JP2009161724A - Oligoolefin halogenated at both ends and triblock copolymer produced from the same - Google Patents

Oligoolefin halogenated at both ends and triblock copolymer produced from the same Download PDF

Info

Publication number
JP2009161724A
JP2009161724A JP2008118691A JP2008118691A JP2009161724A JP 2009161724 A JP2009161724 A JP 2009161724A JP 2008118691 A JP2008118691 A JP 2008118691A JP 2008118691 A JP2008118691 A JP 2008118691A JP 2009161724 A JP2009161724 A JP 2009161724A
Authority
JP
Japan
Prior art keywords
meth
acrylate
triblock copolymer
oligoolefin
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008118691A
Other languages
Japanese (ja)
Other versions
JP5248909B2 (en
Inventor
Takashi Sawaguchi
孝志 澤口
Daisuke Sasaki
大輔 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanei Kogyo KK
Original Assignee
Sanei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanei Kogyo KK filed Critical Sanei Kogyo KK
Priority to JP2008118691A priority Critical patent/JP5248909B2/en
Publication of JP2009161724A publication Critical patent/JP2009161724A/en
Application granted granted Critical
Publication of JP5248909B2 publication Critical patent/JP5248909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oligoolefin halogenated at both ends which is useful as a raw material for the production of a functional copolymer, and to provide a triblock copolymer produced from the oligoolefin. <P>SOLUTION: An oligoolefin which is halogenated at both ends and is represented by the general formula (1) and a triblock copolymer represented by the general formula (2) are provided. In the formulas, X is a halogen atom; n is an integer of 10-1,000; and A is a vinyl polymer block. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、新規構造を有する両末端ハロゲン化オリゴオレフィン、それを用いたトリブロック共重合体、及びそれらの製造方法に関する。   The present invention relates to a both-end halogenated oligoolefin having a novel structure, a triblock copolymer using the same, and a production method thereof.

ポリプロピレンおよびポリ1−ブテンなどの汎用高分子は、安価であるとともに、その優れた性質を利用して種々の用途に用いられている。   General-purpose polymers such as polypropylene and poly 1-butene are inexpensive and are used for various applications by utilizing their excellent properties.

しかしながら、これらの汎用高分子は非極性であり、かつ官能基を導くことが困難であるために、他の極性物質との相互作用が乏しく、他の極性基を有する高分子との混合による強化が困難である。また、塗装性、接着性に劣るという問題点を有する。   However, because these general-purpose polymers are nonpolar and it is difficult to introduce functional groups, the interaction with other polar substances is poor, and strengthening by mixing with polymers having other polar groups Is difficult. Moreover, it has the problem that it is inferior to coating property and adhesiveness.

近年、こうした問題点を解決するための新機能化ポリプロピレンに関する研究が活発に行われている。その1つとして、メタロセン系触媒を用いた重合反応によって合成した片末端ビニリデンポリプロピレンの官能基化を経たジブロック共重合体の合成が挙げられる。これは、重合条件の選択により成長末端でβ位の水素の脱離が選択的に起こり、片末端にビニリデン型の2重結合が生成することに基づくものである。片末端2重結合は、容易に様々な官能基に変換できるため、ポリプロピレンの機能化に非常に有用である。しかしながら、この場合、分子鎖中の官能基が片末端にしか存在しないので、物性の改良に限界がある。   In recent years, research on new functionalized polypropylene to solve these problems has been actively conducted. One of them is synthesis of a diblock copolymer through functionalization of one-end vinylidene polypropylene synthesized by a polymerization reaction using a metallocene catalyst. This is based on the fact that the β-position hydrogen is selectively eliminated at the growth terminal by the selection of the polymerization conditions, and a vinylidene type double bond is formed at one terminal. The single-end double bond can be easily converted into various functional groups, and thus is very useful for functionalization of polypropylene. However, in this case, since the functional group in the molecular chain exists only at one end, there is a limit in improving the physical properties.

このような技術的背景の下で、すでに本発明者らは、ポリオレフィンの高度制御熱分解により得られる両末端ビニリデン結合含有オレフィンオリゴマーを出発原料とし、当該ビニリデン基の官能基変換を経由して合成される種々の機能性コポリマーを提供した(特許文献1〜3参照)。
特開2003−292589号公報 特許第3959043号公報 特開2004−107508号公報
Under such a technical background, the present inventors have already synthesized olefin oligomers containing vinylidene bonds at both ends obtained by highly controlled pyrolysis of polyolefin via a functional group conversion of the vinylidene group. Various functional copolymers were provided (see Patent Documents 1 to 3).
JP 2003-292589 A Japanese Patent No. 3959043 JP 2004-107508 A

本発明は、新規構造を有し、機能性コポリマーの製造原料として使用可能な両末端ハロゲン化オリゴオレフィン、それを用いたトリブロック共重合体、及びそれらの製造方法を提供することを課題とする。   It is an object of the present invention to provide a both-end halogenated oligoolefin having a novel structure and usable as a raw material for producing a functional copolymer, a triblock copolymer using the same, and a production method thereof. .

