)での主光線に対する出射光線の傾き角を表わ
す。このΔWm(r,θ,β)は、 ΔWm(r,θ,β) =ΔWr(r,θ,β)+ΔT(r,θ,β) と書くことができる。但し、ΔWrは真のずれ量、ΔTは
測定光学系の誤差である。次に、ΔTが未知のため、被
検非球面22を測定光軸21のまわりに複数回回転させて得
られた測定波面を用いてΔTを消去し、ΔWrを求める。
具体的には、既知量の回転φi(i=0,1,2,……)を与
えて、 ΔWm(r,θ,βi) =ΔWr(r,θ+φi,βi)+ΔT(r,θ,βi) 但しi=0,1,2,……,β0=β,φ0=0,β=β(r,
θ) を測定する。そして、簡単のために、ΔTが次式で近似
される場合について述べる。Next, the concept of correction will be described. The deviation includes a processing / assembly error of the measuring optical system, and it is desirable to remove or reduce the error. The wavefront determined by the digital null method and fringe scanning shearing interference is represented by ΔW m (r,
θ, β). Here, (r, θ) represents the coordinates of the entrance pupil when the aspheric surface to be measured is used as the entrance pupil of the measurement optical system, and β represents the inclination angle of the outgoing ray with respect to the principal ray at (r, θ). This ΔW m (r, θ, β) can be written as: ΔW m (r, θ, β) = ΔW r (r, θ, β) + ΔT (r, θ, β). Here, ΔW r is the true shift amount, and ΔT is the error of the measuring optical system. Then, since ΔT is unknown, to erase the ΔT using the measurement wavefront obtained by rotating a plurality of times around the measurement optical axis 21 to be aspheric surface 22, obtaining the [Delta] W r.
Specifically, given a known amount of rotation φ i (i = 0, 1, 2,...), ΔW m (r, θ, β i ) = ΔW r (r, θ + φ i , β i ) + ΔT (R, θ, β i ) where i = 0, 1, 2,..., Β 0 = β, φ 0 = 0, β = β (r,
θ) is measured. Then, for simplicity, a case where ΔT is approximated by the following equation will be described.
ΔT(r,θ,βi) =ΔT(r,θ,β)+(∂ΔT/∂β)・Δβi 但し、ΔBi=βi−β,i=0,1,2,…Δβiは測定値か
ら算出されて既知であり、未知数はΔT,∂ΔT/∂β,Δ
Wrの三つとなることから、回転前の測定値と2回の回転
での夫々の測定値の三つの測定値からΔWrを求めること
ができる。結果のみを記すと、 となり、これを所謂Zernikeの多項式に展開される。こ
こで、 は以下のように表わされる。 ΔT (r, θ, β i ) = ΔT (r, θ, β) + (∂ΔT / ∂β) · Δβ i However, ΔB i = β i -β, i = 0,1,2, ... Δβ i Is known from the measured values, and the unknowns are ΔT, ∂ΔT / ∂β, Δ
Since there are three values of W r , ΔW r can be obtained from three measured values of the measured value before rotation and the measured values after two rotations. If you write only the result, Which is expanded into a so-called Zernike polynomial. here, Is expressed as follows.
但し、| |は行列式を表わし、Δal k,Δal -kは二つ
の回転φ1,φ2で得られた波面の差をZernikeの多項式
に展開した時の角度部分の係数を表わし、A,B,C,Dは次
に示す量を表している。 However, | | denotes the determinant, Δa l k, Δa l -k represents the coefficient of the angular portion when deployed two rotating phi 1, the difference between the obtained wavefront phi 2 to the polynomial of Zernike, A, B, C, and D represent the following quantities.
A=(cos kφ1−1)Δβ2−(cos kφ2−1)Δ
β1 B=Δβ2・sin kφ1−Δβ1・sin kφ2 C=−Δβ2・sin Kφ1+Δβ1・sin kφ2 D=(cos kφ1−1)ΔB2−(cos kφ2−1)Δβ
1 実際の例では、100μm程度の非球面量をもつ非球面
では、第5図に示す大きさの波面収差をもつ波面を干渉
計測する必要があり、通常のトワイマン・グリーン型の
ものでは縞の本数が多くなり過ぎて無理がある。しか
し、縞走査型シアリング干渉とデジタルヌルテストを併
用することと前記の補正の手順を経ることにより、第6
図に示すような測定光学系の自己収差の影響を軽減した
設計値からの形状ずれを得ることができる。A = (cos kφ 1 −1) Δβ 2 − (cos kφ 2 −1) Δ
β 1 B = Δβ 2 · sin kφ 1 −Δβ 1 · sin kφ 2 C = −Δβ 2 · sin Kφ 1 + Δβ 1 · sin kφ 2 D = (cos kφ 1 −1) ΔB 2 − (cos kφ 2 −1) ) Δβ
1. In an actual example, for an aspherical surface having an aspherical amount of about 100 μm, it is necessary to perform interference measurement on a wavefront having a wavefront aberration of the magnitude shown in FIG. The number is too large and it is impossible. However, by using the digital null test in combination with the fringe scanning shearing interference and through the above-described correction procedure, the sixth
As shown in the figure, it is possible to obtain a shape deviation from a design value in which the influence of the self-aberration of the measurement optical system is reduced.
