JP2022072636A - Method for producing amide compound - Google Patents

Method for producing amide compound Download PDF

Info

Publication number
JP2022072636A
JP2022072636A JP2020182189A JP2020182189A JP2022072636A JP 2022072636 A JP2022072636 A JP 2022072636A JP 2020182189 A JP2020182189 A JP 2020182189A JP 2020182189 A JP2020182189 A JP 2020182189A JP 2022072636 A JP2022072636 A JP 2022072636A
Authority
JP
Japan
Prior art keywords
formula
compound
mol
producing
amide compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020182189A
Other languages
Japanese (ja)
Inventor
洋治 熊澤
Yoji Kumazawa
大倉優花
Yuka Okura
松本啓秀
Keishu Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2020182189A priority Critical patent/JP2022072636A/en
Priority to CN202111247414.0A priority patent/CN114436881A/en
Publication of JP2022072636A publication Critical patent/JP2022072636A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/14Preparation of carboxylic acid amides by formation of carboxamide groups together with reactions not involving the carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/22Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/04Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups from amines with formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

To provide a method for producing an amide compound.SOLUTION: According to a method for producing a purified amide compound of formula (1), the amide compound of formula (1) is crystallized from a crystallized mother liquor, which contains the amide compound of formula (1) and water of 2.0 mol or less relative to 1 mol of the amide compound of formula (1). There is also provided an efficient industrial production method from D-serine to the compound of formula (1).SELECTED DRAWING: None

Description

本発明は、アミド化合物の製造方法に関する。 The present invention relates to a method for producing an amide compound.

ラコサミドは、鎮痛作用及び抗痙攣作用を有するアミノ酸誘導である(特許文献1:US5773475)。 Lacosamide is an amino acid inducer having analgesic and anticonvulsant effects (Patent Document 1: US5773475).

ラコサミドの合成方法としては、特許文献2に、N-Boc-D-セリンをメチル化剤および有機リチウム化合物を用いるか、あるいは、メチル化剤および相間移動触媒の存在下に反応させて、O-メチル化し、次いで、N-ベンジルアミド化、脱保護、アセチル化により製造する方法が知られている。 As a method for synthesizing lacosamide, Patent Document 2 describes that N-Boc-D-serine is reacted with a methylating agent and an organic lithium compound in the presence of a methylating agent and an interphase transfer catalyst to form O-. Methods are known for the production by methylation, followed by N-benzylamidization, deprotection and acetylation.

US5773475US5773475 日本国特許第5128281号公報Japanese Patent No. 5128281

前記特許文献2の方法で製造されるN-ベンジルアミドした化合物の収率は必ずしも満足いくものではなく、またラコサミドの晶析収率も必ずしも満足のいくものではない。
本発明は、ラコサミドの改良された製造方法を提供する。
The yield of the N-benzylamide compound produced by the method of Patent Document 2 is not always satisfactory, and the crystallization yield of lacosamide is not always satisfactory.
The present invention provides an improved method for producing lacosamide.

本発明者らは上記の課題を解決するために鋭意検討した結果、ラコサミドの晶析において、晶析母液の水分を調整することにより、効率よく精製された目的物が得られることを見出した。またD-セリンから目的物を得る工程においても改良点を見出して、下記のラコサミドの製造方法に至った。 As a result of diligent studies to solve the above problems, the present inventors have found that an efficiently purified target product can be obtained by adjusting the water content of the crystallization mother liquor in the crystallization of lacosamide. We also found improvements in the process of obtaining the desired product from D-serine, and arrived at the following method for producing lacosamide.

本発明は、ラコサミド(以下、式(1)のアミド化合物と記す。)の製造方法を提供するものである。本発明は以下の項に記載する実施態様を含むが、これらに限定されるものではない。
1.式(1):

Figure 2022072636000001
The present invention provides a method for producing lacosamide (hereinafter referred to as an amide compound of the formula (1)). The present invention includes, but is not limited to, the embodiments described in the following sections.
1. 1. Equation (1):
Figure 2022072636000001

のアミド化合物と式(1)のアミド化合物1モル当たり2.0モル以下の水分を含む晶析母液から式(1)の化合物を晶析することを特徴とする式(1)の精製アミド化合物の製造方法。(以下、「本発明の精製アミド化合物の製造方法」と記す。)。
2.式(2):

Figure 2022072636000002
The purified amide compound of the formula (1), which comprises crystallizing the compound of the formula (1) from the crystallization mother liquor containing 2.0 mol or less of water per mol of the amide compound of the formula (1) and the amide compound of the formula (1). Manufacturing method. (Hereinafter referred to as "method for producing the purified amide compound of the present invention").
2. 2. Equation (2):
Figure 2022072636000002

のアミノ化合物をアセチル化して、前項1に記載の式(1)のアミド化合物を製造する工程と、生成する式(1)のアミド化合物と、式(1)のアミド化合物1モル当たり2.0モル以下の水分を含む溶液を調製する工程および前項1に記載の工程を含む式(1)の精製アミド化合物の製造方法。
3.式(3):

Figure 2022072636000003
A step of acetylating the amino compound of the above item 1 to produce the amide compound of the formula (1) according to the preceding item 1, the amide compound of the formula (1) to be produced, and 2.0 per mol of the amide compound of the formula (1). A method for producing a purified amide compound of the formula (1), which comprises a step of preparing a solution containing less than a molar amount of water and a step of the above item 1.
3. 3. Equation (3):
Figure 2022072636000003

(式中、Bocは、tert-ブトキシカルボニル基を表す。)
の化合物に塩酸を作用させ、式(2)のアミノ化合物を製造する工程および前項2に記載の工程を含む式(1)の精製アミド化合物の製造方法。
4.クロロ炭酸イソブチルの溶液中に式(4):

Figure 2022072636000004
(In the formula, Boc represents a tert-butoxycarbonyl group.)
A method for producing a purified amide compound of the formula (1), which comprises a step of reacting the compound of the above with hydrochloric acid to produce an amino compound of the formula (2) and the step of the above item 2.
4. In a solution of isobutyl chlorocarbonate, the formula (4):
Figure 2022072636000004

(式中、Bocは、t-ブトキシカルボニル基を表す。)
のカルボン酸化合物、N-メチルモルホリンの混合溶液を滴下し、更にベンジルアミンを加える前記式(3)の化合物の製造方法。(以下、「本発明のBoc化アミド化合物の製造方法」と記す。)。
5.テトラヒドロフランおよび水を溶媒とし、アルカリ金属水酸化物の存在下、式(5):

Figure 2022072636000005
(In the formula, Boc represents a t-butoxycarbonyl group.)
The method for producing the compound of the above formula (3), wherein a mixed solution of the carboxylic acid compound of No. 1 and N-methylmorpholine is added dropwise, and benzylamine is further added. (Hereinafter, it will be referred to as "the method for producing the Boc-modified amide compound of the present invention").
5. Formula (5): In the presence of an alkali metal hydroxide using tetrahydrofuran and water as solvents.
Figure 2022072636000005

(式中、Bocは、tert-ブトキシカルボニル基を表す。)
の化合物を硫酸ジメチルと反応させ、式(4):

Figure 2022072636000006
(In the formula, Boc represents a tert-butoxycarbonyl group.)
The compound of is reacted with dimethyl sulfate, and the formula (4):
Figure 2022072636000006

(式中、Bocは、前記のとおり。)
の化合物を製造する工程と、前項4に記載の工程を含む式(3);

Figure 2022072636000007
(In the formula, Boc is as described above.)
Formula (3) including the step of producing the compound of the above and the step of the above item 4.
Figure 2022072636000007

(式中、Bocは、t-ブトキシカルボニル基を表す。)
の化合物の製造方法。(「本発明のBoc化カルボン酸化合物の製造方法」と記す。))。
6.D-セリンのアミノ基をt-ブトキシカルボニル化し、前項5に記載の式(5)の化合物を製造する工程と前項5の工程とを含む式(3)の化合物の製造方法。
7.前項4,5、または6に記載の式(3)の化合物の製造工程と前項3に記載の工程を含む式(1)の精製アミド化合物の製造方法。
8.式(1)の化合物と、式(1)の化合物1モル当たり2.0モル以下の水を含む前項1に記載の晶析母液。
(In the formula, Boc represents a t-butoxycarbonyl group.)
Method for producing the compound of. (It is described as "the method for producing a Boc-modified carboxylic acid compound of the present invention").
6. A method for producing a compound of formula (3), which comprises a step of t-butoxycarbonylating an amino group of D-serine to produce a compound of formula (5) according to the preceding item 5 and a step of producing the compound of formula (3).
7. A method for producing a purified amide compound of the formula (1), which comprises the step of producing the compound of the formula (3) according to the preceding item 4, 5 or 6 and the step of the above item 3.
8. The crystallization mother liquor according to item 1 above, which contains 2.0 mol or less of water per 1 mol of the compound of the formula (1) and the compound of the formula (1).