本発明者らは、高度制御熱分解により得られる両末端ビニリデン結合含有オリゴオレフィンのビニリデン結合を官能基変換することにより、両末端ハロゲン化オリゴオレフィンが得られることを見出した。さらに、当該両末端ハロゲン化オリゴオレフィンを開始剤として、種々のビニル系モノマーを用いて原子移動ラジカル重合(Atom Transfer Radical Polymerization:ATRP)を行うことが可能であり、それにより高分子量のトリブロック共重合体が得られることを見出し、本発明を完成した。   The present inventors have found that a halogenated oligoolefin at both ends can be obtained by functional group conversion of the vinylidene bond of the oligoolefin containing both ends vinylidene bond obtained by highly controlled pyrolysis. Furthermore, atom transfer radical polymerization (ATRP) can be performed using various vinyl monomers using the both-end halogenated oligoolefin as an initiator, whereby a high molecular weight triblock copolymer can be used. The inventors found that a polymer can be obtained and completed the present invention.

すなわち本発明は、下記一般式(1)で表される両末端ハロゲン化オリゴオレフィンに関する。
(式中、RおよびRは、それぞれ独立して水素、メチル基、又はフェニル基を表す。また、各Rは、H、−CH、−C、および−CHCH(CHからなる群から独立に選択され、Xはハロゲン原子、nは10〜1000の整数である。)
That is, this invention relates to the both-ends halogenated oligoolefin represented by following General formula (1).
(In the formula, R 1 and R 2 each independently represent hydrogen, a methyl group, or a phenyl group. Also, each R 3 represents H, —CH 3 , —C 2 H 5 , and —CH 2 CH. (Independently selected from the group consisting of (CH 3 ) 2 , X is a halogen atom, and n is an integer of 10 to 1000.)

さらに、本発明は、Rが−CH、RおよびRがいずれもメチル基、XがBrである前記両末端ハロゲン化オリゴオレフィンに関する。 Furthermore, the present invention relates to the above-mentioned both-end halogenated oligoolefin, wherein R 3 is —CH 3 , R 1 and R 2 are all methyl groups, and X is Br.

また本発明は、下記一般式(2)で表されるトリブロック共重合体に関する。
(式中、RおよびRは、それぞれ独立して水素、メチル基、又はフェニル基を表す。また、各Rは、H、−CH、−C、および−CHCH(CHからなる群から独立に選択され、Xはハロゲン原子、nは10〜1000の整数である。またAは、ビニル系重合体ブロックを意味し、下記一般式(3)で表される。
(ただし式中、Rはメチル基又は水素を、Rは、−COOCH、−COOC、−COOnBu、−COOtBu、−CONHCH(CH、−COOCHCHOH、−COOCHCHN(CH、−CN、−COOH又はフェニル基を表す。また、mは1〜10000の整数である。))
The present invention also relates to a triblock copolymer represented by the following general formula (2).
(In the formula, R 1 and R 2 each independently represent hydrogen, a methyl group, or a phenyl group. Also, each R 3 represents H, —CH 3 , —C 2 H 5 , and —CH 2 CH. (CH 3 ) 2 is independently selected from the group consisting of 2 , X is a halogen atom, n is an integer of 10 to 1000. A is a vinyl polymer block, and is represented by the following general formula (3). Is done.
(Wherein, R 4 is a methyl group or hydrogen, R 5 is —COOCH 3 , —COOC 2 H 5 , —COOnBu, —COOtBu, —CONHCH (CH 3 ) 2 , —COOCH 2 CH 2 OH, — COOCH 2 CH 2 N (CH 3 ) 2 , —CN, —COOH or a phenyl group, and m is an integer of 1 to 10,000.)

また本発明は、下記一般式(1)で表される両末端ハロゲン化オリゴオレフィン
(式中、RおよびRは、それぞれ独立して水素、メチル基、又はフェニル基を表す。また、各Rは、H、−CH、−C、および−CHCH(CHからなる群から独立に選択され、Xはハロゲン原子、nは10〜1000の整数である。)を開始剤として、
(メタ)アクリル酸メチル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、N−イソプロピル(メタ)アクリルアミド、(メタ)アクリル酸2−ヒドロキシメチル、(メタ)アクリル酸2−ジメチルアミノエチル、(メタ)アクリロニトリル、又はスチレンを原子移動ラジカル重合させることを特徴とする、トリブロック共重合体の製造方法に関する。
Moreover, this invention is a both-ends halogenated oligoolefin represented by following General formula (1)
(In the formula, R 1 and R 2 each independently represent hydrogen, a methyl group, or a phenyl group. Also, each R 3 represents H, —CH 3 , —C 2 H 5 , and —CH 2 CH. (Independently selected from the group consisting of (CH 3 ) 2 , X is a halogen atom, and n is an integer of 10 to 1000).
Methyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, N-isopropyl (meth) acrylamide, (meth) The present invention relates to a method for producing a triblock copolymer, which comprises atom transfer radical polymerization of 2-hydroxymethyl acrylate, 2-dimethylaminoethyl (meth) acrylate, (meth) acrylonitrile, or styrene.

また本発明は、両末端ビニリデン結合含有オリゴオレフィンをヒドロキシル化し、さらにα−ハロアシルハライドとエステル化反応を行うことを特徴とする、上記一般式(1)で表される両末端ハロゲン化オリゴオレフィンの製造方法を含む。   Moreover, this invention hydroxylates the both-ends vinylidene bond containing oligoolefin, and also performs an esterification reaction with (alpha) -haloacyl halide, The both-ends halogenated oligoolefin represented by the said General formula (1) characterized by the above-mentioned. Including the manufacturing method.

また本発明は、上記一般式(1)で表される両末端ハロゲン化オリゴオレフィンを開始剤として、一種又は二種以上のビニル系モノマーを原子移動ラジカル重合させることにより得られるトリブロック共重合体を含む。   In addition, the present invention provides a triblock copolymer obtained by atom transfer radical polymerization of one or two or more types of vinyl monomers using the both-end halogenated oligoolefin represented by the general formula (1) as an initiator. including.

さらに本発明は、上記一般式(2)で表されるトリブロック共重合体を、原子移動ラジカルカップリング反応させることにより得られるマルチブロック共重合体を含む。   Furthermore, the present invention includes a multiblock copolymer obtained by subjecting the triblock copolymer represented by the general formula (2) to an atom transfer radical coupling reaction.

本発明による両末端ハロゲン化オリゴオレフィンは、原子移動ラジカル重合の重合開始剤として種々のモノマーと作用し、トリブロック共重合体を生成することができるので、機能性コポリマーの製造原料として有用である。   The both-end halogenated oligoolefin according to the present invention can be used as a raw material for producing a functional copolymer because it can act with various monomers as a polymerization initiator for atom transfer radical polymerization to form a triblock copolymer. .

また、本発明のトリブロック共重合体は、両末端ハロゲン化オリゴオレフィンを開始剤として、ビニル系モノマーを原子移動ラジカル重合して構成される。係るトリブロック共重合体は、両末端のブロックと、それをつなぐブロックが相異する性質を有するものであることから、極性の相異する2種類以上の重合体の相溶化剤等として利用することができる。   The triblock copolymer of the present invention is constituted by atom transfer radical polymerization of a vinyl monomer using a halogenated oligoolefin at both ends as an initiator. Such a triblock copolymer has a property in which a block at both ends and a block connecting them are different, so that it is used as a compatibilizing agent for two or more types of polymers having different polarities. be able to.

両末端ハロゲン化オリゴオレフィン
本発明に係る両末端ハロゲン化オリゴオレフィンは上記一般式(1)の構造を有する。
Both-end halogenated oligoolefin The both-end halogenated oligoolefin according to the present invention has the structure of the above general formula (1).

一般式(1)において、繰り返し単位数nに関しては特に制限がないが、通常10〜1000の整数である。RおよびRは、それぞれ独立して水素、メチル基、又はフェニル基を表す。RおよびRは、全て水素原子であってもよく、また少なくとも1個が水素原子以外の官能基に置換されていてもよい。2個が水素原子以外の官能基に置換される場合には、それらの置換基は同じでも異なっていてもよい。反応性の観点から、Rが水素でRがメチル基、Rが水素でRがフェニル基、又はRとRの両方がメチル基であるものが好ましい。また、Xはハロゲン原子を意味し、好ましくはCl、Br、又はIであり、反応性の観点からBrが最も好ましい。 In general formula (1), the number of repeating units n is not particularly limited, but is usually an integer of 10 to 1000. R 1 and R 2 each independently represent hydrogen, a methyl group, or a phenyl group. R 1 and R 2 may all be hydrogen atoms, or at least one of them may be substituted with a functional group other than hydrogen atoms. When two are substituted with a functional group other than a hydrogen atom, these substituents may be the same or different. From the viewpoint of reactivity, it is preferable that R 1 is hydrogen and R 2 is a methyl group, R 1 is hydrogen and R 2 is a phenyl group, or both R 1 and R 2 are methyl groups. X represents a halogen atom, preferably Cl, Br, or I, and Br is most preferable from the viewpoint of reactivity.