上記の実施例では平行平板を用いた縞走査シアリング
干渉法を例にとったが、特開昭59−154309号公報に開示
されている偏光特性を利用したシアリング干渉法や公知
のシアリング干渉法のいずれにも適用が可能である。
又、縞走査の方法にはピエゾ素子によるメカニカルな方
法以外に、半導体レーザーを光源として波長を変化させ
ることによる方法を用い得ることは勿論である。In the above embodiment, the fringe scanning shearing interferometry using a parallel plate is taken as an example, but the shearing interferometry utilizing the polarization characteristic disclosed in JP-A-59-154309 and the known shearing interferometry are used. It can be applied to any of them.
In addition to the mechanical method using a piezo element, a method using a semiconductor laser as a light source and changing the wavelength can be used for the stripe scanning method.
上述の如く、本発明による非球面形状測定機によれ
ば、大きな非球面量をもつ所謂きつい非球面でも、特に
多い画素数の撮像素子を用いることなく、測定光学系の
自己収差を除去・軽減した面形状測定が可能となる。
又、マスターを必要とせず、形状の絶対的評価が可能で
ある。As described above, according to the aspherical shape measuring apparatus according to the present invention, even in the case of a so-called tight aspherical surface having a large aspherical amount, the self-aberration of the measuring optical system can be removed and reduced without using an image sensor having a particularly large number of pixels. It becomes possible to measure the surface shape.
Moreover, the absolute evaluation of the shape is possible without requiring a master.
第1図は本発明による非球面形状測定機の構成を示す
図、第2図は上記実施例のアライメント台の構成を示す
図、第3図は上記実施例の干渉縞解析部の信号処理のフ
ローチャート、第4図は上記実施例において参照波面を
求める場合に仮定される光学系を示す図、第5図は100
μm程度の非球面量を持つ非球面において干渉計測が必
要な波面の波面収差の大きさを示す図、第6図は本実施
例により得られた測定光学系の自己収差の影響を軽減し
た設定値からの形状ずれを示す図である。 1……光源、2……対物レンズ、3,29……ピンホール、
4,6,18……ビームスプリッタ、5,7,12……鏡、8……コ
リメータ、9……対物レンズ、10……被検光学素子、11
……アライメント台、13,14……半透鏡、15……結像レ
ンズ、16……撮像素子、17……干渉縞解析部、19……光
検知器、20……位置検出光検知器、21……光軸、22……
被検面、23……クランプ部、24……傾き調整部、25……
x軸方向スライダー、26……y軸方向スライダー、27…
…回転部、28……基部。FIG. 1 is a diagram showing a configuration of an aspherical shape measuring instrument according to the present invention, FIG. 2 is a diagram showing a configuration of an alignment table of the above embodiment, and FIG. 3 is a diagram showing a signal processing of an interference fringe analyzer of the above embodiment. FIG. 4 is a flowchart showing an optical system assumed when a reference wavefront is obtained in the above embodiment, and FIG.
FIG. 6 is a diagram showing the magnitude of the wavefront aberration of a wavefront that requires interference measurement on an aspherical surface having an aspherical amount of about μm. FIG. 6 shows a setting in which the influence of self-aberration of the measuring optical system obtained by the present embodiment is reduced. FIG. 6 is a diagram illustrating a shape deviation from a value. 1 ... light source, 2 ... objective lens, 3,29 ... pinhole,
4, 6, 18 beam splitter, 5, 7, 12 mirror, 8 collimator, 9 objective lens, 10 optical element under test, 11
...... Alignment table, 13,14 ... Semi-transparent mirror, 15 ... Imaging lens, 16 ... Imaging element, 17 ... Interference fringe analyzer, 19 ... Photodetector, 20 ... Position detection photodetector, 21 ... optical axis, 22 ...
Surface to be inspected, 23… Clamp part, 24… Tilt adjustment part, 25 ……
x-axis slider, 26 ... y-axis slider, 27 ...
