JP2022065560A - Substrate processing method and substrate processing device - Google Patents
Substrate processing method and substrate processing device Download PDFInfo
- Publication number
- JP2022065560A JP2022065560A JP2020174227A JP2020174227A JP2022065560A JP 2022065560 A JP2022065560 A JP 2022065560A JP 2020174227 A JP2020174227 A JP 2020174227A JP 2020174227 A JP2020174227 A JP 2020174227A JP 2022065560 A JP2022065560 A JP 2022065560A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- gas
- film
- plasma
- supplying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012545 processing Methods 0.000 title claims abstract description 124
- 239000000758 substrate Substances 0.000 title claims abstract description 83
- 238000003672 processing method Methods 0.000 title claims abstract description 16
- 239000007789 gas Substances 0.000 claims abstract description 150
- 239000012495 reaction gas Substances 0.000 claims abstract description 54
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000001257 hydrogen Substances 0.000 claims abstract description 36
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 36
- 239000000203 mixture Substances 0.000 claims abstract description 34
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 9
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 6
- 150000002367 halogens Chemical class 0.000 claims abstract description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 239000010703 silicon Substances 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 33
- 238000002407 reforming Methods 0.000 claims description 25
- 239000002994 raw material Substances 0.000 claims description 7
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000012528 membrane Substances 0.000 claims 3
- 239000000463 material Substances 0.000 abstract 1
- 239000002243 precursor Substances 0.000 description 29
- 238000010926 purge Methods 0.000 description 19
- 238000012986 modification Methods 0.000 description 15
- 230000004048 modification Effects 0.000 description 15
- 238000005121 nitriding Methods 0.000 description 13
- 239000012159 carrier gas Substances 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 12
- 150000004767 nitrides Chemical class 0.000 description 9
- 230000001590 oxidative effect Effects 0.000 description 8
- 230000003247 decreasing effect Effects 0.000 description 7
- 125000005843 halogen group Chemical group 0.000 description 7
- 239000012686 silicon precursor Substances 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 238000001039 wet etching Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000003028 elevating effect Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 229910008072 Si-N-Si Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- SYSHGEHAYJKOLC-UHFFFAOYSA-N 1,1,3,3-tetrachloro-1,3-disiletane Chemical compound Cl[Si]1(Cl)C[Si](Cl)(Cl)C1 SYSHGEHAYJKOLC-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910002808 Si–O–Si Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical compound CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/42—Silicides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
本開示は、基板処理方法及び基板処理装置に関する。 The present disclosure relates to a substrate processing method and a substrate processing apparatus.
半導体デバイスの微細化に伴いゲートやコンタクトのスペーサとしての用途などで、低誘電率かつウェットエッチング耐性の高い絶縁膜の成膜方法が知られている。 With the miniaturization of semiconductor devices, a method for forming an insulating film having a low dielectric constant and high wet etching resistance is known for use as a spacer for gates and contacts.
特許文献1には、基板を収容した処理容器内にCVD反応が生じる条件下で所定元素含有ガスを供給することで、前記基板上に所定元素含有層を形成する工程と、前記処理容器内に炭素含有ガスを供給することで、前記所定元素含有層の上に炭素含有層を形成して前記所定元素および炭素を含む層を形成する工程と、前記処理容器内に窒素含有ガスを供給することで、前記所定元素および炭素を含む層を窒化して炭窒化層を形成する工程と、を1セットとしてこのセットを所定回数行うことで所定厚さの炭窒化層を形成する工程と、前記処理容器内に酸素含有ガスを供給することで、前記所定厚さの炭窒化層を酸化して酸炭窒化層を形成する工程と、を1サイクルとして、このサイクルを所定回数行うことで、前記基板上に所定膜厚の酸炭窒化膜を形成する工程を有することを特徴とする半導体装置の製造方法が開示されている。
一の側面では、本開示は、生成される膜の組成を調整可能な基板処理方法及び基板処理装置を提供する。 In one aspect, the present disclosure provides a substrate processing method and a substrate processing apparatus capable of adjusting the composition of the produced film.
上記課題を解決するために、一の態様によれば、基板に対してシリコン、炭素、ハロゲンを含む原料ガスを供給する工程と、前記基板に対して第1反応ガスを供給する工程とを含むサイクルを少なくとも1回以上繰り返して前記基板に膜を形成する工程と、前記基板を水素含有ガスのプラズマに曝露し、前記基板に形成された前記膜を改質する工程と、を有する、基板処理方法が提供される。 In order to solve the above problems, according to one aspect, a step of supplying a raw material gas containing silicon, carbon and halogen to the substrate and a step of supplying the first reaction gas to the substrate are included. Substrate treatment comprising a step of forming a film on the substrate by repeating a cycle at least once, and a step of exposing the substrate to plasma of a hydrogen-containing gas to modify the film formed on the substrate. The method is provided.
一の側面によれば、生成される膜の組成を調整可能な基板処理方法及び基板処理装置を提供することができる。 According to one aspect, it is possible to provide a substrate processing method and a substrate processing apparatus capable of adjusting the composition of the produced film.
以下、図面を参照して本開示を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Hereinafter, embodiments for carrying out the present disclosure will be described with reference to the drawings. In each drawing, the same components may be designated by the same reference numerals and duplicate explanations may be omitted.
〔基板処理装置〕
本実施例に係る基板処理装置100について、図1を用いて説明する。図1は、基板処理装置100の構成例を示す概略図の一例である。基板処理装置100は、減圧状態の処理容器内でALD(Atomic Layer Deposition)法によりウエハ(基板)Wに絶縁膜(例えば、SiCN膜、SiOCN膜)を成膜する装置である。
[Board processing equipment]
The
図1に示されるように、基板処理装置100は、処理容器1と、載置台2と、シャワーヘッド3と、排気部4と、ガス供給機構5と、RF電力供給部8と、制御部9とを有している。
As shown in FIG. 1, the
処理容器1は、アルミニウム等の金属により構成され、略円筒状を有している。処理容器1は、ウエハWを収容する。処理容器1の側壁にはウエハWを搬入又は搬出するための搬入出口11が形成され、搬入出口11はゲートバルブ12により開閉される。処理容器1の本体の上には、断面が矩形状をなす円環状の排気ダクト13が設けられている。排気ダクト13には、内周面に沿ってスリット13aが形成されている。排気ダクト13の外壁には、排気口13bが形成されている。排気ダクト13の上面には、絶縁体部材16を介して処理容器1の上部開口を塞ぐように天壁14が設けられている。排気ダクト13と絶縁体部材16との間はシールリング15で気密に封止されている。区画部材17は、載置台2(およびカバー部材22)が後述する処理位置へと上昇した際、処理容器1の内部を上下に区画する。
The
載置台2は、処理容器1内でウエハWを水平に支持する。載置台2は、ウエハWに対応した大きさの円板状に形成されており、支持部材23に支持されている。載置台2は、AlN等のセラミックス材料や、アルミニウムやニッケル合金等の金属材料で形成されており、内部にウエハWを加熱するためのヒータ21が埋め込まれている。ヒータ21は、ヒータ電源(図示せず)から給電されて発熱する。そして、載置台2の上面の近傍に設けられた熱電対(図示せず)の温度信号によりヒータ21の出力を制御することで、ウエハWが所定の温度に制御される。載置台2には、上面の外周領域及び側面を覆うようにアルミナ等のセラミックスにより形成されたカバー部材22が設けられている。
The mounting table 2 horizontally supports the wafer W in the
載置台2の底面には、載置台2を支持する支持部材23が設けられている。支持部材23は、載置台2の底面の中央から処理容器1の底壁に形成された孔部を貫通して処理容器1の下方に延び、その下端が昇降機構24に接続されている。昇降機構24により載置台2が支持部材23を介して、図1で示す処理位置と、その下方の二点鎖線で示すウエハWの搬送が可能な搬送位置との間で昇降する。支持部材23の処理容器1の下方には、鍔部25が取り付けられており、処理容器1の底面と鍔部25の間には、処理容器1内の雰囲気を外気と区画し、載置台2の昇降動作にともなって伸縮するベローズ26が設けられている。
A
処理容器1の底面の近傍には、昇降板27aから上方に突出するように3本(2本のみ図示)のウエハ支持ピン27が設けられている。ウエハ支持ピン27は、処理容器1の下方に設けられた昇降機構28により昇降板27aを介して昇降する。ウエハ支持ピン27は、搬送位置にある載置台2に設けられた貫通孔2aに挿通されて載置台2の上面に対して突没可能となっている。ウエハ支持ピン27を昇降させることにより、搬送機構(図示せず)と載置台2との間でウエハWの受け渡しが行われる。
In the vicinity of the bottom surface of the
シャワーヘッド3は、処理容器1内に処理ガスをシャワー状に供給する。シャワーヘッド3は、金属製であり、載置台2に対向するように設けられており、載置台2とほぼ同じ直径を有している。シャワーヘッド3は、処理容器1の天壁14に固定された本体部31と、本体部31の下に接続されたシャワープレート32とを有している。本体部31とシャワープレート32との間にはガス拡散空間33が形成されており、ガス拡散空間33には処理容器1の天壁14及び本体部31の中央を貫通するようにガス導入孔36が設けられている。シャワープレート32の周縁部には下方に突出する環状突起部34が形成されている。環状突起部34の内側の平坦面には、ガス吐出孔35が形成されている。載置台2が処理位置に存在した状態では、載置台2とシャワープレート32との間に処理空間38が形成され、カバー部材22の上面と環状突起部34とが近接して環状隙間39が形成される。
The shower head 3 supplies the processing gas into the
排気部4は、処理容器1の内部を排気する。排気部4は、排気口13bに接続された排気配管41と、排気配管41に接続された真空ポンプや圧力制御バルブ等を有する排気機構42とを有する。処理に際しては、処理容器1内のガスがスリット13aを介して排気ダクト13に至り、排気ダクト13から排気配管41を通って排気機構42により排気される。
The
ガス供給機構5は、処理容器1内に処理ガスを供給する。ガス供給機構5は、プリカーサガス供給源51a、第1反応ガス供給源52a、第2反応ガス供給源53a、水素ガス供給源54aを有する。
The
プリカーサガス供給源51aは、ガス供給ライン51bを介してプリカーサガス(原料ガス)を処理容器1内に供給する。プリカーサガスとして、少なくともハロゲン基を有するシリコンプリカーサを用いる。また、プリカーサガスとして、シリコン、炭素、及びハロゲンを含むプリカーサを用いる。また、プリカーサガスとして、少なくともハロゲン基とアルキル基を有するシリコンプリカーサを用いる。シリコンプリカーサのハロゲンは、例えば、Cl、F、Br、Iの少なくとも1つを含んでよい。例えば、図1に示す例において、以下の構造式で表される1,1,3,3-テトラクロロ-1,3-ジシラシクロブタン(C2H4Cl4Si2)を用いる。
The precursor
ガス供給ライン51bには、上流側から流量制御器51c及びバルブ51dが介設されている。ガス供給ライン51bのバルブ51dの下流側は、ガス供給ライン57を介してガス導入孔36に接続されている。プリカーサガス供給源51aから供給されるプリカーサガスは処理容器1内に供給される。プリカーサガス供給源51aから処理容器1へのプリカーサガスの供給及び停止は、バルブ51dの開閉により行われる。
A
第1反応ガス供給源52aは、ガス供給ライン52bを介して第1反応ガスを処理容器1内に供給する。第1反応ガスとして、窒化ガス(窒素含有ガス)を用いる。窒化ガスは、例えば、アンモニアNH3、ヒドラジンN2H4、モノメチルヒドラジンCH3(NH)NH2等を用いることができる。図1に示す例において、第1反応ガス(窒化ガス)として、NH3を用いる。
The first reaction
ガス供給ライン52bには、上流側から流量制御器52c及びバルブ52dが介設されている。ガス供給ライン52bのバルブ52dの下流側は、ガス供給ライン57を介してガス導入孔36に接続されている。第1反応ガス供給源52aから供給される第1反応ガスは処理容器1内に供給される。第1反応ガス供給源52aから処理容器1への第1反応ガスの供給及び停止は、バルブ52dの開閉により行われる。
A flow rate controller 52c and a
第2反応ガス供給源53aは、ガス供給ライン53bを介して第2反応ガスを処理容器1内に供給する。第2反応ガスとして、酸化ガス(酸素含有ガス)を用いる。酸化ガスは、例えば、H2O、O2,H2O2,IPA(イソプロピルアルコール)等を用いることができる。図1に示す例において、第2反応ガス(酸化ガス)として、H2Oを用いる。
The second reaction
ガス供給ライン53bには、上流側から流量制御器53c及びバルブ53dが介設されている。ガス供給ライン53bのバルブ53dの下流側は、ガス供給ライン57を介してガス導入孔36に接続されている。第2反応ガス供給源53aから供給される第2反応ガスは処理容器1内に供給される。第2反応ガス供給源53aから処理容器1への第2反応ガスの供給及び停止は、バルブ53dの開閉により行われる。
A
水素ガス供給源54aは、ガス供給ライン54bを介して水素含有ガスを処理容器1内に供給する。図1に示す例において、水素含有ガスとして、H2を用いる。
The hydrogen
ガス供給ライン54bには、上流側から流量制御器54c及びバルブ54dが介設されている。ガス供給ライン54bのバルブ54dの下流側は、ガス供給ライン57を介してガス導入孔36に接続されている。水素ガス供給源54aから供給される水素含有ガスは処理容器1内に供給される。水素ガス供給源54aから処理容器1への水素含有ガスの供給及び停止は、バルブ54dの開閉により行われる。
A
キャリアガス/パージガス供給源55a,56aは、ガス供給ライン55b,56bを介してキャリアガス/パージガスを処理容器1内に供給する。キャリアガス/パージガスは、例えば、He、Ne、Ar、Kr、Xe、N2等を用いることができる。図1に示す例において、キャリアガス/パージガスとして、Arを用いる。
The carrier gas / purge
ガス供給ライン55b,56bには、上流側から流量制御器55c,56c及びバルブ55d,56dが介設されている。ガス供給ライン55b,56bのバルブ55d,56dの下流側は、ガス供給ライン57を介してガス導入孔36に接続されている。キャリアガス/パージガス供給源55a,56aから供給されるキャリアガス/パージガスは処理容器1内に供給される。キャリアガス/パージガス供給源55a,56aから処理容器1へのキャリアガス/パージガスの供給及び停止は、バルブ55d,56dの開閉により行われる。
また、基板処理装置100は、容量結合プラズマ装置であって、載置台2が下部電極となり、シャワーヘッド3が上部電極となる。下部電極となる載置台2は、コンデンサ(図示せず)を介して接地されている。
Further, the
上部電極となるシャワーヘッド3は、RF電力供給部8によって高周波電力(以下、「RFパワー」ともいう。)が印加される。RF電力供給部8は、給電ライン81、整合器82及び高周波電源83を有する。高周波電源83は、高周波電力を発生する電源である。高周波電力は、プラズマの生成に適した周波数を有する。高周波電力の周波数は、例えば450KHz~100MHzの範囲内の周波数である。高周波電源83は、整合器82及び給電ライン81を介してシャワーヘッド3の本体部31に接続されている。整合器82は、高周波電源83の出力リアクタンスと負荷(上部電極)のリアクタンスを整合させるための回路を有する。なお、RF電力供給部8は、上部電極となるシャワーヘッド3に高周波電力を印加するものとして説明したが、これに限られるものではない。下部電極となる載置台2に高周波電力を印加する構成であってもよい。
High frequency power (hereinafter, also referred to as “RF power”) is applied to the shower head 3 serving as the upper electrode by the RF
制御部9は、例えばコンピュータであり、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、補助記憶装置等を備える。CPUは、ROM又は補助記憶装置に格納されたプログラムに基づいて動作し、基板処理装置100の動作を制御する。制御部9は、基板処理装置100の内部に設けられていてもよく、外部に設けられていてもよい。制御部9が基板処理装置100の外部に設けられている場合、制御部9は、有線又は無線等の通信手段によって、基板処理装置100を制御できる。
The control unit 9 is, for example, a computer, and includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an auxiliary storage device, and the like. The CPU operates based on a program stored in the ROM or the auxiliary storage device, and controls the operation of the
〔基板処理装置を用いた成膜処理〕
基板処理装置100の動作の一例について、図2を用いて説明する。図2は、本実施例に係る基板処理装置100における動作の一例を示すフローチャートである。ここでは、基板処理装置100は、ウエハWにSiOCN膜を成膜する。
[Film film processing using a substrate processing device]
An example of the operation of the
ステップS101において、ウエハWを準備する。まず、図1に示す基板処理装置100の処理容器1内にウエハWを搬入する。具体的には、載置台2を搬送位置に下降させた状態でゲートバルブ12を開く。続いて、搬送アーム(図示せず)によりウエハWを、搬入出口11を介して処理容器1内に搬入し、ヒータ21により所定温度(例えば、200℃~500℃)に加熱された載置台2上に載置する。続いて、載置台2を処理位置まで上昇させ、排気機構42により処理容器1内を所定の真空度まで減圧する。減圧後、制御部9はバルブ55d,56dを開く。キャリアガス/パージガス供給源55a,56aからArガスが供給される。これにより、処理容器1内は所定の圧力で安定する。
In step S101, the wafer W is prepared. First, the wafer W is carried into the
次に、制御部9は、ウエハWにSiOCN膜を成膜する成膜工程(S102~S106)を行う。 Next, the control unit 9 performs a film forming step (S102 to S106) for forming a SiOCN film on the wafer W.
ステップS102において、Arガスの供給を維持しつつ、ウエハWにプリカーサガスを供給する。制御部9はバルブ51dを開く。プリカーサガス供給源51aから処理空間38内にプリカーサガスが供給される。これにより、プリカーサがウエハWの表面に吸着され、ウエハWの表面にプリカーサの吸着層が形成される。所定時間が経過すると、制御部9はバルブ51dを閉じる。これにより、処理空間38内の余剰のプリカーサガス等は、Arガスによりパージされる。所定のパージ時間が経過すると、制御部9の処理はステップS103に進む。
In step S102, the precursor gas is supplied to the wafer W while maintaining the supply of Ar gas. The control unit 9 opens the
ステップS103において、Arガスの供給を維持しつつ、ウエハWに第1反応ガス(窒化ガス)を供給する。制御部9はバルブ52dを開く。第1反応ガス供給源52aから処理空間38内に第1反応ガス(窒化ガス)が供給される。これにより、ウエハWの表面の吸着された吸着層が窒化される。即ち、ウエハWの表面の吸着されたプリカーサのハロゲン基(Cl)が窒化ガス(NH3)のアミノ基(NH2)と置換される。所定時間が経過すると、制御部9はバルブ52dを閉じる。これにより、処理空間38内の余剰の第1反応ガス等は、Arガスによりパージされる。所定のパージ時間が経過すると、制御部9の処理はステップS104に進む。
In step S103, the first reaction gas (nitriding gas) is supplied to the wafer W while maintaining the supply of Ar gas. The control unit 9 opens the
ステップS104において、制御部9は、ステップS102からステップS103に示す処理を1サイクルとして、サイクル数が所定の繰り返し回数Xに到達したか否かを判定する。繰り返し回数Xに到達していない場合(S104・No)、制御部9の処理はステップS102に戻り、ステップS102からステップS103のサイクルを繰り返す。繰り返し回数Xに到達すると(S104・Yes)、ステップS104のカウンタをリセットして、制御部9の処理はステップS105に進む。 In step S104, the control unit 9 determines whether or not the number of cycles has reached a predetermined number of repetitions X, with the process shown in steps S102 to S103 as one cycle. When the number of repetitions X has not been reached (S104 / No), the process of the control unit 9 returns to step S102, and the cycle of step S102 to step S103 is repeated. When the number of repetitions X is reached (S104 · Yes), the counter in step S104 is reset, and the processing of the control unit 9 proceeds to step S105.
ステップS105において、Arガスの供給を維持しつつ、ウエハWに第2反応ガス(酸化ガス)を供給する。制御部9はバルブ53dを開く。第2反応ガス供給源53aから処理空間38内に第2反応ガス(酸化ガス)が供給される。これにより、ウエハWの表面の吸着層が酸化される。即ち、ウエハWの表面の吸着されたプリカーサのハロゲン基(Cl)が酸化ガス(H2O)のヒドロキシ基(OH)と置換される。所定時間が経過すると、制御部9はバルブ53dを閉じる。これにより、処理空間38内の余剰の第2反応ガス等は、Arガスによりパージされる。所定のパージ時間が経過すると、制御部9の処理はステップS106に進む。
In step S105, the second reaction gas (oxidizing gas) is supplied to the wafer W while maintaining the supply of Ar gas. The control unit 9 opens the
ステップS106において、制御部9は、ステップS102からステップS105に示す処理を1サイクルとして、サイクル数が所定の繰り返し回数Yに到達したか否かを判定する。繰り返し回数Yに到達していない場合(S106・No)、制御部9の処理はステップS102に戻り、ステップS102からステップS105のサイクルを繰り返す。繰り返し回数Yに到達すると(S106・Yes)、ステップS106のカウンタをリセットして、制御部9の処理はステップS107に進む。 In step S106, the control unit 9 determines whether or not the number of cycles has reached the predetermined number of repetitions Y, with the process shown in steps S102 to S105 as one cycle. When the number of repetitions Y has not been reached (S106, No), the process of the control unit 9 returns to step S102, and the cycle of step S102 to step S105 is repeated. When the number of repetitions Y is reached (S106 · Yes), the counter in step S106 is reset, and the processing of the control unit 9 proceeds to step S107.
ステップS107において、Arガスの供給を維持しつつ、ウエハWに成膜された絶縁膜(SiOCN膜)を水素プラズマで改質する。制御部9はバルブ54dを開く。水素ガス供給源54aから処理空間38内に水素ガスが供給される。また、制御部9は、高周波電源83により、上部電極に高周波電力(RF)を印加して、処理空間38にプラズマを生成する。なお、高周波電源83から上部電極に印加される電力(RF電力)は、例えば10W~2000Wとし、印加時間(RF時間)は、例えば0.1sec~10.0secとする。ウエハWを水素含有ガスのプラズマに曝露することにより、ウエハWに成膜されたSiOCN膜が改質される。所定時間が経過すると、制御部9は上部電極へのRFの印加を停止して、バルブ54dを閉じる。これにより、処理空間38内の余剰の水素ガス等は、Arガスによりパージされる。所定のパージ時間が経過すると、制御部9の処理はステップS108に進む。
In step S107, the insulating film (SiOCN film) formed on the wafer W is modified with hydrogen plasma while maintaining the supply of Ar gas. The control unit 9 opens the
改質工程では、ウエハWの表面に形成された絶縁膜(SiOCN膜)を水素プラズマに暴露することにより、絶縁膜中のCH3基やNH2基といった弱い結合を切ったり、CHxやNHxのHと水素ラジカルが反応しH2として除去するなどして出来た未結合手が新たにSi-O-Si,Si-C-Si,Si-N-Siといった結合を形成する。これにより、膜質がより強固な膜とすることができる。換言すれば、絶縁膜(SiOCN膜)のウェットエッチング耐性を向上させることができる。 In the reforming step, the insulating film (SiOCN film) formed on the surface of the wafer W is exposed to hydrogen plasma to break weak bonds such as CH 3 and NH 2 in the insulating film, and CH x and NH. The unbonded hands formed by the reaction of H of x with hydrogen radicals and removal as H 2 form new bonds such as Si—O-Si, Si—C—Si, and Si—N—Si. As a result, the film quality can be made stronger. In other words, the wet etching resistance of the insulating film (SiOCN film) can be improved.
ステップS108において、制御部9は、ステップS102からステップS107に示す処理を1サイクルとして、サイクル数が所定の繰り返し回数Zに到達したか否かを判定する。繰り返し回数Zに到達していない場合(S108・No)、制御部9の処理はステップS102に戻り、ステップS102からステップS107のサイクルを繰り返す。繰り返し回数Zに到達すると(S108・Yes)、ステップS108のカウンタをリセットして、図2に示す制御部9の処理を終了する。 In step S108, the control unit 9 determines whether or not the number of cycles has reached a predetermined number of repetitions Z, with the process shown in steps S102 to S107 as one cycle. When the number of repetitions Z has not been reached (S108 / No), the process of the control unit 9 returns to step S102, and the cycle of step S102 to step S107 is repeated. When the number of repetitions Z is reached (S108 · Yes), the counter in step S108 is reset to end the processing of the control unit 9 shown in FIG.
図2に示す絶縁膜の成膜方法によれば、シリコンプリカーサ(C2H4Cl4Si2)のハロゲン基(Cl)が窒化ガス(NH3)のアミノ基(NH2)と置換されることで成膜が進む。これにより、シリコンプリカーサのアルキル基のCが絶縁膜中に取り込まれる。また、窒化において、窒素含有ガスによるプラズマを必要としない。このため、窒化の際にプラズマによるCの脱離を抑制することができる。したがって、高濃度のCを含む絶縁膜(SiOCN膜)を成膜することができる。また、ALD法によって、成膜するため、カバレッジよく成膜することができる。 According to the insulating film forming method shown in FIG. 2, the halogen group (Cl) of the silicon precursor (C 2 H 4 Cl 4 Si 2 ) is replaced with the amino group (NH 2 ) of the nitride gas (NH 3 ). As a result, film formation progresses. As a result, C of the alkyl group of the silicon precursor is incorporated into the insulating film. In addition, nitriding does not require plasma due to the nitrogen-containing gas. Therefore, it is possible to suppress the desorption of C by plasma during nitriding. Therefore, an insulating film (SiOCN film) containing a high concentration of C can be formed. Further, since the film is formed by the ALD method, the film can be formed with good coverage.
基板処理装置100の動作の他の一例について、図3を用いて説明する。図3は、本実施例に係る基板処理装置100における動作の他の一例を示すフローチャートである。ここでは、基板処理装置100は、ウエハWにSiCN膜を成膜する。
Another example of the operation of the
ステップS201において、ウエハWを準備する。まず、図1に示す基板処理装置100の処理容器1内にウエハWを搬入する。具体的には、載置台2を搬送位置に下降させた状態でゲートバルブ12を開く。続いて、搬送アーム(図示せず)によりウエハWを、搬入出口11を介して処理容器1内に搬入し、ヒータ21により所定温度(例えば、200℃~500℃)に加熱された載置台2上に載置する。続いて、載置台2を処理位置まで上昇させ、排気機構42により処理容器1内を所定の真空度まで減圧する。減圧後、制御部9はバルブ55d,56dを開く。キャリアガス/パージガス供給源55a,56aからArガスが供給される。これにより、処理容器1内は所定の圧力で安定する。
In step S201, the wafer W is prepared. First, the wafer W is carried into the
次に、制御部9は、ウエハWにSiCN膜を成膜する成膜工程(S202~S204)を行う。 Next, the control unit 9 performs a film forming step (S202 to S204) for forming a SiCN film on the wafer W.
ステップS202において、Arガスの供給を維持しつつ、ウエハWにプリカーサガスを供給する。制御部9はバルブ51dを開く。プリカーサガス供給源51aから処理空間38内にプリカーサガスが供給される。これにより、プリカーサがウエハWの表面に吸着され、ウエハWの表面にプリカーサの吸着層が形成される。所定時間が経過すると、制御部9はバルブ51dを閉じる。これにより、処理空間38内の余剰のプリカーサガス等は、Arガスによりパージされる。所定のパージ時間が経過すると、制御部9の処理はステップS203に進む。
In step S202, the precursor gas is supplied to the wafer W while maintaining the supply of Ar gas. The control unit 9 opens the
ステップS203において、Arガスの供給を維持しつつ、ウエハWに第1反応ガス(窒化ガス)を供給する。制御部9はバルブ52dを開く。第1反応ガス供給源52aから処理空間38内に第1反応ガス(窒化ガス)が供給される。これにより、ウエハWの表面の吸着された吸着層が窒化される。即ち、ウエハWの表面の吸着されたプリカーサのハロゲン基(Cl)が窒化ガス(NH3)のアミノ基(NH2)と置換される。所定時間が経過すると、制御部9はバルブ52dを閉じる。これにより、処理空間38内の余剰の第1反応ガス等は、Arガスによりパージされる。所定のパージ時間が経過すると、制御部9の処理はステップS204に進む。
In step S203, the first reaction gas (nitriding gas) is supplied to the wafer W while maintaining the supply of Ar gas. The control unit 9 opens the
ステップS204において、制御部9は、ステップS202からステップS203に示す処理を1サイクルとして、サイクル数が所定の繰り返し回数Xに到達したか否かを判定する。繰り返し回数Xに到達していない場合(S204・No)、制御部9の処理はステップS202に戻り、ステップS202からステップS203のサイクルを繰り返す。繰り返し回数Xに到達すると(S204・Yes)、ステップS204のカウンタをリセットして、制御部9の処理はステップS205に進む。 In step S204, the control unit 9 determines whether or not the number of cycles has reached a predetermined number of repetitions X, with the process shown in steps S202 to S203 as one cycle. When the number of repetitions X has not been reached (S204 / No), the process of the control unit 9 returns to step S202, and the cycle of step S202 to step S203 is repeated. When the number of repetitions X is reached (S204 · Yes), the counter in step S204 is reset, and the processing of the control unit 9 proceeds to step S205.
ステップS205において、Arガスの供給を維持しつつ、ウエハWに成膜されたSiCN膜を水素プラズマで改質する。制御部9はバルブ54dを開く。水素ガス供給源54aから処理空間38内に水素ガスが供給される。また、制御部9は、高周波電源83により、上部電極に高周波電力(RF)を印加して、処理空間38にプラズマを生成する。なお、高周波電源83から上部電極に印加される電力(RF電力)は、例えば10W~2000Wとし、印加時間(RF時間)は、例えば0.1sec~10.0secとする。ウエハWを水素含有ガスのプラズマに曝露することにより、ウエハWに成膜されたSiCN膜が改質される。所定時間が経過すると、制御部9は上部電極へのRFの印加を停止して、バルブ54dを閉じる。これにより、処理空間38内の余剰の水素ガス等は、Arガスによりパージされる。所定のパージ時間が経過すると、制御部9の処理はステップS206に進む。
In step S205, the SiCN film formed on the wafer W is modified with hydrogen plasma while maintaining the supply of Ar gas. The control unit 9 opens the
改質工程では、ウエハWの表面に形成された絶縁膜(SiCN膜)を水素プラズマに暴露することにより、絶縁膜中のCH3基やNH2基といった弱い結合を切ったり、CHxやNHxのHと水素ラジカルが反応しH2として除去するなどして出来た未結合手が新たにSi-C-Si,Si-N-Siといった結合を形成する。これにより、膜質がより強固な膜とすることができる。換言すれば、絶縁膜(SiCN膜)のウェットエッチング耐性を向上させることができる。 In the reforming step, the insulating film (SiCN film) formed on the surface of the wafer W is exposed to hydrogen plasma to break weak bonds such as CH 3 and NH 2 in the insulating film, and CH x and NH. The unbonded hands formed by the reaction of H of x with hydrogen radicals and removal as H 2 form new bonds such as Si—C—Si and Si—N—Si. As a result, the film quality can be made stronger. In other words, the wet etching resistance of the insulating film (SiCN film) can be improved.
ステップS206において、制御部9は、ステップS202からステップS205に示す処理を1サイクルとして、サイクル数が所定の繰り返し回数Zに到達したか否かを判定する。繰り返し回数Zに到達していない場合(S206・No)、制御部9の処理はステップS202に戻り、ステップS202からステップS205のサイクルを繰り返す。繰り返し回数Zに到達すると(S206・Yes)、ステップS206のカウンタをリセットして、図2に示す制御部9の処理を終了する。 In step S206, the control unit 9 determines whether or not the number of cycles has reached a predetermined number of repetitions Z, with the process shown in steps S202 to S205 as one cycle. When the number of repetitions Z has not been reached (S206, No), the process of the control unit 9 returns to step S202, and the cycle of step S202 to step S205 is repeated. When the number of repetitions Z is reached (S206 · Yes), the counter in step S206 is reset to end the processing of the control unit 9 shown in FIG.
図3に示す絶縁膜の成膜方法によれば、シリコンプリカーサ(C2H4Cl4Si2)のハロゲン基(Cl)が窒化ガス(NH3)のアミノ基(NH2)と置換されることで成膜が進む。これにより、シリコンプリカーサのアルキル基のCが絶縁膜中に取り込まれる。また、窒化において、窒素含有ガスによるプラズマを必要としない。このため、窒化の際にプラズマによるCの脱離を抑制することができる。したがって、高濃度のCを含む絶縁膜(SiCN膜)を成膜することができる。また、ALD法によって、成膜するため、カバレッジよく成膜することができる。 According to the insulating film forming method shown in FIG. 3, the halogen group (Cl) of the silicon precursor (C 2 H 4 Cl 4 Si 2 ) is replaced with the amino group (NH 2 ) of the nitride gas (NH 3 ). As a result, film formation progresses. As a result, C of the alkyl group of the silicon precursor is incorporated into the insulating film. In addition, nitriding does not require plasma due to the nitrogen-containing gas. Therefore, it is possible to suppress the desorption of C by plasma during nitriding. Therefore, an insulating film (SiCN film) containing a high concentration of C can be formed. Further, since the film is formed by the ALD method, the film can be formed with good coverage.
次に、改質工程の頻度と絶縁膜の組成との関係について、図4を用いて説明する。図4は、改質工程の頻度と絶縁膜の組成との関係を示すグラフの一例である。ここでは、プリカーサガスとしてC2H4Cl4Si2、窒化ガスとしてNH3、酸化ガスとしてH2O、水素ガスとしてH2、キャリアガス/パージガスとしてArとし、図2に示すフローに従って温度450℃にて所望の膜厚となるまで絶縁膜(SiOCN膜)の成膜を行った際の膜組成を示す。 Next, the relationship between the frequency of the reforming step and the composition of the insulating film will be described with reference to FIG. FIG. 4 is an example of a graph showing the relationship between the frequency of the reforming step and the composition of the insulating film. Here, C 2 H 4 Cl 4 Si 2 as the precursor gas, NH 3 as the nitride gas, H 2 O as the oxidation gas, H 2 as the hydrogen gas, and Ar as the carrier gas / purge gas, and the temperature is 450 according to the flow shown in FIG. The film composition at the time of forming an insulating film (SiOCN film) until a desired film thickness is obtained at ° C. is shown.
図2に示すフローにおいて、繰り返し回数Xは、プリカーサを供給する工程(S102)および窒化ガスを供給する工程(S103)を1サイクルとして、Xサイクル毎に酸化ガスを供給する工程(S105)を行うことを示している。即ち、Xは、酸化ガスを供給する工程(S105)の頻度を示す。また、繰り返し回数X及び繰り返し回数Yの積X*Yは、プリカーサを供給する工程(S102)および窒化ガスを供給する工程(S103)を1サイクルとして、X*Yサイクル毎に改質工程(S107)を行うことを示している。即ち、X*Yは、改質工程(S107)の頻度を示す。 In the flow shown in FIG. 2, for the number of repetitions X, the step of supplying the precursor (S102) and the step of supplying the nitriding gas (S103) are set as one cycle, and the step of supplying the oxidation gas is performed in each X cycle (S105). It is shown that. That is, X indicates the frequency of the step (S105) of supplying the oxidizing gas. Further, the product XY of the number of repetitions X and the number of repetitions Y is a reforming step (S107) for each XY cycle, with the step of supplying the precursor (S102) and the step of supplying the nitride gas (S103) as one cycle. ) Is performed. That is, XY indicates the frequency of the reforming step (S107).
図4では、X=1として、改質工程(S107)の頻度(X*Y)と絶縁膜の組成を示す。「non-plasma」では、水素プラズマによる改質を行わなかった場合の絶縁膜の組成を示す。「Low P-H2」では、水素プラズマによる改質を64サイクルに1回の頻度で行った場合の絶縁膜の組成を示す。「Mid P-H2」では、水素プラズマによる改質を16サイクルに1回の頻度で行った場合の絶縁膜の組成を示す。「High P-H2」では、水素プラズマによる改質を4サイクルに1回の頻度で行った場合の絶縁膜の組成を示す。「HH P-H2」では、水素プラズマによる改質を1サイクルに1回の頻度で行った場合の絶縁膜の組成を示す。 In FIG. 4, the frequency (XY) of the reforming step (S107) and the composition of the insulating film are shown with X = 1. “Non-plasma” shows the composition of the insulating film when not modified by hydrogen plasma. "Low P-H2" shows the composition of the insulating film when the modification with hydrogen plasma is performed once every 64 cycles. "Mid P-H2" shows the composition of the insulating film when the modification with hydrogen plasma is performed once every 16 cycles. "High P-H2" shows the composition of the insulating film when the modification with hydrogen plasma is performed once every four cycles. "HH P-H2" shows the composition of the insulating film when the modification with hydrogen plasma is performed once per cycle.
図4に示すように、水素プラズマによる改質の頻度を調整することにより、絶縁膜の組成を調整することができる。例えば、水素プラズマによる改質頻度を高くする(X*Yを小さくする)ことにより、Cの割合が減少し、Oの割合を増加させることができる。また、水素プラズマによる改質頻度を低くする(X*Yを大きくする)ことにより、Cの割合が増大し、Oの割合を減少させることができる。なお、「non-plasma」においては、Oの割合が「Low P-H2」よりも高くなっている。これは、水素プラズマによる改質がされていない絶縁膜は、粗な膜となっており、処理容器1はウエハWを搬出して大気空間に曝した際、絶縁膜が自然酸化したことによるものである。
As shown in FIG. 4, the composition of the insulating film can be adjusted by adjusting the frequency of modification by hydrogen plasma. For example, by increasing the frequency of modification by hydrogen plasma (decreasing XY), the proportion of C can be decreased and the proportion of O can be increased. Further, by reducing the frequency of modification by hydrogen plasma (increasing XY), the proportion of C can be increased and the proportion of O can be decreased. In "non-plasma", the ratio of O is higher than that in "Low P-H2". This is because the insulating film that has not been modified by hydrogen plasma is a coarse film, and the insulating film is naturally oxidized when the wafer W is carried out and exposed to the atmospheric space in the
次に、改質工程のRFパワーと絶縁膜の組成との関係について、図5を用いて説明する。図5は、改質工程の頻度及びRFパワーと絶縁膜の組成との関係を示すグラフの一例である。なお、図5において、「non-plasma」、「Low P-H2」、「Mid P-H2」、「High P-H2」、「HH P-H2」は、図4の場合と同様である。また、「Low P-H2」では、RFパワーを200W及び500Wとした際の絶縁膜の組成を示す。「Mid P-H2」では、RFパワーを100W、200W及び500Wとした際の絶縁膜の組成を示す。「High P-H2」では、RFパワーを100W及び200Wとした際の絶縁膜の組成を示す。「HH P-H2」では、RFパワーを200Wとした際の絶縁膜の組成を示す。 Next, the relationship between the RF power of the reforming step and the composition of the insulating film will be described with reference to FIG. FIG. 5 is an example of a graph showing the frequency of the reforming step and the relationship between the RF power and the composition of the insulating film. In FIG. 5, "non-plasma", "Low P-H2", "Mid P-H2", "High P-H2", and "HH P-H2" are the same as in FIG. Further, "Low P-H2" shows the composition of the insulating film when the RF power is 200 W and 500 W. "Mid P-H2" shows the composition of the insulating film when the RF power is 100 W, 200 W and 500 W. "High P-H2" shows the composition of the insulating film when the RF power is 100 W and 200 W. "HH P-H2" shows the composition of the insulating film when the RF power is 200 W.
このように、水素プラズマによる改質工程におけるRFパワーを調整することにより、絶縁膜の組成を調整することができる。例えば、RFパワーを高くすることにより、Cの割合が減少し、Oの割合を増加させることができる。また、RFパワーを低くすることにより、Cの割合が増大し、Oの割合を減少させることができる。 In this way, the composition of the insulating film can be adjusted by adjusting the RF power in the reforming process using hydrogen plasma. For example, by increasing the RF power, the proportion of C can be decreased and the proportion of O can be increased. Further, by lowering the RF power, the proportion of C can be increased and the proportion of O can be decreased.
また、水素プラズマによる改質工程における処理時間を調整することにより、絶縁膜の組成を調整することができる。例えば、処理時間を長くすることにより、Cの割合が減少し、Oの割合を増加させることができる。また、処理時間を短くすることにより、Cの割合が増大し、Oの割合を減少させることができる。 Further, the composition of the insulating film can be adjusted by adjusting the processing time in the reforming step using hydrogen plasma. For example, by lengthening the processing time, the proportion of C can be decreased and the proportion of O can be increased. Further, by shortening the processing time, the proportion of C can be increased and the proportion of O can be decreased.
次に、誘電率と膜密度との関係について、図6及び図7を用いて説明する。図6は、改質工程の頻度と絶縁膜の比誘電率及び膜密度との関係を示すグラフの一例である。図7は、改質工程の頻度及びRFパワーと絶縁膜の比誘電率及び膜密度との関係を示すグラフの一例である。比誘電率kの値を黒丸で示し、膜密度を棒グラフで示している。なお、図6及び図7において、「non-plasma」、「Low P-H2」、「Mid P-H2」、「High P-H2」、「HH P-H2」は、図4の場合と同様である。図7において、RFパワーは、図5の場合と同様である。 Next, the relationship between the dielectric constant and the film density will be described with reference to FIGS. 6 and 7. FIG. 6 is an example of a graph showing the relationship between the frequency of the reforming step, the relative permittivity of the insulating film, and the film density. FIG. 7 is an example of a graph showing the frequency of the reforming step and the relationship between the RF power and the relative permittivity and the film density of the insulating film. The value of the relative permittivity k is indicated by a black circle, and the film density is indicated by a bar graph. In addition, in FIGS. 6 and 7, "non-plasma", "Low P-H2", "Mid P-H2", "High P-H2", and "HH P-H2" are the same as in FIG. Is. In FIG. 7, the RF power is the same as in FIG.
図6及び図7に示すように、水素プラズマによる改質工程によって、誘電率を制御する効果がみられる。また、水素プラズマによる改質工程によって、膜密度の向上効果がみられる。従って、本発明に関わる開示によれば、生成される膜の組成を調整可能することで、誘電率を制御しつつ、膜密度を高密度化することでウェットエッチング耐性の高い絶縁膜を成膜することができる。 As shown in FIGS. 6 and 7, the effect of controlling the dielectric constant can be seen by the reforming step using hydrogen plasma. In addition, the effect of improving the film density can be seen by the reforming process using hydrogen plasma. Therefore, according to the disclosure according to the present invention, an insulating film having high wet etching resistance is formed by increasing the film density while controlling the dielectric constant by adjusting the composition of the produced film. can do.
なお、図2に示すSiOCN膜を成膜する場合を例に説明したが、図3に示すSiCN膜を成膜する場合においても同様である。 Although the case where the SiOCN film shown in FIG. 2 is formed has been described as an example, the same applies to the case where the SiCN film shown in FIG. 3 is formed.
以上、基板処理装置100による基板処理方法について説明したが、本開示は上記実施形態等に限定されるものではなく、特許請求の範囲に記載された本開示の要旨の範囲内において、種々の変形、改良が可能である。
Although the substrate processing method by the
基板処理装置100は、容量結合プラズマを生成するものとして説明したが、プラズマの生成機構は、これに限られるものではない。例えば、リモートプラズマであってもよい。
Although the
また、改質工程の頻度と、ウエハWに成膜される絶縁膜の組成との相関関係を予め求めておき、要求される絶縁膜の組成及び相関関係に基づいて、改質工程の頻度を選択してもよい。また、改質工程のRFパワー(プラズマ出力)と、ウエハWに成膜される絶縁膜の組成との相関関係を予め求めておき、要求される絶縁膜の組成及び相関関係に基づいて、改質工程のRFパワー(プラズマ出力)を選択してもよい。また、改質工程の処理時間(プラズマ処理時間)と、ウエハWに成膜される絶縁膜の組成との相関関係を予め求めておき、要求される絶縁膜の組成及び相関関係に基づいて、改質工程の処理時間(プラズマ処理時間)を選択してもよい。 Further, the correlation between the frequency of the reforming step and the composition of the insulating film formed on the wafer W is obtained in advance, and the frequency of the reforming step is determined based on the required composition and correlation of the insulating film. You may choose. Further, the correlation between the RF power (plasma output) of the reforming process and the composition of the insulating film formed on the wafer W is obtained in advance, and the modification is made based on the required insulating film composition and correlation. The RF power (plasma output) of the quality process may be selected. Further, the correlation between the processing time (plasma processing time) of the reforming step and the composition of the insulating film formed on the wafer W is obtained in advance, and the correlation is based on the required insulating film composition and correlation. The processing time (plasma processing time) of the reforming step may be selected.
図2に示すフローにおいて、第1反応ガスが窒化ガスであり、第2反応ガスが酸化ガスであるものとして説明したが、これに限られるものではない。第1反応ガスが酸化ガスであり、第2反応ガスが窒化ガスであってもよい。また、第1反応ガス及び第2反応ガスはその他のガスであってもよい。また、図3に示すフローにおいて、第1反応ガスが窒化ガスであるものとして説明したが、これに限られるものではない。第1反応ガスが酸化ガスであってもよい。また、第1反応ガスはその他のガスであってもよい。 In the flow shown in FIG. 2, it has been described that the first reaction gas is a nitride gas and the second reaction gas is an oxidation gas, but the present invention is not limited to this. The first reaction gas may be an oxidation gas and the second reaction gas may be a nitride gas. Further, the first reaction gas and the second reaction gas may be other gases. Further, in the flow shown in FIG. 3, it has been described that the first reaction gas is a nitride gas, but the present invention is not limited to this. The first reaction gas may be an oxidizing gas. Further, the first reaction gas may be another gas.
また、図2及び図3に示すフローにおいて、水素プラズマによる改質頻度(図2においてX*Y、図3においてX)は一定であるものとして説明したが、これに限られるものではない。例えば、水素プラズマによる改質頻度を徐々に低くしてもよい。また、水素プラズマによる改質頻度を徐々に高くしてもよい。また、水素プラズマによる改質頻度を変えずに、サイクル毎にRF電力及び/又はRF時間を徐々に小さく(短く)してもよい。また、水素プラズマによる改質頻度を変えずに、サイクル毎にRF電力及び/又はRF時間を徐々に大きく(長く)してもよい。また、改質頻度の変更とサイクル毎のRF電力及び/又はRF時間の変更を組み合わせてもよい。 Further, in the flow shown in FIGS. 2 and 3, the frequency of modification by hydrogen plasma (XY in FIG. 2 and X in FIG. 3) has been described as being constant, but the present invention is not limited to this. For example, the frequency of modification by hydrogen plasma may be gradually reduced. Further, the frequency of modification by hydrogen plasma may be gradually increased. Further, the RF power and / or the RF time may be gradually reduced (shortened) for each cycle without changing the modification frequency with hydrogen plasma. Further, the RF power and / or the RF time may be gradually increased (longer) for each cycle without changing the modification frequency with hydrogen plasma. Further, the modification frequency may be changed and the RF power and / or RF time may be changed for each cycle.
これにより、生成される膜の組成を膜厚方向に調整可能とすることができる。例えば、生成される膜の表面付近は緻密化されウェットエッチング耐性が向上するとともに、膜の内側は誘電率を低くするといった制御が可能となる。 This makes it possible to adjust the composition of the produced film in the film thickness direction. For example, the vicinity of the surface of the formed film is densified to improve the wet etching resistance, and the inside of the film can be controlled to have a low dielectric constant.
1 処理容器
2 載置台
3 シャワーヘッド
4 排気部
5 ガス供給機構
8 RF電力供給部
9 制御部
51a プリカーサガス供給源
52a 第1反応ガス供給源
53a 第2反応ガス供給源
54a 水素ガス供給源
55a,56a キャリアガス/パージガス供給源
100 基板処理装置
W ウエハ(基板)
1 Processing
Claims (10)
前記基板を水素含有ガスのプラズマに曝露し、前記基板に形成された前記膜を改質する工程と、を有する、基板処理方法。 A film is formed on the substrate by repeating a cycle including a step of supplying a raw material gas containing silicon, carbon, and halogen to the substrate and a step of supplying the first reaction gas to the substrate at least once. Process and
A substrate processing method comprising a step of exposing the substrate to plasma of a hydrogen-containing gas to modify the film formed on the substrate.
請求項1に記載の基板処理方法。 The cycle including the step of forming the film on the substrate and the step of modifying the film is repeated at least once.
The substrate processing method according to claim 1.
前記基板に対して前記原料ガスを供給する工程と、前記基板に対して前記第1反応ガスを供給する工程とを含むサイクルを少なくとも1回以上繰り返す工程と、
前記基板に対して前記第1反応ガスとは異なる第2反応ガスを供給する工程と、を有する、
請求項1または請求項2に記載の基板処理方法。 The step of forming a film on the substrate is
A step of repeating the cycle including the step of supplying the raw material gas to the substrate and the step of supplying the first reaction gas to the substrate at least once.
It comprises a step of supplying a second reaction gas different from the first reaction gas to the substrate.
The substrate processing method according to claim 1 or 2.
前記基板に対して前記原料ガスを供給する工程と、前記基板に対して前記第1反応ガスを供給する工程とを含むサイクルを少なくとも1回以上繰り返す工程と、
前記基板に対して前記第1反応ガスとは異なる第2反応ガスを供給する工程と、を含むサイクルを少なくとも1回以上繰り返す、
請求項3に記載の基板処理方法。 The step of forming a film on the substrate is
A step of repeating the cycle including the step of supplying the raw material gas to the substrate and the step of supplying the first reaction gas to the substrate at least once.
The cycle including the step of supplying the second reaction gas different from the first reaction gas to the substrate is repeated at least once.
The substrate processing method according to claim 3.
前記第2反応ガスは、酸素含有ガスである、
請求項3または請求項4に記載の基板処理方法。 The first reaction gas is a nitrogen-containing gas and is
The second reaction gas is an oxygen-containing gas.
The substrate processing method according to claim 3 or 4.
請求項1乃至請求項5のいずれか1項に記載の基板処理方法。 The plasma in the step of modifying the film includes a remote plasma.
The substrate processing method according to any one of claims 1 to 5.
請求項1乃至請求項6のいずれか1項に記載の基板処理方法。 The step of modifying the membrane is a step of modifying the membrane with respect to the number of times the cycle including the step of supplying the raw material gas and the step of supplying the first reaction gas in the step of forming the membrane on the substrate is repeated. The frequency is selected based on the correlation between the frequency of the film and the composition of the film formed on the substrate.
The substrate processing method according to any one of claims 1 to 6.
請求項1乃至請求項7のいずれか1項に記載の基板処理方法。 In the step of modifying the film, the plasma output is selected based on the correlation between the plasma output in the step of modifying the film and the composition of the film formed on the substrate.
The substrate processing method according to any one of claims 1 to 7.
請求項1乃至請求項8のいずれか1項に記載の基板処理方法。 In the step of modifying the film, the plasma processing time is selected based on the correlation between the plasma processing time in the step of modifying the film and the composition of the film formed on the substrate.
The substrate processing method according to any one of claims 1 to 8.
前記処理容器内に設けられ、基板を載置する載置部と、
前記処理容器内にガスを供給するガス供給部と、
プラズマを発生させるための高周波電源と、
制御部と、を備え、
前記制御部は、
前記載置部に載置された前記基板に対して、前記ガス供給部からシリコン、炭素、ハロゲンを含む原料ガスを供給する工程と、前記基板に対して前記ガス供給部から第1反応ガスを供給する工程とを含むサイクルを少なくとも1回以上繰り返して前記基板に膜を形成する工程と、
前記ガス供給部から供給される水素含有ガス及び前記高周波電源を用いて前記水素含有ガスのプラズマを生成し、前記基板を前記水素含有ガスのプラズマに曝露し、前記基板に形成された前記膜を改質する工程と、を実行する、基板処理装置。 With the processing container
A mounting portion provided in the processing container on which the substrate is mounted, and a mounting portion.
A gas supply unit that supplies gas into the processing container,
A high frequency power supply for generating plasma,
With a control unit,
The control unit
A step of supplying a raw material gas containing silicon, carbon, and halogen from the gas supply unit to the substrate placed on the above-mentioned mounting unit, and a first reaction gas from the gas supply unit to the substrate. A step of forming a film on the substrate by repeating a cycle including a step of supplying at least once, and a step of forming a film.
The hydrogen-containing gas supplied from the gas supply unit and the high-frequency power source are used to generate plasma of the hydrogen-containing gas, the substrate is exposed to the plasma of the hydrogen-containing gas, and the film formed on the substrate is exposed. A substrate processing device that executes the reforming process.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020174227A JP2022065560A (en) | 2020-10-15 | 2020-10-15 | Substrate processing method and substrate processing device |
PCT/JP2021/036831 WO2022080192A1 (en) | 2020-10-15 | 2021-10-05 | Substrate processing method and substrate processing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020174227A JP2022065560A (en) | 2020-10-15 | 2020-10-15 | Substrate processing method and substrate processing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022065560A true JP2022065560A (en) | 2022-04-27 |
Family
ID=81208011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020174227A Pending JP2022065560A (en) | 2020-10-15 | 2020-10-15 | Substrate processing method and substrate processing device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022065560A (en) |
WO (1) | WO2022080192A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024166748A1 (en) * | 2023-02-06 | 2024-08-15 | 東京エレクトロン株式会社 | Substrate processing method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015103729A (en) * | 2013-11-27 | 2015-06-04 | 株式会社日立国際電気 | Semiconductor device manufacturing method, substrate processing apparatus and program |
US20180033614A1 (en) * | 2016-07-27 | 2018-02-01 | Versum Materials Us, Llc | Compositions and Methods Using Same for Carbon Doped Silicon Containing Films |
US11158500B2 (en) * | 2017-05-05 | 2021-10-26 | Asm Ip Holding B.V. | Plasma enhanced deposition processes for controlled formation of oxygen containing thin films |
JP7224217B2 (en) * | 2019-03-15 | 2023-02-17 | 東京エレクトロン株式会社 | Film forming method and film forming apparatus |
-
2020
- 2020-10-15 JP JP2020174227A patent/JP2022065560A/en active Pending
-
2021
- 2021-10-05 WO PCT/JP2021/036831 patent/WO2022080192A1/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024166748A1 (en) * | 2023-02-06 | 2024-08-15 | 東京エレクトロン株式会社 | Substrate processing method |
Also Published As
Publication number | Publication date |
---|---|
WO2022080192A1 (en) | 2022-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI663282B (en) | Film formation apparatus, film formation method, and storage medium | |
US9070554B2 (en) | Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium | |
JP5276156B2 (en) | Substrate processing apparatus and semiconductor device manufacturing method | |
US9163309B2 (en) | Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium | |
KR20150145183A (en) | Film formation apparatus, film formation method, and storage medium | |
US9018689B1 (en) | Substrate processing apparatus and method of manufacturing semiconductor device | |
JP7408772B2 (en) | Substrate processing equipment, exhaust equipment, semiconductor device manufacturing method, substrate processing method and program | |
WO2022080192A1 (en) | Substrate processing method and substrate processing device | |
WO2021100560A1 (en) | Substrate processing method and substrate processing device | |
JP2022055462A (en) | Film deposition method and film deposition apparatus | |
JP7300970B2 (en) | Substrate processing method and substrate processing apparatus | |
WO2022085498A1 (en) | Film forming method and film forming device | |
JP7257930B2 (en) | Substrate processing method and substrate processing apparatus | |
US20230377953A1 (en) | Substrate processing method and substrate processing apparatus | |
WO2024166748A1 (en) | Substrate processing method | |
JP7175224B2 (en) | Substrate processing method and substrate processing apparatus | |
WO2022054225A1 (en) | Substrate treatment device, production method for semiconductor device, and plasma generator | |
CN112391607A (en) | Film forming method and film forming apparatus | |
WO2022085499A1 (en) | Film forming method and film forming apparatus | |
WO2022059505A1 (en) | Sin film embedding method and film formation device | |
WO2024018968A1 (en) | Substrate processing method and substrate processing device | |
WO2022065315A1 (en) | Recess embedding method and substrate treatment apparatus | |
WO2023243406A1 (en) | Film formation method and film formation device | |
US20240234132A1 (en) | Method of processing substrate, method of manufacturing semiconductor device, recording medium, and substrate processing apparatus | |
US20240175117A1 (en) | Film forming method and film forming apparatus |