本発明の製造方法によれば、目的とするアミド化合物を効率よく精製でき、高品質の目的物を製造することができる。またラコサミドの製造工程の収率を向上させ、複数工程を効率的に繋ぐ工業的に有利な製造方法を見出した。 According to the production method of the present invention, the target amide compound can be efficiently purified, and a high-quality target product can be produced. In addition, we have found an industrially advantageous production method that improves the yield of lacosamide production processes and efficiently connects multiple processes.

以下、本発明について詳細に説明する。なお、本明細書において「含む(comprise)」とは、「本質的にからなる(essentially consist of)」という意味と、「のみからなる(consist of)」という意味をも包含する。 Hereinafter, the present invention will be described in detail. In addition, in this specification, "comprise" also includes the meaning of "essentially consist of" and the meaning of "consist of only".

式(1)のアミド化合物と式(1)のアミド化合物1モル当たり2.0モル以下の水分を含む晶析母液から式(1)の化合物を晶析することを特徴とする式(1)の精製アミド化合物の製造方法(「本発明の精製アミド化合物の製造方法」。)について説明する。
晶析に用いられる式(1)のアミド化合物を含む溶液は、典型的には、以下のような方法で得られる。
The formula (1) is characterized by crystallizing the compound of the formula (1) from the crystallization mother liquor containing 2.0 mol or less of water per 1 mol of the amide compound of the formula (1) and the amide compound of the formula (1). The method for producing the purified amide compound of the present invention (“Method for producing the purified amide compound of the present invention”) will be described.
The solution containing the amide compound of the formula (1) used for crystallization is typically obtained by the following method.

式(1)の化合物は、例えば、式(2)の化合物をアセチル化することにより製造することができる。アセチル化には、典型的には、無水酢酸が使用される。式(2)の化合物と無水酢酸との反応においては、効率的に作業できる観点から化合物(2)の製造工程で得られた式(2)の塩酸塩を含む水溶液を使用することが好ましい。 The compound of the formula (1) can be produced, for example, by acetylating the compound of the formula (2). Acetic anhydride is typically used for acetylation. In the reaction between the compound of the formula (2) and acetic anhydride, it is preferable to use an aqueous solution containing the hydrochloride of the formula (2) obtained in the production step of the compound (2) from the viewpoint of efficient work.

反応に用いる溶媒としては、例えば水、酢酸メチル、酢酸エチル、酢酸イソプロピル等のエステル系溶媒、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒またはこれらの混合物を溶媒として使用することができる。水と酢酸エチルの混合液が好ましい溶媒である。 As the solvent used in the reaction, for example, an ester solvent such as water, methyl acetate, ethyl acetate or isopropyl acetate, a ketone solvent such as methyl ethyl ketone or methyl isobutyl ketone or a mixture thereof can be used as the solvent. A mixture of water and ethyl acetate is the preferred solvent.

式(2)の化合物と無水酢酸(AcO)との反応は、水酸化ナトリウム水溶液、炭酸水素ナトリウム(NaHCO)、炭酸水素カリウム(KHCO)、またはこれらの混合物の存在下で行ってもよい。 The reaction of the compound of formula (2) with anhydrous acetic acid (Ac 2 O) is carried out in the presence of an aqueous solution of sodium hydroxide, sodium hydrogen carbonate (NaHCO 3 ), potassium hydrogen carbonate (KHCO 3 ), or a mixture thereof. May be good.

反応温度は通常0℃から溶媒の沸点の範囲内であり、20~50℃の範囲が好ましい温度である。 The reaction temperature is usually in the range of 0 ° C. to the boiling point of the solvent, preferably in the range of 20 to 50 ° C.

式(2)の化合物1モルに対して、好ましくは、0.9から2.0モルの無水酢酸(AcO)が使用され、経済性の観点から1.0から1.1モルがより好ましい。反応混合物に、例えば、分液操作、さらに重曹水、水等による分液洗浄操作を行うことにより、副生する無機塩、有機酸塩等が除去され、式(1)の化合物を含む有機溶媒溶液が得られる。 For 1 mol of the compound of formula (2), preferably 0.9 to 2.0 mol of acetic anhydride (Ac 2 O) is used, with 1.0 to 1.1 mol being more economical. preferable. By performing a liquid separation operation, for example, a liquid separation washing operation with a sodium bicarbonate solution, water, etc., the reaction mixture is removed from by-produced inorganic salts, organic acid salts, etc., and an organic solvent containing the compound of the formula (1) is contained. A solution is obtained.

有機溶媒溶液の水分含量の調整は、例えば、分液操作により得られた式(1)の化合物を含む溶液の溶媒とともに水を濃縮除去することにより実施できる。水分含量の調整には、例えば、硫酸ナトリウム、硫酸マグネシウム、モレキュラーシーブ等の脱水剤を用いてもよい。水分含量の確認は例えばカールフィッシャー滴定法にて測定することができる。
水分含量は式(1)の化合物1モルに対して2.0モル以下であればよい。水分含量を前記所定の量に調整した式(1)の化合物を含む有機溶媒溶液を用いて晶析は実施される。
The water content of the organic solvent solution can be adjusted, for example, by concentrating and removing water together with the solvent of the solution containing the compound of the formula (1) obtained by the liquid separation operation. For adjusting the water content, for example, a dehydrating agent such as sodium sulfate, magnesium sulfate, or molecular sieve may be used. The water content can be confirmed by, for example, the Karl Fischer titration method.
The water content may be 2.0 mol or less with respect to 1 mol of the compound of the formula (1). Crystallization is carried out using an organic solvent solution containing the compound of the formula (1) whose water content is adjusted to the predetermined amount.

有機溶媒としては、例えば酢酸メチル、酢酸エチル、酢酸イソプロピル等のエステル系溶媒、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒またはこれらの混合物を溶媒として使用することができる。効率性の観点から式(2)の化合物をアセチル化する際の反応に用いた溶媒と同じ有機溶媒を使用することが好ましく、酢酸エチルが好ましい溶媒である。 As the organic solvent, for example, an ester solvent such as methyl acetate, ethyl acetate or isopropyl acetate, a ketone solvent such as methyl ethyl ketone or methyl isobutyl ketone or a mixture thereof can be used as the solvent. From the viewpoint of efficiency, it is preferable to use the same organic solvent as the solvent used for the reaction when acetylating the compound of the formula (2), and ethyl acetate is the preferred solvent.

有機溶媒の使用量は全体で式(1)の化合物10重量部に対して、通常30から100重量部であり、30から50重量部が好ましい。 The total amount of the organic solvent used is usually 30 to 100 parts by weight, preferably 30 to 50 parts by weight, based on 10 parts by weight of the compound of the formula (1).

前記有機溶媒の量は濃縮により調整してもよく、さらに前記有機溶媒をその下限値より留去した後で有機溶媒を加えて、前記範囲に調整してもよい。晶析の開始温度は通常40から70℃の範囲で行われ、種晶を用いてもよい。前記有機溶媒溶液あるいは当該有機溶媒溶液から式(1)のアミド化合物が一部析出した晶析スラリー混合物に式(1)のアミド化合物に対する貧溶媒を加えることもできる。貧溶媒としては例えばシクロヘキサン、n-ヘキサンを使用することができ、シクロヘキサンが好ましい。貧溶媒の使用量は晶析に用いた溶媒10重量部に対して、通常3から20重量部、3から10重量部が好ましい。次いで、得られたスラリー混合物を冷却する。冷却温度は通常-10℃から20℃であり、収率および操作性の観点から-5℃~5℃が好ましい。冷却の速度は1時間に1℃~20℃の範囲内、好ましくは1時間に5℃~20℃の範囲で行うことができる。 The amount of the organic solvent may be adjusted by concentration, and further, the organic solvent may be added after distilling off the organic solvent from the lower limit value to adjust the amount to the above range. The starting temperature of crystallization is usually in the range of 40 to 70 ° C., and seed crystals may be used. It is also possible to add a poor solvent for the amide compound of the formula (1) to the crystallization slurry mixture in which the amide compound of the formula (1) is partially precipitated from the organic solvent solution or the organic solvent solution. As the poor solvent, for example, cyclohexane or n-hexane can be used, and cyclohexane is preferable. The amount of the poor solvent used is usually preferably 3 to 20 parts by weight and 3 to 10 parts by weight with respect to 10 parts by weight of the solvent used for crystallization. The resulting slurry mixture is then cooled. The cooling temperature is usually −10 ° C. to 20 ° C., preferably −5 ° C. to 5 ° C. from the viewpoint of yield and operability. The cooling rate can be in the range of 1 ° C. to 20 ° C. per hour, preferably in the range of 5 ° C. to 20 ° C. per hour.

冷却後の混合物には、液体中、式(1)のアミド化合物が析出しており、この固体(結晶)を取得し乾燥することにより、式(1)のアミド化合物を得る。析出した式(1)のアミド化合物は、公知の固液分離方法に従って取得することができる。具体的には、濾過、デカンテーションなどの固液分離操作が挙げられる。得られた式(1)のアミド化合物の結晶は、必要により、溶媒による洗浄を行ってもよい。洗浄に用いる溶媒としては、特に限定されないが、晶析溶媒と同じ溶媒(好ましくは酢酸エチルとシクロヘキサンの混合物)が用いられる。分離された式(1)のアミド化合物は、常圧または減圧下で乾燥することができる。 The amide compound of the formula (1) is precipitated in the liquid after cooling, and the solid (crystal) is obtained and dried to obtain the amide compound of the formula (1). The precipitated amide compound of the formula (1) can be obtained according to a known solid-liquid separation method. Specific examples thereof include solid-liquid separation operations such as filtration and decantation. The obtained crystals of the amide compound of the formula (1) may be washed with a solvent, if necessary. The solvent used for washing is not particularly limited, but the same solvent as the crystallization solvent (preferably a mixture of ethyl acetate and cyclohexane) is used. The separated amide compound of the formula (1) can be dried under normal pressure or reduced pressure.

式(2)の化合物は、通常、式(3)の化合物を、塩酸を用いて脱Boc(t-ブトキシカルボニル)化することにより製造することができる。式(3)の化合物と塩酸を用いた脱Boc化の反応においては効率的に作業できる観点から、式(3)の化合物を製造する際に得られた式(3)の化合物を含む溶液を使用することが好ましい。 The compound of the formula (2) can usually be produced by de-Boc (t-butoxycarbonyl) the compound of the formula (3) with hydrochloric acid. From the viewpoint of being able to work efficiently in the de-Boc reaction using the compound of the formula (3) and hydrochloric acid, a solution containing the compound of the formula (3) obtained when producing the compound of the formula (3) is used. It is preferable to use it.

反応に用いる溶媒としてはトルエンなどの芳香族系溶媒、酢酸メチル、酢酸エチル、酢酸イソプロピル等のエステル系溶媒、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒を溶媒として使用することができ、トルエンが好ましい。 As the solvent used for the reaction, an aromatic solvent such as toluene, an ester solvent such as methyl acetate, ethyl acetate and isopropyl acetate, and a ketone solvent such as methyl ethyl ketone and methyl isobutyl ketone can be used as the solvent, and toluene is preferable. ..

式(3)の化合物1モルに対して、好ましくは1から10モルの塩酸が使用され、反応性、経済性の観点から3から5モルの塩酸がより好ましい。反応温度は通常0℃から溶媒の沸点内であり、10から30℃の範囲が好ましい。反応後は式(2)の化合物が塩酸塩として水層に含まれるため、分液により有機溶媒と分離し、水溶液として得ることができる。 For 1 mol of the compound of the formula (3), preferably 1 to 10 mol of hydrochloric acid is used, and 3 to 5 mol of hydrochloric acid is more preferable from the viewpoint of reactivity and economy. The reaction temperature is usually 0 ° C. to within the boiling point of the solvent, preferably in the range of 10 to 30 ° C. After the reaction, the compound of the formula (2) is contained in the aqueous layer as a hydrochloride, so that it can be separated from the organic solvent by liquid separation and obtained as an aqueous solution.

式(3)の化合物は、クロロ炭酸イソブチルの溶液中に式(4)のカルボン酸化合物、N-メチルモルホリンの混合溶液を滴下し、更にベンジルアミンを滴下して製造することができる。式(3)の化合物は、公知の方法で製造してもよいが、本発明のBoc化アミド化合物の製造方法によれば、より良好な収率で式(3)の化合物を製造することが可能である。 The compound of the formula (3) can be produced by dropping a mixed solution of the carboxylic acid compound of the formula (4) and N-methylmorpholine into a solution of isobutyl chlorocarbonate and further dropping benzylamine. The compound of the formula (3) may be produced by a known method, but according to the method for producing a Boc-modified amide compound of the present invention, the compound of the formula (3) can be produced in a better yield. It is possible.

式(4)の化合物とクロロ炭酸イソブチルおよびベンジルアミンとの反応においては効率的に作業できる観点から、式(4)の化合物の製造工程で得られた式(4)の化合物を含む溶液を使用することが好ましい。反応に用いる溶媒としてはトルエンなどの芳香族系溶媒、酢酸メチル、酢酸エチル、酢酸イソプロピル等のエステル系溶媒、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒を溶媒として使用することができ、トルエンが好ましい。反応温度は10℃以下の温度で行うことが好ましく、-15から0℃の範囲がより好ましい。 From the viewpoint of efficient work in the reaction of the compound of the formula (4) with isobutyl chlorocarbonate and benzylamine, a solution containing the compound of the formula (4) obtained in the production step of the compound of the formula (4) is used. It is preferable to do so. As the solvent used for the reaction, an aromatic solvent such as toluene, an ester solvent such as methyl acetate, ethyl acetate and isopropyl acetate, and a ketone solvent such as methyl ethyl ketone and methyl isobutyl ketone can be used as the solvent, and toluene is preferable. .. The reaction temperature is preferably 10 ° C. or lower, more preferably −15 to 0 ° C.

クロロ炭酸イソブチル(IBCF)、N-メチルモルホリン(MMP)、ベンジルアミンの使用量は式(4)の化合物1モルに対して0.9から2.0モルの使用が好ましく、1.0から1.1モルの使用がより好ましい。 The amount of isobutyl chlorocarbonate (IBCF), N-methylmorpholine (MMP), and benzylamine used is preferably 0.9 to 2.0 mol, preferably 1.0 to 1 mol, per 1 mol of the compound of the formula (4). The use of 1 mol is more preferred.

式(4)の化合物とクロロ炭酸イソブチルおよびベンジルアミンとの反応で生成する反応混合物からは、水、塩酸水、重曹水等による分液洗浄操作により副生する無機塩、有機酸塩等を除去することができ、有機層として式(3)の化合物を含む溶液を得ることができる。前記のような反応方法を採用することにより、カルボキシル基の反応性が向上し、式(3)の化合物を収率良く得ることができる。 From the reaction mixture produced by the reaction of the compound of formula (4) with isobutyl chlorocarbonate and benzylamine, inorganic salts, organic acid salts and the like produced as by-products are removed by a liquid separation washing operation with water, hydrochloric acid water, sodium bicarbonate water or the like. And a solution containing the compound of the formula (3) can be obtained as an organic layer. By adopting the reaction method as described above, the reactivity of the carboxyl group is improved, and the compound of the formula (3) can be obtained in good yield.

式(4)の化合物は、典型的には、式(5)のBoc化したD-セリンをテトラヒドロフラン(THF)および水を溶媒とし、アルカリ金属水酸化物の存在下、硫酸ジメチルと反応させて製造される。 The compound of the formula (4) is typically reacted with the Bocized D-serine of the formula (5) using tetrahydrofuran (THF) and water as a solvent and reacting with dimethyl sulfate in the presence of an alkali metal hydroxide. Manufactured.

式(5)の化合物と硫酸ジメチルとの反応においては効率的に作業できる観点から、式(5)の化合物を製造する際に得られた式(5)の化合物ナトリウム塩を含む水溶液を使用することが好ましい。追加する溶媒は反応性の観点から硫酸ジメチルを溶解させ、水と容易に混和するものが好ましく、例えばテトラヒドロフラン、アセトン、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルモルホリン、ジメチルスルホキシド、メタノール、エタノール、2-プロパノール、tert-ブタノールなどを使用することができ、これらの溶媒の中でもテトラヒドロフランが好ましい。水に対する溶媒の使用量は反応性の観点から水10重量部に対して、1から10重量部の使用が好ましい。経済性の観点から2から5重量部の使用がより好ましい。 From the viewpoint of efficient work in the reaction of the compound of the formula (5) with dimethyl sulfate, an aqueous solution containing the sodium salt of the compound of the formula (5) obtained when producing the compound of the formula (5) is used. Is preferable. From the viewpoint of reactivity, the solvent to be added is preferably one in which dimethyl sulfate is dissolved and easily miscible with water, for example, tetrahydrofuran, acetone, acetonitrile, dimethylformamide, dimethylacetamide, N-methylmorpholine, dimethylsulfoxide, methanol, ethanol, etc. 2-propanol, tert-butanol and the like can be used, and among these solvents, tetrahydrofuran is preferable. From the viewpoint of reactivity, the amount of the solvent used with respect to water is preferably 1 to 10 parts by weight with respect to 10 parts by weight of water. From the economical point of view, it is more preferable to use 2 to 5 parts by weight.

アルカリ金属水酸化物としては水酸化ナトリウム、水酸化カリウム、水酸化リチウム等を使用することができ、その中でも水酸化ナトリウムが好ましい。アルカリ金属水酸化物の使用量は反応性の観点から硫酸ジメチルの使用量より0.05から1モルの過剰量が好ましく、0.1から0.5モルの過剰量がより好ましい。硫酸ジメチルの使用量は式(5)の化合物1モルに対して3から10モルが好ましく、5から8モルがより好ましい。反応温度は特に限定はないがラセミ化を防ぐ観点からより低い温度が好ましく、-10から10℃が好ましい。反応後の反応混合物に有機溶媒を添加し、さらに得られた混合物に酸を添加して中和することにより、式(4)のカルボン酸化合物を有機溶媒中に抽出することができる。添加する酸としては例えば塩酸、硫酸、硝酸等の無機酸;酢酸、ギ酸、プロピオン酸、シュウ酸、クエン酸等の有機酸が挙げられる。pHは2以下に調整することが好ましいため、塩酸を用いるのが好ましい。抽出に用いる有機溶媒はトルエンなどの芳香族系溶媒、酢酸メチル、酢酸エチル、酢酸イソプロピル等のエステル系溶媒、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒を使用することができ、トルエンが好ましい。抽出操作により得られた式(4)の化合物を含有する溶液は、濃縮により有機溶媒を除去することができる。 As the alkali metal hydroxide, sodium hydroxide, potassium hydroxide, lithium hydroxide and the like can be used, and among them, sodium hydroxide is preferable. From the viewpoint of reactivity, the amount of the alkali metal hydroxide used is preferably 0.05 to 1 mol, more preferably 0.1 to 0.5 mol, more than the amount of dimethyl sulfate used. The amount of dimethyl sulfate used is preferably 3 to 10 mol, more preferably 5 to 8 mol, per 1 mol of the compound of the formula (5). The reaction temperature is not particularly limited, but a lower temperature is preferable from the viewpoint of preventing racemization, and -10 to 10 ° C. is preferable. The carboxylic acid compound of the formula (4) can be extracted into the organic solvent by adding an organic solvent to the reaction mixture after the reaction and further adding an acid to the obtained mixture to neutralize the mixture. Examples of the acid to be added include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid; and organic acids such as acetic acid, formic acid, propionic acid, oxalic acid and citric acid. Since the pH is preferably adjusted to 2 or less, it is preferable to use hydrochloric acid. As the organic solvent used for extraction, an aromatic solvent such as toluene, an ester solvent such as methyl acetate, ethyl acetate and isopropyl acetate, and a ketone solvent such as methyl ethyl ketone and methyl isobutyl ketone can be used, and toluene is preferable. The organic solvent can be removed from the solution containing the compound of the formula (4) obtained by the extraction operation by concentration.

式(5)の化合物は、典型的には、D-セリンをテトラヒドロフラン(THF)および水を溶媒とし、塩基の存在下、D-セリンをジtert-ブチルジカーボネートと反応させて製造される。 The compound of formula (5) is typically produced by reacting D-serine with tetrahydrofuran (THF) and water in the presence of a base and reacting D-serine with tert-butyl dicarbonate.

この反応においては、溶媒として、通常、水を使用するが、有機溶媒を混合しても良い。有機溶媒は反応性の観点からジtert-ブチルカルボニルを溶解させ、水と容易に混和するものが好ましく、例えばテトラヒドロフラン、アセトン、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルモルホリン、ジメチルスルホキシド、メタノール、エタノール、2-プロパノール、tert-ブタノールなどを使用することができ、テトラヒドロフランが好ましい。 In this reaction, water is usually used as the solvent, but an organic solvent may be mixed. From the viewpoint of reactivity, the organic solvent preferably dissolves ditert-butylcarbonyl and is easily miscible with water, for example, tetrahydrofuran, acetone, acetonitrile, dimethylformamide, dimethylacetamide, N-methylmorpholine, dimethylsulfoxide, methanol, etc. Ethanol, 2-propanol, tert-butanol and the like can be used, preferably tetrahydrofuran.

水の使用量はD-セリンおよび反応によって生成する式(5)の化合物のナトリウム塩を溶解できればよく、D-セリン10重量部に対して通常3から10重量部である。
ジtert-ブチルジカーボネートの使用量はD-セリン1モルに対して1.0から2.0モルが好ましく、1.0から1.5モルがより好ましい。
The amount of water used is only required to be able to dissolve the sodium salt of D-serine and the compound of the formula (5) produced by the reaction, and is usually 3 to 10 parts by weight with respect to 10 parts by weight of D-serine.
The amount of tert-butyl dicarbonate to be used is preferably 1.0 to 2.0 mol, more preferably 1.0 to 1.5 mol, per 1 mol of D-serine.

前記塩基としては水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等を使用することができ、中でも、水酸化ナトリウムが好ましく、水酸化ナトリウムと炭酸ナトリウムまたは炭酸水素ナトリウムを混合して用いてもよい。塩基の使用量はD-セリン1モルに対して1.0から3.0モルが好ましく、1.1から1.3モルがより好ましい。 As the base, sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate and the like can be used. Among them, sodium hydroxide is preferable, and sodium hydroxide and carbonic acid are preferable. Sodium or sodium hydrogen carbonate may be mixed and used. The amount of the base used is preferably 1.0 to 3.0 mol, more preferably 1.1 to 1.3 mol, relative to 1 mol of D-serine.

D-セリンとジtert-ブチルジカーボネートとの反応温度は特に限定されないが反応性の観点から30から50℃が好ましい。反応により生成する混合物をトルエン等の有機溶媒による分液洗浄操作により残存するジtert-ブチルカルボニル試薬等を除去することができ、水層より式(5)の化合物アルカリ金属塩(好ましくはナトリウム塩)を含む溶液を得ることができる。 The reaction temperature between D-serine and ditert-butyl dicarbonate is not particularly limited, but is preferably 30 to 50 ° C. from the viewpoint of reactivity. The mixture produced by the reaction can be washed with a separate solution using an organic solvent such as toluene to remove the residual ditert-butylcarbonyl reagent and the like, and the compound alkali metal salt of the formula (5) (preferably a sodium salt) can be removed from the aqueous layer. ) Can be obtained.

本発明の方法では、D-セリンから式(1)の化合物まで、中間体(式(5)から式(2)を単離せず、溶液のまま繋いで製造することができ、工程の間の繋ぎが容易であり、効率的な工業的製造方法として優れている。この方法によれば、下記式(6)の化合物の含有量を低減した式(1)の精製アミド化合物が製造できる。
式(6):

Figure 2022072636000008
In the method of the present invention, intermediates (formulas (5) to (2) can be produced by connecting them as a solution without isolating intermediates (formulas (5) to (2)) from D-serine to compounds of formula (1). It is easy to connect and is excellent as an efficient industrial production method. According to this method, a purified amide compound of the formula (1) with a reduced content of the compound of the following formula (6) can be produced.
Equation (6):
Figure 2022072636000008

(以下、OH体と記すこともある。)の化合物は、式(4)の製造の際に残留する原料である式(5)に由来する不純物であり、式(1)のアミド化合物に対して脱メチル化した構造を有する。 The compound of the formula (hereinafter, also referred to as an OH compound) is an impurity derived from the formula (5), which is a raw material remaining in the production of the formula (4), with respect to the amide compound of the formula (1). Has a demethylated structure.

本発明の方法では、式(1)のアミド化合物はD-セリンから良好な収率で製造することができ、得られた式(1)のアミド化合物の純度は、通常、99.9%以上、さらに99.95%以上にすることができる。また、得られた式(1)のアミド化合物の中のOH体の含有量を、通常0.05%未満、さらに0.03%未満に低減できる。 In the method of the present invention, the amide compound of the formula (1) can be produced from D-serine in a good yield, and the purity of the obtained amide compound of the formula (1) is usually 99.9% or more. In addition, it can be 99.95% or more. Further, the content of the OH compound in the obtained amide compound of the formula (1) can be usually reduced to less than 0.05%, further to less than 0.03%.

本発明のアミド化合物の製造工程の典型的な例を以下のスキームに示す。

Figure 2022072636000009
A typical example of the manufacturing process of the amide compound of the present invention is shown in the following scheme.
Figure 2022072636000009

以下、本発明を更に詳しく説明するため実施例を挙げる。しかし、本発明はこれら実施例等に限定されるものではない。 Hereinafter, examples will be given to explain the present invention in more detail. However, the present invention is not limited to these examples and the like.

製造例1
1)式(5)の化合物の製造
水(350mL)、25%水酸化ナトリウム水溶液(152g,0.95モル)、炭酸水素ナトリウム(16g,0.19モル)、D-セリン (100g,0.95モル)の混合液を40℃に昇温し、テトラヒドロフラン(50mL)を加えた。この溶液にジtert-ブチルジカーボーネート(249g, 1.14モル)とテトラヒドロフラン(50mL)の混合液を40℃で3h以上かけて滴下した。40℃で保温し、原料消失を確認後、トルエン(200mL)を加え、40℃で分液洗浄を行い、水層より式(5)の化合物のナトリウム塩溶液を得た。式(5)の化合物の収率は100%、HPLC純度97.6%であった。
Production Example 1
1) Production of the compound of formula (5) Water (350 mL), 25% aqueous sodium hydroxide solution (152 g, 0.95 mol), sodium hydrogen carbonate (16 g, 0.19 mol), D-serine (100 g, 0. The temperature of the mixed solution of 95 mol) was raised to 40 ° C., and tetrahydrofuran (50 mL) was added. A mixed solution of tert-butyl dicarbonate (249 g, 1.14 mol) and tetrahydrofuran (50 mL) was added dropwise to this solution at 40 ° C. over 3 hours. After keeping the temperature at 40 ° C. and confirming the disappearance of the raw materials, toluene (200 mL) was added, and liquid separation washing was performed at 40 ° C. to obtain a sodium salt solution of the compound of the formula (5) from the aqueous layer. The yield of the compound of the formula (5) was 100%, and the HPLC purity was 97.6%.

2)式(4)の化合物の製造
式(5)の化合物のナトリウム塩溶液(0.48モル)にテトラヒドロフラン(160mL)を加えた後、0℃に冷却し、温度を保ちながらジメチル硫酸(420g,3.33モル)と50%水酸化ナトリウム水溶液(285g, 3.57モル)を0℃で併注した。併注後、約2hかけて20℃に昇温して保温した。原料消失を確認後、トルエン(500mL)を加え、20℃で35%塩酸を加えてpHを1~2に調整した。分液後、得られた有機層を20℃で20%食塩水(100mL)にて洗浄した。得られた有機層より溶媒を約350g分減圧留去し、式(4)の化合物の溶液を得た。式(5)の化合物からの式(4)の化合物の収率は99%、HPLC純度96.3%、光学純度は97.6%であった。
2) Production of the compound of formula (4)
After adding hydroxide (160 mL) to a sodium salt solution (0.48 mol) of the compound of the formula (5), cool to 0 ° C., and maintain the temperature with dimethyl sulfate (420 g, 3.33 mol) and 50% water. Aqueous sodium oxide solution (285 g, 3.57 mol) was co-injected at 0 ° C. After the combined injection, the temperature was raised to 20 ° C. over about 2 hours to keep the temperature warm. After confirming the disappearance of the raw materials, toluene (500 mL) was added, and 35% hydrochloric acid was added at 20 ° C. to adjust the pH to 1-2. After the liquid separation, the obtained organic layer was washed with 20% saline solution (100 mL) at 20 ° C. The solvent was distilled off from the obtained organic layer under reduced pressure for about 350 g to obtain a solution of the compound of the formula (4). The yield of the compound of the formula (4) from the compound of the formula (5) was 99%, the HPLC purity was 96.3%, and the optical purity was 97.6%.

3)式(3)の化合物の製造
クロロ炭酸イソブチル(67g,0.49モル)とトルエン(220mL)を混合し、-10℃に冷却した。この溶液に式(4)の化合物の溶液(0.47モル)にN-メチルモルホリン(50g,0.49モル)を加えた混合液を-10で滴下した。混合物を-10℃で保温し、原料の消失を確認後、イソプロピルアルコール(44mL)とベンジルアミン(52g,0.49モル)の混合液を-10℃で滴下した。滴下終了後、約2hかけて10℃に昇温し、保温した。中間体の消失を確認後、混合物を水(196mL)、3.5%塩酸(98mL)、8%炭酸水素ナトリウム水溶液(98mL)で順次、洗浄し、式(3)の化合物のトルエン溶液を得た。式(4)の化合物からの式(3)の化合物の収率は96.9%であった。
3) Preparation of compound of formula (3) Isobutyl chlorocarbonate (67 g, 0.49 mol) and toluene (220 mL) were mixed and cooled to −10 ° C. A mixed solution prepared by adding N-methylmorpholine (50 g, 0.49 mol) to a solution (0.47 mol) of the compound of the formula (4) to this solution was added dropwise at −10. The mixture was kept warm at −10 ° C., and after confirming the disappearance of the raw materials, a mixed solution of isopropyl alcohol (44 mL) and benzylamine (52 g, 0.49 mol) was added dropwise at −10 ° C. After the completion of the dropping, the temperature was raised to 10 ° C. over about 2 hours to keep the temperature warm. After confirming the disappearance of the intermediate, the mixture was washed successively with water (196 mL), 3.5% hydrochloric acid (98 mL) and 8% aqueous sodium hydrogen carbonate solution (98 mL) to obtain a toluene solution of the compound of the formula (3). rice field. The yield of the compound of the formula (3) from the compound of the formula (4) was 96.9%.

4)式(2)のアミノ化合物の製造
式(3)の化合物トルエン溶液(0.44モル)を15℃に温調し、温度を保ちながら35%塩酸(167g,1.60モル)を滴下した。混合物を15℃で保温し、原料の消失を確認した。5℃に冷却後、混合物に水(96mL)を滴下、分液し、水層より式(2)のアミノ化合物塩酸塩の水溶液を得た。
4) Production of amino compound of formula (2) The temperature of the compound toluene solution of formula (3) (0.44 mol) was adjusted to 15 ° C., and 35% hydrochloric acid (167 g, 1.60 mol) was added dropwise while maintaining the temperature. bottom. The mixture was kept warm at 15 ° C., and the disappearance of the raw material was confirmed. After cooling to 5 ° C., water (96 mL) was added dropwise to the mixture, and the mixture was separated to obtain an aqueous solution of the amino compound hydrochloride of the formula (2) from the aqueous layer.

5)式(1)の精製アミド化合物の製造
式(2)の化合物の塩酸塩水溶液に30℃以下で50%水酸化ナトリウム水溶液(110g,1.37モル)を滴下し、炭酸水素ナトリウム(27g,0.32モル)を加えた。このなかにさらに酢酸エチル(720mL)を加えた後、35℃に昇温し、温度を保ちながら無水酢酸(47g,0.46モル)を滴下した。混合物を35℃で保温し、原料の消失を確認後、混合物を分液し、続いて8%炭酸水素ナトリウム水溶液(96mL)、水(48mL)で洗浄した。得られた有機層中のOH体の含有量は0.3%であった。(OH体の含有量とは、高速液体クロマトグラムにおけるピークの面積値から次の式に基づき計算された値である(式(6)のOH体の面積値/(式(6)のOH体の面積値+式(1)の化合物の面積値))×100)。得られた有機層に酢酸エチル(141mL)を加えた後、溶媒を約700g減圧留去した。留去残に酢酸エチル188mLを加えた後に50℃以上にて濾過、酢酸エチル50mLで洗浄した。濾洗液に酢酸エチル(500mL)を加えた後、溶媒を約420g減圧留去した。留去残中の水分が式(1)の化合物1モルに対して2.0モル以下となっていることを確認した後に60℃に温調し、種晶を接種後、2時間保温した。生成したスラリーマスにシクロヘキサン(235mL)を1時間以上かけて滴下した後に1時間保温し、約6時間かけて0℃に冷却した。濾過後、0℃に冷却したシクロヘキサン(141mL)と酢酸エチル(141mL)の混合溶液で洗浄、得られた結晶を減圧乾燥し、精製された式(1)の化合物を得た。得量 92.3g、収率84.2%(D-セリンからの通算収率80.7%)。HPLC純度 99.98%(OH体 0.02%)、光学純度 99.9% ee。
5) Production of the purified amide compound of the formula (1) A 50% sodium hydroxide aqueous solution (110 g, 1.37 mol) was added dropwise to the hydrochloride aqueous solution of the compound of the formula (2) at 30 ° C. or lower, and sodium hydrogencarbonate (27 g) was added dropwise. , 0.32 mol) was added. Ethyl acetate (720 mL) was further added thereto, the temperature was raised to 35 ° C., and acetic anhydride (47 g, 0.46 mol) was added dropwise while maintaining the temperature. The mixture was kept warm at 35 ° C., and after confirming the disappearance of the raw materials, the mixture was separated and then washed with 8% aqueous sodium hydrogen carbonate solution (96 mL) and water (48 mL). The content of OH compound in the obtained organic layer was 0.3%. (The content of OH compound is a value calculated from the area value of the peak in the high-speed liquid chromatogram based on the following equation (area value of OH compound in equation (6) / OH compound in equation (6). Area value of + area value of compound of formula (1))) × 100). After adding ethyl acetate (141 mL) to the obtained organic layer, about 700 g of the solvent was distilled off under reduced pressure. After adding 188 mL of ethyl acetate to the distillate, the mixture was filtered at 50 ° C. or higher and washed with 50 mL of ethyl acetate. After adding ethyl acetate (500 mL) to the lotion, about 420 g of the solvent was distilled off under reduced pressure. After confirming that the water content in the distillate residue was 2.0 mol or less with respect to 1 mol of the compound of the formula (1), the temperature was adjusted to 60 ° C., and the seed crystals were inoculated and kept warm for 2 hours. Cyclohexane (235 mL) was added dropwise to the produced slurry mass over 1 hour, the mixture was kept warm for 1 hour, and cooled to 0 ° C. over about 6 hours. After filtration, the mixture was washed with a mixed solution of cyclohexane (141 mL) and ethyl acetate (141 mL) cooled to 0 ° C., and the obtained crystals were dried under reduced pressure to obtain a purified compound of the formula (1). The yield was 92.3 g and the yield was 84.2% (total yield from D-serine was 80.7%). HPLC purity 99.98% (OH body 0.02%), optical purity 99.9% ee.

製造例2
1)式(5)の化合物の製造
水330mL)、25%水酸化ナトリウム水溶液(183g, 1.14モル)、D-セリン (100g, 0.95モル)の混合液を40℃に昇温し、テトラヒドロフラン(50mL)を加えた。この溶液にジtert-ブチルジカーボーネート(249g, 1.14モル)とテトラヒドロフラン(50mL)の混合液を40℃で3h以上かけて滴下した。40℃で保温し、原料消失を確認後、トルエン(200mL)を加え、40℃で分液洗浄を行い、水層より式(5)の化合物のナトリウム塩溶液を得た。式(5)の化合物の収率は100%、HPLC純度98.6%であった。
Manufacturing example 2
1) Production of the compound of formula (5) Water 330 mL), 25% aqueous sodium hydroxide solution (183 g, 1.14 mol), and D-serine (100 g, 0.95 mol) were heated to 40 ° C. , Tetrahydrofuran (50 mL) was added. A mixed solution of tert-butyl dicarbonate (249 g, 1.14 mol) and tetrahydrofuran (50 mL) was added dropwise to this solution at 40 ° C. over 3 hours. After keeping the temperature at 40 ° C. and confirming the disappearance of the raw materials, toluene (200 mL) was added, and liquid separation washing was performed at 40 ° C. to obtain a sodium salt solution of the compound of the formula (5) from the aqueous layer. The yield of the compound of the formula (5) was 100%, and the HPLC purity was 98.6%.

2)式(4)の化合物の製造
式(5)の化合物のナトリウム塩溶液(0.48モル)にテトラヒドロフラン(160mL)を加えた後、0℃に冷却し、温度を保ちながらジメチル硫酸(420g,3.33モル)を滴下した。続いて50%水酸化ナトリウム水溶液(285g,3.57モル)を0℃で滴下した。0℃で保温し、原料消失を確認後、トルエン(1000mL)を加え、0℃で35%塩酸を加えてpHを1~2に調整した。分液後、得られた有機層を0℃で20%食塩水(100mL)にて洗浄した。得られた有機層より溶媒を約700g減圧留去し、式(4)の化合物の溶液を得た。式(5)の化合物からの式(4)の化合物の収率は99%、HPLC純度96.4%、光学純度は98.9%であった。
2) Production of the compound of formula (4)
Tetrahydrofuran (160 mL) was added to a sodium salt solution (0.48 mol) of the compound of the formula (5), the mixture was cooled to 0 ° C., and dimethyl sulfate (420 g, 3.33 mol) was added dropwise while maintaining the temperature. Subsequently, a 50% aqueous sodium hydroxide solution (285 g, 3.57 mol) was added dropwise at 0 ° C. After keeping the temperature at 0 ° C. and confirming the disappearance of the raw materials, toluene (1000 mL) was added, and 35% hydrochloric acid was added at 0 ° C. to adjust the pH to 1-2. After the liquid separation, the obtained organic layer was washed with 20% saline solution (100 mL) at 0 ° C. About 700 g of the solvent was distilled off from the obtained organic layer under reduced pressure to obtain a solution of the compound of the formula (4). The yield of the compound of the formula (4) from the compound of the formula (5) was 99%, the HPLC purity was 96.4%, and the optical purity was 98.9%.

比較例1
1)式(5)の化合物の製造
水(125mL)、炭酸水素ナトリウム水溶液(24g, 1.14モル)、D-セリン (25g, 0.24モル)の混合液を30℃に昇温した。この溶液にジtert-ブチルジカーボーネート(60g, 0.27モル)を滴下した。30℃で保温し、原料消失を確認後、トルエン(50mL)を加え、30℃で分液洗浄を行い、水層より式(5)の化合物のナトリウム塩溶液を得た。式(5)の化合物の収率は100%、HPLC純度99.4%であった。
Comparative Example 1
1) Preparation of the compound of formula (5) A mixed solution of water (125 mL), an aqueous sodium hydrogen carbonate solution (24 g, 1.14 mol) and D-serine (25 g, 0.24 mol) was heated to 30 ° C. Ditert-butyl dicarbonate (60 g, 0.27 mol) was added dropwise to this solution. After keeping the temperature at 30 ° C. and confirming the disappearance of the raw materials, toluene (50 mL) was added, and liquid separation washing was performed at 30 ° C. to obtain a sodium salt solution of the compound of the formula (5) from the aqueous layer. The yield of the compound of the formula (5) was 100%, and the HPLC purity was 99.4%.