… Rotating part, 28 …… Base.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−69933(JP,A) 特開 昭63−48406(JP,A) 特開 昭60−55214(JP,A) 特開 昭59−154309(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01B 11/00 - 11/30 G01B 9/00 - 9/10 G01M 11/00 - 11/08──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-64-69933 (JP, A) JP-A-63-48406 (JP, A) JP-A-60-55214 (JP, A) JP-A-59-1984 154309 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01B 11/00-11/30 G01B 9/00-9/10 G01M 11/00-11/08
Claims (2)
射波面を縞走査シアリング干渉法により測定する手段
と、被検面の代りに設計値通りの理想非球面を置いた場
合に測定される波面を光線追跡により求める手段と、測
定された波面と理想の場合の波面との差分をとり縞解析
する手段とを具備して成る非球面形状測定機。1. A means for illuminating a surface to be measured, a means for measuring a wavefront reflected from the surface by fringe scanning shearing interferometry, and a case where an ideal aspherical surface according to a design value is placed in place of the surface to be measured. An aspherical shape measuring device comprising: means for obtaining a wavefront to be measured by ray tracing; and means for performing fringe analysis by taking a difference between the measured wavefront and the wavefront in an ideal case.
る機構を備えた請求項(1)に記載の非球面形状測定
機。2. The aspherical shape measuring instrument according to claim 1, further comprising a mechanism for rotating the surface to be measured around a measurement optical axis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7123590A JP2831428B2 (en) | 1990-03-20 | 1990-03-20 | Aspherical shape measuring machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7123590A JP2831428B2 (en) | 1990-03-20 | 1990-03-20 | Aspherical shape measuring machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03269309A JPH03269309A (en) | 1991-11-29 |
JP2831428B2 true JP2831428B2 (en) | 1998-12-02 |
Family
ID=13454833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7123590A Expired - Fee Related JP2831428B2 (en) | 1990-03-20 | 1990-03-20 | Aspherical shape measuring machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2831428B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5620289B2 (en) * | 2011-01-21 | 2014-11-05 | 中央精機株式会社 | Test surface shape measuring method, test surface shape measuring apparatus, and test surface shape measuring program |
JP5907793B2 (en) * | 2012-04-24 | 2016-04-26 | 三菱電機株式会社 | Surface shape measuring apparatus and surface shape measuring method |
JP6124641B2 (en) * | 2013-03-26 | 2017-05-10 | キヤノン株式会社 | Wavefront aberration measuring method, wavefront aberration measuring apparatus, and optical element manufacturing method |
JP6616651B2 (en) * | 2015-10-14 | 2019-12-04 | アズビル株式会社 | Distance measuring apparatus and method |
JP6616650B2 (en) * | 2015-10-14 | 2019-12-04 | アズビル株式会社 | Distance measuring apparatus and method |
-
1990
- 1990-03-20 JP JP7123590A patent/JP2831428B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03269309A (en) | 1991-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6879402B2 (en) | Scanning interferometer for aspheric surfaces and wavefronts | |
US6781700B2 (en) | Scanning interferometer for aspheric surfaces and wavefronts | |
US7218403B2 (en) | Scanning interferometer for aspheric surfaces and wavefronts | |
US4869593A (en) | Interferometric surface profiler | |
US6972849B2 (en) | Scanning interferometer for aspheric surfaces and wavefronts | |
US4948253A (en) | Interferometric surface profiler for spherical surfaces | |
JP3237309B2 (en) | System error measuring method and shape measuring device using the same | |
US6894788B2 (en) | Interferometric system for automated radius of curvature measurements | |
JPH06103252B2 (en) | High resolution ellipsometer apparatus and method | |
JP2831428B2 (en) | Aspherical shape measuring machine | |
JP3327998B2 (en) | Shape measuring method and device | |
JP4802134B2 (en) | Posture change measuring method and apparatus | |
Weingaertner et al. | Simultaneous distance, slope, curvature, and shape measurement with a multipurpose interferometer | |
JP3599921B2 (en) | Method and apparatus for measuring refractive index distribution | |
JP3916991B2 (en) | Indenter shape measuring instrument | |
JPH10260020A (en) | Aspherical shape measuring device and method | |
JPH0540025A (en) | Shape measuring instrument | |
JPH09329427A (en) | Aspherical surface shape measuring method | |
US7212289B1 (en) | Interferometric measurement device for determining the birefringence in a transparent object | |
JP2001021327A (en) | Surface form measuring apparatus | |
Polster | Evaluation Of Lens Systems | |
JPS61272606A (en) | Interferometer for measuring surface shape | |
JPH102804A (en) | Device for measuring transmission wave front of parallel plane plate | |
JPH10206110A (en) | Interferometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080925 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |