JP2011202109A - Composition for forming plating layer, surface metal film material, method for producing the same, metal pattern material, and method for producing the same - Google Patents
Composition for forming plating layer, surface metal film material, method for producing the same, metal pattern material, and method for producing the same Download PDFInfo
- Publication number
- JP2011202109A JP2011202109A JP2010072927A JP2010072927A JP2011202109A JP 2011202109 A JP2011202109 A JP 2011202109A JP 2010072927 A JP2010072927 A JP 2010072927A JP 2010072927 A JP2010072927 A JP 2010072927A JP 2011202109 A JP2011202109 A JP 2011202109A
- Authority
- JP
- Japan
- Prior art keywords
- group
- polymer
- layer
- substrate
- plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/389—Improvement of the adhesion between the insulating substrate and the metal by the use of a coupling agent, e.g. silane
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
- C08G59/621—Phenols
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D163/00—Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2046—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
- C23C18/2073—Multistep pretreatment
- C23C18/2086—Multistep pretreatment with use of organic or inorganic compounds other than metals, first
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
- C23C18/30—Activating or accelerating or sensitising with palladium or other noble metal
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1646—Characteristics of the product obtained
- C23C18/165—Multilayered product
- C23C18/1653—Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/32—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
- C23C18/34—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/38—Coating with copper
- C23C18/40—Coating with copper using reducing agents
- C23C18/405—Formaldehyde
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/42—Coating with noble metals
- C23C18/44—Coating with noble metals using reducing agents
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/52—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/38—Electroplating: Baths therefor from solutions of copper
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
- C25D5/50—After-treatment of electroplated surfaces by heat-treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Laminated Bodies (AREA)
- Paints Or Removers (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Chemically Coating (AREA)
- Electroplating Methods And Accessories (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
本発明は、被めっき層形成用組成物、表面金属膜材料およびその製造方法、並びに、金属パターン材料およびその製造方法に関する。より詳細には、所定の種類の官能基を有するポリマーを含む被めっき層形成用組成物、該被めっき層形成用組成物を用いて得られる表面金属膜材料および金属パターン材料、並びにそれらの製造方法に関する。 The present invention relates to a composition for forming a layer to be plated, a surface metal film material and a manufacturing method thereof, and a metal pattern material and a manufacturing method thereof. More specifically, a composition for forming a layer to be plated containing a polymer having a predetermined type of functional group, a surface metal film material and a metal pattern material obtained by using the composition for forming a layer to be plated, and production thereof Regarding the method.
従来より、絶縁性基板の表面に金属パターンによる配線を形成した金属配線基板が、電子部品や半導体素子に広く用いられている。
かかる金属パターン材料の製造方法としては、主に、「サブトラクティブ法」が使用される。このサブトラクティブ法とは、基板表面に形成された金属膜上に、活性光線の照射により感光する感光層を設け、この感光層を像様露光し、その後現像してレジスト像を形成し、次いで、金属膜をエッチングして金属パターンを形成し、最後にレジストを剥離する方法である。
2. Description of the Related Art Conventionally, a metal wiring board in which wiring with a metal pattern is formed on the surface of an insulating substrate has been widely used for electronic components and semiconductor elements.
As a method for producing such a metal pattern material, a “subtractive method” is mainly used. In this subtractive method, a photosensitive layer that is exposed by irradiation with actinic rays is provided on a metal film formed on the surface of the substrate, the photosensitive layer is exposed imagewise, and then developed to form a resist image. In this method, the metal film is etched to form a metal pattern, and finally the resist is removed.
この方法により得られる金属パターンにおいては、基板表面に凹凸を設けることにより生じるアンカー効果によって、基板と金属膜との間の密着性を発現させている。そのため、得られた金属パターンの基板界面部の凹凸に起因して、金属配線として使用する際の高周波特性が悪くなるという問題点があった。また、基板表面に凹凸化処理するためには、クロム酸などの強酸で基板表面を処理することが必要であるため、金属膜と基板との密着性に優れた金属パターンを得るためには、煩雑な工程が必要であるという問題点もあった。 In the metal pattern obtained by this method, the adhesion between the substrate and the metal film is expressed by an anchor effect generated by providing irregularities on the substrate surface. For this reason, there is a problem that the high frequency characteristics when used as a metal wiring are deteriorated due to the unevenness of the obtained metal pattern at the substrate interface. In addition, in order to obtain a metal pattern with excellent adhesion between the metal film and the substrate, it is necessary to treat the substrate surface with a strong acid such as chromic acid in order to make the substrate surface uneven. There was also a problem that a complicated process was required.
また、電子機器の高機能化等の要求に伴い、電子部品の高密度集積化、更には高密度実装化等が進んでおり、これらに使用される高密度実装対応のプリント配線板等も小型化かつ高密度化が進んでいる。
その中で柔軟性を有する金属層付樹脂フィルム基板は、液晶画面に画像を表示するための駆動用半導体を実装するための基板や屈曲性を要求される稼動部に用いられる基板として汎用されている。近年、液晶画面表示用ドライバーICチップを実装する手法としてCOF[チップオンフィルム]が注目されてきている。COFは従来の実装法の主流であったTCP(テープキャリアーパッケージ)に比べ、ファインピッチ実装が可能であるとともに、ドライバーICの小型化、およびコストダウンを図ることができると言われている。
近年COFにおいて、最近の液晶表示画面の高精細化、液晶駆動用ICの小型化等に伴い、電子回路の高精細化、ファインピッチ化が強く求められるようになってきた。
In addition, along with demands for higher functionality of electronic devices, electronic components are being densely integrated and further mounted with high density, and printed wiring boards that support high density mounting are also small. Is becoming more and more dense.
Among them, the resin film substrate with a metal layer having flexibility is widely used as a substrate for mounting a driving semiconductor for displaying an image on a liquid crystal screen or a substrate used for an operation part requiring flexibility. Yes. In recent years, COF [Chip On Film] has attracted attention as a technique for mounting a driver IC chip for liquid crystal screen display. COF is said to be capable of fine pitch mounting as well as downsizing and cost reduction of driver ICs compared to TCP (tape carrier package), which has been the mainstream of conventional mounting methods.
In recent years, with the recent high definition of liquid crystal display screens and miniaturization of ICs for driving liquid crystals, COFs have been strongly required to have high definition and fine pitch electronic circuits.
上記の柔軟性を有する樹脂フィルム基板に好適な層間絶縁材料用の組成物として、グリシジルメタクリレートと特定物性を有する合成ゴムと硬化性成分とを含む粘弾性樹脂組成物が提案されている(例えば、特許文献1参照)。この樹脂組成物は柔軟な特性を有し、層間絶縁膜として有用であるが、表面に金属膜を形成するに際しては、表面粗化処理なしでは十分な密着を達成し得ないことから、表面の粗面化は必要であり、微細配線の形成には不十分である。 As a composition for an interlayer insulating material suitable for the resin film substrate having the above flexibility, a viscoelastic resin composition containing glycidyl methacrylate, a synthetic rubber having specific physical properties, and a curable component has been proposed (for example, Patent Document 1). This resin composition has flexible properties and is useful as an interlayer insulating film. However, when a metal film is formed on the surface, sufficient adhesion cannot be achieved without surface roughening treatment. Roughening is necessary and is insufficient for forming fine wiring.
また、柔軟性を有する基板または絶縁性樹脂フィルム上に配線パターンを形成する場合、基板または絶縁性樹脂フィルムと配線パターンとの密着性が問題となる。例えば、銅箔上に絶縁性樹脂であるポリイミドワニス層を形成し、熱反応により金属層付樹脂フィルムを形成する場合、その密着性は銅箔層とポリイミドワニス層との密着性によることになる。しかし、銅箔の表面を凹凸処理してアンカー効果により密着性を発現させるのは、配線が細く、配線間が狭くなるほど配線形状に影響を与えない程度に凹凸も小さくせざるを得ず、十分な密着をだすことができないという問題があった。一方、スパッタリング法でポリイミド上に銅を形成させる方法は十分な密着が出ない上に、真空装置が必要になり成膜速度が遅いためコスト高になるという問題があった。 In addition, when a wiring pattern is formed on a flexible substrate or insulating resin film, the adhesion between the substrate or insulating resin film and the wiring pattern becomes a problem. For example, when a polyimide varnish layer that is an insulating resin is formed on a copper foil and a resin film with a metal layer is formed by a thermal reaction, the adhesion is due to the adhesion between the copper foil layer and the polyimide varnish layer. . However, the surface of the copper foil is processed to have unevenness and the adhesion effect is exhibited by the anchor effect. The narrower the wiring, the narrower the space between the wires, the more the unevenness must be made small enough not to affect the wiring shape. There was a problem that it was not possible to make a good adhesion. On the other hand, the method of forming copper on polyimide by sputtering has a problem in that sufficient adhesion cannot be obtained, and a vacuum apparatus is required and the film formation rate is low, resulting in high costs.
この問題を解決するため、基板の表面にプラズマ処理を行い、基板表面に重合開始基を導入し、その重合開始基からモノマーを重合させて、基板表面に極性基を有する表面グラフトポリマーを生成させるという表面処理を行うことで、基板の表面を粗面化することなく、基板と金属膜との密着性を改良させる方法が提案されている(例えば、非特許文献1参照。)。しかしながら、この方法によれば、グラフトポリマーが極性基を有することから、温度や湿度変化により水分の吸収や脱離が生じ易く、その結果、形成された金属膜や基板が変形してしまうという問題を有していた。
また、この方法を利用して得られた金属パターンを金属配線基板の配線として使用する際には、基板界面部分に極性基を有するグラフトポリマーが残存し、水分やイオン等を保持しやすくなるため、温・湿度依存性や配線間の耐イオンマイグレーション性や、形状の変化に懸念があった。
特に、プリント配線板などの微細配線に適用した際には、配線(金属パターン)間における高い絶縁性が必要であり、配線間の絶縁信頼性のより一層の向上が要求されているのが現状である。
In order to solve this problem, plasma treatment is performed on the surface of the substrate, a polymerization initiating group is introduced on the surface of the substrate, a monomer is polymerized from the polymerization initiating group, and a surface graft polymer having a polar group is generated on the substrate surface. By performing this surface treatment, a method for improving the adhesion between the substrate and the metal film without roughening the surface of the substrate has been proposed (see, for example, Non-Patent Document 1). However, according to this method, since the graft polymer has a polar group, moisture absorption and desorption are likely to occur due to temperature and humidity changes, and as a result, the formed metal film and substrate are deformed. Had.
In addition, when a metal pattern obtained by using this method is used as a wiring of a metal wiring board, a graft polymer having a polar group remains at the interface portion of the board, and moisture, ions, etc. are easily retained. There were concerns about temperature and humidity dependence, resistance to ion migration between wires, and changes in shape.
In particular, when applied to fine wiring such as printed wiring boards, high insulation between wirings (metal patterns) is required, and there is a demand for further improvement in insulation reliability between wirings. It is.
さらに、金属膜との密着性の観点から、金属イオンなどと相互作用を形成する官能基を有するポリマーの使用が提案されている(例えば、特許文献2参照。)。しかし、分子内に極性基を多く有することから、密着性には優れ、微細配線の形成に有用であるものの、配線間の絶縁信頼性の観点からは、なお、改良の余地があった。
このため、微細配線であっても、実用上満足できる程度の密着性が達成され、微細配線間の絶縁性にも優れ、且つ、フレキシブル基板にも適用可能な金属膜の形成手段が望まれていた。
Furthermore, from the viewpoint of adhesion to a metal film, use of a polymer having a functional group that forms an interaction with a metal ion or the like has been proposed (for example, see Patent Document 2). However, since it has many polar groups in the molecule, it has excellent adhesion and is useful for forming fine wiring, but there is still room for improvement from the viewpoint of insulation reliability between wirings.
Therefore, there is a demand for a means for forming a metal film that can achieve practically satisfactory adhesion even with fine wiring, has excellent insulation between the fine wiring, and can be applied to a flexible substrate. It was.
本発明は、上記従来の技術の欠点を考慮してなされたものであり、以下の目的を達成することを課題とする。
即ち、本発明の第1の目的は、表面が平滑であっても、その表面上に形成されるめっき膜(金属膜)と高密着性を達成し、絶縁信頼性に優れたポリマー層を形成しうる被めっき層形成用組成物、および、該組成物を用いて得られるポリマー層を有する積層体を提供することにある。
また、本発明の第2の目的は、ポリマー層と金属膜との密着性に優れた表面金属膜材料およびその製造方法、並びに、それを用いた金属パターンの非形成領域の絶縁信頼性に優れた金属パターン材料を提供することにある。
更に、本発明の第3の目的は、配線の絶縁樹脂に対する密着性に優れ、且つ、微細な配線であっても、配線間の絶縁信頼性に優れた配線基板を提供することにある。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and an object thereof is to achieve the following object.
That is, the first object of the present invention is to form a polymer layer having excellent insulation reliability by achieving high adhesion with a plating film (metal film) formed on the surface even if the surface is smooth. An object of the present invention is to provide a composition for forming a layer to be plated and a laminate having a polymer layer obtained by using the composition.
In addition, the second object of the present invention is to provide a surface metal film material having excellent adhesion between the polymer layer and the metal film, a method for producing the same, and an insulation reliability in a non-formed region of the metal pattern using the material. Another object is to provide a metal pattern material.
Furthermore, a third object of the present invention is to provide a wiring board that has excellent adhesion to the insulating resin of the wiring, and excellent insulation reliability between the wirings even if the wiring is fine.
本発明者は、上記課題に鑑みて鋭意検討した結果、以下に示す手段により上記目的を達成しうることを見出した。 As a result of intensive studies in view of the above problems, the present inventor has found that the above object can be achieved by the following means.
<1> ラジカル重合性基と、
めっき触媒またはその前駆体と相互作用を形成する非解離性官能基と、
エポキシ基、オキセタニル基、イソシアネート基、ブロックイソシアネート基、一級アミノ基、および二級アミノ基からなる群から選ばれる少なくとも一つの官能基とを含むポリマー、を含有する被めっき層形成用組成物。
<2> 前記めっき触媒またはその前駆体と相互作用を形成する官能基が、シアノ基である<1>に記載の被めっき層形成用組成物。
<3> 前記ポリマーが、後述する式(1)で表されるユニット、後述する式(2)で表されるユニット、および後述する式(3)で表されるユニットを含むポリマーである、<1>または<2>に記載の被めっき層形成用組成物。
<1> a radical polymerizable group;
A non-dissociative functional group that interacts with the plating catalyst or its precursor;
A composition for forming a layer to be plated, comprising a polymer containing an epoxy group, an oxetanyl group, an isocyanate group, a blocked isocyanate group, a primary amino group, and at least one functional group selected from the group consisting of secondary amino groups.
<2> The composition for forming a plated layer according to <1>, wherein the functional group that interacts with the plating catalyst or a precursor thereof is a cyano group.
<3> The polymer is a polymer including a unit represented by formula (1) described later, a unit represented by formula (2) described later, and a unit represented by formula (3) described below. The composition for to-be-plated layer forming as described in 1> or <2>.
<4> 基板と、前記基板上に<1>〜<3>のいずれかに記載の被めっき層形成用組成物から形成されるポリマー層を有する積層体。
<5> (a1)基板上に、<1>〜<3>のいずれかに記載の被めっき層形成用組成物を用いてポリマー層を形成する工程と、
(a2)前記ポリマー層にめっき触媒またはその前駆体を付与する工程と、
(a3)前記めっき触媒またはその前駆体に対してめっきを行う工程と、
を備える、表面にめっき膜を有する表面金属膜材料の製造方法。
<6> 前記(a1)工程が、基板上に、前記ポリマー層中の前記ポリマーを直接化学結合させることにより行われる<5>に記載の表面金属膜材料の製造方法。
<4> A laminate having a substrate and a polymer layer formed from the composition for forming a plated layer according to any one of <1> to <3> on the substrate.
<5> (a1) A step of forming a polymer layer on the substrate using the composition for forming a plated layer according to any one of <1> to <3>;
(A2) providing a plating catalyst or a precursor thereof to the polymer layer;
(A3) a step of plating the plating catalyst or a precursor thereof;
The manufacturing method of the surface metal film material which has a plating film on the surface provided with.
<6> The method for producing a surface metal film material according to <5>, wherein the step (a1) is performed by directly chemically bonding the polymer in the polymer layer on a substrate.
<7> 前記(a3)工程で、無電解めっきが行われる、<5>または<6>に記載の表面金属膜材料の製造方法。
<8> <5>〜<7>のいずれかに記載の表面金属膜材料の製造方法により得られた表面金属膜材料。
<9> <5>〜<7>のいずれかに記載の表面金属膜材料の製造方法により得られた表面金属膜材料のめっき膜を、パターン状にエッチングする工程を有する、金属パターン材料の製造方法。
<10> <9>に記載の金属パターン材料の製造方法により得られた金属パターン材料。
<11> <10>に記載の金属パターン材料と、前記金属パターン材料上にエポキシ樹脂を含む絶縁層とを備える配線基板。
<7> The method for producing a surface metal film material according to <5> or <6>, wherein electroless plating is performed in the step (a3).
<8> A surface metal film material obtained by the method for producing a surface metal film material according to any one of <5> to <7>.
<9> Manufacture of metal pattern material which has the process of etching the plating film of surface metal film material obtained by the manufacturing method of surface metal film material in any one of <5>-<7> in pattern shape Method.
<10> A metal pattern material obtained by the method for producing a metal pattern material according to <9>.
<11> A wiring board comprising the metal pattern material according to <10> and an insulating layer containing an epoxy resin on the metal pattern material.
本発明によれば、表面が平滑であっても、その表面上に形成されるめっき膜と高密着性を達成し、絶縁信頼性に優れたポリマー層を形成しうる被めっき層形成用組成物、および、該組成物から形成されるポリマー層を有する積層体を提供することができる。
また、本発明によれば、ポリマー層と金属膜との密着性に優れた表面金属膜材料およびその製造方法、並びに、それを用いた金属パターンの非形成領域の絶縁信頼性に優れた金属パターン材料を提供することができる。
更に、本発明によれば、配線の絶縁樹脂に対する密着性に優れ、且つ、微細な配線であっても、配線間の絶縁信頼性に優れた配線基板を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, even if the surface is smooth, the composition for to-be-plated layer formation which can achieve the high adhesiveness with the plating film formed on the surface, and can form the polymer layer excellent in insulation reliability And a laminate having a polymer layer formed from the composition.
Further, according to the present invention, a surface metal film material having excellent adhesion between the polymer layer and the metal film, a manufacturing method thereof, and a metal pattern having excellent insulation reliability in a non-formation region of the metal pattern using the material. Material can be provided.
Furthermore, according to the present invention, it is possible to provide a wiring board that is excellent in adhesion of wiring to an insulating resin and excellent in insulation reliability between wirings even if the wiring is fine.
以下に本発明の被めっき層形成用組成物、該組成物を用いて得られる表面金属膜材料およびその製造方法、並びに金属パターン材料およびその製造方法について説明する。
本発明においては、エポキシ基などの所定の官能基を有するポリマーを使用することにより、密着性に優れためっき膜や、配線間の絶縁信頼性に優れた金属パターンなどを得ることができる。該効果が得られる理由はいくつかあるが、例えば、本発明者らは、従来技術において金属配線間の絶縁信頼性が十分でない原因の一つとして、金属配線が形成されている基板と、金属配線を覆うエポキシ樹脂などによって形成される絶縁層との密着性が必ずしも十分でない点を見出した。その結果、金属配線間の基板と絶縁層との界面において水などの吸収が起こり、金属配線間に金属デンドライトが発生し、金属配線間がショートしていた。
本発明においては、その表面に金属配線が形成されるポリマー層中にエポキシ基などが含まれることにより、金属配線を覆うエポキシ樹脂などの絶縁樹脂層とポリマー層との密着性が向上し、その結果、金属デンドライトなどの発生が抑制され、金属配線間の絶縁信頼性が向上している。
まず、本発明の被めっき層形成用組成物に含まれるポリマーについて詳述する。
The composition for forming a layer to be plated of the present invention, the surface metal film material obtained using the composition and the production method thereof, the metal pattern material and the production method thereof will be described below.
In the present invention, by using a polymer having a predetermined functional group such as an epoxy group, a plated film having excellent adhesion, a metal pattern having excellent insulation reliability between wirings, and the like can be obtained. There are several reasons why this effect can be obtained. For example, the present inventors, as one of the causes of insufficient insulation reliability between metal wirings in the prior art, a metal wiring board and a metal It has been found that the adhesiveness with an insulating layer formed of an epoxy resin or the like covering the wiring is not always sufficient. As a result, water or the like is absorbed at the interface between the substrate and the insulating layer between the metal wires, metal dendrite is generated between the metal wires, and the metal wires are short-circuited.
In the present invention, by including an epoxy group or the like in the polymer layer on which the metal wiring is formed on the surface, the adhesion between the insulating resin layer such as an epoxy resin covering the metal wiring and the polymer layer is improved, As a result, generation of metal dendrite or the like is suppressed, and insulation reliability between metal wirings is improved.
First, the polymer contained in the composition for forming a to-be-plated layer of this invention is explained in full detail.
<ポリマー>
本発明で使用されるポリマーは、ラジカル重合性基と、めっき触媒またはその前駆体と相互作用を形成する非解離性官能基と、エポキシ基、オキセタニル基、イソシアネート基、ブロックイソシアネート基、一級アミノ基、および二級アミノ基からなる群から選ばれる少なくとも一つの官能基(以後、「特定官能基」とも称する)とを含むポリマーである。これらの官能基をポリマーが有することにより、該ポリマーを用いて得られるポリマー層とその上に形成される絶縁層との密着性が向上し、結果として金属配線間の絶縁性能がより良好なものとなる。
<Polymer>
The polymer used in the present invention includes a radical polymerizable group, a non-dissociable functional group that interacts with the plating catalyst or its precursor, an epoxy group, an oxetanyl group, an isocyanate group, a blocked isocyanate group, and a primary amino group. , And at least one functional group selected from the group consisting of secondary amino groups (hereinafter also referred to as “specific functional group”). By having these functional groups in the polymer, the adhesion between the polymer layer obtained using the polymer and the insulating layer formed thereon is improved, and as a result, the insulating performance between the metal wirings is better. It becomes.
(ラジカル重合性基)
本発明で使用されるポリマーには、ラジカル重合性基が含まれる。該基を有することにより、後述する基板との優れた密着性が発現されると共に、膜中で架橋反応が進行し強度に優れた膜を得ることができる。
ラジカル重合性基の種類は特に制限されず、例えば、エチレン性不飽和性基などが挙げられる。より具体的には、アクリル酸エステル基、メタクリル酸エステル基、イタコン酸エステル基、クロトン酸エステル基、イソクロトン酸エステル基、マレイン酸エステル基などの不飽和カルボン酸エステル基、スチリル基、ビニル基、マレイミド基などが挙げられる。中でも、メタクリル酸エステル基(メタアクリロイル基)、アクリル酸エステル基(アクリロイル基)、ビニル基、スチリル基が好ましく、アクリロイル基、メタアクリロイル基が特に好ましい。
(Radical polymerizable group)
The polymer used in the present invention contains a radically polymerizable group. By having such a group, excellent adhesion to the substrate described later is exhibited, and a film having excellent strength can be obtained by a crosslinking reaction in the film.
The kind in particular of radically polymerizable group is not restrict | limited, For example, an ethylenically unsaturated group etc. are mentioned. More specifically, unsaturated carboxylic acid ester groups such as acrylic acid ester groups, methacrylic acid ester groups, itaconic acid ester groups, crotonic acid ester groups, isocrotonic acid ester groups, maleic acid ester groups, styryl groups, vinyl groups, And maleimide groups. Among these, a methacrylic acid ester group (methacryloyl group), an acrylic acid ester group (acryloyl group), a vinyl group, and a styryl group are preferable, and an acryloyl group and a methacryloyl group are particularly preferable.
(めっき触媒またはその前駆体と相互作用を形成する非解離性官能基)
本発明で使用されるポリマーには、後述するめっき触媒またはその前駆体と相互作用を形成する非解離性官能基が含まれる。該基が含まれることにより、後述するめっき触媒などの優れた吸着性が達成され、結果としてめっき処理の際に十分な厚さのめっき膜を得ることができる。
(Non-dissociative functional group that interacts with the plating catalyst or its precursor)
The polymer used in the present invention includes a non-dissociative functional group that forms an interaction with a plating catalyst or a precursor thereof described later. By including this group, excellent adsorptivity such as a plating catalyst described later is achieved, and as a result, a plating film having a sufficient thickness can be obtained during the plating process.
非解離性官能基とは、官能基が解離によりプロトンを生成しない官能基を意味する。このような官能基は、めっき触媒またはその前駆体、または金属と相互作用する機能はあっても、解離性の極性基(親水性基)のように高い吸水性、親水性を有するものではないため、湿度変化などによるめっき層の密着力の変動などが少ない。 The non-dissociable functional group means a functional group that does not generate a proton by dissociation. Such a functional group has a function of interacting with a plating catalyst or a precursor thereof, or a metal, but does not have high water absorption and hydrophilicity like a dissociative polar group (hydrophilic group). Therefore, there is little variation in the adhesion of the plating layer due to changes in humidity.
非解離性官能基としては、具体的には、金属イオンと配位形成可能な基、含窒素官能基、含硫黄官能基、含酸素官能基、含リン官能基などが好ましい。より具体的には、イミド基、ピリジン基、3級アミノ基、アンモニウム基、ピロリドン基、アミジノ基、トリアジン環構造を含む基、イソシアヌル構造を含む基、ニトロ基、ニトロソ基、アゾ基、ジアゾ基、アジド基、シアノ基、シアネート基(R−O−CN)などの含窒素官能基、エーテル基、カルボニル基、エステル基、N−オキシド構造を含む基、S−オキシド構造を含む基などの含酸素官能基、チオエーテル基、チオキシ基、チオフェン基、チオール基、スルホキシド基、スルホン基、サルファイト基、スルホキシイミン構造を含む基、スルホキシニウム塩構造を含む基、スルホン酸エステル構造を含む基などの含硫黄官能基、フォスフィン基、ホスフェート基、ホスフォロアミド基などの含リン官能基、塩素、臭素などのハロゲン原子を含む基、および不飽和エチレン基などが挙げられる。また、隣接する原子または原子団との関係により非解離性を示す態様であれば、イミダゾール基、ウレア基、チオウレア基を用いてもよい。さらに、シクロデキストリンやクラウンエーテルなどの包接能を有する化合物に由来する官能基であってもよい。
なかでも、極性が高く、めっき触媒などへの吸着能が高いことから、エーテル基(より具体的には、−O−(CH2)n−O−(nは1〜13の整数)で表される構造)、またはシアノ基が特に好ましく、シアノ基がさらに好ましい。
Specifically, the non-dissociable functional group is preferably a group capable of forming a coordination with a metal ion, a nitrogen-containing functional group, a sulfur-containing functional group, an oxygen-containing functional group, a phosphorus-containing functional group, or the like. More specifically, imide group, pyridine group, tertiary amino group, ammonium group, pyrrolidone group, amidino group, group containing triazine ring structure, group containing isocyanuric structure, nitro group, nitroso group, azo group, diazo group A nitrogen-containing functional group such as azide group, cyano group, cyanate group (R—O—CN), ether group, carbonyl group, ester group, group containing N-oxide structure, group containing S-oxide structure, etc. Oxygen functional group, thioether group, thiooxy group, thiophene group, thiol group, sulfoxide group, sulfone group, sulfite group, group containing sulfoximine structure, group containing sulfoxynium salt structure, group containing sulfonate structure, etc. Phosphorus-containing functional groups such as sulfur-containing functional groups, phosphine groups, phosphate groups and phosphoramide groups, and halogens such as chlorine and bromine Group including children, and an unsaturated ethylene group. In addition, an imidazole group, a urea group, or a thiourea group may be used as long as it is non-dissociative due to the relationship with an adjacent atom or atomic group. Furthermore, it may be a functional group derived from a compound having an inclusion ability such as cyclodextrin and crown ether.
Especially, since it has high polarity and high adsorption ability to a plating catalyst, it is represented by an ether group (more specifically, —O— (CH 2 ) n —O— (n is an integer of 1 to 13). Structure) or a cyano group is particularly preferable, and a cyano group is more preferable.
一般的に、高極性になるほど吸水率が高くなる傾向であるが、シアノ基はポリマー層中にて互いに極性を打ち消しあうように相互作用しあうため、層が緻密になり、且つ、ポリマー層全体としての極性が下がるため、吸水性が低くなる。また、後述する工程において、ポリマー層の良溶媒にてめっき触媒を吸着させることで、シアノ基が溶媒和されてシアノ基間の相互作用がなくなり、めっき触媒と相互作用できるようになる。よって、シアノ基を有するポリマー層は低吸湿でありながら、めっき触媒とはよく相互作用する、相反する性能を発揮する点で、好ましい。
なお、非解離性官能基は1種のみ含まれていてもよいし、異なる種類の官能基が2種以上含まれていてもよい。
In general, the higher the polarity, the higher the water absorption rate. However, since the cyano groups interact in the polymer layer so as to cancel each other's polarity, the layer becomes dense and the entire polymer layer Therefore, the water absorption is lowered. Further, in the process described later, by adsorbing the plating catalyst with a good solvent in the polymer layer, the cyano group is solvated, the interaction between the cyano groups is eliminated, and the plating catalyst can interact. Therefore, a polymer layer having a cyano group is preferable in that it exhibits low performance while exhibiting contradictory performance that interacts well with the plating catalyst.
In addition, the non-dissociative functional group may be contained only 1 type, and 2 or more types of different types of functional groups may be contained.
(特定官能基)
本発明で使用されるポリマーには、エポキシ基、オキセタニル基、イソシアネート基、ブロックイソシアネート基、一級アミノ基、および二級アミノ基からなる群から選ばれる少なくとも一つの官能基(特定官能基)が含有される。該官能基が含まれることにより、該ポリマーより形成されるポリマー層と、このポリマー層上に形成されるエポキシ樹脂含有絶縁層との密着性が改善し、結果として金属配線間の絶縁信頼性が向上する。
(Specific functional group)
The polymer used in the present invention contains at least one functional group (specific functional group) selected from the group consisting of epoxy groups, oxetanyl groups, isocyanate groups, blocked isocyanate groups, primary amino groups, and secondary amino groups. Is done. By including the functional group, the adhesion between the polymer layer formed from the polymer and the epoxy resin-containing insulating layer formed on the polymer layer is improved, and as a result, the insulation reliability between the metal wirings is improved. improves.
特定官能基は、エポキシ基、オキセタニル基、イソシアネート基、ブロックイソシアネート基、一級アミノ基、または二級アミノ基であり、エポキシ樹脂含有絶縁層との密着性がより優れる点と、吸水率の点から、エポキシ基、オキセタニル基がより好ましい。該基はポリマー中に一種のみ含まれていてもよく、2種以上の基が含まれていてもよい。 The specific functional group is an epoxy group, an oxetanyl group, an isocyanate group, a blocked isocyanate group, a primary amino group, or a secondary amino group. From the viewpoint of better adhesion to the epoxy resin-containing insulating layer and the point of water absorption An epoxy group and an oxetanyl group are more preferable. Only one kind of the group may be contained in the polymer, or two or more kinds of groups may be contained.
<好適実施態様>
本発明のポリマーの好適実施態様としては、合成が容易であり、基板との密着性がより優れる点から、ラジカル重合性基を有するユニット(繰り返し単位)、非解離性官能基を有するユニット、および特定官能基を有するユニットを含む共重合体(3元系ポリマー)であることが好ましい。
また、より好ましい実施態様として、式(1)で表されるユニット、式(2)で表されるユニット、式(3)で表されるユニットを含有するポリマー(共重合体)が挙げられる。
<Preferred embodiment>
As a preferred embodiment of the polymer of the present invention, a unit having a radically polymerizable group (repeating unit), a unit having a non-dissociative functional group, and a unit having a radically polymerizable group from the viewpoint of easy synthesis and better adhesion to a substrate, A copolymer (a ternary polymer) including a unit having a specific functional group is preferable.
Moreover, as a more preferable embodiment, a polymer (copolymer) containing a unit represented by the formula (1), a unit represented by the formula (2), and a unit represented by the formula (3) can be given.
(式(1)で表されるユニット)
式(1)中、R1〜R4は、それぞれ独立して、水素原子、または置換若しくは無置換のアルキル基を表す。
R1〜R4が、置換または無置換のアルキル基である場合、炭素数1〜4のアルキル基が好ましく、炭素数1〜2のアルキル基がより好ましい。より具体的には、無置換のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基が挙げられ、また、置換アルキル基としては、メトキシ基、ヒドロキシ基、ハロゲン原子(例えば、塩素原子、臭素原子、フッ素原子)などで置換された、メチル基、エチル基、プロピル基、ブチル基が挙げられる。
(Unit represented by Formula (1))
In formula (1), R < 1 > -R < 4 > represents a hydrogen atom or a substituted or unsubstituted alkyl group each independently.
When R < 1 > -R < 4 > is a substituted or unsubstituted alkyl group, a C1-C4 alkyl group is preferable and a C1-C2 alkyl group is more preferable. More specifically, examples of the unsubstituted alkyl group include a methyl group, an ethyl group, a propyl group, and a butyl group, and examples of the substituted alkyl group include a methoxy group, a hydroxy group, and a halogen atom (for example, a chlorine atom). , A bromine atom, a fluorine atom) and the like, and a methyl group, an ethyl group, a propyl group, and a butyl group.
なお、R1としては、水素原子、メチル基、または、ヒドロキシ基若しくは臭素原子で置換されたメチル基が好ましい。
R2としては、水素原子、メチル基、または、ヒドロキシ基若しくは臭素原子で置換されたメチル基が好ましい。
R3としては、水素原子が好ましい。
R4としては、水素原子が好ましい。
R 1 is preferably a hydrogen atom, a methyl group, or a methyl group substituted with a hydroxy group or a bromine atom.
R 2 is preferably a hydrogen atom, a methyl group, or a methyl group substituted with a hydroxy group or a bromine atom.
R 3 is preferably a hydrogen atom.
R 4 is preferably a hydrogen atom.
YおよびZは、それぞれ独立して、単結合、または、置換若しく無置換の二価の有機基を表す。二価の有機基としては、置換若しくは無置換の脂肪族炭化水素基(好ましくは炭素数1〜8)、置換若しくは無置換の芳香族炭化水素基(好ましくは炭素数6〜12)、−O−、−S−、−N(R)−(R:アルキル基)、−CO−、−NH−、−COO−、−CONH−、またはこれらを組み合わせた基(例えば、アルキレンオキシ基、アルキレンオキシカルボニル基、アルキレンカルボニルオキシ基など)などが挙げられる。該有機基は、発明の効果を損なわない範囲で、ヒドロキシ基などの置換基を有していてもよい。 Y and Z each independently represent a single bond or a substituted or unsubstituted divalent organic group. Examples of the divalent organic group include a substituted or unsubstituted aliphatic hydrocarbon group (preferably having 1 to 8 carbon atoms), a substituted or unsubstituted aromatic hydrocarbon group (preferably having 6 to 12 carbon atoms), -O —, —S—, —N (R) — (R: alkyl group), —CO—, —NH—, —COO—, —CONH—, or a combination thereof (eg, alkyleneoxy group, alkyleneoxy group) Carbonyl group, alkylenecarbonyloxy group, etc.). The organic group may have a substituent such as a hydroxy group as long as the effects of the invention are not impaired.
置換または無置換の脂肪族炭化水素基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、または、これらの基がメトキシ基、ヒドロキシ基、ハロゲン原子(例えば、塩素原子、臭素原子、フッ素原子)などで置換されたものが好ましい。
置換または無置換の芳香族炭化水素基としては、無置換のフェニレン基、または、メトキシ基、ヒドロキシ基、ハロゲン原子(例えば、塩素原子、臭素原子、フッ素原子)などで置換されたフェニレン基が好ましい。
Examples of the substituted or unsubstituted aliphatic hydrocarbon group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, or a methoxy group, a hydroxy group, a halogen atom (for example, a chlorine atom). , Bromine atom, fluorine atom) and the like.
The substituted or unsubstituted aromatic hydrocarbon group is preferably an unsubstituted phenylene group or a phenylene group substituted with a methoxy group, a hydroxy group, a halogen atom (for example, a chlorine atom, a bromine atom, or a fluorine atom). .
YおよびZとしては、エステル基(−COO−)、アミド基(−CONH−)、エーテル基(−O−)、または、置換若しくは無置換の芳香族炭化水素基などが好ましく挙げられる。 Y and Z are preferably an ester group (—COO—), an amide group (—CONH—), an ether group (—O—), or a substituted or unsubstituted aromatic hydrocarbon group.
L1は、置換または無置換の二価の有機基を表す。二価の有機基の定義は、上記YおよびZで表される有機基と同義であり、例えば、置換若しくは無置換の脂肪族炭化水素基、置換若しくは無置換の芳香族炭化水素基、−O−、−S−、−N(R)−(R:アルキル基)、−CO−、−NH−、−COO−、−CONH−、またはこれらを組み合わせた基などが挙げられる。
L1としては、無置換のアルキレン基、または、ウレタン結合若しくはウレア結合を有する二価の有機基が好ましく、無置換のアルキレン基およびウレタン結合を有する二価の有機基がより好ましく、総炭素数1〜9であるものが特に好ましい。なお、ここで、L1の総炭素数とは、L1で表される置換または無置換の二価の有機基に含まれる総炭素原子数を意味する。
L1の構造として、より具体的には、式(1−1)、または式(1−2)で表される構造であることが好ましい。
L 1 represents a substituted or unsubstituted divalent organic group. The definition of a divalent organic group is synonymous with the organic group represented by said Y and Z, for example, a substituted or unsubstituted aliphatic hydrocarbon group, a substituted or unsubstituted aromatic hydrocarbon group, -O —, —S—, —N (R) — (R: alkyl group), —CO—, —NH—, —COO—, —CONH—, or a combination thereof.
L 1 is preferably an unsubstituted alkylene group or a divalent organic group having a urethane bond or urea bond, more preferably an unsubstituted alkylene group or a divalent organic group having a urethane bond, and the total number of carbon atoms. Those having 1 to 9 are particularly preferred. Incidentally, the total number of carbon atoms of L 1, means the total number of carbon atoms contained in the substituted or unsubstituted divalent organic group represented by L 1.
More specifically, the structure of L 1 is preferably a structure represented by Formula (1-1) or Formula (1-2).
式(1−1)および式(1−2)中、RaおよびRbは、それぞれ独立して、炭素原子、水素原子、および酸素原子からなる群より選択される2つ以上の原子を用いて形成される2価の有機基である。好ましくは、置換若しくは無置換の、メチレン基、エチレン基、プロピレン基、またはブチレン基、エチレンオキシド基、ジエチレンオキシド基、トリエチレンオキシド基、テトラエチレンオキシド基、ジプロピレンオキシド基、トリプロピレンオキシド基、テトラプロピレンオキシド基が挙げられる。 In Formula (1-1) and Formula (1-2), R a and R b each independently use two or more atoms selected from the group consisting of a carbon atom, a hydrogen atom, and an oxygen atom. Is a divalent organic group formed. Preferably, a substituted or unsubstituted methylene group, ethylene group, propylene group or butylene group, ethylene oxide group, diethylene oxide group, triethylene oxide group, tetraethylene oxide group, dipropylene oxide group, tripropylene oxide group, tetrapropylene oxide Groups.
(好適態様)
式(1)で表されるユニットの好適態様として、式(4)で表されるユニットが挙げられる。
(Preferred embodiment)
A preferred embodiment of the unit represented by the formula (1) is a unit represented by the formula (4).
式(4)中、R1、R2、ZおよびL1は、式(1)で表されるユニット中の各基の定義と同じである。Tは、酸素原子、またはNR(Rは、水素原子またはアルキル基を表し、好ましくは、水素原子または炭素数1〜5の無置換のアルキル基である。)を表す。 In the formula (4), R 1 , R 2 , Z and L 1 are the same as the definitions of each group in the unit represented by the formula (1). T represents an oxygen atom or NR (R represents a hydrogen atom or an alkyl group, preferably a hydrogen atom or an unsubstituted alkyl group having 1 to 5 carbon atoms).
式(4)で表されるユニットの好適態様として、式(5)で表されるユニットが挙げられる。 A preferred embodiment of the unit represented by the formula (4) includes a unit represented by the formula (5).
式(5)中、R1、R2、およびL1は、式(1)で表されるユニット中の各基の定義と同じである。TおよびQは、酸素原子、またはNR(Rは、水素原子またはアルキル基を表し、好ましくは、水素原子または炭素数1〜5の無置換のアルキル基である。)を表す。 In formula (5), R 1 , R 2 , and L 1 are the same as the definitions of each group in the unit represented by formula (1). T and Q each represents an oxygen atom or NR (R represents a hydrogen atom or an alkyl group, preferably a hydrogen atom or an unsubstituted alkyl group having 1 to 5 carbon atoms).
上記式(4)および式(5)において、Wは、酸素原子であることが好ましい。
また、上記式(4)および式(5)において、L1は、無置換のアルキレン基、または、ウレタン結合若しくはウレア結合を有する二価の有機基が好ましく、ウレタン結合を有する二価の有機基がより好ましく、総炭素数1〜9であるものが特に好ましい。
In the above formulas (4) and (5), W is preferably an oxygen atom.
In the above formulas (4) and (5), L 1 is preferably an unsubstituted alkylene group or a divalent organic group having a urethane bond or a urea bond, and a divalent organic group having a urethane bond. Are more preferable, and those having 1 to 9 carbon atoms are particularly preferable.
(式(2)で表されるユニット)
式(2)中、R5は、水素原子、または置換若しくは無置換のアルキル基を表す。R5で表される置換または無置換のアルキル基は、上述したR1〜R4で表される置換または無置換のアルキル基と同義である。
R5としては、水素原子、メチル基、または、ヒドロキシ基若しくは臭素原子で置換されたメチル基が好ましい。
(Unit represented by Formula (2))
In formula (2), R 5 represents a hydrogen atom or a substituted or unsubstituted alkyl group. The substituted or unsubstituted alkyl group represented by R 5 has the same meaning as the substituted or unsubstituted alkyl group represented by R 1 to R 4 described above.
R 5 is preferably a hydrogen atom, a methyl group, or a methyl group substituted with a hydroxy group or a bromine atom.
XおよびL2は、それぞれ独立して、単結合、または置換若しく無置換の二価の有機基を表す。二価の有機基の定義は、上記ZおよびYで表される二価の有機基と同義であり、例えば、置換若しくは無置換の脂肪族炭化水素基、置換若しくは無置換の芳香族炭化水素基、−O−、−S−、−N(R)−(R:アルキル基)、−CO−、−NH−、−COO−、−CONH−、またはこれらを組み合わせた基などが挙げられる。 X and L 2 each independently represents a single bond or a substituted or unsubstituted divalent organic group. The definition of the divalent organic group is synonymous with the divalent organic group represented by Z and Y, for example, a substituted or unsubstituted aliphatic hydrocarbon group, a substituted or unsubstituted aromatic hydrocarbon group. , -O-, -S-, -N (R)-(R: alkyl group), -CO-, -NH-, -COO-, -CONH-, or a combination thereof.
Xとしては、単結合、エステル基(−COO−)、アミド基(−CONH−)、エーテル基(−O−)、または置換若しくは無置換の芳香族炭化水素基などが好ましく挙げられ、より好ましくは単結合、エステル基(−COO−)、アミド基(−CONH−)である。 X preferably includes a single bond, an ester group (—COO—), an amide group (—CONH—), an ether group (—O—), or a substituted or unsubstituted aromatic hydrocarbon group, and more preferably. Are a single bond, an ester group (—COO—), and an amide group (—CONH—).
L2は、直鎖、分岐、若しくは環状のアルキレン基、芳香族基、またはこれらを組み合わせた基であることが好ましい。該アルキレン基と芳香族基とを組み合わせた基は、更に、エーテル基、エステル基、アミド基、ウレタン基、ウレア基を介していてもよい。
中でも、L2は総炭素数が1〜15であることが好ましく、特に無置換であることが好ましい。なお、ここで、L2の総炭素数とは、L2で表される置換または無置換の二価の有機基に含まれる総炭素原子数を意味する。
具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基、フェニレン基、およびこれらの基が、メトキシ基、ヒドロキシ基、塩素原子、臭素原子、フッ素原子等で置換されたもの、更には、これらを組み合わせた基が挙げられる。
L 2 is preferably a linear, branched, or cyclic alkylene group, an aromatic group, or a group obtained by combining these. The group obtained by combining the alkylene group and the aromatic group may further be via an ether group, an ester group, an amide group, a urethane group, or a urea group.
Among these, L 2 preferably has 1 to 15 total carbon atoms, and particularly preferably unsubstituted. Incidentally, the total number of carbon atoms of L 2, means the total number of carbon atoms contained in the substituted or unsubstituted divalent organic group represented by L 2.
Specifically, a methylene group, an ethylene group, a propylene group, a butylene group, a phenylene group, and those groups substituted with a methoxy group, a hydroxy group, a chlorine atom, a bromine atom, a fluorine atom, etc., The group which combined these is mentioned.
式(2)で表されるユニットの好適態様として、式(6)で表されるユニットが挙げられる。 A preferred embodiment of the unit represented by the formula (2) is a unit represented by the formula (6).
上記式(6)中、R5およびL2は、式(2)で表されるユニット中の各基の定義と同じである。Uは、酸素原子、またはNR’(R’は、水素原子、またはアルキル基を表し、好ましくは、水素原子、または炭素数1〜5の無置換のアルキル基である。)を表す。 In said formula (6), R < 5 > and L < 2 > are the same as the definition of each group in the unit represented by Formula (2). U represents an oxygen atom or NR ′ (R ′ represents a hydrogen atom or an alkyl group, preferably a hydrogen atom or an unsubstituted alkyl group having 1 to 5 carbon atoms).
式(6)におけるL2は、直鎖、分岐、若しくは環状のアルキレン基、芳香族基、またはこれらを組み合わせた基であることが好ましい。
特に、式(6)においては、L2中のシアノ基との連結部位が、直鎖、分岐、または環状のアルキレン基を有する二価の有機基であることが好ましく、中でも、この二価の有機基が総炭素数1〜10であることが好ましい。
また、別の好ましい態様としては、式(6)におけるL2中のシアノ基との連結部位が、芳香族基を有する二価の有機基であることが好ましく、中でも、該二価の有機基が、総炭素数6〜15であることが好ましい。
L 2 in Formula (6) is preferably a linear, branched, or cyclic alkylene group, an aromatic group, or a group obtained by combining these.
In particular, in the formula (6), the linking site with the cyano group in L 2 is preferably a divalent organic group having a linear, branched, or cyclic alkylene group. The organic group preferably has 1 to 10 carbon atoms.
As another preferred embodiment, it is preferable that the linkage site to the cyano group in L 2 in Formula (6) is a divalent organic group having an aromatic group, and among them, the divalent organic group However, it is preferable that it is C6-C15.
(式(3)で表されるユニット)
式(3)中、R6は、水素原子、または置換若しくは無置換のアルキル基を表す。
R6としては、水素原子、メチル基、または、ヒドロキシ基若しくは臭素原子で置換されたメチル基が好ましい。
L3は、置換若しくは無置換の二価の有機基を表す。L3で表される二価の有機基の定義は、上記ZおよびYで表される二価の有機基と同義である。
L3としては、アルキレン基が好ましい。
(Unit represented by Formula (3))
In formula (3), R 6 represents a hydrogen atom or a substituted or unsubstituted alkyl group.
R 6 is preferably a hydrogen atom, a methyl group, or a methyl group substituted with a hydroxy group or a bromine atom.
L 3 represents a substituted or unsubstituted divalent organic group. The definition of the divalent organic group represented by L 3 is synonymous with the divalent organic group represented by Z and Y.
L 3 is preferably an alkylene group.
Wは、単結合、または置換若しく無置換の二価の有機基を表す。Wで表される二価の有機基の定義は、上記ZおよびYで表される二価の有機基と同義である。
Wとしては、エステル基(−COO−)、アミド基(−CONH−)、エーテル基(−O−)、または置換若しくは無置換の芳香族炭化水素基などが好ましく挙げられる。
W represents a single bond or a substituted or unsubstituted divalent organic group. The definition of the divalent organic group represented by W is synonymous with the divalent organic group represented by Z and Y.
Preferred examples of W include an ester group (—COO—), an amide group (—CONH—), an ether group (—O—), and a substituted or unsubstituted aromatic hydrocarbon group.
Vは、エポキシ基、オキセタニル基、イソシアネート基(−NCO)、ブロックイソシアネート基、一級アミノ基(−NH2)、または二級アミノ基を表す。なかでも、エポキシ基、オキセタニル基、ブロックイソシアネート基が好ましい。
オキセタニル基としては、式(8)で表される基が好ましい。式(8)中、RCは水素原子またはアルキル基を表す。二級アミノ基としては、−NHRd(Rdは、アルキル基を表し、炭素数1〜8好ましい。)で表される基が好ましい。なお、エポキシ基としては、脂環式エポキシ基も含まれる。
また、ここでいう、ブロックイソシアネート基とは、イソシアネート基が保護基でブロックされ、熱または湿気により容易にブロックが外れてイソシアネート基を発生しうる基をいう。例えば、アルコール類、フェノール類、オキシム類、トリアゾール類、カプロラクタム類等のブロック剤等でブロックしたイソシアネート基が好ましく挙げられる。
V represents an epoxy group, an oxetanyl group, an isocyanate group (—NCO), a blocked isocyanate group, a primary amino group (—NH 2 ), or a secondary amino group. Of these, an epoxy group, an oxetanyl group, and a blocked isocyanate group are preferable.
As the oxetanyl group, a group represented by the formula (8) is preferable. In formula (8), R C represents a hydrogen atom or an alkyl group. The secondary amino group is preferably a group represented by —NHR d (R d represents an alkyl group, preferably having 1 to 8 carbon atoms). In addition, as an epoxy group, an alicyclic epoxy group is also included.
The blocked isocyanate group as used herein refers to a group in which an isocyanate group is blocked with a protective group and can be easily removed by heat or moisture to generate an isocyanate group. For example, an isocyanate group blocked with a blocking agent such as alcohols, phenols, oximes, triazoles and caprolactams is preferred.
アルコール類の好ましい例としては、メタノール、エタノール、プロパノール、ヘキサノール、ラウリルアルコール、t−ブタノール、シクロヘキサノール等を挙げることができる。フェノール類の好ましい例としては、キシレノール、ナフトール、4−メチル−2,6−ジ−t−ブチルフェノール等を挙げることができる。オキシム類の好ましい例としては、2,6−ジメチル−4−ヘプタノンオキシム、メチルエチルケトオキシム、2−ヘプタノンオキシム等が挙げられる。その他、3,5−ジメチルピラゾール、1,2,4−トリアゾール等を好適に用いることができる。これらのなかでも、ブロック剤としてはメチルエチルケトオキシム、3,5−ジメチルピラゾールが好ましい。
ブロックイソシアネート基を有するモノマーとしては、カレンズMOI-BM(商品名:昭和電工(株))、カレンズMOI-BP(商品名:昭和電工(株))などが市販されており、好適に用いることができる。
Preferable examples of alcohols include methanol, ethanol, propanol, hexanol, lauryl alcohol, t-butanol, cyclohexanol and the like. Preferable examples of phenols include xylenol, naphthol, 4-methyl-2,6-di-t-butylphenol and the like. Preferable examples of oximes include 2,6-dimethyl-4-heptanone oxime, methyl ethyl ketoxime, 2-heptanone oxime and the like. In addition, 3,5-dimethylpyrazole, 1,2,4-triazole and the like can be preferably used. Of these, methyl ethyl ketoxime and 3,5-dimethylpyrazole are preferable as the blocking agent.
As a monomer having a blocked isocyanate group, Karenz MOI-BM (trade name: Showa Denko Co., Ltd.), Karenz MOI-BP (trade name: Showa Denko Co., Ltd.), etc. are commercially available and can be suitably used. it can.
式(3)で表されるユニットの好適態様として、式(7)で表されるユニットが挙げられる。 A preferred embodiment of the unit represented by the formula (3) is a unit represented by the formula (7).
上記式(7)中、V、R6およびL3は、式(3)で表されるユニット中の各基の定義と同じである。Qは、酸素原子、またはNR’(R’は、水素原子、またはアルキル基を表し、好ましくは、水素原子、または炭素数1〜5の無置換のアルキル基である。)を表す。 In said formula (7), V, R < 6 > and L < 3 > are the same as the definition of each group in the unit represented by Formula (3). Q represents an oxygen atom or NR ′ (R ′ represents a hydrogen atom or an alkyl group, preferably a hydrogen atom or an unsubstituted alkyl group having 1 to 5 carbon atoms).
ポリマー中における式(1)で表されるユニットの含有量は特に制限されないが、後述する基板との密着性がより優れる点で、全ユニット(100モル%)に対して、5〜50モル%が好ましく、5〜40モル%がより好ましい。5モル%未満の場合、反応性(硬化性、重合性)が低下することがあり、50モル%を超える場合、ポリマーの合成の際にゲル化が起きやすく、反応の制御が難しくなる。 The content of the unit represented by the formula (1) in the polymer is not particularly limited, but is 5 to 50 mol% based on the total unit (100 mol%) in that the adhesion to the substrate described later is more excellent. Is preferable, and 5-40 mol% is more preferable. When the amount is less than 5 mol%, the reactivity (curability and polymerizability) may be lowered. When the amount exceeds 50 mol%, gelation tends to occur during the synthesis of the polymer, and the control of the reaction becomes difficult.
ポリマー中における式(2)で表されるユニットの含有量は特に制限されないが、めっき触媒などに対する吸着性の点で、全ユニット(100モル%)に対して、5〜94モル%が好ましく、10〜80モル%がより好ましい。 The content of the unit represented by the formula (2) in the polymer is not particularly limited, but 5 to 94 mol% is preferable with respect to all units (100 mol%) in terms of adsorptivity to the plating catalyst and the like. 10-80 mol% is more preferable.
ポリマー中における式(3)で表されるユニットの含有量は特に制限されないが、後述する絶縁層との密着性がより優れる点で、全ユニット(100モル%)に対して、1〜50モル%が好ましく、5〜30モル%がより好ましい。 The content of the unit represented by the formula (3) in the polymer is not particularly limited, but is 1 to 50 mol based on all units (100 mol%) in that the adhesion to the insulating layer described later is more excellent. % Is preferable, and 5 to 30 mol% is more preferable.
本発明のポリマーの重量平均分子量は特に限定されないが、1000以上70万以下が好ましく、更に好ましくは2000以上20万以下である。特に、重合感度の観点から、本発明のポリマーの重量平均分子量は、20000以上であることが好ましい。
また、本発明のポリマーの重合度としては、10量体以上のものを使用することが好ましく、更に好ましくは20量体以上のものである。また、7000量体以下が好ましく、3000量体以下がより好ましく、2000量体以下が更に好ましく、1000量体以下が特に好ましい。
Although the weight average molecular weight of the polymer of this invention is not specifically limited, 1000 or more and 700,000 or less are preferable, More preferably, it is 2000 or more and 200,000 or less. In particular, from the viewpoint of polymerization sensitivity, the weight average molecular weight of the polymer of the present invention is preferably 20000 or more.
Moreover, as a polymerization degree of the polymer of this invention, it is preferable to use a 10-mer or more thing, More preferably, it is a 20-mer or more thing. Moreover, 7000-mer or less is preferable, 3000-mer or less is more preferable, 2000-mer or less is still more preferable, 1000-mer or less is especially preferable.
<ポリマーの合成方法>
上記ポリマーの合成方法は特に限定されず、使用されるモノマーも市販品または公知の合成方法を組み合わせて合成したものであってもよい。本発明のポリマーは、特許公開2009−7662号の段落[0120]〜[0164]に記載の方法などを参照して合成することができる。
なお、ポリマーの合成方法としては、以下の方法が好ましく挙げられる。
i)ラジカル重合性基を有するモノマー、非解離性官能基を有するモノマー、および特定官能基を有するモノマーを共重合する方法、ii)非解離性官能基を有するモノマー、特定官能基を有するモノマー、およびラジカル重合性基前駆体を有するモノマーを共重合させ、次に塩基などの処理によりラジカル重合性基を導入する方法、iii)非解離性官能基を有するモノマー、特定官能基を有するモノマー、およびラジカル重合性基導入のための反応性基を有するモノマーを共重合させ、ラジカル重合性基を導入する方法が挙げられる。
合成適性の観点から、好ましい方法としては、上記ii)および上記iii)の方法である。合成する際の重合反応の種類は特に限定されず、ラジカル重合で行うこと好ましい。
なお、上記で使用されるモノマーは市販品や公知の物質を用いることができ、例えば、非解離性官能基を有するモノマーとしては、特開2009−7662号公報の段落[0081]〜[0084]に記載される化合物などが挙げられる。
<Polymer synthesis method>
The method for synthesizing the polymer is not particularly limited, and the monomer used may be a commercially available product or one synthesized by combining known synthesis methods. The polymer of the present invention can be synthesized with reference to the method described in paragraphs [0120] to [0164] of Japanese Patent Publication No. 2009-7762.
In addition, as a polymer synthesis method, the following methods are preferably exemplified.
i) a monomer having a radical polymerizable group, a monomer having a non-dissociative functional group, and a method of copolymerizing a monomer having a specific functional group, ii) a monomer having a non-dissociative functional group, a monomer having a specific functional group, And a method of copolymerizing a monomer having a radical polymerizable group precursor and then introducing a radical polymerizable group by treatment with a base or the like, iii) a monomer having a non-dissociable functional group, a monomer having a specific functional group, and Examples thereof include a method in which a monomer having a reactive group for introducing a radical polymerizable group is copolymerized to introduce a radical polymerizable group.
From the viewpoint of synthesis suitability, preferred methods are the methods ii) and iii). The kind of polymerization reaction at the time of synthesis is not particularly limited, and it is preferably carried out by radical polymerization.
In addition, the monomer used above can use a commercial item or a well-known substance, for example, as a monomer which has a non-dissociative functional group, paragraph [0081]-[0084] of Unexamined-Japanese-Patent No. 2009-7662. And the like.
より具体的に、上記ii)の合成方法において、ラジカル重合性基前駆体をラジカル重合性基に変換するには、下記に示すように、B、Cで表される脱離基を脱離反応により除去する方法、つまり、塩基の作用によりCを引き抜き、Bが脱離する反応を使用することが好ましい。
なお、下記式中、Aは重合性基を有する有機団、R1〜R3は、それぞれ独立して、水素原子または1価の有機基、BおよびCはそれぞれ独立して脱離反応により除去される脱離基であり、A、Bのいずれか一方が水素原子であり、他方がハロゲン原子、スルホン酸エステル基、エーテル基、またはチオエーテル基を表す。ここでいう脱離反応とは、塩基の作用によりCが引き抜かれ、Bが脱離するものである。Bはアニオンとして、Cはカチオンとして脱離するものが好ましい。
また、塩基としては、アルカリ金属類の水素化物、水酸化物または炭酸塩、有機アミン化合物、金属アルコキシド化合物が好ましい例として挙げられる。
More specifically, in the synthesis method of ii) above, in order to convert the radical polymerizable group precursor into a radical polymerizable group, the leaving groups represented by B and C are eliminated as shown below. It is preferable to use a method of removing by B, that is, a reaction in which C is extracted by the action of a base and B is eliminated.
In the following formula, A is an organic group having a polymerizable group, R 1 to R 3 are each independently a hydrogen atom or a monovalent organic group, and B and C are each independently removed by an elimination reaction. One of A and B is a hydrogen atom, and the other represents a halogen atom, a sulfonate group, an ether group, or a thioether group. The elimination reaction here means that C is extracted by the action of a base and B is eliminated. B is preferably eliminated as an anion and C as a cation.
Preferred examples of the base include alkali metal hydrides, hydroxides or carbonates, organic amine compounds, and metal alkoxide compounds.
また、上記iii)の合成方法において、ラジカル重合性基導入のための反応性基を有するモノマーとしては、反応性基としてカルボキシル基、水酸基、エポキシ基、またはイソシアネート基を有するモノマーが挙げられる。ポリマーの反応性基と、モノマー中の反応性基との組み合わせとしては、以下のようなパターンがある。
即ち、(ポリマーの反応性基、モノマーの反応性基)=(カルボキシル基、エポキシ基)、(カルボキシル基、イソシアネート基)、(水酸基、エポキシ基)、(水酸基、イソシアネート基)、(イソシアネート基、水酸基)、(イソシアネート基、カルボキシル基)、(エポキシ基、カルボキシル基)等を挙げることができる。
In the synthesis method iii), examples of the monomer having a reactive group for introducing a radical polymerizable group include monomers having a carboxyl group, a hydroxyl group, an epoxy group, or an isocyanate group as the reactive group. Examples of the combination of the reactive group of the polymer and the reactive group in the monomer include the following patterns.
That is, (polymer reactive group, monomer reactive group) = (carboxyl group, epoxy group), (carboxyl group, isocyanate group), (hydroxyl group, epoxy group), (hydroxyl group, isocyanate group), (isocyanate group, (Hydroxyl group), (isocyanate group, carboxyl group), (epoxy group, carboxyl group) and the like.
なお、本発明のポリマーの合成方法として、側鎖にヒドロキシル基を有するポリマー、および、イソシアネート基とラジカル重合性とを有する化合物を用い、該ヒドロキシル基に該イソシアネート基を付加させることによりL1中のウレタン結合を形成することが好ましい。 As the synthesis method of the polymer of the present invention, the polymer having a hydroxyl group in the side chain, and, using a compound having an isocyanate group and a radical polymerizable, L in 1 by adding the isocyanate groups to the hydroxyl groups It is preferable to form a urethane bond.
非解離性官能基を有するモノマーとしては、例えば、シアノメチル(メタ)アクリレート、2−シアノエチル(メタ)アクリレート、3−シアノプロピル(メタ)アクリレート、2−シアノプロピル(メタ)アクリレート、1−シアノエチル(メタ)アクリレートなどが挙げられる。 Examples of the monomer having a non-dissociable functional group include cyanomethyl (meth) acrylate, 2-cyanoethyl (meth) acrylate, 3-cyanopropyl (meth) acrylate, 2-cyanopropyl (meth) acrylate, 1-cyanoethyl (meth) ) Acrylate and the like.
本発明におけるポリマーの具体例を以下に示すが、これらに限定されるものではない。なお、これらの具体例の重量平均分子量は、いずれも3000〜150000の範囲である。 Although the specific example of the polymer in this invention is shown below, it is not limited to these. In addition, the weight average molecular weights of these specific examples are all in the range of 3000 to 150,000.
<被めっき層形成用組成物>
本発明の被めっき層形成用組成物には、上記ポリマーが含まれる。
被めっき層形成用組成物中のポリマーの含有量は特に制限されないが、組成物全量に対して、2〜50質量%が好ましく、5〜30質量%がより好ましい。上記範囲内であれば、組成物の取扱い性に優れ、後述するポリマー層の層厚の制御などがしやすい。
<Composition for plating layer formation>
The composition for forming a layer to be plated of the present invention contains the polymer.
Although content of the polymer in the composition for to-be-plated layer forming is not restrict | limited in particular, 2-50 mass% is preferable with respect to the composition whole quantity, and 5-30 mass% is more preferable. If it is in the said range, the handleability of a composition will be excellent and it will be easy to control the layer thickness of the polymer layer mentioned later.
(溶剤)
本発明の被めっき層形成用組成物は、上記ポリマー以外に、溶剤を含んでいてもよい。
使用できる溶剤としては、例えば、メタノール、エタノール、プロパノール、エチレングリコール、グリセリン、プロピレングリコールモノメチルエーテルなどのアルコール系溶剤、酢酸などの酸、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン系溶剤、ホルムアミド、ジメチルアセトアミド、N−メチルピロリドンなどのアミド系溶剤、アセトニトリル、プロピロニトリルなどのニトリル系溶剤、酢酸メチル、酢酸エチルなどのエステル系溶剤、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート系溶剤、この他にも、エーテル系溶剤、グリコール系溶剤、アミン系溶剤、チオール系溶剤、ハロゲン系溶剤などが挙げられる。
この中でも、アミド系溶剤、ケトン系溶剤、ニトリル系溶剤、カーボネート系溶剤が好ましく、具体的には、アセトン、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、アセトニトリル、プロピオニトリル、N−メチルピロリドン、ジメチルカーボネートが好ましい。
また、上記ポリマーを含有する組成物を塗布液として用いる場合には、取り扱い安さから、沸点が50〜150℃の溶剤を用いることが好ましい。
なお、これらの溶剤は単一で使用してもよいし、混合して使用してもよい。
(solvent)
The composition for forming a plated layer of the present invention may contain a solvent in addition to the polymer.
Examples of solvents that can be used include alcohol solvents such as methanol, ethanol, propanol, ethylene glycol, glycerin, and propylene glycol monomethyl ether, acids such as acetic acid, ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone, formamide, dimethylacetamide, Amide solvents such as N-methylpyrrolidone, nitrile solvents such as acetonitrile and propyronitrile, ester solvents such as methyl acetate and ethyl acetate, carbonate solvents such as dimethyl carbonate and diethyl carbonate, and other ether solvents A solvent, a glycol solvent, an amine solvent, a thiol solvent, a halogen solvent, etc. are mentioned.
Among these, amide solvents, ketone solvents, nitrile solvents, and carbonate solvents are preferable, and specifically, acetone, dimethylacetamide, methyl ethyl ketone, cyclohexanone, acetonitrile, propionitrile, N-methylpyrrolidone, and dimethyl carbonate are preferable. .
Moreover, when using the composition containing the said polymer as a coating liquid, it is preferable to use the solvent whose boiling point is 50-150 degreeC from handling ease.
In addition, these solvents may be used alone or in combination.
また、更に、該組成物には、必要に応じて、界面活性剤、可塑剤、重合禁止剤、硬化剤/硬化促進剤、難燃化剤(例えば、りん系難燃化剤)、希釈剤やチキソトロピー化剤、顔料、消泡剤、レべリング剤、カップリング剤などを添加してもよい。 Further, the composition may include a surfactant, a plasticizer, a polymerization inhibitor, a curing agent / curing accelerator, a flame retardant (for example, a phosphorus flame retardant), a diluent as necessary. And thixotropic agents, pigments, antifoaming agents, leveling agents, coupling agents and the like may be added.
任意の基板などにポリマー層を形成する際に、組成物を液状のまま接触させる場合、任意の方法により行うことができる。塗布法によりポリマー層を形成する場合の塗布量は、めっき触媒またはその前駆体との充分な相互作用性の点、および、均一な塗布膜を得る点から、固形分換算で0.1g/m2〜10g/m2が好ましく、特に0.5g/m2〜5g/m2が好ましい。 When the polymer layer is formed on an arbitrary substrate or the like, the composition can be contacted in a liquid state by any method. The coating amount when the polymer layer is formed by the coating method is 0.1 g / m in terms of solid content from the viewpoint of sufficient interaction with the plating catalyst or its precursor and the point of obtaining a uniform coating film. 2 to 10 g / m 2 are preferred, particularly preferably 0.5g / m 2 ~5g / m 2 .
<積層体>
本発明の被めっき層形成用組成物は、任意の固体表面にめっき金属の受容層を形成するのに有用である。従って、任意の基板上に、本発明の被めっき層形成用組成物を用いて形成されるポリマー層を備える積層体は、基板上に密着性良好なめっき膜を形成するのに有用である。
<Laminated body>
The composition for forming a plated layer of the present invention is useful for forming a receiving layer of a plated metal on an arbitrary solid surface. Therefore, a laminate comprising a polymer layer formed using the composition for forming a layer to be plated of the present invention on an arbitrary substrate is useful for forming a plating film with good adhesion on the substrate.
<表面金属膜材料の製造方法>
次に、本発明の被めっき層形成用組成物を用いた表面金属膜材料の製造方法について、以下に説明する。本発明の表面金属膜材料の製造方法は特に限定されないが、以下の(a1)〜(a3)工程を経て製造されることが好ましい。
(a1)基板上に、上記被めっき層形成用組成物を用いてポリマー層を形成する工程
(a2)該ポリマー層にめっき触媒またはその前駆体を付与する工程、
(a3)該めっき触媒またはその前駆体に対してめっきを行う工程
ここで、(a1)工程が、基板上に、上述したポリマーを直接化学結合させることにより行われることが好ましい。
また、(a3)工程におけるめっき工程は、無電解めっき工程であることが好ましい。
以下、各工程について説明する。
<Method for producing surface metal film material>
Next, the manufacturing method of the surface metal film material using the composition for forming a to-be-plated layer of this invention is demonstrated below. Although the manufacturing method of the surface metal film material of this invention is not specifically limited, It is preferable to manufacture through the following (a1)-(a3) processes.
(A1) a step of forming a polymer layer on the substrate using the composition for forming a layer to be plated (a2) a step of applying a plating catalyst or a precursor thereof to the polymer layer;
(A3) Step of performing plating on the plating catalyst or precursor thereof Here, the step (a1) is preferably performed by directly chemically bonding the above-described polymer on the substrate.
Moreover, it is preferable that the plating step in the step (a3) is an electroless plating step.
Hereinafter, each step will be described.
<(a1)工程(ポリマー層形成工程)>
(a1)工程は、上記組成物を用いて基板上にポリマー層を製造する工程であって、めっき触媒またはその前駆体と相互作用を形成する非解離性官能基、ラジカル重合性基、および特定官能基を有するポリマーを基板表面と直接化学結合させることにより行われることが好ましい。
この工程により、基板上にポリマー層を有する積層体を得ることができる。また、(a1)工程が、(a1−1)基材上に、重合開始剤を含有する、または重合開始可能な官能基を有する重合開始層(または、密着補助層)が形成された基板を製造する工程と、(a1−2)該重合開始層(または、密着補助層)上に、非解離性官能基を有し、且つ、該重合開始層(または、密着補助層)と直接化学結合したポリマーからなるポリマー層を形成する工程であることも好ましい態様である。
また、上記(a1−2)工程は、重合開始層(または、密着補助層)上に、上述したポリマーを接触させた後、エネルギーを付与することにより、基板表面に当該ポリマーを直接化学結合させる工程であることが好ましい。
<(A1) Step (Polymer Layer Forming Step)>
The step (a1) is a step of producing a polymer layer on the substrate using the above composition, and includes a non-dissociative functional group, a radical polymerizable group, and a specific that form an interaction with the plating catalyst or its precursor. It is preferably carried out by directly chemically bonding a polymer having a functional group to the substrate surface.
By this step, a laminate having a polymer layer on the substrate can be obtained. In the step (a1), (a1-1) a substrate on which a polymerization initiator layer containing a polymerization initiator or having a functional group capable of initiating polymerization (or a close adhesion auxiliary layer) is formed. And (a1-2) a non-dissociative functional group on the polymerization initiation layer (or adhesion auxiliary layer) and direct chemical bonding with the polymerization initiation layer (or adhesion assistance layer) It is also a preferred embodiment that it is a step of forming a polymer layer made of the polymer.
In the step (a1-2), the polymer is directly bonded to the surface of the substrate by applying energy after contacting the polymer described above on the polymerization initiation layer (or adhesion auxiliary layer). It is preferable that it is a process.
(表面グラフト)
基板上におけるポリマー層の形成は、一般的な表面グラフト重合と呼ばれる手段を用いる。グラフト重合とは、高分子化合物鎖上に活性種を与え、これによって重合を開始する別の単量体を更に重合させ、グラフト(接ぎ木)重合体を合成する方法である。特に、活性種を与える高分子化合物が固体表面を形成する時には、表面グラフト重合と呼ばれる。
(Surface graft)
Formation of the polymer layer on the substrate uses a general method called surface graft polymerization. Graft polymerization is a method of synthesizing a graft (grafting) polymer by providing an active species on a polymer compound chain, thereby further polymerizing another monomer that initiates polymerization. In particular, when a polymer compound that gives active species forms a solid surface, this is called surface graft polymerization.
本発明に適用される表面グラフト重合法としては、文献記載の公知の方法をいずれも使用することができる。例えば、新高分子実験学10、高分子学会編、1994年、共立出版(株)発行、p135には表面グラフト重合法として光グラフト重合法、プラズマ照射グラフト重合法が記載されている。また、吸着技術便覧、NTS(株)、竹内監修、1999.2発行、p203、p695には、γ線、電子線などの放射線照射グラフト重合法が記載されている。
光グラフト重合法の具体的方法としては、特開昭63−92658号公報、特開平10−296895号公報および特開平11−119413号公報に記載の方法を使用することができる。
Any known method described in the literature can be used as the surface graft polymerization method applied to the present invention. For example, New Polymer Experimental Science 10, edited by Polymer Society, 1994, published by Kyoritsu Shuppan Co., Ltd., p135 describes a photograft polymerization method and a plasma irradiation graft polymerization method as surface graft polymerization methods. In addition, the adsorption technique manual, NTS Co., Ltd., supervised by Takeuchi, 1999.2, p203, p695 describes radiation-induced graft polymerization methods such as γ rays and electron beams.
As a specific method of the photograft polymerization method, methods described in JP-A-63-92658, JP-A-10-296895, and JP-A-11-119413 can be used.
ポリマー層を形成する際には、上記の表面グラフト法以外にも、高分子化合物鎖の末端に、トリアルコキシシリル基、イソシアネート基、アミノ基、水酸基、カルボキシル基などの反応性官能基を付与し、これと基板表面に存在する官能基とのカップリング反応により結合させる方法を適用することもできる。
これらの方法の中でも、より多くのグラフトポリマーを生成する観点からは、光グラフト重合法、特に、UV光による光グラフト重合法を用いてポリマー層を形成することが好ましい。
When forming the polymer layer, in addition to the surface grafting method described above, reactive functional groups such as trialkoxysilyl groups, isocyanate groups, amino groups, hydroxyl groups, and carboxyl groups are added to the ends of the polymer compound chains. In addition, a method of coupling by a coupling reaction between this and a functional group present on the substrate surface can be applied.
Among these methods, from the viewpoint of generating more graft polymers, it is preferable to form a polymer layer using a photograft polymerization method, particularly a photograft polymerization method using UV light.
(基板)
本発明における「基板」とは、その表面が、めっき触媒またはその前駆体と相互作用を形成する官能基を有するポリマーが直接化学結合した状態を形成しうる機能を有するものであり、基板自体がこのような表面特性を有するものであってもよく、また、基材上に別途中間層(例えば、後述する重合開始層または密着補助層)を設け、該中間層がこのような特性を有するものであってもよい。つまり、基材と該中間層とで基板を形成していてもよい。
(substrate)
The “substrate” in the present invention has a function that allows the surface to form a state in which a polymer having a functional group that interacts with a plating catalyst or a precursor thereof is directly chemically bonded. The surface layer may have such surface characteristics, or an intermediate layer (for example, a polymerization initiation layer or an adhesion auxiliary layer described later) may be separately provided on the substrate, and the intermediate layer may have such characteristics. It may be. That is, you may form the board | substrate with the base material and this intermediate | middle layer.
(基材、基板)
本発明に使用される基材は、寸度的に安定な板状物であることが好ましく、例えば、紙、プラスチック(例えば、ポリエチレン、ポリプロピレン、ポリスチレン等)がラミネートされた紙、金属板(例えば、アルミニウム、亜鉛、銅等)、プラスチックフィルム(例えば、二酢酸セルロース、三酢酸セルロース、プロピオン酸セルロース、酪酸セルロース、酢酸セルロース、硝酸セルロース、ポリエチレンテレフタレート、ポリエチレン、ポリスチレン、ポリプロピレン、ポリカーボネート、ポリビニルアセタール、ポリイミド、エポキシ、ビスマレインイミド樹脂、ポリフェニレンオキサイド、液晶ポリマー、ポリテトラフルオロエチレン等)、上記の如き金属がラミネート若しくは蒸着された紙またはプラスチックフィルム等が含まれる。本発明に使用される基材としては、エポキシ樹脂、またはポリイミド樹脂が好ましい。
なお、これらの基材表面が、上記ポリマーが直接化学結合した状態を形成しうる機能を有している場合には、その基材そのものを基板として用いてもよい。
(Base material, substrate)
The substrate used in the present invention is preferably a dimensionally stable plate, for example, paper, paper laminated with plastic (for example, polyethylene, polypropylene, polystyrene, etc.), metal plate (for example, , Aluminum, zinc, copper, etc.), plastic films (eg, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate, cellulose nitrate, polyethylene terephthalate, polyethylene, polystyrene, polypropylene, polycarbonate, polyvinyl acetal, polyimide , Epoxy, bismaleimide resin, polyphenylene oxide, liquid crystal polymer, polytetrafluoroethylene, etc.), and paper or plastic film on which a metal as described above is laminated or vapor-deposited. As a base material used for this invention, an epoxy resin or a polyimide resin is preferable.
In addition, when the base material surface has a function capable of forming a state in which the polymer is directly chemically bonded, the base material itself may be used as a substrate.
本発明における基板として、特開2005−281350号公報の段落番号[0028]〜[0088]に記載の重合開始部位を骨格中に有するポリイミドを含む基材を用いることもできる。 As the substrate in the present invention, a substrate containing polyimide having a polymerization initiation site described in paragraphs [0028] to [0088] of JP-A-2005-281350 in the skeleton can also be used.
また、本発明の金属パターン材料の製造方法により得られた金属パターン材料は、半導体パッケージ、各種電気配線基板等に適用することができる。このような用途に用いる場合は、以下に示す、絶縁性樹脂を含んだ基板、具体的には、絶縁性樹脂からなる基板、または、絶縁性樹脂からなる層を基材上に有する基板を用いることが好ましい。 Moreover, the metal pattern material obtained by the manufacturing method of the metal pattern material of the present invention can be applied to semiconductor packages, various electric wiring boards, and the like. When used for such applications, the following substrate containing an insulating resin, specifically, a substrate made of an insulating resin or a substrate having a layer made of an insulating resin on a base material is used. It is preferable.
絶縁性樹脂からなる基板、絶縁性樹脂からなる層を得る場合には、公知の絶縁性樹脂組成物が用いられる。この絶縁性樹脂組成物には、主たる樹脂に加え、目的に応じて種々の添加物を併用することができる。例えば、絶縁層の強度を高める目的で、多官能のアクリレートモノマーを添加する、絶縁層の強度を高め、電気特性を改良する目的で、無機または有機の粒子を添加する、などの手段をとることもできる。
なお、本発明における「絶縁性樹脂」とは、公知の絶縁膜や絶縁層に使用しうる程度の絶縁性を有する樹脂であることを意味するものであり、完全な絶縁体でないものであっても、目的に応じた絶縁性を有する樹脂であれば、本発明に適用しうる。
When obtaining a substrate made of an insulating resin or a layer made of an insulating resin, a known insulating resin composition is used. In addition to the main resin, various additives can be used in combination with the insulating resin composition depending on the purpose. For example, taking a measure such as adding a polyfunctional acrylate monomer for the purpose of increasing the strength of the insulating layer, or adding inorganic or organic particles for the purpose of increasing the strength of the insulating layer and improving the electrical characteristics. You can also.
In addition, the “insulating resin” in the present invention means a resin having an insulating property that can be used for a known insulating film or insulating layer, and is not a perfect insulator. In addition, any resin having insulating properties according to the purpose can be applied to the present invention.
絶縁性樹脂の具体例としては、例えば、熱硬化性樹脂でも熱可塑性樹脂でも、またそれらの混合物でもよく、例えば、熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂、ビスマレイミド樹脂、ポリオレフィン系樹脂、イソシアネート系樹脂等が挙げられる。
エポキシ樹脂としては、例えば、クレゾールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、ビフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、トリグリシジルイソシアヌレート、脂環式エポキシ樹脂等が挙げられる。これらは、単独で用いてもよく、2種以上併用してもよい。それにより、耐熱性等に優れるものとなる。
ポリオレフィン系樹脂としては、例えば、ポリエチレン、ポリスチレン、ポリプロピレン、ポリイソブチレン、ポリブタジエン、ポリイソプレン、シクロオレフィン系樹脂、これらの樹脂の共重合体等が挙げられる。
Specific examples of the insulating resin may be, for example, a thermosetting resin, a thermoplastic resin, or a mixture thereof. For example, examples of the thermosetting resin include an epoxy resin, a phenol resin, a polyimide resin, a polyester resin, and a screw. Maleimide resin, polyolefin resin, isocyanate resin and the like can be mentioned.
Examples of the epoxy resin include cresol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, alkylphenol novolac type epoxy resin, biphenol F type epoxy resin, naphthalene type epoxy resin, dicyclo Examples include pentadiene type epoxy resins, epoxidized products of condensates of phenols and aromatic aldehydes having a phenolic hydroxyl group, triglycidyl isocyanurate, and alicyclic epoxy resins. These may be used alone or in combination of two or more. Thereby, it will be excellent in heat resistance.
Examples of the polyolefin resin include polyethylene, polystyrene, polypropylene, polyisobutylene, polybutadiene, polyisoprene, cycloolefin resin, and copolymers of these resins.
熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリエーテルスルフォン、ポリスルフォン、ポリフェニレンスルフォン、ポリフェニレンサルファイド、ポリフェニルエーテル、ポリエーテルイミド等が挙げられる。
その他の熱可塑性樹脂としては、1,2−ビス(ビニルフェニレン)エタン樹脂(1,2−Bis(vinylphenyl)ethane)、または、これとポリフェニレンエーテル樹脂との変性樹脂(天羽悟ら、Journal of Applied Polymer Science Vol.92, 1252-1258(2004)に記載)、液晶性ポリマー(具体的には、クラレ製のベクスターなど)、フッ素樹脂(PTFE)などが挙げられる。
Examples of the thermoplastic resin include phenoxy resin, polyether sulfone, polysulfone, polyphenylene sulfone, polyphenylene sulfide, polyphenyl ether, polyether imide, and the like.
Other thermoplastic resins include 1,2-bis (vinylphenylene) ethane resin (1,2-Bis (vinylphenyl) ethane) or a modified resin of this with a polyphenylene ether resin (Satoru Amaha et al., Journal of Applied Polymer). Science Vol. 92, 1252-1258 (2004)), liquid crystalline polymers (specifically, Kuraray Bexter, etc.), fluororesin (PTFE), and the like.
熱可塑性樹脂と熱硬化性樹脂とは、それぞれ単独で用いてもよいし、2種以上併用してもよい。これは、それぞれの欠点を補い、より優れた効果を発現する目的で行われる。例えば、ポリフェニレンエーテル(PPE)などの熱可塑性樹脂は熱に対しての耐性が低いため、熱硬化性樹脂などとのアロイ化が行われている。たとえば、PPEとエポキシ、トリアリルイソシアネートとのアロイ化、或いは重合性官能基を導入したPPEとそのほかの熱硬化性樹脂とのアロイ化として使用される。またシアネートエステルは熱硬化性の中ではもっとも誘電特性の優れる樹脂であるが、それ単独で使用されることは少なく、エポキシ樹脂、マレイミド樹脂、熱可塑性樹脂などの変性樹脂として使用される。これらの詳細に関しては、“電子技術”2002/9号、P35に記載されている。また、熱硬化性樹脂として、エポキシ樹脂および/またはフェノール樹脂を含み、熱可塑性樹脂としてフェノキシ樹脂および/またはポリエーテルスルフォン(PES)を含むものも誘電特性を改善するために使用される。 The thermoplastic resin and the thermosetting resin may be used alone or in combination of two or more. This is performed for the purpose of making up for each defect and producing a better effect. For example, thermoplastic resins such as polyphenylene ether (PPE) have a low resistance to heat, and are therefore alloyed with thermosetting resins. For example, it is used for alloying PPE with epoxy and triallyl isocyanate, or alloying PPE with a polymerizable functional group introduced and other thermosetting resins. Cyanate ester is a resin having the most excellent dielectric properties among thermosetting, but it is rarely used alone, and is used as a modified resin such as epoxy resin, maleimide resin, and thermoplastic resin. Details thereof are described in "Electronic Technology" 2002/9, P35. Moreover, what contains an epoxy resin and / or a phenol resin as a thermosetting resin, and contains a phenoxy resin and / or polyether sulfone (PES) as a thermoplastic resin is also used in order to improve a dielectric characteristic.
本発明に用いられる基板は、半導体パッケージ、各種電気配線基板等への用途を考慮すると、表面凹凸(後述するRz)が500nm以下であることが好ましく、より好ましくは100nm以下、更に好ましくは50nm以下、最も好ましくは20nm以下である。この基板の表面凹凸(中間層や重合開始層が設けられている場合はその層の表面凹凸)が小さくなるほど、得られた金属パターン材料を配線等に適用した場合に、高周波送電時の電気損失が少なくなり好ましい。 The substrate used in the present invention has a surface roughness (Rz described later) of preferably 500 nm or less, more preferably 100 nm or less, and even more preferably 50 nm or less in consideration of applications to semiconductor packages, various electric wiring boards and the like. Most preferably, it is 20 nm or less. The smaller the surface irregularity of this substrate (the surface irregularity of the layer when an intermediate layer or polymerization initiation layer is provided), the smaller the electrical loss during high-frequency power transmission when the obtained metal pattern material is applied to wiring etc. Is preferable.
本発明においては、基板が板状物、例えば、樹脂フィルム(プラスチックフィルム)であれば、その両面に(a1)工程を施すことで、樹脂フィルムの両面にポリマー層を形成することができる。このように樹脂フィルム(基板)の両面にポリマー層が形成された場合には、更に、後述する(a2)工程、および(a3)工程を行うことで、両面に金属膜が形成された表面金属膜材料を得ることができる。 In this invention, if a board | substrate is a plate-shaped object, for example, a resin film (plastic film), a polymer layer can be formed on both surfaces of a resin film by giving the (a1) process to both surfaces. Thus, when a polymer layer is formed on both surfaces of a resin film (substrate), the surface metal in which a metal film is formed on both surfaces by further performing steps (a2) and (a3) described later. A membrane material can be obtained.
本発明において、基板表面に活性種を与え、それを起点としてグラフトポリマーを生成させる表面グラフト重合法を用いる場合、グラフトポリマーの生成に際しては、基材上に、重合開始剤を含有する、または重合開始可能な官能基を有する重合開始層を形成した基板を用いることが好ましい。この基板を用いることで、活性点を効率よく発生させ、より多くのグラフトポリマーを生成させることができる。
以下、本発明における重合開始層について説明する。なお、基材が板状物であれば、その両面に重合開始層を形成してもよい。
In the present invention, when a surface graft polymerization method is used in which an active species is given to the substrate surface and a graft polymer is generated using the active species as a starting point, a polymerization initiator is contained on the base material or polymerization is performed when the graft polymer is generated. It is preferable to use a substrate on which a polymerization initiating layer having a functional group capable of initiating is formed. By using this substrate, active sites can be efficiently generated and more graft polymers can be generated.
Hereinafter, the polymerization initiation layer in the present invention will be described. In addition, if a base material is a plate-shaped object, you may form a polymerization start layer on both surfaces.
(重合開始層)
本発明における重合開始層としては、高分子化合物と重合開始剤とを含む層や、重合性化合物と重合開始剤とを含む層、重合開始可能な官能基を有する層が挙げられる。本発明における重合開始層は、必要な成分を、溶解可能な溶媒に溶解し、塗布などの方法で基板表面上に設け、加熱または光照射により硬膜し、形成することができる。
(Polymerization initiation layer)
Examples of the polymerization initiation layer in the present invention include a layer containing a polymer compound and a polymerization initiator, a layer containing a polymerizable compound and a polymerization initiator, and a layer having a functional group capable of initiating polymerization. The polymerization initiating layer in the present invention can be formed by dissolving necessary components in a solvent that can be dissolved, providing the components on the surface of the substrate by a method such as coating, and hardening by heating or light irradiation.
(a)重合性化合物
重合開始層に用いられる重合性化合物は、基材との密着性が良好であり、且つ、活性光線照射などのエネルギー付与により表面グラフトポリマーを生成するものであれば特に制限はなく、多官能モノマー等を用いてもよいが、特に好ましくは、分子内に重合性基を有する疎水性ポリマーを用いる態様である。
(A) Polymerizable compound The polymerizable compound used in the polymerization initiating layer is particularly limited as long as it has good adhesion to the substrate and produces a surface graft polymer by applying energy such as irradiation with actinic rays. However, a polyfunctional monomer or the like may be used, but an embodiment using a hydrophobic polymer having a polymerizable group in the molecule is particularly preferable.
重合性化合物の含有量は、重合性層中、固形分で0〜100質量%の範囲が好ましく、10〜80質量%の範囲が特に好ましい。 The content of the polymerizable compound is preferably in the range of 0 to 100% by mass and particularly preferably in the range of 10 to 80% by mass in terms of solid content in the polymerizable layer.
(b)重合開始剤
重合開始層には、エネルギー付与により重合開始能を発現させるための重合開始剤を含有することが好ましい。ここで用いられる重合開始剤は、例えば、特開2007−154306号公報の段落番号〔0043〕から〔0044〕に記載されており、これらに代表される公知の重合開始剤を目的に応じて、適宜選択して用いることができる。中でも、光重合を利用することが製造適性の観点から好適であり、このため、光重合開始剤を用いることが好ましい。
(B) Polymerization initiator The polymerization initiator layer preferably contains a polymerization initiator for expressing the polymerization initiating ability by applying energy. The polymerization initiator used here is described, for example, in paragraph numbers [0043] to [0044] of JP-A No. 2007-154306, and known polymerization initiators represented by these may be used depending on the purpose. It can be appropriately selected and used. Among these, use of photopolymerization is preferable from the viewpoint of production suitability, and therefore, it is preferable to use a photopolymerization initiator.
光重合開始剤は、照射される活性光線に対して活性であり、表面グラフト重合が可能なものであれば、特に制限はなく、例えば、ラジカル重合開始剤、アニオン重合開始剤、カチオン重合開始剤などを用いることができるが、反応性の観点からはラジカル重合開始剤が好ましい。 The photopolymerization initiator is not particularly limited as long as it is active with respect to irradiated actinic rays and can be surface-grafted, and examples thereof include radical polymerization initiators, anionic polymerization initiators, and cationic polymerization initiators. From the viewpoint of reactivity, a radical polymerization initiator is preferable.
重合開始剤の含有量は、重合開始層中、固形分で0.1〜70質量%の範囲が好ましく、1〜40質量%の範囲が特に好ましい。 The content of the polymerization initiator is preferably in the range of 0.1 to 70% by mass, particularly preferably in the range of 1 to 40% by mass in terms of solid content in the polymerization initiator layer.
重合性化合物および重合開始剤を塗布する際に用いる溶媒は、それらの成分が溶解するものであれば特に制限されない。乾燥の容易性、作業性の観点からは、沸点が高すぎない溶媒が好ましく、具体的には、沸点40〜150℃程度のものを選択すればよい。
具体的には、特開2007−154306号公報段落番号〔0045〕に記載されている溶剤を使用することができる。
これらの溶媒は、単独または混合して使用することができる。そして、塗布溶液中の固形分の濃度は、2〜50質量%が適当である。
The solvent used when applying the polymerizable compound and the polymerization initiator is not particularly limited as long as these components can be dissolved. From the viewpoint of easy drying and workability, a solvent having a boiling point that is not too high is preferable. Specifically, a solvent having a boiling point of about 40 to 150 ° C. may be selected.
Specifically, the solvent described in paragraph number [0045] of JP-A-2007-154306 can be used.
These solvents can be used alone or in combination. The solid content in the coating solution is suitably 2 to 50% by mass.
重合開始層を基板上に形成する場合の塗布量は、充分な重合開始能の発現、および、膜性を維持して膜剥がれを防止するといった観点からは、乾燥後の質量で、0.1g/m2〜20g/m2が好ましく、更に、1g/m2〜15g/m2が好ましい。 The coating amount when the polymerization initiating layer is formed on the substrate is 0.1 g in terms of mass after drying from the viewpoint of sufficient polymerization initiating ability and prevention of film peeling while maintaining film properties. / M 2 to 20 g / m 2 is preferable, and 1 g / m 2 to 15 g / m 2 is more preferable.
(グラフトポリマーの生成)
(a1)工程におけるグラフトポリマーの生成態様としては、前述した如く、基板表面に存在する官能基と、高分子化合物がその末端または側鎖に有する反応性官能基とのカップリング反応を利用する方法や、光グラフト重合法を用いることができる。
本発明においては、基材上に重合開始層が形成された基板を用い、該重合開始層上に、めっき触媒またはその前駆体と相互作用を形成する非解離性官能基(相互作用性基)を有し、且つ、該重合開始層と直接化学結合したポリマーを含むポリマー層を形成する態様〔(a1−2)工程〕が好ましい。更に好ましくは、重合開始層上に、上記ポリマーを接触させた後、エネルギーを付与することにより、前記基板表面に当該ポリマーを直接化学結合させる態様である。即ち、上記ポリマーを含有する組成物を、重合開始層表面に接触させながら、当該重合開始層表面に生成する活性種により直接結合させるものである。
(Generation of graft polymer)
As described above, the graft polymer is generated in the step (a1) using a coupling reaction between the functional group present on the substrate surface and the reactive functional group of the polymer compound at the terminal or side chain. Alternatively, a photograft polymerization method can be used.
In the present invention, a substrate having a polymerization initiating layer formed on a base material is used, and a non-dissociative functional group (interactive group) that forms an interaction with the plating catalyst or its precursor on the polymerization initiating layer. And a polymer layer containing a polymer that is directly chemically bonded to the polymerization initiation layer (step (a1-2)) is preferred. More preferably, after the polymer is brought into contact with the polymerization initiating layer, the polymer is directly chemically bonded to the substrate surface by applying energy. That is, the composition containing the polymer is directly bonded by the active species generated on the surface of the polymerization initiation layer while being brought into contact with the surface of the polymerization initiation layer.
(密着補助層)
本発明においては、重合開始層に代えて密着補助層を設けることも可能である。例えば、後述する基材が、多層積層板、ビルドアップ基板、またはフレキシブル基板の材料として用いられてきた公知の絶縁樹脂からなる場合には、該基材との密着性の観点から、密着補助層を形成する際に用いられる樹脂組成物として、絶縁樹脂組成物が用いられることが好ましい。
以下、基材が絶縁樹脂の場合に好適な絶縁樹脂組成物から形成される密着補助層の態様について説明する。
(Adhesion auxiliary layer)
In the present invention, an adhesion auxiliary layer can be provided instead of the polymerization initiation layer. For example, when the base material to be described later is made of a known insulating resin that has been used as a material for a multilayer laminate, a build-up substrate, or a flexible substrate, from the viewpoint of adhesion to the base material, an adhesion auxiliary layer An insulating resin composition is preferably used as the resin composition used when forming the film.
Hereinafter, the aspect of the close_contact | adherence auxiliary | assistant layer formed from an insulating resin composition suitable when a base material is insulating resin is demonstrated.
密着補助層を形成する際に用いられる絶縁樹脂組成物は、基材を構成する電気的絶縁性の樹脂と同じものを含んでいてもよく、異なっていてもよいが、ガラス転移点や弾性率、線膨張係数といった熱物性的が近いものを使用することが好ましい。具体的には、例えば、基材を構成する絶縁樹脂と同じ種類の絶縁樹脂を使用することが密着の点で好ましい。また、これ以外の成分として、密着補助層の強度を高める、また、電気特性を改良するために、無機若しくは有機の粒子を添加してもよい。 The insulating resin composition used when forming the adhesion auxiliary layer may contain the same or different electrically insulating resin that constitutes the substrate, but may have a different glass transition point or elastic modulus. It is preferable to use a material having close thermal properties such as a linear expansion coefficient. Specifically, for example, it is preferable in terms of adhesion to use the same type of insulating resin as that constituting the base material. Further, as other components, inorganic or organic particles may be added in order to increase the strength of the adhesion auxiliary layer and improve the electrical characteristics.
なお、本発明における絶縁樹脂とは、公知の絶縁膜に使用しうる程度の絶縁性を有する樹脂を意味するものであり、完全な絶縁体でないものであっても、目的に応じた絶縁性を有する樹脂であれば、本発明に適用しうる。
絶縁樹脂の具体例としては、例えば、熱硬化性樹脂でも熱可塑性樹脂でもまたそれらの混合物でもよく、例えば、熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂、ビスマレイミド樹脂、ポリオレフィン系樹脂、シソシアネート系樹脂等が挙げられる。
In addition, the insulating resin in the present invention means a resin having an insulating property that can be used for a known insulating film, and even if it is not a complete insulator, it has an insulating property according to the purpose. Any resin can be applied to the present invention.
Specific examples of the insulating resin may be, for example, a thermosetting resin, a thermoplastic resin, or a mixture thereof. Examples of the thermosetting resin include an epoxy resin, a phenol resin, a polyimide resin, a polyester resin, and a bismaleimide resin. , Polyolefin resins, and socyanate resins.
熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリエーテルスルフォン、ポリスルフォン、ポリフェニレンスルフォン、ポリフェニレンサルファイド、ポリフェニルエーテル、ポリエーテルイミド等が挙げられる。
熱可塑性樹脂と熱硬化性樹脂とは、それぞれ単独で用いてもよいし、2種以上併用してもよい。
Examples of the thermoplastic resin include phenoxy resin, polyether sulfone, polysulfone, polyphenylene sulfone, polyphenylene sulfide, polyphenyl ether, polyether imide, and the like.
The thermoplastic resin and the thermosetting resin may be used alone or in combination of two or more.
本発明における密着補助層は、本発明の効果を損なわない限りにおいて、目的に応じて、種々の化合物を添加することができる。
具体的には、例えば、加熱時に応力を緩和させることができる、ゴム、SBRラテックスのような物質、膜性改良のためのバインダー、可塑剤、界面活性剤、粘度調整剤などが挙げられる。
As long as the effect of the present invention is not impaired, various compounds can be added to the adhesion auxiliary layer in the present invention depending on the purpose.
Specific examples include materials such as rubber and SBR latex that can relieve stress during heating, binders for improving film properties, plasticizers, surfactants, viscosity modifiers, and the like.
密着補助層には、前述のように、被めっき層形成用組成物中のポリマーと相互作用を形成し得る活性点を発生させる活性種(化合物)が用いられることが好ましい。この活性点を発生させるためには、何らかのエネルギーを付与すればよく、好ましくは、光(紫外線、可視光線、X線など)、プラズマ(酸素、窒素、二酸化炭素、アルゴンなど)、熱、電気、等が用いられる。更に、酸化性の液体(過マンガン酸カリウム溶液)などによって表面を化学的に分解することで活性点を発生させてもよい。
活性種の例としては、前述した重合開始層中に添加される熱重合開始剤、光重合開始剤が好ましく挙げられる。具体的には、特開2007−154306号公報段落番号〔0043〕、〔0044〕に記載されている。ここで、密着補助層に含有させる重合開始剤の量は、固形分で0.1〜50質量%であることが好ましく、1.0〜30質量%であることがより好ましい。この手段により、密着補助層は前述の重合開始層と同様の機能を有することになる。
As described above, it is preferable to use an active species (compound) that generates an active site capable of forming an interaction with the polymer in the composition for forming a plated layer, as described above. In order to generate this active site, some energy may be applied, and preferably, light (ultraviolet light, visible light, X-ray, etc.), plasma (oxygen, nitrogen, carbon dioxide, argon, etc.), heat, electricity, Etc. are used. Furthermore, active sites may be generated by chemically decomposing the surface with an oxidizing liquid (potassium permanganate solution) or the like.
Preferred examples of the active species include the thermal polymerization initiator and the photopolymerization initiator that are added to the above-described polymerization initiation layer. Specifically, it is described in JP-A-2007-154306, paragraph numbers [0043] and [0044]. Here, the amount of the polymerization initiator to be contained in the adhesion auxiliary layer is preferably 0.1 to 50% by mass, more preferably 1.0 to 30% by mass in terms of solid content. By this means, the adhesion auxiliary layer has the same function as the above-described polymerization initiation layer.
本発明における密着補助層の厚みは、一般に、0.1〜10μmの範囲であり、0.2〜5μmの範囲であることが好ましい。
上記密着補助層を構成する成分を含む塗布液を塗布する際に用いる溶媒は、それらの成分が溶解するものであれば特に制限されない。乾燥の容易性、作業性の観点からは、沸点が高すぎない溶媒が好ましく、具体的には、沸点40〜150℃程度のものを選択すればよい。
具体的には、シクロヘキサノン、メチルエチルケトンなどを使用することができる。上記例示溶媒は、単独または混合して使用することができる。塗布液中の固形分の濃度は、2〜50質量%が適当である。
The thickness of the adhesion auxiliary layer in the present invention is generally in the range of 0.1 to 10 μm, and preferably in the range of 0.2 to 5 μm.
The solvent used when applying the coating solution containing the components constituting the adhesion auxiliary layer is not particularly limited as long as these components can be dissolved. From the viewpoint of easy drying and workability, a solvent having a boiling point that is not too high is preferable. Specifically, a solvent having a boiling point of about 40 to 150 ° C. may be selected.
Specifically, cyclohexanone, methyl ethyl ketone, or the like can be used. The above exemplified solvents can be used alone or in combination. 2-50 mass% is suitable for the density | concentration of the solid content in a coating liquid.
密着補助層を基材上に形成する場合の塗布量は、十分な重合開始能の発現、および、膜性を維持して膜剥がれを防止するといった観点から、乾燥後の質量で、0.1g/m2〜20g/m2が好ましく、0.1g/m2〜15g/m2がより好ましく、0.1g/m2〜2g/m2が更に好ましい。 The coating amount in the case where the adhesion auxiliary layer is formed on the substrate is 0.1 g in terms of the mass after drying from the viewpoints of sufficient polymerization initiating ability and maintaining film properties to prevent film peeling. / m 2 ~20g / m 2 are preferred, more preferably 0.1g / m 2 ~15g / m 2 , 0.1g / m 2 ~2g / m 2 is more preferable.
本発明においては、上記のように、基材上に上記の密着補助層形成用の組成物を塗布などにより配置し、溶剤を除去することにより成膜させて密着補助層を形成するが、この時、加熱および/または光照射を行って硬膜することが好ましい。特に、加熱により乾燥した後、光照射を行って予備硬膜しておくと、重合性化合物のある程度の硬化が予め行なわれるので、密着補助層上にグラフトポリマーが生成した後に密着補助層ごと脱落するといった事態を効果的に抑制し得るため好ましい。
加熱温度と時間は、塗布溶剤が充分乾燥し得る条件を選択すればよいが、製造適性の点からは、温度が100℃以下、乾燥時間は30分以内が好ましく、乾燥温度40〜80℃、乾燥時間10分以内の範囲の加熱条件を選択することがより好ましい。
本発明においては、ポリマー層の下層として、重合開始層または密着補助層を設けることが可能であり、密着補助層を設けることが好ましい。
In the present invention, as described above, the composition for forming an adhesion auxiliary layer is disposed on a base material by coating or the like, and the film is formed by removing the solvent to form the adhesion auxiliary layer. Sometimes, it is preferable to harden by heating and / or light irradiation. In particular, if the film is dried by heating and then preliminarily cured by light irradiation, the polymerizable compound is cured to some extent in advance, so that after the graft polymer is formed on the adhesion auxiliary layer, the adhesion auxiliary layer is removed. This is preferable because it is possible to effectively suppress such a situation.
The heating temperature and time may be selected under conditions that allow the coating solvent to sufficiently dry, but from the viewpoint of production suitability, the temperature is 100 ° C. or less, the drying time is preferably within 30 minutes, and the drying temperature is 40 to 80 ° C. It is more preferable to select heating conditions within a drying time of 10 minutes.
In the present invention, it is possible to provide a polymerization initiation layer or a close adhesion auxiliary layer as a lower layer of the polymer layer, and it is preferable to provide a close adhesion auxiliary layer.
被めっき層形成用組成物と上述した基板との接触は、所望により重合開始層または密着補助層が形成された基板を、被めっき層形成用組成物中に浸漬することで行ってもよいが、取り扱い性や製造効率の観点からは、後述するように、本発明の組成物からなる層を基板表面(重合開始層または密着補助層表面)に、塗布法により形成することが好ましい。 The contact between the composition for forming a layer to be plated and the above-described substrate may be performed by immersing the substrate on which the polymerization initiation layer or the adhesion auxiliary layer is formed in the composition for forming a layer to be plated, if desired. From the viewpoint of handleability and production efficiency, as described later, it is preferable to form a layer comprising the composition of the present invention on the substrate surface (polymerization initiation layer or adhesion auxiliary layer surface) by a coating method.
上述した被めっき層形成用組成物を接触させる場合には、その塗布量は、めっき触媒またはその前駆体との充分な相互作用形成性の観点から、固形分換算で、0.1g/m2〜10g/m2が好ましく、特に0.5g/m2〜5g/m2が好ましい。
なお、基板上に、上記組成物を塗布し、乾燥させて、ポリマー層を形成する場合、塗布と乾燥との間に、20℃〜40℃で0.5時間〜2時間放置させて、残存する溶剤を除去してもよい。
When the above-described composition for forming a layer to be plated is brought into contact, the coating amount is 0.1 g / m 2 in terms of solid content from the viewpoint of sufficient interaction formation with the plating catalyst or its precursor. preferably to 10 g / m 2, especially 0.5g / m 2 ~5g / m 2 is preferred.
In addition, when the said composition is apply | coated and dried on a board | substrate and it forms and forms a polymer layer, it is left to stand at 20 to 40 degreeC for 0.5 to 2 hours between application | coating and drying, and it remains. The solvent to be removed may be removed.
(エネルギーの付与)
基板表面へのエネルギー付与方法としては、例えば、加熱や露光等の輻射線照射を用いることができる。例えば、UVランプ、可視光線などによる光照射、ホットプレートなどでの加熱等が可能である。光源としては、例えば、水銀灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、カーボンアーク灯、等がある。放射線としては、電子線、X線、イオンビーム、遠赤外線などがある。また、g線、i線、Deep−UV光、高密度エネルギービーム(レーザービーム)も使用される。
一般的に用いられる具体的な態様としては、熱記録ヘッド等による直接画像様記録、赤外線レーザーによる走査露光、キセノン放電灯などの高照度フラッシュ露光や赤外線ランプ露光などが好適に挙げられる。
エネルギー付与に要する時間としては、目的とするグラフトポリマーの生成量および光源により異なるが、通常、10秒〜5時間の間である。
(Granting energy)
As a method for applying energy to the substrate surface, for example, radiation irradiation such as heating or exposure can be used. For example, light irradiation with a UV lamp, visible light, or the like, heating with a hot plate, or the like is possible. Examples of the light source include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp. Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays. Further, g-line, i-line, deep-UV light, and high-density energy beam (laser beam) are also used.
Specific examples generally used include direct image-like recording using a thermal recording head, scanning exposure using an infrared laser, high-illuminance flash exposure such as a xenon discharge lamp, and infrared lamp exposure.
The time required for energy application is usually 10 seconds to 5 hours, although it varies depending on the amount of the target graft polymer produced and the light source.
なお、エネルギーの付与を露光にて行う場合、その露光パワーは、グラフト重合を容易に進行させるため、また、生成されたグラフトポリマーの分解を抑制するため、10mJ/cm2〜5000mJ/cm2の範囲であることが好ましく、より好ましくは50mJ/cm2〜3000mJ/cm2の範囲である。
また、重合性基および非解離性官能基を有する化合物として、平均分子量2万以上、重合度200量体以上のポリマーを使用すると、低エネルギーの露光でグラフト重合が容易に進行するため、生成したグラフトポリマーの分解を更に抑制することができる。
In the case of performing the application of energy by the exposure, the exposure power, because to easily proceed the graft polymerization, addition, in order to suppress the decomposition of the produced graft polymer, of 10mJ / cm 2 ~5000mJ / cm 2 preferably in the range, more preferably in the range of 50mJ / cm 2 ~3000mJ / cm 2 .
In addition, when a polymer having an average molecular weight of 20,000 or more and a polymerization degree of 200 or more is used as the compound having a polymerizable group and a non-dissociative functional group, it is generated because graft polymerization easily proceeds with low energy exposure. Degradation of the graft polymer can be further suppressed.
以上説明した(a1)工程により、基板上には、相互作用性基を有するグラフトポリマーからなるポリマー層(グラフトポリマー層)を形成することができる。 By the step (a1) described above, a polymer layer (graft polymer layer) composed of a graft polymer having an interactive group can be formed on the substrate.
得られたポリマー層が、例えば、pH12のアルカリ性溶液に添加し、1時間攪拌したときの重合性基部位の分解が50%以下である場合は、該ポリマー層に対して高アルカリ性溶液による洗浄を行うことができる。 When the obtained polymer layer is, for example, added to an alkaline solution having a pH of 12 and stirred for 1 hour and the decomposition of the polymerizable group site is 50% or less, the polymer layer is washed with a highly alkaline solution. It can be carried out.
<(a2)工程(めっき触媒付与工程)>
(a2)工程では、上記(a1)工程において形成されたポリマー層に、めっき触媒またはその前駆体を付与する。本工程においては、ポリマー層を構成するグラフトポリマーが有する非解離性官能基(例えば、シアノ基)が、その機能に応じて、付与されためっき触媒またはその前駆体を付着(吸着)する。
ここで、めっき触媒またはその前駆体としては、後述する(a3)めっき工程における、めっきの触媒や電極として機能するものが挙げられる。そのため、めっき触媒またはその前駆体は、(a3)めっき工程におけるめっきの種類により決定される。
なお、本工程において用いられるめっき触媒またはその前駆体は、無電解めっき触媒またはその前駆体であることが好ましい。
<(A2) process (plating catalyst provision process)>
In the step (a2), a plating catalyst or a precursor thereof is applied to the polymer layer formed in the step (a1). In this step, the non-dissociative functional group (for example, cyano group) of the graft polymer constituting the polymer layer attaches (adsorbs) the applied plating catalyst or its precursor depending on its function.
Here, examples of the plating catalyst or a precursor thereof include those that function as a plating catalyst or an electrode in the plating step (a3) described later. Therefore, the plating catalyst or its precursor is determined by the type of plating in the (a3) plating step.
In addition, it is preferable that the plating catalyst used in this process or its precursor is an electroless plating catalyst or its precursor.
(無電解めっき触媒)
本発明において用いられる無電解めっき触媒は、無電解めっき時の活性核となるものであれば、如何なるものも用いることができる。例えば、自己触媒還元反応の触媒能を有する金属(例えば、Niよりイオン化傾向の低い無電解めっきできる金属として知られるもの)などが挙げられ、具体的には、Pd、Ag、Cu、Ni、Al、Fe、Coなどが挙げられる。中でも、多座配位可能なものが好ましく、特に、配位可能な官能基の種類数、触媒能の高さから、Pdが特に好ましい。
この無電解めっき触媒は、金属コロイドとして用いてもよい。一般に、金属コロイドは、荷電を持った界面活性剤または荷電を持った保護剤が存在する溶液中において、金属イオンを還元することにより作製することができる。金属コロイドの荷電は、ここで使用される界面活性剤または保護剤により調節することができる。
(Electroless plating catalyst)
As the electroless plating catalyst used in the present invention, any catalyst can be used as long as it becomes an active nucleus at the time of electroless plating. Examples thereof include metals having catalytic ability for autocatalytic reduction reaction (for example, those known as metals capable of electroless plating having a lower ionization tendency than Ni), and specifically include Pd, Ag, Cu, Ni, Al Fe, Co and the like. Among them, those capable of multidentate coordination are preferable, and Pd is particularly preferable from the viewpoint of the number of types of functional groups capable of coordination and high catalytic ability.
This electroless plating catalyst may be used as a metal colloid. Generally, a metal colloid can be prepared by reducing metal ions in a solution containing a charged surfactant or a charged protective agent. The charge of the metal colloid can be controlled by the surfactant or protective agent used here.
(無電解めっき触媒前駆体)
本工程において用いられる無電解めっき触媒前駆体とは、化学反応により無電解めっき触媒となりうるものであれば、特に制限なく使用することができる。主には、上記無電解めっき触媒として挙げた金属の金属イオンが用いられる。無電解めっき触媒前駆体である金属イオンは、還元反応により無電解めっき触媒である0価金属になる。無電解めっき触媒前駆体である金属イオンは、ポリマー層へ付与した後、無電解めっき浴への浸漬前に、別途還元反応により0価金属に変化させて無電解めっき触媒としてもよいし、無電解めっき触媒前駆体のまま無電解めっき浴に浸漬し、無電解めっき浴中の還元剤により金属(無電解めっき触媒)に変化させてもよい。
(Electroless plating catalyst precursor)
The electroless plating catalyst precursor used in this step can be used without particular limitation as long as it can become an electroless plating catalyst by a chemical reaction. The metal ions of the metals mentioned as the electroless plating catalyst are mainly used. The metal ion that is an electroless plating catalyst precursor becomes a zero-valent metal that is an electroless plating catalyst by a reduction reaction. The metal ion, which is an electroless plating catalyst precursor, may be used as an electroless plating catalyst after being applied to the polymer layer and before being immersed in the electroless plating bath by changing it to a zero-valent metal by a reduction reaction. The electroplating catalyst precursor may be immersed in an electroless plating bath and changed to a metal (electroless plating catalyst) by a reducing agent in the electroless plating bath.
実際には、無電解めっき前駆体である金属イオンは、金属塩を用いてポリマー層上に付与する。使用される金属塩としては、適切な溶媒に溶解して金属イオンと塩基(陰イオン)とに解離されるものであれば特に制限はなく、M(NO3)n、MCln、M2/n(SO4)、M3/n(PO4)、M(OAc)n(Mは、n価の金属原子を表し、Acはアセチル基を表す)などが挙げられる。金属イオンとしては、上記の金属塩が解離したものを好適に用いることができる。具体例としては、例えば、Agイオン、Cuイオン、Alイオン、Niイオン、Coイオン、Feイオン、Pdイオンが挙げられ、中でも、多座配位可能なものが好ましく、特に、配位可能な官能基の種類数、および触媒能の点で、Pdイオンが好ましい。 In practice, the metal ion that is the electroless plating precursor is applied onto the polymer layer using a metal salt. The metal salt used is not particularly limited as long as it is dissolved in a suitable solvent and dissociated into a metal ion and a base (anion), and M (NO 3 ) n , MCl n , M 2 / n (SO 4 ), M 3 / n (PO 4 ), M (OAc) n (M represents an n-valent metal atom, and Ac represents an acetyl group). As a metal ion, the thing which said metal salt dissociated can be used suitably. Specific examples include, for example, Ag ions, Cu ions, Al ions, Ni ions, Co ions, Fe ions, and Pd ions. Among them, those capable of multidentate coordination are preferable, and in particular, functionalities capable of coordination. Pd ions are preferred in terms of the number of types of groups and catalytic ability.
(その他の触媒)
後述する(a3)工程において、ポリマー層に対して、無電解めっきを行わず直接電気めっきを行うために用いられる触媒としては、0価金属を使用することができる。この0価金属としては、Pd、Ag、Cu、Ni、Al、Fe、Coなどが挙げられ、中でも、多座配位可能なものが好ましく、特に、非解離性官能基(シアノ基)に対する吸着(付着)性、触媒能の高さから、Pd、Ag、Cuが好ましい。
(Other catalysts)
In the step (a3) described later, a zero-valent metal can be used as a catalyst used for performing electroplating directly on the polymer layer without performing electroless plating. Examples of the zero-valent metal include Pd, Ag, Cu, Ni, Al, Fe, and Co. Among them, those capable of multidentate coordination are preferable, and in particular, adsorption to a non-dissociable functional group (cyano group). Pd, Ag, and Cu are preferable from the viewpoint of (adhesion) property and high catalytic ability.
無電解めっき触媒である金属、または、無電解めっき前駆体である金属塩をポリマー層に付与する方法としては、金属を適当な分散媒に分散した分散液、または、金属塩を適当な溶媒で溶解し、解離した金属イオンを含む溶液を調製し、その分散液または溶液をポリマー層上に塗布するか、或いは、その分散液または溶液中にポリマー層が形成された基板を浸漬すればよい。
また、(a1)工程において、表面グラフト重合法を用いる場合、基板上に、上述した組成物を接触させるが、この組成物中に、無電解めっき触媒またはその前駆体を添加する方法を用いてもよい。上記ポリマーと、無電解めっき触媒またはその前駆体と、を含有する組成物を、基板上に接触させて、表面グラフト重合法を適用することにより、非解離性官能基(例えば、シアノ基)を有し、且つ、基板と直接化学結合したポリマーと、めっき触媒またはその前駆体と、を含有するポリマー層を形成することができる。なお、この方法を用いれば、本発明における(a1)工程と(a2)工程とが1工程で行えることになる。
As a method of applying a metal that is an electroless plating catalyst or a metal salt that is an electroless plating precursor to a polymer layer, a dispersion in which a metal is dispersed in an appropriate dispersion medium, or a metal salt with an appropriate solvent. A solution containing dissolved and dissociated metal ions is prepared, and the dispersion or solution is applied on the polymer layer, or the substrate on which the polymer layer is formed is immersed in the dispersion or solution.
Further, in the step (a1), when the surface graft polymerization method is used, the above-described composition is brought into contact with the substrate, and an electroless plating catalyst or a precursor thereof is added to the composition. Also good. A composition containing the polymer and an electroless plating catalyst or a precursor thereof is brought into contact with a substrate, and a surface graft polymerization method is applied to remove a non-dissociative functional group (for example, a cyano group). A polymer layer containing the polymer directly and chemically bonded to the substrate and the plating catalyst or a precursor thereof can be formed. If this method is used, the steps (a1) and (a2) in the present invention can be performed in one step.
(有機溶剤)
めっき触媒またはその前駆体を含有する液(めっき触媒液)には、有機溶剤を含有することができる。この有機溶剤を含有することで、ポリマー層に対するめっき触媒またはその前駆体の浸透性が向上し、非解離性官能基に効率よくめっき触媒またはその前駆体を吸着させることができる。
めっき触媒液の調製に用いられる溶剤としては、ポリマー層に浸透しうる溶剤であれば特に制限は無いが、めっき触媒液の主たる溶媒(分散媒)として一般に水が用いられることから、以下に詳述する水溶性の有機溶剤が好ましい。
(Organic solvent)
The liquid (plating catalyst liquid) containing a plating catalyst or a precursor thereof can contain an organic solvent. By containing this organic solvent, the permeability of the plating catalyst or its precursor to the polymer layer is improved, and the plating catalyst or its precursor can be efficiently adsorbed to the non-dissociative functional group.
The solvent used for the preparation of the plating catalyst solution is not particularly limited as long as it is a solvent that can penetrate into the polymer layer. However, since water is generally used as the main solvent (dispersion medium) of the plating catalyst solution, it will be described in detail below. The water-soluble organic solvents described are preferred.
(水溶性有機溶剤)
本発明のめっき触媒液に使用される水溶性有機溶剤としては、水に1質量%以上溶解する溶剤であれば、特に限定されない。例えば、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、エーテル系溶剤、アミン系溶剤、チオール系溶剤、ハロゲン系溶剤などの水溶性の有機溶剤が挙げられる。
(Water-soluble organic solvent)
The water-soluble organic solvent used in the plating catalyst solution of the present invention is not particularly limited as long as it is a solvent that dissolves 1% by mass or more in water. Examples thereof include water-soluble organic solvents such as ketone solvents, ester solvents, alcohol solvents, ether solvents, amine solvents, thiol solvents, and halogen solvents.
上記のように無電解めっき触媒またはその前駆体を接触させることで、ポリマー層中の非解離性官能基(例えば、シアノ基)に、ファンデルワールス力のような分子間力による相互作用、または、孤立電子対による配位結合による相互作用を利用して、めっき触媒またはその前駆体を吸着させることができる。
このような吸着を充分に行なわせるという観点からは、分散液、溶液、組成物中の金属濃度は、0.001〜50質量%の範囲であることが好ましく、0.005〜30質量%の範囲であることが更に好ましい。また、接触時間としては、30秒〜24時間程度であることが好ましく、1分〜1時間程度であることがより好ましい。
以上説明した(a2)工程を経ることで、ポリマー層中の非解離性官能基(例えば、シアノ基)とめっき触媒またはその前駆体との間に相互作用を形成することができる。
By contacting the electroless plating catalyst or a precursor thereof as described above, interaction with a non-dissociative functional group (for example, cyano group) in the polymer layer by an intermolecular force such as van der Waals force, or The plating catalyst or its precursor can be adsorbed by utilizing the interaction by the coordinate bond by the lone electron pair.
From the viewpoint of sufficiently performing such adsorption, the metal concentration in the dispersion, solution, or composition is preferably in the range of 0.001 to 50% by mass, 0.005 to 30% by mass. More preferably, it is in the range. Further, the contact time is preferably about 30 seconds to 24 hours, more preferably about 1 minute to 1 hour.
Through the step (a2) described above, an interaction can be formed between the non-dissociable functional group (for example, cyano group) in the polymer layer and the plating catalyst or its precursor.
<(a3)工程(めっき工程)>
(a3)工程では、めっき触媒(例えば、無電解めっき触媒)またはその前駆体が付与されたポリマー層に対し、めっきを行うことで、めっき膜(金属膜)が形成される。形成されためっき膜は、優れた導電性、密着性を有する。
本工程において行われるめっきの種類は、無電解めっき、電気めっき等が挙げられ、上記(a2)工程において、ポリマー層との間に相互作用を形成しためっき触媒またはその前駆体の機能によって、選択することができる。
つまり、本工程では、めっき触媒またはその前駆体が付与されたポリマー層に対し、電気めっきを行ってもよいし、無電解めっきを行ってもよい。
中でも、本発明においては、ポリマー層中に発現するハイブリッド構造の形成性および密着性向上の点から、無電解めっきを行うことが好ましい。また、所望の膜厚のめっき層を得るために、無電解めっきの後に、更に電気めっきを行うことがより好ましい態様である。
以下、本工程において好適に行われるめっきについて説明する。
<(A3) Process (Plating Process)>
In the step (a3), a plating film (metal film) is formed by performing plating on a polymer layer to which a plating catalyst (for example, an electroless plating catalyst) or a precursor thereof is applied. The formed plating film has excellent conductivity and adhesion.
The type of plating performed in this step includes electroless plating, electroplating, etc., and is selected depending on the function of the plating catalyst or its precursor that has formed an interaction with the polymer layer in the step (a2). can do.
That is, in this step, electroplating or electroless plating may be performed on the polymer layer provided with the plating catalyst or its precursor.
Among these, in the present invention, it is preferable to perform electroless plating from the viewpoint of the formation of a hybrid structure expressed in the polymer layer and the improvement of adhesion. In order to obtain a plating layer having a desired film thickness, it is a more preferable aspect that electroplating is further performed after electroless plating.
Hereinafter, the plating suitably performed in this process will be described.
(無電解めっき)
無電解めっきとは、めっきとして析出させたい金属イオンを溶かした溶液を用いて、化学反応によって金属を析出させる操作のことをいう。
本工程における無電解めっきは、例えば、無電解めっき触媒が付与された基板を、水洗して余分な無電解めっき触媒(金属)を除去した後、無電解めっき浴に浸漬して行なう。使用される無電解めっき浴としては、一般的に知られている無電解めっき浴を使用することができる。
また、無電解めっき触媒前駆体が付与された基板を、無電解めっき触媒前駆体がポリマー層に吸着または含浸した状態で無電解めっき浴に浸漬する場合には、基板を水洗して余分な前駆体(金属塩など)を除去した後、無電解めっき浴中へ浸漬される。この場合には、無電解めっき浴中において、めっき触媒前駆体の還元とこれに引き続き無電解めっきが行われる。ここで使用される無電解めっき浴としても、上記同様、一般的に知られている無電解めっき浴を使用することができる。
なお、無電解めっき触媒前駆体の還元は、上記のような無電解めっき液を用いる態様とは別に、触媒活性化液(還元液)を準備し、無電解めっき前の別工程として行うことも可能である。触媒活性化液は、無電解めっき触媒前駆体(主に金属イオン)を0価金属に還元できる還元剤を溶解した液で、濃度は0.1〜50質量%、好ましくは1〜30質量%が好適である。還元剤としては、水素化ホウ素ナトリウム、ジメチルアミンボランのようなホウ素系還元剤、ホルムアルデヒド、次亜リン酸などの還元剤を使用することが可能である。
(Electroless plating)
Electroless plating refers to an operation of depositing a metal by a chemical reaction using a solution in which metal ions to be deposited as a plating are dissolved.
The electroless plating in this step is performed, for example, by immersing the substrate provided with the electroless plating catalyst in water and removing excess electroless plating catalyst (metal) and then immersing it in an electroless plating bath. As the electroless plating bath used, a generally known electroless plating bath can be used.
In addition, when the substrate to which the electroless plating catalyst precursor has been applied is immersed in an electroless plating bath in a state where the electroless plating catalyst precursor is adsorbed or impregnated on the polymer layer, the substrate is washed with excess precursor. After removing the body (metal salt, etc.), it is immersed in an electroless plating bath. In this case, reduction of the plating catalyst precursor and subsequent electroless plating are performed in the electroless plating bath. As the electroless plating bath used here, a generally known electroless plating bath can be used as described above.
In addition, the reduction of the electroless plating catalyst precursor may be performed as a separate step before electroless plating by preparing a catalyst activation liquid (reducing liquid) separately from the embodiment using the electroless plating liquid as described above. Is possible. The catalyst activation liquid is a liquid in which a reducing agent capable of reducing an electroless plating catalyst precursor (mainly metal ions) to a zero-valent metal is dissolved, and has a concentration of 0.1 to 50% by mass, preferably 1 to 30% by mass. Is preferred. As the reducing agent, it is possible to use a boron-based reducing agent such as sodium borohydride or dimethylamine borane, or a reducing agent such as formaldehyde or hypophosphorous acid.
一般的な無電解めっき浴の組成としては、溶剤の他に、1.めっき用の金属イオン、2.還元剤、3.金属イオンの安定性を向上させる添加剤(安定剤)が主に含まれている。このめっき浴には、これらに加えて、めっき浴の安定剤など公知の添加物が含まれていてもよい。 As a composition of a general electroless plating bath, in addition to a solvent, 1. metal ions for plating; 2. reducing agent; Additives (stabilizers) that improve the stability of metal ions are mainly included. In addition to these, the plating bath may contain known additives such as a plating bath stabilizer.
めっき浴に用いられる有機溶剤としては、水に可能な溶剤である必要があり、その点から、アセトンなどのケトン類、メタノール、エタノール、イソプロパノールなどのアルコール類が好ましく用いられる。 The organic solvent used in the plating bath needs to be a solvent that can be used in water, and in this respect, ketones such as acetone and alcohols such as methanol, ethanol, and isopropanol are preferably used.
無電解めっき浴に用いられる金属の種類としては、銅、すず、鉛、ニッケル、金、パラジウム、ロジウムが知られており、中でも、導電性の観点からは、銅、金が特に好ましい。
また、上記金属に合わせて最適な還元剤、添加物がある。例えば、銅の無電解めっきの浴は、銅塩としてCuSO4、還元剤としてHCOH、添加剤として銅イオンの安定剤であるEDTAやロッシェル塩などのキレート剤、トリアルカノールアミンなどが含まれている。また、CoNiPの無電解めっきに使用されるめっき浴には、その金属塩として硫酸コバルト、硫酸ニッケル、還元剤として次亜リン酸ナトリウム、錯化剤としてマロン酸ナトリウム、りんご酸ナトリウム、こはく酸ナトリウムが含まれている。また、パラジウムの無電解めっき浴は、金属イオンとして(Pd(NH3)4)Cl2、還元剤としてNH3、H2NNH2、安定化剤としてEDTAが含まれている。これらのめっき浴には、上記成分以外の成分が入っていてもよい。
Copper, tin, lead, nickel, gold, palladium, and rhodium are known as the types of metals used in the electroless plating bath, and copper and gold are particularly preferable from the viewpoint of conductivity.
In addition, there are optimum reducing agents and additives according to the above metals. For example, a copper electroless plating bath contains CuSO 4 as a copper salt, HCOH as a reducing agent, a chelating agent such as EDTA or Rochelle salt, which is a stabilizer for copper ions, and a trialkanolamine. . The plating bath used for electroless plating of CoNiP includes cobalt sulfate and nickel sulfate as metal salts, sodium hypophosphite as a reducing agent, sodium malonate, sodium malate, and sodium succinate as complexing agents. It is included. The palladium electroless plating bath contains (Pd (NH 3 ) 4 ) Cl 2 as metal ions, NH 3 and H 2 NNH 2 as reducing agents, and EDTA as a stabilizer. These plating baths may contain components other than the above components.
このようにして形成される無電解めっきによるめっき膜の膜厚は、めっき浴の金属イオン濃度、めっき浴への浸漬時間、或いは、めっき浴の温度などにより制御することができるが、導電性の観点からは、0.2μm以上であることが好ましく、0.5μm以上であることがより好ましい。
また、めっき浴への浸漬時間としては、1分〜6時間程度であることが好ましく、1分〜3時間程度であることがより好ましい。
The thickness of the plating film formed by electroless plating can be controlled by the metal ion concentration of the plating bath, the immersion time in the plating bath, or the temperature of the plating bath. From the viewpoint, it is preferably 0.2 μm or more, and more preferably 0.5 μm or more.
Further, the immersion time in the plating bath is preferably about 1 minute to 6 hours, and more preferably about 1 minute to 3 hours.
以上のようにして得られた無電解めっきによるめっき膜は、SEMによる断面観察により、ポリマー層中に無電解めっき触媒やめっき金属からなる微粒子がぎっしりと分散しており、更にポリマー層上にめっき金属が析出していることが確認された。基板とめっき膜との界面は、ポリマーと微粒子とのハイブリッド状態であるため、基板(有機成分)と無機物(触媒金属またはめっき金属)との界面が平滑(例えば、凹凸差が500nm以下)であっても、密着性が良好となる。 The electroless plating film obtained as described above has fine particles made of electroless plating catalyst and plating metal dispersed in the polymer layer by cross-sectional observation with SEM. It was confirmed that metal was deposited. Since the interface between the substrate and the plating film is a hybrid state of polymer and fine particles, the interface between the substrate (organic component) and the inorganic substance (catalyst metal or plating metal) is smooth (for example, the unevenness difference is 500 nm or less). However, the adhesion is good.
(電気めっき)
本工程おいては、(a2)工程において付与されためっき触媒またはその前駆体が電極としての機能を有する場合、その触媒またはその前駆体が付与されたポリマー層に対して、電気めっきを行うことができる。
また、前述の無電解めっきの後、形成されためっき膜を電極とし、更に、電気めっきを行ってもよい。これにより基板との密着性に優れた無電解めっき膜をベースとして、そこに新たに任意の厚みをもつめっき膜(金属膜)を容易に形成することができる。このように、無電解めっきの後に、電気めっきを行うことで、金属膜を目的に応じた厚みに形成しうるため、本発明の金属膜を種々の応用に適用するのに好適である。
(Electroplating)
In this step, when the plating catalyst or its precursor applied in step (a2) has a function as an electrode, electroplating is performed on the polymer layer to which the catalyst or its precursor is applied. Can do.
In addition, after the above-described electroless plating, the formed plating film may be used as an electrode, and electroplating may be further performed. As a result, it is possible to easily form a new plating film (metal film) having an arbitrary thickness on the basis of the electroless plating film having excellent adhesion to the substrate. Thus, since electroplating is performed after electroless plating, the metal film can be formed to a thickness according to the purpose, and therefore, the metal film of the present invention is suitable for various applications.
本発明における電気めっきの方法としては、従来公知の方法を用いることができる。なお、本工程の電気めっきに用いられる金属としては、銅、クロム、鉛、ニッケル、金、銀、すず、亜鉛などが挙げられ、導電性の観点から、銅、金、銀が好ましく、銅がより好ましい。 A conventionally known method can be used as the electroplating method in the present invention. In addition, as a metal used for the electroplating of this process, copper, chromium, lead, nickel, gold, silver, tin, zinc, etc. are mentioned. From the viewpoint of conductivity, copper, gold, and silver are preferable, and copper is preferable. More preferred.
また、電気めっきにより得られる金属膜の膜厚は、用途に応じて異なり、めっき浴中に含まれる金属濃度、または、電流密度などを調整することで制御することができる。なお、一般的な電気配線などに用いる場合の膜厚は、導電性の観点から、0.5μm以上であることが好ましく、3μm以上であることがより好ましい。 The film thickness of the metal film obtained by electroplating varies depending on the application and can be controlled by adjusting the metal concentration contained in the plating bath, the current density, or the like. In addition, the film thickness in the case of using it for general electric wiring etc. is preferably 0.5 μm or more, and more preferably 3 μm or more from the viewpoint of conductivity.
本発明において、前述のめっき触媒、めっき触媒前駆体に由来する金属や金属塩、および/または、無電解めっきにより、ポリマー層中に析出した金属が、該層中でフラクタル状の微細構造体として形成されていることによって、金属膜とポリマー層との密着性を更に向上させることができる。
ポリマー層中に存在する金属量は、基板断面を金属顕微鏡にて写真撮影したとき、ポリマー層の最表面から深さ0.5μmまでの領域に占める金属の割合が5〜50面積%であり、ポリマー層と金属界面の算術平均粗さRa(JIS B0633−2001)が0.05μm〜0.5μmである場合に、更に強い密着力が発現される。
In the present invention, the metal or metal salt derived from the above-described plating catalyst, plating catalyst precursor, and / or metal deposited in the polymer layer by electroless plating is used as a fractal microstructure in the layer. By being formed, the adhesion between the metal film and the polymer layer can be further improved.
The amount of metal present in the polymer layer is 5-50% by area of the metal in the region from the outermost surface of the polymer layer to a depth of 0.5 μm when the substrate cross section is photographed with a metal microscope. When the arithmetic average roughness Ra (JIS B0633-2001) between the polymer layer and the metal interface is 0.05 μm to 0.5 μm, a stronger adhesion is exhibited.
<表面金属膜材料>
本発明の表面金属膜材料の製造方法の各工程を経ることで、本発明の表面金属膜材料を得ることができる。
本発明の表面金属膜材料の製造方法により得られた表面金属膜材料は、高温高湿下であっても、金属膜の密着力の変動が少ないといった効果を有する。この表面金属膜材料は、例えば、電磁波防止膜、コーティング膜、2層CCL(Copper Clad Laminate)材料、電気配線用材料等の種々の用途に適用することができる。
<Surface metal film material>
By passing through each process of the manufacturing method of the surface metal film material of this invention, the surface metal film material of this invention can be obtained.
The surface metal film material obtained by the method for producing a surface metal film material of the present invention has an effect that there is little fluctuation in the adhesion of the metal film even under high temperature and high humidity. The surface metal film material can be applied to various uses such as an electromagnetic wave prevention film, a coating film, a two-layer CCL (Copper Clad Laminate) material, and an electric wiring material.
<金属パターン材料、およびその製造方法>
上記の表面金属膜材料における金属膜を、パターン状にエッチングする工程を行うことで、金属パターン材料を製造することができる。即ち、本発明の表面金属膜材料中の金属膜(めっき膜)をパターニングすることで配線(金属パターン)とすることができる。
このエッチング工程(a4工程)について以下に詳述する。
<Metal pattern material and manufacturing method thereof>
A metal pattern material can be manufactured by performing the process of etching the metal film in said surface metal film material in pattern shape. That is, a wiring (metal pattern) can be formed by patterning a metal film (plating film) in the surface metal film material of the present invention.
This etching step (step a4) will be described in detail below.
<(a4)工程(エッチング工程)>
(a4)工程は、上記(a3)工程で形成された金属膜(めっき膜)をパターン状にエッチングする工程である。即ち、本工程では、基板表面全体に形成されためっき膜の不要部分をエッチングで取り除くことで、所望の金属パターンを形成することができる。
この金属パターンの形成には、如何なる手法も使用することができ、具体的には一般的に知られているサブトラクティブ法、セミアディティブ法が用いられる。
<(A4) Step (Etching Step)>
The step (a4) is a step of etching the metal film (plating film) formed in the step (a3) into a pattern. That is, in this step, a desired metal pattern can be formed by removing unnecessary portions of the plating film formed on the entire substrate surface by etching.
Any method can be used to form the metal pattern, and specifically, a generally known subtractive method or semi-additive method is used.
サブトラクティブ法とは、形成されためっき膜上にドライフィルムレジスト層を設けパターン露光、現像により金属パターン部と同じパターンを形成し、ドライフィルムレジストパターンをマスクとしてエッチング液でめっき膜を除去し、金属パターンを形成する方法である。ドライフィルムレジストとしては如何なる材料も使用でき、ネガ型、ポジ型、液状、フィルム状のものが使用できる。また、エッチング方法としては、プリント配線基板の製造時に使用されている方法が何れも使用可能であり、湿式エッチング、ドライエッチング等が使用可能であり、任意に選択すればよい。作業の操作上、湿式エッチングが装置などの簡便性の点で好ましい。エッチング液として、例えば、塩化第二銅、塩化第二鉄等の水溶液を使用することができる。 With the subtractive method, a dry film resist layer is provided on the formed plating film, the same pattern as the metal pattern part is formed by pattern exposure and development, the plating film is removed with an etching solution using the dry film resist pattern as a mask, This is a method of forming a metal pattern. Any material can be used as the dry film resist, and negative, positive, liquid, and film-like ones can be used. Moreover, as an etching method, any method used at the time of manufacturing a printed wiring board can be used, and wet etching, dry etching, and the like can be used, and may be arbitrarily selected. In terms of operation, wet etching is preferable from the viewpoint of simplicity of the apparatus. As an etching solution, for example, an aqueous solution of cupric chloride, ferric chloride, or the like can be used.
また、セミアディティブ法とは、形成されためっき膜上にドライフィルムレジスト層を設け、パターン露光、現像により非金属パターン部と同じパターンを形成し、ドライフィルムレジストパターンをマスクとして電気めっきを行い、ドライフィルムレジストパターンを除去した後にクイックエッチングを実施し、めっき膜をパターン状に除去することで、金属パターンを形成する方法である。ドライフィルムレジスト、エッチング液等はサブトラクティブ法と同様な材料が使用できる。また、電気めっき手法としては上記記載の手法が使用できる。 In addition, the semi-additive method is to provide a dry film resist layer on the formed plating film, form the same pattern as the non-metallic pattern part by pattern exposure and development, and perform electroplating using the dry film resist pattern as a mask, In this method, quick etching is performed after the dry film resist pattern is removed, and the plating film is removed in a pattern to form a metal pattern. The dry film resist, the etching solution, etc. can use the same material as the subtractive method. Moreover, the above-mentioned method can be used as the electroplating method.
以上の(a1)〜(a4)工程を経ることにより、所望の金属パターンを有する金属パターン材料が製造される。 A metal pattern material having a desired metal pattern is manufactured through the above steps (a1) to (a4).
一方、(a1)工程で得られるポリマー層をパターン状に形成し、パターン状のポリマー層に対し(a2)、および(a3)工程を行うことで、金属パターン材料を製造することもできる(フルアディティブ工法)。
(a1)工程で得られるポリマー層をパターン状に形成する方法としては、具体的には、ポリマー層を形成する際に付与されるエネルギーをパターン状とすればよく、また、エネルギーを付与しない部分を現像で除去することでパターン状のポリマー層を形成することができる。
なお、現像方法としては、ポリマー層を形成するために用いられる材料を溶解しうる溶剤に浸漬することで行われる。浸漬する時間は1分〜30分が好ましい。パターン形成したポリマー層上にめっき膜を形成するための(a2)、および(a3)工程は、前述の方法と同じである。
On the other hand, a metal pattern material can also be produced by forming the polymer layer obtained in the step (a1) in a pattern and performing the steps (a2) and (a3) on the patterned polymer layer (full). Additive method).
As a method for forming the polymer layer obtained in the step (a1) into a pattern, specifically, the energy applied when forming the polymer layer may be made into a pattern, and the portion to which no energy is applied By removing the film by development, a patterned polymer layer can be formed.
The developing method is performed by immersing the material used for forming the polymer layer in a solvent capable of dissolving. The immersion time is preferably 1 to 30 minutes. The steps (a2) and (a3) for forming the plating film on the patterned polymer layer are the same as those described above.
<金属パターン材料>
本発明の金属パターン材料を構成するポリマー層は、前述のように、吸水性が低く、疎水性が高いため、このポリマー層の露出部(金属パターンの非形成領域)は、絶縁信頼性に優れる。
本発明の金属パターン材料は、表面の凹凸が500nm以下(より好ましくは100nm以下)の基板上の全面または局所的に、金属膜(めっき膜)を設けたものであることが好ましい。また、基板と金属パターンとの密着性が0.2kN/m以上であることが好ましい。即ち、基板表面が平滑でありながら、基板と金属パターンとの密着性に優れることを特徴とする。
<Metal pattern material>
As described above, since the polymer layer constituting the metal pattern material of the present invention has low water absorption and high hydrophobicity, the exposed portion of the polymer layer (metal pattern non-formation region) is excellent in insulation reliability. .
The metal pattern material of the present invention is preferably one in which a metal film (plating film) is provided on the entire surface or locally on a substrate having a surface irregularity of 500 nm or less (more preferably 100 nm or less). Moreover, it is preferable that the adhesiveness of a board | substrate and a metal pattern is 0.2 kN / m or more. That is, it is characterized in that the substrate surface is smooth and the adhesion between the substrate and the metal pattern is excellent.
なお、基板表面の凹凸は、基板を基板表面に対して垂直に切断し、その断面をSEMにより観察することにより測定した値である。
より詳細には、JIS B 0601に準じて測定したRz、即ち、「指定面における、最大から5番目までの山頂のZデータの平均値と、最小から5番目までの谷底の平均値との差」で、500nm以下であることが好ましい。
また、基板と金属膜との密着性の値は、金属膜(金属パターン)の表面に、銅板(厚さ:0.1mm)をエポキシ系接着剤(アラルダイト、チバガイギー製)で接着し、140℃で4時間乾燥した後、JIS C 6481に基づき90度剥離実験を行うか、または、金属膜自体の端部を直接剥ぎ取り、JIS C 6481に基づき90度剥離実験を行って得られた値である。
The unevenness of the substrate surface is a value measured by cutting the substrate perpendicular to the substrate surface and observing the cross section with an SEM.
More specifically, Rz measured in accordance with JIS B 0601, that is, “the difference between the average value of the Z data of the peak from the maximum to the fifth in the designated plane and the average value of the valley from the minimum to the fifth. ”Is preferably 500 nm or less.
Further, the adhesion value between the substrate and the metal film was determined by attaching a copper plate (thickness: 0.1 mm) to the surface of the metal film (metal pattern) with an epoxy-based adhesive (Araldite, manufactured by Ciba-Geigy). After drying for 4 hours, a 90 degree peeling experiment is performed based on JIS C 6481, or the edge of the metal film itself is directly peeled off, and a value obtained by performing a 90 degree peeling experiment based on JIS C 6481. is there.
<配線基板>
本発明の金属パターン材料の製造方法により得られた金属パターン材料は、例えば、半導体チップ、各種電気配線板、FPC、COF、TAB、アンテナ、多層配線基板、マザーボード、等の種々の用途に適用することができる。
なかでも、本発明の金属パターン材料の製造方法により製造された金属パターンを配線として有する配線基板は、平滑な基板との密着性に優れた配線が形成でき、高周波特性も良好であるとともに、微細な高密度配線であっても、配線間の絶縁信頼性に優れる。
本発明における配線基板を多層配線基板として構成する場合、金属パターン材料の表面に、さらに絶縁樹脂層(層間絶縁膜)を積層して、その表面にさらなる配線(金属パターン)を形成してもよく、または、金属パターン材料表面にソルダーレジストを形成してもよい。
<Wiring board>
The metal pattern material obtained by the metal pattern material manufacturing method of the present invention is applied to various uses such as semiconductor chips, various electric wiring boards, FPC, COF, TAB, antennas, multilayer wiring boards, motherboards, and the like. be able to.
Among them, a wiring board having a metal pattern manufactured by the method for manufacturing a metal pattern material of the present invention as a wiring can form a wiring excellent in adhesion to a smooth substrate, has high frequency characteristics, and is fine. Even with a high-density wiring, the insulation reliability between the wirings is excellent.
When the wiring board in the present invention is configured as a multilayer wiring board, an insulating resin layer (interlayer insulating film) may be further laminated on the surface of the metal pattern material, and further wiring (metal pattern) may be formed on the surface. Alternatively, a solder resist may be formed on the surface of the metal pattern material.
本発明に用いうる層間絶縁膜としては、エポキシ樹脂、アラミド樹脂、結晶性ポリオレフィン樹脂、非晶性ポリオレフィン樹脂、フッ素含有樹脂(ポリテトラフルオロエチレン、全フッ素化ポリイミド、全フッ素化アモルファス樹脂など)、ポリイミド樹脂、ポリエーテルスルフォン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、液晶樹脂など挙げられる。
これらの中でも、上述したポリマー層との密着性、寸法安定性、耐熱性、電気絶縁性等の観点から、エポキシ樹脂、ポリイミド樹脂、または液晶樹脂を含有するものであることが好ましく、より好ましくはエポキシ樹脂である。具体的には、味の素ファインテクノ(株)製、ABF GX−13などが挙げられる。
As an interlayer insulating film that can be used in the present invention, epoxy resin, aramid resin, crystalline polyolefin resin, amorphous polyolefin resin, fluorine-containing resin (polytetrafluoroethylene, perfluorinated polyimide, perfluorinated amorphous resin, etc.), Examples thereof include a polyimide resin, a polyether sulfone resin, a polyphenylene sulfide resin, a polyether ether ketone resin, and a liquid crystal resin.
Among these, from the viewpoints of adhesion to the above-described polymer layer, dimensional stability, heat resistance, electrical insulation, and the like, it is preferable to contain an epoxy resin, a polyimide resin, or a liquid crystal resin, more preferably. It is an epoxy resin. Specifically, ABF TECH-13, ABF GX-13, etc. are mentioned.
また、金属パターン材料表面における配線保護のために用いられるソルダーレジストについては、例えば、特開平10−204150号公報や、特開2003−222993号公報等に詳細に記載され、ここに記載の方法を所望により本発明にも適用することができる。ソルダーレジストは市販品を用いてもよく、具体的には、例えば、太陽インキ製造(株)製 PFR800、PSR4000(商品名)、日立化成工業(株)製 SR7200G、などが挙げられる。
本発明の被めっき層形成用組成物は、これを用いて形成された金属パターン材料表面に層間絶縁樹脂膜やソルダーレジスト膜を形成する際に、被めっき層形成用組成物に含有されるエポキシ基等の特定官能基を有するポリマーの機能により、これらの層とも良好な密着性を発現するという効果を有するものである。
The solder resist used for protecting the wiring on the surface of the metal pattern material is described in detail in, for example, Japanese Patent Application Laid-Open No. 10-204150 and Japanese Patent Application Laid-Open No. 2003-222993. It can be applied to the present invention as desired. A commercially available solder resist may be used, and specific examples include PFR800 manufactured by Taiyo Ink Manufacturing Co., Ltd., PSR4000 (trade name), SR7200G manufactured by Hitachi Chemical Co., Ltd., and the like.
The composition for forming a plating layer of the present invention is an epoxy contained in the composition for forming a plating layer when an interlayer insulating resin film or a solder resist film is formed on the surface of the metal pattern material formed using the composition. Due to the function of the polymer having a specific functional group such as a group, these layers also have the effect of exhibiting good adhesion.
以下、実施例により、本発明について更に詳細に説明するが、本発明はこれらに限定されるものではない。なお、特に断りのない限り、「%」「部」は質量基準である。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these. Unless otherwise specified, “%” and “part” are based on mass.
[基板の作製]
ガラスエポキシ基板上に、電気的絶縁層として味の素ファインテクノ社製エポキシ系絶縁膜GX−13(膜厚45μm)を、加熱、加圧して、真空ラミネーターにより0.2MPaの圧力で100℃〜110℃の条件により接着して、基材を得た。
[Production of substrate]
An epoxy insulating film GX-13 (film thickness: 45 μm) manufactured by Ajinomoto Fine Techno Co., Ltd. is heated and pressurized on a glass epoxy substrate as an electrical insulating layer, and 100 ° C. to 110 ° C. at a pressure of 0.2 MPa using a vacuum laminator. The base material was obtained by bonding under the above conditions.
(密着補助層の形成)
JER806(ビスフェノールF型エポキシ樹脂:ジャパンエポキシレジン製)11.9質量部、LA7052(フェノライト、硬化剤:大日本インキ化学工業製)4.7質量部、YP50−35EK(フェノキシ樹脂、東都化成製)21.7質量部、シクロヘキサノン61.6質量部、および2−エチル−4−メチルイミダゾール(硬化促進剤)0.1質量部を混合した混合溶液を、ろ布(メッシュ#200)にて濾過し、塗布液を調製した。
この塗布液を、スピンコータ(300rpmで5秒回転後、1500rpmで25秒回転)にて上記基材に塗布し、その後、170℃で乾燥して硬化させた。これにより、基板A1を得た。硬化した密着補助層の厚みは1.3μmであった。この基板A1の表面凹凸(Rz)は0.5μm(200μm2)であった。
(Formation of adhesion auxiliary layer)
JER806 (Bisphenol F type epoxy resin: made by Japan Epoxy Resin) 11.9 parts by mass, LA7052 (Phenolite, curing agent: made by Dainippon Ink & Chemicals) 4.7 parts by mass, YP50-35EK (Phenoxy resin, manufactured by Tohto Kasei) ) 21.7 parts by mass, 61.6 parts by mass of cyclohexanone, and 0.1 parts by mass of 2-ethyl-4-methylimidazole (curing accelerator) were mixed and filtered with a filter cloth (mesh # 200). Then, a coating solution was prepared.
This coating solution was applied to the substrate by a spin coater (rotated at 300 rpm for 5 seconds and then rotated at 1500 rpm for 25 seconds), and then dried and cured at 170 ° C. Thereby, a substrate A1 was obtained. The thickness of the cured adhesion auxiliary layer was 1.3 μm. The surface roughness (Rz) of this substrate A1 was 0.5 μm (200 μm 2 ).
(重合開始層の形成)
液状ビスフェノールA型エポキシ樹脂(エポキシ当量176、ジャパンエポキシレジン(株)製、エピコート825)5g、トリアジン構造含有フェノールノボラック樹脂のMEKワニス(大日本インキ化学工業(株)製、フェノライトLA−7052、不揮発分62%、不揮発分のフェノール性水酸基当量120)2g、フェノキシ樹脂MEKワニス(東都化成(株)製、YP−50EK35、不揮発分35%)10.7g、重合開始剤として2−ヒドロキシ−4’−(2−ヒドロキシエトキシ)−2−メチルプロピオフェノン2.3g、MEK5.3g、2−エチル−4−メチルイミダゾール0.053gを混合し、攪拌して完全に溶解させて、ろ布(メッシュ#200)にて濾過し、塗布液を調製した。
この塗布液を、スピンコータ(300rpmで5秒回転後、1500rpmで25秒回転)にて上記基材に塗布し、その後、180℃で30分間硬化処理を施し、硬化させた。これにより、基板B1を得た。硬化した重合開始層の厚みは1.8μmであった。この基板B1の表面凹凸(Rz)は0.2μm(200μm2)であった。
(Formation of polymerization initiation layer)
Liquid bisphenol A type epoxy resin (epoxy equivalent 176, manufactured by Japan Epoxy Resins Co., Ltd., Epicoat 825), triazine structure-containing phenol novolac resin MEK varnish (Dainippon Ink Chemical Co., Ltd., Phenolite LA-7052, Non-volatile content 62%, non-volatile phenolic hydroxyl group equivalent 120) 2 g, phenoxy resin MEK varnish (manufactured by Tohto Kasei Co., Ltd., YP-50EK35, non-volatile content 35%) 10.7 g, 2-hydroxy-4 as a polymerization initiator Mixing 2.3 g of '-(2-hydroxyethoxy) -2-methylpropiophenone, 5.3 g of MEK, and 0.053 g of 2-ethyl-4-methylimidazole, and stirring to completely dissolve, a filter cloth ( The mixture was filtered through a mesh # 200) to prepare a coating solution.
This coating solution was applied to the substrate with a spin coater (rotated at 300 rpm for 5 seconds and then rotated at 1500 rpm for 25 seconds), and then cured at 180 ° C. for 30 minutes to be cured. Thereby, a substrate B1 was obtained. The thickness of the cured polymerization initiating layer was 1.8 μm. The surface unevenness (Rz) of this substrate B1 was 0.2 μm (200 μm 2 ).
[ポリマーの合成]
(ポリマーAの合成)
300mlの三口フラスコに、ジメチルカーボネート23gを入れ、窒素気流下、65℃まで加熱した。そこへ、2−ヒドロキシエチルアクリレート(東京化成製)5.60g、2−シアノエチルアクリレート18.0g、グリシジルメタクリレート6.8g、およびV−65(和光純薬製)0.48gのジメチルカーボネート23g溶液を、4時間かけて滴下した。滴下終了後、同温度で更に反応溶液を3時間撹拌した。その後、アセトニトリル11gを加え10分間攪拌後、室温まで反応溶液を冷却した。
上記の反応溶液に、ジターシャリーブチルハイドロキノン0.13g、U−600(日東化成製)0.40g、カレンズAOI(昭和電工(株)製)12.1g、およびアセトニトリル12.1gを加え、40℃、8時間反応を行った。その後、反応溶液にメタノールを3.0g加え、更に1.5時間反応を行った。反応終了後、水で再沈を行い、固形物を取り出し、ポリマーA(重量平均分子量4.8万)を15g得た。なお、化学式中の数値は、各ユニット(繰り返し単位)のモル%を表す。
[Polymer synthesis]
(Synthesis of polymer A)
23 g of dimethyl carbonate was placed in a 300 ml three-necked flask and heated to 65 ° C. under a nitrogen stream. There, 23 g of dimethyl carbonate solution of 5.60 g of 2-hydroxyethyl acrylate (manufactured by Tokyo Chemical Industry), 18.0 g of 2-cyanoethyl acrylate, 6.8 g of glycidyl methacrylate, and 0.48 g of V-65 (manufactured by Wako Pure Chemical Industries, Ltd.) It was dripped over 4 hours. After completion of dropping, the reaction solution was further stirred at the same temperature for 3 hours. Thereafter, 11 g of acetonitrile was added and stirred for 10 minutes, and then the reaction solution was cooled to room temperature.
To the above reaction solution, 0.13 g of ditertiary butyl hydroquinone, 0.40 g of U-600 (manufactured by Nitto Kasei), 12.1 g of Karenz AOI (manufactured by Showa Denko KK) and 12.1 g of acetonitrile are added, and 40 ° C. For 8 hours. Thereafter, 3.0 g of methanol was added to the reaction solution, and the reaction was further performed for 1.5 hours. After completion of the reaction, reprecipitation was carried out with water, the solid matter was taken out, and 15 g of polymer A (weight average molecular weight 48,000) was obtained. In addition, the numerical value in chemical formula represents the mol% of each unit (repeating unit).
(ポリマーBの合成)
300mlの三口フラスコに、ジメチルカーボネート24gを入れ、窒素気流下、65℃まで加熱した。そこへ、2−ヒドロキシエチルアクリレート(東京化成製)5.60g、2−シアノエチルアクリレート18.0g、モノマーA8.8g、およびV−65(和光純薬製)0.48gのジメチルカーボネート24g溶液を、4時間かけて滴下した。滴下終了後、同温度で更に反応溶液を3時間撹拌した。その後、アセトニトリル12gを加え10分間攪拌後、室温まで反応溶液を冷却した。
上記の反応溶液に、ジターシャリーブチルハイドロキノン0.13g、U−600(日東化成製)0.40g、カレンズAOI(昭和電工(株)製)12.4g、およびアセトニトリル12.4gを加え、40℃、8時間反応を行った。その後、反応溶液にメタノールを3.0g加え、更に1.5時間反応を行った。反応終了後、水で再沈を行い、固形物を取り出し、ポリマーB(重量平均分子量5.5万)を17g得た。なお、化学式中の数値は、各ユニット(繰り返し単位)のモル%を表す。
(Synthesis of polymer B)
A 300 ml three-necked flask was charged with 24 g of dimethyl carbonate and heated to 65 ° C. under a nitrogen stream. There, a dimethyl carbonate 24g solution of 5.60 g of 2-hydroxyethyl acrylate (manufactured by Tokyo Chemical Industry), 18.0 g of 2-cyanoethyl acrylate, 8.8 g of monomer A, and 0.48 g of V-65 (manufactured by Wako Pure Chemical Industries, Ltd.) It was dripped over 4 hours. After completion of dropping, the reaction solution was further stirred at the same temperature for 3 hours. Thereafter, 12 g of acetonitrile was added and stirred for 10 minutes, and then the reaction solution was cooled to room temperature.
To the above reaction solution, 0.13 g of ditertiary butyl hydroquinone, 0.40 g of U-600 (manufactured by Nitto Kasei), 12.4 g of Karenz AOI (manufactured by Showa Denko KK) and 12.4 g of acetonitrile are added, and 40 ° C. For 8 hours. Thereafter, 3.0 g of methanol was added to the reaction solution, and the reaction was further performed for 1.5 hours. After completion of the reaction, reprecipitation was carried out with water, the solid matter was taken out, and 17 g of polymer B (weight average molecular weight 55,000) was obtained. In addition, the numerical value in chemical formula represents the mol% of each unit (repeating unit).
(ポリマーCの合成)
300mlの三口フラスコに、N,N−ジメチルアセトアミド20.6gを入れ、窒素気流下、65℃まで加熱した。そこへ、モノマーB23.32g、モノマーC10.6g、モノマーD7.4g、およびV−65(和光純薬製)0.40gのN,N−ジメチルアセトアミド20.6g溶液を、4時間かけて滴下した。滴下終了後、更に反応溶液を3時間撹拌した。その後、N,N−ジメチルアセトアミド55gを加え10分間攪拌後、室温まで反応溶液を冷却した。
上記の反応溶液に、氷冷下、4−ヒドロキシテンポ0.07g、DBU30.4gを加え、室温にて1時間反応を行った。反応終了後、水で再沈を行い、固形物を取り出し、ポリマーCを21g得た。
(Synthesis of polymer C)
In a 300 ml three-necked flask, 20.6 g of N, N-dimethylacetamide was placed and heated to 65 ° C. under a nitrogen stream. Thereto, a solution of N.N-dimethylacetamide 20.6 g of monomer B 23.32 g, monomer C 10.6 g, monomer D 7.4 g, and V-65 (manufactured by Wako Pure Chemical Industries) 0.40 g was added dropwise over 4 hours. . After completion of the dropwise addition, the reaction solution was further stirred for 3 hours. Thereafter, 55 g of N, N-dimethylacetamide was added and stirred for 10 minutes, and then the reaction solution was cooled to room temperature.
To the above reaction solution, 0.07 g of 4-hydroxytempo and 30.4 g of DBU were added under ice cooling, and the reaction was performed at room temperature for 1 hour. After completion of the reaction, reprecipitation was carried out with water, the solid matter was taken out, and 21 g of polymer C was obtained.
(ポリマーDの合成)
300mlの三口フラスコに、ジメチルカーボネート30gを入れ、窒素気流下、65℃まで加熱した。そこへ、2−ヒドロキシエチルアクリレート(東京化成製)5.6g、2−シアノエチルアクリレート3.0g、グリシジルメタクリレート3.4g、モノマーB28.0、およびV−65(和光純薬製)0.48gのジメチルカーボネート23g溶液を、4時間かけて滴下した。滴下終了後、同温度で更に反応溶液を3時間撹拌した。その後、アセトニトリル14gを加え10分間攪拌後、室温まで反応溶液を冷却した。
上記の反応溶液に、ジターシャリーブチルハイドロキノン0.13g、U−600(日東化成製)0.40g、カレンズAOI(昭和電工(株)製)12.1g、およびアセトニトリル12.1gを加え、40℃、8時間反応を行った。その後、反応溶液にメタノールを3.0g加え、更に1.5時間反応を行った。反応終了後、水で再沈を行い、固形物を取り出し、ポリマーD(重量平均分子量6.8万)を19g得た。なお、化学式中の数値は、各ユニット(繰り返し単位)のモル%を表す。
(Synthesis of polymer D)
In a 300 ml three-necked flask, 30 g of dimethyl carbonate was placed and heated to 65 ° C. under a nitrogen stream. There, 5.6 g of 2-hydroxyethyl acrylate (manufactured by Tokyo Chemical Industry), 3.0 g of 2-cyanoethyl acrylate, 3.4 g of glycidyl methacrylate, 28.0 of monomer B, and 0.48 g of V-65 (manufactured by Wako Pure Chemical Industries, Ltd.) A solution of 23 g of dimethyl carbonate was added dropwise over 4 hours. After completion of dropping, the reaction solution was further stirred at the same temperature for 3 hours. Thereafter, 14 g of acetonitrile was added and stirred for 10 minutes, and then the reaction solution was cooled to room temperature.
To the above reaction solution, 0.13 g of ditertiary butyl hydroquinone, 0.40 g of U-600 (manufactured by Nitto Kasei), 12.1 g of Karenz AOI (manufactured by Showa Denko KK) and 12.1 g of acetonitrile are added, and 40 ° C. For 8 hours. Thereafter, 3.0 g of methanol was added to the reaction solution, and the reaction was further performed for 1.5 hours. After completion of the reaction, reprecipitation was carried out with water, the solid matter was taken out, and 19 g of polymer D (weight average molecular weight 68,000) was obtained. In addition, the numerical value in chemical formula represents the mol% of each unit (repeating unit).
(ポリマーEの合成)
300mlの三口フラスコに、ジメチルカーボネート8.3gを入れ、窒素気流下、65℃まで加熱した。そこへ、2−ヒドロキシエチルアクリレート(東京化成製)1.4g、2−シアノエチルアクリレート0.75g、モノマーB6.14g、モノマーE2.7g、およびV−65(和光純薬製)0.12gのジメチルカーボネート8.3g溶液を、4時間かけて滴下した。滴下終了後、同温度で更に反応溶液を3時間撹拌した。その後、アセトニトリル4gを加え10分間攪拌後、室温まで反応溶液を冷却した。
上記の反応溶液に、ジターシャリーブチルハイドロキノン0.04g、U−600(日東化成製)0.11g、カレンズAOI(昭和電工(株)製)3.3g、およびアセトニトリル3.3gを加え、40℃、8時間反応を行った。その後、反応溶液に水を0.4g加え、更に1.5時間反応を行った。反応終了後、酢酸エチル:ヘキサン=2:3で再沈を行い、固形物を取り出し、ポリマーE(重量平均分子量7.8万)を6g得た。なお、化学式中の数値は、各ユニット(繰り返し単位)のモル%を表す。
(Synthesis of polymer E)
In a 300 ml three-necked flask, 8.3 g of dimethyl carbonate was added and heated to 65 ° C. under a nitrogen stream. There, 1.4 g of 2-hydroxyethyl acrylate (manufactured by Tokyo Chemical Industry), 0.75 g of 2-cyanoethyl acrylate, 6.14 g of monomer B, 2.7 g of monomer E, and 0.12 g of V-65 (manufactured by Wako Pure Chemical Industries) An 8.3 g solution of carbonate was added dropwise over 4 hours. After completion of dropping, the reaction solution was further stirred at the same temperature for 3 hours. Thereafter, 4 g of acetonitrile was added and stirred for 10 minutes, and then the reaction solution was cooled to room temperature.
Ditertiary butyl hydroquinone 0.04 g, U-600 (manufactured by Nitto Kasei) 0.11 g, Karenz AOI (manufactured by Showa Denko KK) 3.3 g, and acetonitrile 3.3 g are added to the above reaction solution, and 40 ° C. For 8 hours. Thereafter, 0.4 g of water was added to the reaction solution, and the reaction was further performed for 1.5 hours. After completion of the reaction, reprecipitation was performed with ethyl acetate: hexane = 2: 3, the solid matter was taken out, and 6 g of polymer E (weight average molecular weight 78,000) was obtained. In addition, the numerical value in chemical formula represents the mol% of each unit (repeating unit).
[実施例1]
(塗布溶液(被めっき層形成用組成物1)の調製)
ポリマーAを7質量部、アセトニトリル溶液93質量部を混合攪拌し、被めっき層形成用組成物1の塗布液を調製した。
[Example 1]
(Preparation of coating solution (Composition 1 for plating layer formation))
7 parts by mass of polymer A and 93 parts by mass of acetonitrile solution were mixed and stirred to prepare a coating solution for composition 1 for forming a layer to be plated.
(グラフトポリマーの生成)
調製された塗布液を、上記基板A1の密着補助層上に、スピンコータ(300rpmで5秒回転後、750rpmで20秒回転)にて塗布し、80℃にて30分乾燥した。
乾燥後、三永電機製のUV露光機(型番:UVF−502S、ランプ:UXM−501MD)を用い、10mW/cm2の照射パワー(ウシオ電機製 紫外線積算光量計UIT150−受光センサーUVD−S254で照射パワー測定)にて、100秒間照射させて、基板A1の密着補助層の全面にグラフトポリマーを生成させた。積算露光量は1000mJであった。
(Generation of graft polymer)
The prepared coating solution was applied onto the adhesion auxiliary layer of the substrate A1 by a spin coater (rotated at 300 rpm for 5 seconds and then rotated at 750 rpm for 20 seconds) and dried at 80 ° C. for 30 minutes.
After drying, using a UV exposure machine (model number: UVF-502S, lamp: UXM-501MD) manufactured by Mitsunaga Electric Co., Ltd., an irradiation power of 10 mW / cm 2 (Ushio Electric UV integrated light meter UIT150-light receiving sensor UVD-S254) In irradiation power measurement), irradiation was performed for 100 seconds to generate a graft polymer on the entire surface of the adhesion auxiliary layer of the substrate A1. The integrated exposure amount was 1000 mJ.
その後、攪拌した状態のアセトニトリル中にグラフトポリマーが生成された基板を5分間浸漬し、続いて、蒸留水にて洗浄した。
これにより、上記ポリマーを含むポリマー層を有する基板A2を得た。このときのポリマー層の厚みは0.5μmであった。
Thereafter, the substrate on which the graft polymer was formed was immersed in acetonitrile in a stirred state for 5 minutes, and then washed with distilled water.
Thereby, a substrate A2 having a polymer layer containing the polymer was obtained. The thickness of the polymer layer at this time was 0.5 μm.
[めっき触媒の付与]
ポリマー層を有する基板A2を、硝酸パラジウムの0.5質量%水−アセトン混合溶液〔水/アセトン混合比:質量比6/4、以下、触媒液Aと称する〕に、25℃で30分間浸漬した後、水−アセトン混合溶液〔水/アセトン混合比:質量比6/4〕および蒸留水で、各々1分〜2分間洗浄した。
[Applying plating catalyst]
Substrate A2 having a polymer layer was immersed in a 0.5 mass% water-acetone mixed solution of palladium nitrate (water / acetone mixed ratio: mass ratio 6/4, hereinafter referred to as catalyst solution A) at 25 ° C. for 30 minutes. Then, each was washed with a water-acetone mixed solution [water / acetone mixed ratio: mass ratio 6/4] and distilled water for 1 minute to 2 minutes.
[無電解めっき]
上記のようにして、めっき触媒が付与されためっき触媒受容性の硬化物層を有する基板A2に対し、上村工業(株)製スルカップPGTを用い、下記組成の無電解めっき浴(1)を用い、無電解めっき温度26℃で30分間、無電解めっきを行った。得られた無電解銅めっき膜の厚みは0.5μm(重量法)であった。
無電解めっき液(1)の調液順序および原料は以下の通りである。
〔無電解めっき液(1)〕
蒸留水 約60容量%
PGT−A 9.0容量%
PGT−B 6.0容量%
PGT−C 3.5容量%
ホルマリン液* 2.3容量%
最後に、全量が100容量%となるように蒸留水にて調整した。
*ここで用いたホルマリンは、和光純薬工業(株)製のホルムアルデヒド液(特級)である。
[Electroless plating]
Using the electroless plating bath (1) having the following composition for the substrate A2 having the plating catalyst-accepting cured product layer provided with the plating catalyst as described above, using the Urumura Kogyo Sulcup PGT. The electroless plating was performed at an electroless plating temperature of 26 ° C. for 30 minutes. The thickness of the obtained electroless copper plating film was 0.5 μm (weight method).
The preparation order and raw materials of the electroless plating solution (1) are as follows.
[Electroless plating solution (1)]
Approximately 60% by volume of distilled water
PGT-A 9.0% by volume
PGT-B 6.0% by volume
PGT-C 3.5% by volume
Formalin solution * 2.3% by volume
Finally, it adjusted with distilled water so that the whole quantity might be 100 volume%.
* The formalin used here is a formaldehyde solution (special grade) manufactured by Wako Pure Chemical Industries, Ltd.
[電気めっき]
続いて、無電解銅めっき膜を給電層として、下記組成の電気銅めっき浴を用い、3A/dm2の条件で、電気めっきを30分間行った。得られた電気銅めっき膜の厚みは19.5μmであった。
[Electroplating]
Subsequently, electroplating was carried out for 30 minutes under the condition of 3 A / dm 2 using an electroless copper plating film as a power feeding layer and using an electrolytic copper plating bath having the following composition. The thickness of the obtained electrolytic copper plating film was 19.5 μm.
(電気めっき浴の組成)
・硫酸銅 38g
・硫酸 95g
・塩酸 1mL
・カッパーグリームPCM(メルテックス(株)製) 3mL
・水 500g
(Composition of electroplating bath)
・ Copper sulfate 38g
・ 95 g of sulfuric acid
・ Hydrochloric acid 1mL
・ Copper Greeme PCM (Meltex Co., Ltd.) 3mL
・ Water 500g
(密着性評価)
得られためっき膜に対して、100℃で30分間、180℃で1時間ベーク処理を行った後、オートグラフAGS−J((株)島津製作所製)を用いて、5mm幅について、引張強度10mm/minにて、90°ピール強度の測定を行ったところ、0.70kN/mであった。
(Adhesion evaluation)
The obtained plated film was baked at 100 ° C. for 30 minutes and at 180 ° C. for 1 hour, and then, using Autograph AGS-J (manufactured by Shimadzu Corporation), a tensile strength of 5 mm width. When the 90 ° peel strength was measured at 10 mm / min, it was 0.70 kN / m.
[金属パターンの形成、ソルダーレジストの貼付けおよび絶縁信頼性試験]
電気めっき後の基板に対し180℃/1時間の熱処理を行なった後、該基板の表面に、ドライレジストフィルム(日立化成(株)製;RY3315、膜厚15μm)を真空ラミネーター((株)名機製作所製:MVLP−600)を用いて、70℃、0.2MPaでラミネートした。次いで、ドライレジストフィルムがラミネートされた基板に、JPCA−ET01に定めるL/S=50μm/50μmの櫛型配線が形成できるガラスマスクを密着させ、レジストに中心波長405nmの露光機にて70mJの光エネルギーを照射した。露光後の基板に、1%Na2CO3水溶液を0.2MPaのスプレー圧で噴きつけ、現像を行なった。その後、基板の水洗・乾燥を行い、銅めっき膜上に、サブトラクティブ法用のレジスト・パターンを形成した。
レジスト・パターンを形成した基板を、FeCl3/HCl水溶液(エッチング液)に温度40℃で浸漬することによりエッチングを行い、レジスト・パターンの非形成領域に存在する銅めっき層を除去した。その後、3%NaOH水溶液を0.2MPaのスプレー圧で基板上に噴き付けることで、レジスト・パターンを膨潤剥離し、10%硫酸水溶液で中和処理を行い、水洗することで櫛型配線を得た。
[Metal pattern formation, solder resist application and insulation reliability test]
The substrate after electroplating was heat-treated at 180 ° C. for 1 hour, and then a dry resist film (manufactured by Hitachi Chemical Co., Ltd .; RY3315, film thickness 15 μm) was applied to the surface of the substrate as a vacuum laminator Laminate at 70 ° C. and 0.2 MPa using MVLP-600). Next, a glass mask capable of forming a comb wiring of L / S = 50 μm / 50 μm as defined in JPCA-ET01 is adhered to the substrate on which the dry resist film is laminated, and light of 70 mJ is applied to the resist with an exposure device having a central wavelength of 405 nm. Irradiated with energy. Development was performed by spraying a 1% Na 2 CO 3 aqueous solution onto the exposed substrate at a spray pressure of 0.2 MPa. Thereafter, the substrate was washed with water and dried, and a resist pattern for the subtractive method was formed on the copper plating film.
Etching was performed by immersing the substrate on which the resist pattern was formed in an FeCl 3 / HCl aqueous solution (etching solution) at a temperature of 40 ° C. to remove the copper plating layer present in the resist pattern non-formation region. After that, the resist pattern is swollen and peeled off by spraying a 3% NaOH aqueous solution onto the substrate at a spray pressure of 0.2 MPa, neutralized with a 10% sulfuric acid aqueous solution, and washed with water to obtain a comb-shaped wiring. It was.
さらに、櫛型配線上にソルダーレジスト(PFR800;太陽インキ製造(株)製)を70℃、0.2MPaの条件で真空ラミネートし、中心波長365nmの露光機にて420mJの光エネルギーを照射した。このとき、後の絶縁信頼性試験ではんだ付けする部分に関しては、遮光テープでマスクした。次いで、基板を80℃/10分間の加熱処理を施した後、Na2CO31%水溶液を、スプレー圧0.2MPaで基板表面に噴きつけ現像し、水洗、乾燥した。その後、再度、中心波長365nmの露光機にて1000mJの光エネルギーを、基板に対し照射した。最後に150℃/1hrの加熱処理を行ない、ソルダーレジストに被覆された配線間絶縁信頼性を測定するための櫛形配線(金属パターン材料)を得た。 Further, a solder resist (PFR800; manufactured by Taiyo Ink Manufacturing Co., Ltd.) was vacuum laminated on the comb-shaped wiring under the conditions of 70 ° C. and 0.2 MPa, and light energy of 420 mJ was irradiated with an exposure machine having a central wavelength of 365 nm. At this time, a portion to be soldered in a later insulation reliability test was masked with a light shielding tape. Next, the substrate was heat-treated at 80 ° C. for 10 minutes, and then a 1% aqueous solution of Na 2 CO 3 was sprayed onto the substrate surface at a spray pressure of 0.2 MPa, developed, washed with water and dried. Thereafter, the substrate was again irradiated with light energy of 1000 mJ with an exposure machine having a center wavelength of 365 nm. Finally, a heat treatment at 150 ° C./1 hr was performed to obtain a comb-shaped wiring (metal pattern material) for measuring the insulating reliability between the wirings covered with the solder resist.
[絶縁信頼性試験]
得られた櫛型配線基板に対し、JPCA規格 プリント配線板環境試験方法JPCA−ET01(通則)およびET07(高温・高湿・定常不飽和加圧水蒸気試験)に基づいて絶縁信頼性試験を行なった。ESPEC製HAST試験機(AMI−150S−25(EHS-211-MD))にて、130℃−85%相対湿度(不飽和)、印加電圧20Vで200時間試験し、試験槽内絶縁抵抗および面状検査で配線間を観察し、以下の基準で評価した。結果を表1に示す。
なお、実用上、以下の絶縁抵抗評価およびデンドライト評価は、それぞれ「○」以上が好ましい。
[Insulation reliability test]
The obtained comb-shaped wiring board was subjected to an insulation reliability test based on the JPCA standard printed wiring board environmental test methods JPCA-ET01 (general rules) and ET07 (high temperature / high humidity / steady unsaturated pressurized steam test). Tested with ESPEC HAST tester (AMI-150S-25 (EHS-211-MD)) at 130 ° C.-85% relative humidity (unsaturated) at an applied voltage of 20 V for 200 hours. During the inspection, the wiring was observed and evaluated according to the following criteria. The results are shown in Table 1.
In practice, the following insulation resistance evaluation and dendrite evaluation are preferably “◯” or more.
<絶縁抵抗評価>
「◎」:絶縁抵抗が5.0×E7Ω以上であった場合
「○」:絶縁抵抗が1.0×E7Ω以上5.0×E7Ω未満であった場合
「△」:絶縁抵抗が1.0×E7Ω未満であった場合
「×」:配線間に絶縁不良が見られた場合
<デンドライト評価>
「◎」:デントライトがほぼ観察されなかった場合
「○」:絶縁不良には至らないわずかなデントライトが観察された場合
「△」:絶縁不良には至らない程度のデントライトが観察された場合
「×」:絶縁不良が見られた場合
<Insulation resistance evaluation>
“◎”: When the insulation resistance is 5.0 × E7Ω or more “◯”: When the insulation resistance is 1.0 × E7Ω or more and less than 5.0 × E7Ω “Δ”: The insulation resistance is 1.0 × When it is less than E7Ω “×”: When insulation failure is observed between wires <Dendrite evaluation>
“◎”: When almost no dent light was observed “◯”: When a slight dent light was observed that did not lead to poor insulation “△”: Dent light was observed to a degree that did not lead to poor insulation. Case “×”: When insulation failure is observed
〔実施例2〕
ポリマーBを7質量部、アセトニトリル溶液93質量部を混合攪拌し、被めっき層形成用組成物2の塗布液を調製した。この被めっき層形成用組成物2の塗布液を用いた他は、実施例1と同様の方法にて表面金属膜材料および金属パターン材料を作製し、実施例1と同様の評価を行った。結果を表1に示す。
[Example 2]
7 parts by mass of polymer B and 93 parts by mass of acetonitrile solution were mixed and stirred to prepare a coating liquid for composition 2 for plating layer formation. A surface metal film material and a metal pattern material were prepared in the same manner as in Example 1 except that the coating solution for the composition 2 for plating layer formation was used, and the same evaluation as in Example 1 was performed. The results are shown in Table 1.
〔実施例3〕
ポリマーCを7質量部、アセトニトリル溶液93質量部を混合攪拌し、被めっき層形成用組成物3の塗布液を調製した。この被めっき層形成用組成物3の塗布液を用いた他は、実施例1と同様の方法にて表面金属膜材料および金属パターン材料を作製し、実施例1と同様の評価を行った。結果を表1に示す。
Example 3
7 parts by mass of polymer C and 93 parts by mass of acetonitrile solution were mixed and stirred to prepare a coating solution for composition 3 for forming a layer to be plated. A surface metal film material and a metal pattern material were prepared in the same manner as in Example 1 except that the coating solution for the composition 3 for forming a plated layer was used, and the same evaluation as in Example 1 was performed. The results are shown in Table 1.
〔実施例4〕
ポリマーDを7質量部、アセトニトリル溶液93質量部を混合攪拌し、被めっき層形成用組成物4の塗布液を調製した。この被めっき層形成用組成物4の塗布液を用いた他は、実施例1と同様の方法にて表面金属膜材料および金属パターン材料を作製し、実施例1と同様の評価を行った。結果を表1に示す。
Example 4
7 parts by mass of polymer D and 93 parts by mass of acetonitrile solution were mixed and stirred to prepare a coating solution for composition 4 for forming a layer to be plated. A surface metal film material and a metal pattern material were prepared in the same manner as in Example 1 except that the coating solution for the composition 4 for forming a plated layer was used, and the same evaluation as in Example 1 was performed. The results are shown in Table 1.
〔実施例5〕
ポリマーEを7質量部、アセトニトリル溶液93質量部を混合攪拌し、被めっき層形成用組成物5の塗布液を調製した。この被めっき層形成用組成物5の塗布液を用いた他は、実施例1と同様の方法にて表面金属膜材料および金属パターン材料を作製し、実施例1と同様の評価を行った。結果を表1に示す。
Example 5
7 parts by mass of polymer E and 93 parts by mass of acetonitrile solution were mixed and stirred to prepare a coating solution for composition 5 for forming a layer to be plated. A surface metal film material and a metal pattern material were prepared in the same manner as in Example 1 except that the coating solution for the composition 5 for forming a plated layer was used, and the same evaluation as in Example 1 was performed. The results are shown in Table 1.
〔実施例6〕
(塗布溶液の調製)
ポリマーCを7質量部、アセトニトリル溶液93質量部を混合攪拌し、被めっき層形成用組成物3の塗布液を調製した。
Example 6
(Preparation of coating solution)
7 parts by mass of polymer C and 93 parts by mass of acetonitrile solution were mixed and stirred to prepare a coating solution for composition 3 for forming a layer to be plated.
(グラフトポリマーの生成)
調製された塗布液を、上記基板B1の重合開始層上に、スピンコータ(300rpmで5秒回転後、750rpmで20秒回転)にて塗布し、80℃にて30分乾燥した。
乾燥後、三永電機製のUV露光機(型番:UVF−502S、ランプ:UXM−501MD)を用い、10mW/cm2の照射パワー(ウシオ電機製 紫外線積算光量計UIT150−受光センサーUVD−S254で照射パワー測定)にて、100秒間照射させて、基板B1の重合開始層の全面にグラフトポリマーを生成させた。積算露光量は1000mJであった。
(Generation of graft polymer)
The prepared coating solution was applied onto the polymerization initiation layer of the substrate B1 by a spin coater (rotated at 300 rpm for 5 seconds and then rotated at 750 rpm for 20 seconds) and dried at 80 ° C. for 30 minutes.
After drying, SanHisashi Electric made UV exposure machine (model number: UVF-502S, lamp: UXM-501MD) used, 10 mW / cm 2 of irradiation power (manufactured by Ushio Inc. UV integrated light intensity meter UIT150- by the light receiving sensor UVD-S254 In irradiation power measurement), irradiation was performed for 100 seconds to generate a graft polymer on the entire surface of the polymerization initiation layer of the substrate B1. The integrated exposure amount was 1000 mJ.
その後、攪拌した状態のアセトニトリル中にグラフトポリマーが生成された基板を5分間浸漬し、続いて、蒸留水にて洗浄した。
これにより、基板B1と直接化学結合したポリマーを含むポリマー層を有する基板B2を得た。このときの樹脂層の厚みは0.5μmであった。
ポリマー層を有する基板B2を用いた以外は実施例1と同様にして表面金属膜材料および金属パターン材料を作製し、実施例1と同様の評価を行った。結果を表1に示す。
Thereafter, the substrate on which the graft polymer was formed was immersed in acetonitrile in a stirred state for 5 minutes, and then washed with distilled water.
As a result, a substrate B2 having a polymer layer containing a polymer directly chemically bonded to the substrate B1 was obtained. The thickness of the resin layer at this time was 0.5 μm.
A surface metal film material and a metal pattern material were prepared in the same manner as in Example 1 except that the substrate B2 having a polymer layer was used, and the same evaluation as in Example 1 was performed. The results are shown in Table 1.
〔実施例7〕
実施例1で用いた被めっき層形成用組成物1を用いて作製した基板A2を用い、めっき触媒の付与を以下のようにして調製した触媒液Bを用いて行った以外は、実施例1と同様の方法にて表面金属材料および金属パターン材料を作製し、実施例1と同様の評価を行った。結果を表1に示す。
Example 7
Example 1 except that the substrate A2 produced using the composition 1 for forming a layer to be plated used in Example 1 was used, and the catalyst solution B was prepared using the catalyst solution B prepared as follows. Surface metal materials and metal pattern materials were prepared in the same manner as in Example 1, and the same evaluation as in Example 1 was performed. The results are shown in Table 1.
(触媒液Bの調製)
純水:硝酸の60質量%水溶液:ジエチレングリコールジエチルエーテル(DEGDE,別名:ビス(2−エトキシエチル)エーテル)を質量比2:1:2で混合した混合溶液100質量部に対し、0.25質量部の酢酸パラジウムを溶解させた0.25質量%パラジウム触媒溶液(以下、触媒液Bと称する)を調液した。
なお、触媒液Bの調製に用いた硝酸(60質量%水溶液)は和光純薬工業(株)製硝酸(1.38)和光特級であり、DEGDEは和光純薬工業(株)製ビス(2−エトキシエチル)エーテル(和光1級)であり、酢酸パラジウムは、和光純薬工業(株)製和光特級である。
(Preparation of catalyst solution B)
Pure water: 60% by mass of nitric acid aqueous solution: diethylene glycol diethyl ether (DEGDE, also known as: bis (2-ethoxyethyl) ether) at a mass ratio of 2: 1: 2 with respect to 100 parts by mass of a mixed solution of 0.25 mass A 0.25 mass% palladium catalyst solution (hereinafter referred to as catalyst solution B) in which a part of palladium acetate was dissolved was prepared.
The nitric acid (60% by mass aqueous solution) used for the preparation of the catalyst solution B is a nitric acid (1.38) Wako special grade manufactured by Wako Pure Chemical Industries, Ltd. DEGDE is a bis (2 -Ethoxyethyl) ether (Wako Grade 1), and palladium acetate is a Wako Special Grade manufactured by Wako Pure Chemical Industries, Ltd.
(触媒の付与)
基板A2を触媒液Bに、25℃で5分間浸漬した後、蒸留水で2分間洗浄した。
その結果、得られた無電解銅めっき膜の厚みは0.5μm(重量法)であり、得られた電気銅めっき膜の厚みは19μmであった。
(Catalyst application)
Substrate A2 was immersed in catalyst solution B at 25 ° C. for 5 minutes, and then washed with distilled water for 2 minutes.
As a result, the thickness of the obtained electroless copper plating film was 0.5 μm (weight method), and the thickness of the obtained electrolytic copper plating film was 19 μm.
〔実施例8〕
実施例4で用いた被めっき層形成用組成物4を用いて得られた基板A2を用い、上記実施例5と同様にしてめっき触媒を付与した。
その後、無電解めっき時に使用するめっき浴およびめっき条件を下記に変更した以外は、実施例1と同様の方法にて表面金属材料および金属パターン材料を作製し、実施例1と同様の評価を行った。結果を表1に示す。
Example 8
A plating catalyst was applied in the same manner as in Example 5 above, using the substrate A2 obtained using the composition 4 for forming a plating layer used in Example 4.
Thereafter, a surface metal material and a metal pattern material were prepared in the same manner as in Example 1 except that the plating bath and plating conditions used during electroless plating were changed as follows, and the same evaluation as in Example 1 was performed. It was. The results are shown in Table 1.
無電解めっき液(2)の調液順序および原料は以下の通りである。無電解めっき液(2)の調製には、奥野製薬工業(株)製OPCカッパーTを使用した。
〔無電解めっき液(2)〕
蒸留水 約60容量%
T−1液 6.0容量%
T−2液 1.2容量%
T−3液 10.0容量%
最後に、全量が100容量%となるように蒸留水にて液面調整した。
この無電解めっき液(2)に、基板A2を温度30℃で25分間浸漬して、無電解めっきを行った。得られた無電解銅めっき膜の厚みは0.7μmであった。また、得られた電気銅めっき膜の厚みは20μmであった。
The preparation order and raw materials of the electroless plating solution (2) are as follows. For the preparation of the electroless plating solution (2), OPC Copper T manufactured by Okuno Pharmaceutical Co., Ltd. was used.
[Electroless plating solution (2)]
Approximately 60% by volume of distilled water
T-1 solution 6.0% by volume
T-2 solution 1.2% by volume
T-3 solution 10.0% by volume
Finally, the liquid level was adjusted with distilled water so that the total amount would be 100% by volume.
The substrate A2 was immersed in this electroless plating solution (2) at a temperature of 30 ° C. for 25 minutes to perform electroless plating. The thickness of the obtained electroless copper plating film was 0.7 μm. Moreover, the thickness of the obtained electrolytic copper plating film was 20 μm.
〔実施例9〕
実施例4で用いた被めっき層形成用組成物4を用いて得られた基板A2を用い、上記実施例6の触媒液Bを実施例6と同様にしてめっき触媒を付与した。その後、実施例7の無電解めっき液(2)を用いて実施例7と同様に無電解めっきを行った。
その後、実施例1の条件で金属パターンを形成後、ソルダーレジスト(PFR800)の代わりに下記条件にて絶縁膜(ABF GX−13、味の素ファインテクノ(株)製)を貼り付け、実施例1と同様の評価を行った。得られた無電解銅めっき膜の厚みは0.7μmであった。また、得られた電気銅めっき膜の厚みは18μmであった。
めっき膜の基板に対する密着力は0.72kN/mであった。
Example 9
Using the substrate A2 obtained using the composition 4 for plating layer formation used in Example 4, the catalyst solution B of Example 6 was applied in the same manner as in Example 6 to give a plating catalyst. Thereafter, electroless plating was performed in the same manner as in Example 7 using the electroless plating solution (2) of Example 7.
Then, after forming a metal pattern under the conditions of Example 1, an insulating film (ABF GX-13, manufactured by Ajinomoto Fine-Techno Co., Ltd.) was attached instead of the solder resist (PFR800) under the following conditions. Similar evaluations were made. The thickness of the obtained electroless copper plating film was 0.7 μm. Moreover, the thickness of the obtained electrolytic copper plating film | membrane was 18 micrometers.
The adhesion of the plating film to the substrate was 0.72 kN / m.
(絶縁膜の形成方法)
実施例1と同様の条件で作製した櫛型配線上に真空ラミネーター(MVLP−600、(株)名機製作所製)を用い、絶縁膜フィルムABF GX−13(味の素ファインテクノ(株)製)を100℃、0.5MPaの条件で真空ラミネートしたのち、180℃/1hrの加熱処理を行ない、線間絶縁信頼性を測定するための絶縁膜で被覆された櫛形配線(金属パターン材料)を得た。
この櫛型配線基板に対し、実施例1と同様にして絶縁信頼性試験を行った。結果を表1に示す。
(Method of forming insulating film)
Using a vacuum laminator (MVLP-600, manufactured by Meiki Seisakusho Co., Ltd.) on the comb-shaped wiring manufactured under the same conditions as in Example 1, insulating film ABF GX-13 (manufactured by Ajinomoto Fine Techno Co., Ltd.) After vacuum lamination under conditions of 100 ° C. and 0.5 MPa, heat treatment at 180 ° C./1 hr was performed to obtain a comb-shaped wiring (metal pattern material) covered with an insulating film for measuring the insulation reliability between lines. .
An insulation reliability test was performed on the comb wiring substrate in the same manner as in Example 1. The results are shown in Table 1.
〔比較例1〕
まず、下記のようにして、比較ポリマー1を合成した。
1000mlの三口フラスコに、N,N−ジメチルアセトアミド35gを入れ、窒素気流下、75℃まで加熱した。そこへ、2−ヒドロキシエチルアクリレート(市販品、東京化成製)6.60g、2−シアノエチルアクリレート28.4g、およびV−601(和光純薬製)0.65gのN,N−ジメチルアセトアミド35g溶液を、2.5時間かけて滴下した。滴下終了後、80℃まで反応溶液を加熱し、更に3時間撹拌した。その後、室温まで、反応溶液を冷却した。
上記の反応溶液に、ジターシャリーブチルハイドロキノン0.29g、ジブチルチンジラウレート0.29g、カレンズAOI(昭和電工(株)製)18.56g、N,N−ジメチルアセトアミド19gを加え、55℃、4時間反応を行った。その後、反応溶液にメタノールを3.6g加え、更に1.5時間反応を行った。反応終了後、酢酸エチル:ヘキサン=1:1で再沈を行い、固形物を取り出し、比較ポリマー1を(重量平均分子量6.2万)を32g得た。なお、化学式中の数値は、各ユニット(繰り返し単位)のモル%を表す。
[Comparative Example 1]
First, Comparative Polymer 1 was synthesized as follows.
A 1000 ml three-necked flask was charged with 35 g of N, N-dimethylacetamide and heated to 75 ° C. under a nitrogen stream. There, 2-hydroxyethyl acrylate (commercial product, manufactured by Tokyo Chemical Industry Co., Ltd.) 6.60 g, 2-cyanoethyl acrylate 28.4 g, and V-601 (manufactured by Wako Pure Chemical Industries) 0.65 g of N, N-dimethylacetamide 35 g solution Was added dropwise over 2.5 hours. After completion of the dropwise addition, the reaction solution was heated to 80 ° C. and further stirred for 3 hours. Thereafter, the reaction solution was cooled to room temperature.
Ditertiary butyl hydroquinone 0.29 g, dibutyltin dilaurate 0.29 g, Karenz AOI (manufactured by Showa Denko KK) 18.56 g, N, N-dimethylacetamide 19 g are added to the above reaction solution, at 55 ° C. for 4 hours. Reaction was performed. Thereafter, 3.6 g of methanol was added to the reaction solution, and the reaction was further performed for 1.5 hours. After completion of the reaction, reprecipitation was performed with ethyl acetate: hexane = 1: 1, the solid matter was taken out, and 32 g of Comparative Polymer 1 (weight average molecular weight 62,000) was obtained. In addition, the numerical value in chemical formula represents the mol% of each unit (repeating unit).
実施例1で用いた被めっき層形成用組成物1において、ポリマーAに代えて比較ポリマー1を用いた他は、同様にして表面金属材料および金属パターン材料を作製し、実施例1と同様の評価を行った。結果を表1に示す。 In the composition 1 for forming a plating layer used in Example 1, a surface metal material and a metal pattern material were prepared in the same manner except that the comparative polymer 1 was used instead of the polymer A, and the same as in Example 1 Evaluation was performed. The results are shown in Table 1.
〔比較例2〕
まず、下記のようにして、比較ポリマー2を合成した。
〔合成例:比較ポリマー2の合成〕
300mlの三口フラスコに、ジメチルカーボネート16.7gを入れ、窒素気流下、65℃まで加熱した。そこへ、2−シアノエチルアクリレート12.5g、アクリル酸7.2g、およびV−65(和光純薬製)0.40gのジメチルカーボネート16.7g溶液を、4時間かけて滴下した。滴下終了後、更に反応溶液を3時間撹拌した。その後、アセトニトリル8gを加え10分間攪拌後、室温まで反応溶液を冷却した。
上記の反応溶液に、室温下、ジターシャリーブチルハイドロキノン0.04g、トリエチルベンジルアンモニウムクロライド3.0g、グリシジルメタクリレート6.0gを加え、100℃、5時間反応を行った。反応終了後、酢酸エチル:ヘキサン=2:3で再沈を行い、固形物を取り出し、下記構造の比較ポリマー2を13g得た。なお、化学式中の数値は、各ユニット(繰り返し単位)のモル%を表す。
[Comparative Example 2]
First, Comparative Polymer 2 was synthesized as follows.
[Synthesis Example: Synthesis of Comparative Polymer 2]
Into a 300 ml three-necked flask, 16.7 g of dimethyl carbonate was added and heated to 65 ° C. under a nitrogen stream. Thereto, 12.5 g of 2-cyanoethyl acrylate, 7.2 g of acrylic acid, and 0.40 g of V-65 (manufactured by Wako Pure Chemical Industries), 16.7 g of dimethyl carbonate were added dropwise over 4 hours. After completion of the dropwise addition, the reaction solution was further stirred for 3 hours. Thereafter, 8 g of acetonitrile was added and stirred for 10 minutes, and then the reaction solution was cooled to room temperature.
To the above reaction solution, 0.04 g of ditertiary butylhydroquinone, 3.0 g of triethylbenzylammonium chloride, and 6.0 g of glycidyl methacrylate were added at room temperature, and the reaction was performed at 100 ° C. for 5 hours. After completion of the reaction, reprecipitation was performed with ethyl acetate: hexane = 2: 3, and the solid matter was taken out to obtain 13 g of Comparative Polymer 2 having the following structure. In addition, the numerical value in chemical formula represents the mol% of each unit (repeating unit).
実施例1で用いた被めっき層形成用組成物1において、ポリマーAに代わりに比較ポリマー2を用いた他は、同様にして表面金属材料および金属パターン材料を作製し、実施例1と同様の評価を行った。結果を表1に示す。 In the composition 1 for forming a plated layer used in Example 1, a surface metal material and a metal pattern material were prepared in the same manner except that the comparative polymer 2 was used instead of the polymer A. Evaluation was performed. The results are shown in Table 1.
これらの結果を、下記表1にまとめる。下記表1においてソルダーレジストを「SR」と、層間絶縁膜を「絶縁膜」とそれぞれ表記する。
表1中、膜厚は、無電解銅めっき膜の厚みを意味する。また、密着力の単位は「kN/m」である。
These results are summarized in Table 1 below. In Table 1 below, the solder resist is expressed as “SR”, and the interlayer insulating film is expressed as “insulating film”.
In Table 1, the film thickness means the thickness of the electroless copper plating film. The unit of adhesion is “kN / m”.
以上のことから、本発明の被めっき層形成用組成物により得られた表面金属膜材料および金属パターン材料は、金属膜と樹脂層の密着性、配線間の絶縁信頼性に優れることが分かった。 From the above, it was found that the surface metal film material and metal pattern material obtained by the composition for forming a layer to be plated of the present invention were excellent in adhesion between the metal film and the resin layer and insulation reliability between the wirings. .
比較例1および2と各実施例との対比より、上記各実施例は、特定の官能基を有さない従来の被めっき層形成用組成物により得られた表面金属膜材料(比較例1、2の材料)に比べ、厳しい条件下であっても、配線間の絶縁信頼性が改良されていることが分かった。特に、比較例2に記載のカルボニル基を有するポリマーは、親水性が上がりすぎ、吸水率が上がることで、絶縁信頼性が悪化したと推測される。 From the comparison between Comparative Examples 1 and 2 and each Example, each of the above Examples is a surface metal film material (Comparative Example 1, which is obtained by a conventional composition for forming a plated layer having no specific functional group). It was found that the insulation reliability between the wirings was improved even under severe conditions compared to the material (2). In particular, the polymer having a carbonyl group described in Comparative Example 2 is presumed to have deteriorated insulation reliability due to excessive hydrophilicity and increased water absorption.
Claims (11)
めっき触媒またはその前駆体と相互作用を形成する非解離性官能基と、
エポキシ基、オキセタニル基、イソシアネート基、ブロックイソシアネート基、一級アミノ基、および二級アミノ基からなる群から選ばれる少なくとも一つの官能基とを含むポリマー、
を含有する被めっき層形成用組成物。 A radically polymerizable group;
A non-dissociative functional group that interacts with the plating catalyst or its precursor;
A polymer comprising at least one functional group selected from the group consisting of an epoxy group, an oxetanyl group, an isocyanate group, a blocked isocyanate group, a primary amino group, and a secondary amino group;
The composition for to-be-plated layer forming containing.
(式(1)中、R1〜R4は、それぞれ独立して、水素原子、または置換若しくは無置換のアルキル基を表す。ZおよびYは、それぞれ独立して、単結合、または置換若しく無置換の二価の有機基を表す。L1は、置換若しくは無置換の二価の有機基を表す。
式(2)中、R5は、水素原子、または置換若しくは無置換のアルキル基を表す。XおよびL2は、それぞれ独立して、単結合、または置換若しく無置換の二価の有機基を表す。
式(3)中、R6は、水素原子、または置換若しくは無置換のアルキル基を表す。L3は、置換若しくは無置換の二価の有機基を表す。Wは、単結合、または置換若しく無置換の二価の有機基を表す。Vは、エポキシ基、オキセタニル基、イソシアネート基、ブロックイソシアネート基、一級アミノ基、または二級アミノ基を表す。) The to-be-plated of Claim 1 or 2 whose said polymer is a polymer containing the unit represented by the unit represented by Formula (1), the unit represented by Formula (2), and Formula (3). Layer forming composition.
(In formula (1), R 1 to R 4 each independently represents a hydrogen atom or a substituted or unsubstituted alkyl group. Z and Y each independently represent a single bond or a substituted or unsubstituted alkyl group. L 1 represents an unsubstituted divalent organic group, and L 1 represents a substituted or unsubstituted divalent organic group.
In formula (2), R 5 represents a hydrogen atom or a substituted or unsubstituted alkyl group. X and L 2 each independently represents a single bond or a substituted or unsubstituted divalent organic group.
In formula (3), R 6 represents a hydrogen atom or a substituted or unsubstituted alkyl group. L 3 represents a substituted or unsubstituted divalent organic group. W represents a single bond or a substituted or unsubstituted divalent organic group. V represents an epoxy group, an oxetanyl group, an isocyanate group, a blocked isocyanate group, a primary amino group, or a secondary amino group. )
(a2)前記ポリマー層にめっき触媒またはその前駆体を付与する工程と、
(a3)前記めっき触媒またはその前駆体に対してめっきを行う工程と、
を備える、表面にめっき膜を有する表面金属膜材料の製造方法。 (A1) forming a polymer layer on the substrate using the composition for forming a layer to be plated according to any one of claims 1 to 3,
(A2) providing a plating catalyst or a precursor thereof to the polymer layer;
(A3) a step of plating the plating catalyst or a precursor thereof;
The manufacturing method of the surface metal film material which has a plating film on the surface provided with.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010072927A JP2011202109A (en) | 2010-03-26 | 2010-03-26 | Composition for forming plating layer, surface metal film material, method for producing the same, metal pattern material, and method for producing the same |
PCT/JP2011/057417 WO2011118797A1 (en) | 2010-03-26 | 2011-03-25 | Composition for forming plating layer, surface metal film material and method for producing same, and metal pattern material and method for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010072927A JP2011202109A (en) | 2010-03-26 | 2010-03-26 | Composition for forming plating layer, surface metal film material, method for producing the same, metal pattern material, and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011202109A true JP2011202109A (en) | 2011-10-13 |
Family
ID=44673337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010072927A Abandoned JP2011202109A (en) | 2010-03-26 | 2010-03-26 | Composition for forming plating layer, surface metal film material, method for producing the same, metal pattern material, and method for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2011202109A (en) |
WO (1) | WO2011118797A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101669030B1 (en) | 2012-06-18 | 2016-10-25 | 후지필름 가부시키가이샤 | Under layer film-forming composition for imprints and method of forming pattern |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI635365B (en) * | 2014-08-21 | 2018-09-11 | 日商富士軟片股份有限公司 | Sublayer film forming composition, laminate, pattern forming method, imprint forming kit, and device manufacturing method |
WO2019172156A1 (en) * | 2018-03-07 | 2019-09-12 | 富士フイルム株式会社 | Underlayer film forming composition for imprinting, curable composition for imprinting, and kit |
KR102297298B1 (en) * | 2019-12-06 | 2021-09-03 | 주식회사 포스코 | Galvanizing steel sheet having excelent bendability and corrosion resistance, and manufacturing method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3625587A1 (en) * | 1986-07-29 | 1988-02-04 | Bayer Ag | METHOD FOR IMPROVING THE ADHESIVITY OF ELECTRICALLY DEPOSED METAL LAYERS ON PLASTIC SURFACES |
JP2009164575A (en) * | 2007-12-14 | 2009-07-23 | Fujifilm Corp | Method of manufacturing surface metal film material, surface metal film material, method of manufacturing patterned metal material, patterned metal material, and polymer layer-forming composition |
JP2009280904A (en) * | 2008-04-23 | 2009-12-03 | Fujifilm Corp | Manufacturing method for surface metal film material, surface metal film material, manufacturing method for metal pattern material, metal pattern material, and dispersed substance for forming polymer layer |
-
2010
- 2010-03-26 JP JP2010072927A patent/JP2011202109A/en not_active Abandoned
-
2011
- 2011-03-25 WO PCT/JP2011/057417 patent/WO2011118797A1/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101669030B1 (en) | 2012-06-18 | 2016-10-25 | 후지필름 가부시키가이샤 | Under layer film-forming composition for imprints and method of forming pattern |
Also Published As
Publication number | Publication date |
---|---|
WO2011118797A1 (en) | 2011-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5419441B2 (en) | Method for forming multilayer wiring board | |
JP5079396B2 (en) | Conductive substance adsorbing resin film, method for producing conductive substance adsorbing resin film, resin film with metal layer using the same, and method for producing resin film with metal layer | |
JP5819619B2 (en) | Ink jet ink, surface metal film material and method for producing the same, metal pattern material and method for producing the same | |
KR101459515B1 (en) | Metal-film-coated material and process for producing the same, metallic-pattern-bearing material and process for producing the same, composition for polymer layer formation, nitrile polymer and method of synthesizing the same, composition containing nitrile polymer, and layered product | |
JP5241304B2 (en) | Method for producing surface metal film material, surface metal film material, method for producing metal pattern material, and metal pattern material | |
KR101625421B1 (en) | Surface metal film material, process for producing surface metal film material, process for producing metal pattern material, and metal pattern material | |
JP2010185128A (en) | Photosensitive resin composition for plating, laminate, method of producing surface metal film material using the same, surface metal film material, method of producing metal pattern material, metal pattern material, and wiring board | |
US20080096016A1 (en) | Laminated body used to produce printed wiring board, and method of producing printed wiring board using the same | |
JP4903528B2 (en) | Method for producing substrate with metal film, substrate with metal film, method for producing metal pattern material, metal pattern material | |
WO2008050631A1 (en) | Process for producing metal-film-coated substrate, metal-film-coated substrate, process for producing metallic-pattern material, and metallic-pattern material | |
JP2008277717A (en) | Resin film with metal layer, its forming method, and flexible printed board manufacturing method using the film | |
JP2006282878A (en) | Surface graft material, conductive material, and manufacturing method for the same | |
WO2011118797A1 (en) | Composition for forming plating layer, surface metal film material and method for producing same, and metal pattern material and method for producing same | |
JP4606924B2 (en) | Graft pattern material, conductive pattern material and method for producing the same | |
JP2013051391A (en) | Multilayer substrate manufacturing method | |
JP2012031447A (en) | Composition for forming layer to be plated, material for surface metal film and method for producing the same, and material for metal pattern and method for producing the same | |
WO2012133684A1 (en) | Production method for laminate having patterned metal films, and plating layer-forming composition | |
WO2012133032A1 (en) | Production method for laminate having patterned metal films, and plating layer-forming composition | |
JP2008192850A (en) | Manufacturing method for metal-pattern material | |
JP2012116130A (en) | Method for manufacturing laminate having metal film | |
WO2012133297A1 (en) | Laminate having metal film, manufacturing method therefor, laminate having patterned metal film, and manufacturing method therefor | |
JP2012180561A (en) | Laminated body having metal film and method for producing the same, and laminated body having patterned metal film and method for producing the same | |
JP5106025B2 (en) | Method for producing surface metal film material, surface metal film material, method for producing metal pattern material, metal pattern material, and composition for forming polymer layer | |
WO2012029865A1 (en) | Method for manufacturing multilayer wiring board | |
TW201132795A (en) | Method of plate pretreatment and production method of surface metal film material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120723 |
|
A762 | Written abandonment of application |
Free format text: JAPANESE INTERMEDIATE CODE: A762 Effective date: 20130321 |