2)式(4)の化合物の製造
式(5)の化合物のナトリウム塩溶液(0.14モル)にテトラヒドロフラン(45mL)を加えた後、0℃に冷却し、50%水酸化ナトリウム水溶液(5.7g,0.07モル)を加えた。続いて温度を保ちながらジメチル硫酸(108g,0.86モル)と50%水酸化ナトリウム水溶液(69g, 0.86モル)を0℃で併注した。併注後、0℃で保温し、原料消失を確認後、トルエン(150mL)を加え、0℃で35%塩酸を加えてpHを1~2に調整した。分液後、得られた有機層を0℃で20%食塩水(30mL)にて洗浄した。得られた有機層より、式(4)の化合物の溶液を得た。式(5)の化合物からの式(4)の化合物の収率は99%、HPLC純度96.6%、光学純度は97.6%であった。
2) Production of the compound of formula (4)
After adding tetrahydrofuran (45 mL) to a sodium salt solution (0.14 mol) of the compound of the formula (5), cool to 0 ° C., and add a 50% aqueous sodium hydroxide solution (5.7 g, 0.07 mol). rice field. Subsequently, while maintaining the temperature, dimethyl sulfate (108 g, 0.86 mol) and a 50% aqueous sodium hydroxide solution (69 g, 0.86 mol) were co-injected at 0 ° C. After the combined injection, the temperature was kept at 0 ° C., and after confirming the disappearance of the raw material, toluene (150 mL) was added, and 35% hydrochloric acid was added at 0 ° C. to adjust the pH to 1-2. After the liquid separation, the obtained organic layer was washed with 20% saline solution (30 mL) at 0 ° C. From the obtained organic layer, a solution of the compound of the formula (4) was obtained. The yield of the compound of the formula (4) from the compound of the formula (5) was 99%, the HPLC purity was 96.6%, and the optical purity was 97.6%.

3)式(3)の化合物の製造
式(4)の化合物の溶液(0.14モル)を-10℃に冷却し、温度を保ちながらクロロ炭酸イソブチル(21.5g,0.16モル)、N-メチルモルホリン(21.6g,0.21モル)の順で滴下した。混合物を-10℃で保温し、原料の消失を確認後、イソプロパノール(15mL)とベンジルアミン(16.0g, 0.15モル)の混合液を-10℃で滴下した。滴下終了後、約2hかけて10℃に昇温し、保温した。中間体の消失を確認後、混合物を水(60mL)、3.5%塩酸(30mL)、8%炭酸水素ナトリウム水溶液(30mL)で洗浄し、有機層として式(3)の化合物のトルエン溶液を得た。式(4)の化合物からの式(3)の化合物の収率は87.8%であった。
3) Production of the compound of formula (3)
The solution of the compound of the formula (4) (0.14 mol) was cooled to −10 ° C., and while maintaining the temperature, isobutyl chlorocarbonate (21.5 g, 0.16 mol) and N-methylmorpholine (21.6 g, 0) were used. .21 mol) was added dropwise in this order. The mixture was kept warm at −10 ° C., and after confirming the disappearance of the raw materials, a mixed solution of isopropanol (15 mL) and benzylamine (16.0 g, 0.15 mol) was added dropwise at −10 ° C. After the completion of the dropping, the temperature was raised to 10 ° C. over about 2 hours to keep the temperature warm. After confirming the disappearance of the intermediate, the mixture was washed with water (60 mL), 3.5% hydrochloric acid (30 mL) and 8% aqueous sodium hydrogen carbonate solution (30 mL), and a toluene solution of the compound of the formula (3) was used as an organic layer. Obtained. The yield of the compound of the formula (3) from the compound of the formula (4) was 87.8%.

参考例1、2および製造例6,7,8
式(6)のOH体の含有量がそれぞれ表1に示すとおりである式(1)の化合物の晶析前マス(晶析母液)において表1に記載のそれぞれの水分含量に設定する以外は、製造例5と同じ溶媒、溶媒比率にて晶析、ろ過、洗浄を行い、得られた結晶を減圧乾燥して式(1)の化合物を得た。得られた結晶中の式(6)のOH体の含有量および式(3)の化合物からの式(1)の化合物からの収率を表1に示す。
Reference Examples 1 and 2 and Production Examples 6, 7, 8
The content of the OH compound of the formula (6) is as shown in Table 1, except that the water content of the compound of the formula (1) is set to each water content shown in Table 1 in the pre-crystallization mass (crystallization mother liquor). , Crystallization, filtration and washing were carried out with the same solvent and solvent ratio as in Production Example 5, and the obtained crystals were dried under reduced pressure to obtain the compound of the formula (1). Table 1 shows the content of the OH compound of the formula (6) in the obtained crystal and the yield from the compound of the formula (1) from the compound of the formula (3).

Figure 2022072636000010
Figure 2022072636000010

比較例2 特許文献2に記載の方法
1)式(4)の化合物の製造
トルエン(75mL)、式(5)の化合物(15g,0.07モル)とテトラブチルアンモニウムブロミド(0.9g,0.003モル)の懸濁液を10℃以下に冷却した。これに、20%水酸化ナトリウム水溶液(14.6g,0.07モル)を加え、得られた混合物を30分間熟成した。温度を10℃以下に保持しながらジメチル硫酸(36.9g,0.29モル)と50%水酸化ナトリウム水溶液(26.5g,0.33モル)を加え、反応混合物を1時間以上熟成した。混合物に水(45mL)を加えて分液した。水層を50%クエン酸水溶液でpH3.5以下にして塩化メチレン(2×62mL,1×45mL)で抽出し、抽出液を混合、脱水濃縮し、式(4)の化合物を得た。(濃縮後23.8g,見かけ収率100%,HPLC純度95.6%,光学純度96.5%)
Comparative Example 2 Method 1 described in Patent Document 2) Production of compound of formula (4) Toluene (75 mL), compound of formula (5) (15 g, 0.07 mol) and tetrabutylammonium bromide (0.9 g, 0) The suspension of (.003 mol) was cooled to 10 ° C. or lower. A 20% aqueous sodium hydroxide solution (14.6 g, 0.07 mol) was added thereto, and the obtained mixture was aged for 30 minutes. While keeping the temperature below 10 ° C., dimethyl sulfate (36.9 g, 0.29 mol) and a 50% aqueous sodium hydroxide solution (26.5 g, 0.33 mol) were added, and the reaction mixture was aged for 1 hour or more. Water (45 mL) was added to the mixture and the mixture was separated. The aqueous layer was set to pH 3.5 or less with a 50% aqueous citric acid solution and extracted with methylene chloride (2 × 62 mL, 1 × 45 mL), and the extracts were mixed, dehydrated and concentrated to obtain the compound of the formula (4). (23.8 g after concentration, apparent yield 100%, HPLC purity 95.6%, optical purity 96.5%)

2)式(3)の化合物の製造
式(4)の化合物溶液を-10℃以下に冷却し、クロロ炭酸イソブチル(9.0mL,0.07モル)を-5℃以下で加え、続いてN-メチルモルホリン(7.6mL,0.07モル)を-5℃以下で加え、混合物を-5℃以下で30分以上熟成した。塩化メチレンに溶解したベンジルアミン(7.8mL,0.07モル)を-5℃以下で加え、混合物を室温に加温した。1時間以上熟成した後、混合物を水(29mL)、1N-塩酸水溶液(29mL)、8%炭酸水素ナトリウム水溶液(29mL)および水(29mL)で洗浄して式(3)の化合物溶液を得た。式(4)の化合物からの式(3)の化合物の収率は90.7%であった。

2) Preparation of compound of formula (3) Cool the compound solution of formula (4) to -10 ° C or lower, add isobutyl chlorocarbonate (9.0 mL, 0.07 mol) at -5 ° C or lower, and then N. -Methylmorpholine (7.6 mL, 0.07 mol) was added at −5 ° C. or lower, and the mixture was aged at −5 ° C. or lower for 30 minutes or longer. Benzylamine (7.8 mL, 0.07 mol) dissolved in methylene chloride was added below −5 ° C. and the mixture was heated to room temperature. After aging for 1 hour or more, the mixture was washed with water (29 mL), 1N-hydrochloric acid aqueous solution (29 mL), 8% sodium hydrogen carbonate aqueous solution (29 mL) and water (29 mL) to obtain a compound solution of the formula (3). .. The yield of the compound of the formula (3) from the compound of the formula (4) was 90.7%.

本発明の方法によれば、高品質のアミド化合物を効率よく製造することができる。 According to the method of the present invention, a high quality amide compound can be efficiently produced.

Claims (8)

式(1):

Figure 2022072636000011

のアミド化合物と式(1)のアミド化合物1モル当たり2.0モル以下の水分を含む晶析母液から式(1)の化合物を晶析することを特徴とする式(1)の精製アミド化合物の製造方法。
Equation (1):

Figure 2022072636000011

The purified amide compound of the formula (1), which comprises crystallizing the compound of the formula (1) from the crystallization mother liquor containing 2.0 mol or less of water per mol of the amide compound of the formula (1) and the amide compound of the formula (1). Manufacturing method.
式(2):
Figure 2022072636000012

のアミノ化合物をアセチル化して、請求項1に記載の式(1)のアミド化合物を製造する工程と、生成する式(1)のアミド化合物と、式(1)のアミド化合物1モル当たり2.0モル以下の水分を含む溶液を調製する工程および請求項1に記載の工程を含む式(1)の精製アミド化合物の製造方法。
Equation (2):
Figure 2022072636000012

2. The step of acetylating the amino compound of the above to produce the amide compound of the formula (1) according to claim 1, the amide compound of the formula (1) to be produced, and the amide compound of the formula (1) per mol. A method for producing a purified amide compound of the formula (1), which comprises a step of preparing a solution containing 0 mol or less of water and the step of claim 1.
式(3):

Figure 2022072636000013

(式中、Bocは、tert-ブトキシカルボニル基を表す。)
の化合物に塩酸を作用させ、式(2)のアミノ化合物を製造する工程および請求項2に記載の工程を含む式(1)の精製アミド化合物の製造方法。
Equation (3):

Figure 2022072636000013

(In the formula, Boc represents a tert-butoxycarbonyl group.)
A method for producing a purified amide compound of the formula (1), which comprises a step of reacting the compound of the above with hydrochloric acid to produce an amino compound of the formula (2) and the step of claim 2.
クロロ炭酸イソブチルの溶液中に式(4):

Figure 2022072636000014

(式中、Bocは、tert-ブトキシカルボニル基を表す。)
のカルボン酸化合物、N-メチルモルホリンの混合溶液を滴下し、更にベンジルアミンを加える請求項3に記載の式(3)の化合物の製造方法。
In a solution of isobutyl chlorocarbonate, the formula (4):

Figure 2022072636000014

(In the formula, Boc represents a tert-butoxycarbonyl group.)
The method for producing a compound of the formula (3) according to claim 3, wherein a mixed solution of the carboxylic acid compound of No. 1 and N-methylmorpholine is added dropwise, and benzylamine is further added.
テトラヒドロフランおよび水を溶媒とし、アルカリ金属水酸化物の存在下、式(5):

Figure 2022072636000015

(式中、Bocは、tert-ブトキシカルボニル基を表す。)
を硫酸ジメチルと反応させ、式(4):
Figure 2022072636000016
(式中、Bocは、前記のとおり。)
の化合物を製造する工程と、請求項4に記載の工程を含む式(3);

Figure 2022072636000017

(式中、Bocは、tert-ブトキシカルボニル基を表す。)
の化合物の製造方法。
Formula (5): In the presence of an alkali metal hydroxide using tetrahydrofuran and water as solvents.

Figure 2022072636000015

(In the formula, Boc represents a tert-butoxycarbonyl group.)
Was reacted with dimethyl sulfate, and the formula (4):
Figure 2022072636000016
(In the formula, Boc is as described above.)
Formula (3) including the step of producing the compound according to claim 4 and the step according to claim 4.

Figure 2022072636000017

(In the formula, Boc represents a tert-butoxycarbonyl group.)
Method for producing the compound of.
D-セリンのアミノ基をtert-ブトキシカルボニル化し、請求項5に記載の式(5)の化合物を製造する工程と請求項5の工程とを含む式(3)の化合物の製造方法。 A method for producing a compound of formula (3), which comprises a step of tert-butoxycarbonylating an amino group of D-serine to produce the compound of formula (5) according to claim 5 and a step of claim 5. 請求項4,5、または6に記載の式(3)の化合物の製造工程と請求項3に記載の工程を含む式(1)の精製アミド化合物の製造方法。 A method for producing a purified amide compound of the formula (1), which comprises the step of producing the compound of the formula (3) according to claim 4, 5 or 6 and the step of claim 3. 式(1)の化合物と、式(1)の化合物1モル当たり2.0モル以下の水分を含む請求項1に記載の晶析母液。 The crystallization mother liquor according to claim 1, which contains a compound of the formula (1) and a water content of 2.0 mol or less per mol of the compound of the formula (1).
JP2020182189A 2020-10-30 2020-10-30 Method for producing amide compound Pending JP2022072636A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020182189A JP2022072636A (en) 2020-10-30 2020-10-30 Method for producing amide compound
CN202111247414.0A CN114436881A (en) 2020-10-30 2021-10-26 Method for producing amide compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020182189A JP2022072636A (en) 2020-10-30 2020-10-30 Method for producing amide compound

Publications (1)

Publication Number Publication Date
JP2022072636A true JP2022072636A (en) 2022-05-17

Family

ID=81362590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020182189A Pending JP2022072636A (en) 2020-10-30 2020-10-30 Method for producing amide compound

Country Status (2)

Country Link
JP (1) JP2022072636A (en)
CN (1) CN114436881A (en)

Also Published As

Publication number Publication date
CN114436881A (en) 2022-05-06

Similar Documents

Publication Publication Date Title
CN109516943B (en) Preparation method of lactam intermediate with high chiral purity and brivaracetam
US20130041180A1 (en) Process for preparing (r)-2-acetamido-n-benzyl-3-methoxy-propionamide
US8598386B2 (en) Process for producing lacosamide
WO1998007687A1 (en) PROCESS FOR PREPARING β-AMINO-α-HYDROXY ACID DERIVATIVES
US20060135784A1 (en) Process for producing 3-amino-2-hydroxypropionic acid derivatives
JP2022072636A (en) Method for producing amide compound
US20110319649A1 (en) Intermediate for producing lacosamide and a process for its preparation and conversion to lacosamide
JP5260062B2 (en) Process for producing β-amino-α-hydroxy acid amide derivative
WO2004076404A1 (en) Processes for the production of optically active compounds having substituents at the 2-position
JP2007510695A (en) Method for preparing gabapentin
JP2915306B2 (en) Method for producing N-alkoxycarbonyl amino acid ester
US20050032889A1 (en) Process for producing crystal of benzenesulfonamide derivative, and novel crystal of intermediate therefor and process for producing the same
CN111247127B (en) Process for the production of intermediate compounds for the synthesis of medicaments
JP5704763B2 (en) Production of trans-4-aminocyclopent-2-ene-1-carboxylic acid derivative
WO1999036399A1 (en) Process for producing optically active cysteine derivatives
JP4721339B2 (en) Method for producing N-alkoxycarbonylamino acid
EP1069109B1 (en) Process for production of optically active N-protected-N-methyl-phenylalanine derivative
JP3832919B2 (en) Method for producing optically active cyanohydrin
WO2015031595A1 (en) A process for preparation of saxagliptin and its hydrochloride salt
CN112521311A (en) Improved lacosamide intermediate preparation method
JPWO2002044136A1 (en) Method for producing N-protected-β-amino alcohol and method for producing N-protected-β-aminoepoxide
JPH10101629A (en) Production of optically active butyric acid derivative
WO2019098551A1 (en) Method for preparing intermediate compound for synthesizing pharmaceutical
JPH08295680A (en) Production of aminothiazoleacetic acid derivative
US20040116709A1 (en) Process for producing optically active n-aryl-1-amino-2-propanol derivatives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241018

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20241021