また、一般式(1)において、各Rは、H、−CH、−C、および−CHCH(CHからなる群から独立に選択される。すなわち、オリゴオレフィン鎖を構成するオリゴオレフィンが、オリゴプロピレン(Rがすべて−CH)、オリゴ1−ブテン(Rがすべて−C)、エチレン・プロピレン共重合体(RがH又は−CH)、エチレン・1−ブテン共重合体(RがH又は−C)、プロピレン・1−ブテン共重合体(Rが、−CH3又は−C)又はオリゴ4−メチル−1−ペンテン(Rがすべて−CHCH(CH)であるもの等が含まれる。なお、共重合体に関してはランダム共重合体およびブロック共重合体の両方を含む。 In the general formula (1), each R 3 is independently selected from the group consisting of H, —CH 3 , —C 2 H 5 , and —CH 2 CH (CH 3 ) 2 . That is, the oligoolefin constituting the oligoolefin chain is oligopropylene (R 3 is all —CH 3 ), oligo 1-butene (R 3 is all —C 2 H 5 ), ethylene / propylene copolymer (R 3 is H or -CH 3), ethylene-1-butene copolymer (R 3 is H or -C 2 H 5), propylene-1-butene copolymer (R 3 are, --CH3 or -C 2 H 5) or oligo 4-methyl-1-pentene (R 3 are all -CH 2 CH (CH 3) 2 ) include like those that are. In addition, regarding a copolymer, both a random copolymer and a block copolymer are included.

本発明に係る両末端ハロゲン化オリゴオレフィンは、原子移動ラジカル重合の重合開始剤として種々のビニル系モノマーと作用し、トリブロック共重合体を生成することができるので、機能性コポリマーの製造分野において特に有用である。   Since the both-end halogenated oligoolefin according to the present invention can act with various vinyl monomers as a polymerization initiator for atom transfer radical polymerization to produce a triblock copolymer, It is particularly useful.

重合させるビニル系モノマーとしては、特に制限されないが、たとえば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピルなどのメタクリル系モノマー、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t−ブチル、アクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル、アクリル酸2−アミノエチルなどのアクリル系モノマー、スチレンなどの芳香族アルケニル化合物、アクリロニトリル、メタクリロニトリルなどのシアン化ビニル化合物などがあげられる。これらは単独でまたは2種以上を組み合わせて用いることができる。二種類以上のモノマーを使用する場合、これらは、同時または逐次的に系内に仕込むことが出来る。同時に仕込む場合、モノマー反応性比に基づいた共重合体を合成することができる。また、逐次的にモノマーを加えれば、鎖長を伸ばしつつ異なるブロックを持つ共重合体を合成することが可能である。   The vinyl monomer to be polymerized is not particularly limited, and examples thereof include, for example, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, methacrylic acid. Methacrylic monomers such as 2-hydroxyethyl acid, 2-hydroxypropyl methacrylate, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-acrylate Acrylic monomers such as butyl, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-aminoethyl acrylate, aromatic alkenyl compounds such as styrene, acrylonitrile, methacrylonitrile And vinyl cyanide compounds such like. These can be used alone or in combination of two or more. When two or more types of monomers are used, these can be charged into the system simultaneously or sequentially. When charged simultaneously, a copolymer based on the monomer reactivity ratio can be synthesized. Moreover, if a monomer is added sequentially, it is possible to synthesize a copolymer having different blocks while extending the chain length.

これらのビニル系単量体は、トリブロック共重合体に必要とされる性能を付与するために好ましいものを選択することができる。たとえば、耐熱性が要求される場合には、比較的ガラス転移温度の高い化合物を選択することができる。また、耐油性が要求される場合には、アクリロニトリルなどの高極性の化合物を選択することができる。また、トリブロック共重合体を熱可塑性樹脂、ゴム、充填剤などと組み合わせる場合には、それらとの相溶性によっても好ましいものを選択することができる。   These vinyl monomers can be selected from those preferable for imparting the performance required for the triblock copolymer. For example, when heat resistance is required, a compound having a relatively high glass transition temperature can be selected. When oil resistance is required, a highly polar compound such as acrylonitrile can be selected. Moreover, when combining a triblock copolymer with a thermoplastic resin, rubber | gum, a filler, etc., a preferable thing can be selected also by compatibility with them.

両末端ハロゲン化オリゴオレフィンの製造方法
本発明に係る両末端ハロゲン化オリゴオレフィンは、両末端ビニリデン結合含有オリゴオレフィンをヒドロキシル化し、さらに適当なα−ハロアシルハライドを用いてエステル化反応を行うことによって合成することができる。
Method for Producing Both End Halogenated Oligoolefins The both end halogenated oligoolefins according to the present invention are obtained by hydroxylating both end vinylidene bond-containing oligoolefins and further carrying out an esterification reaction using an appropriate α-haloacyl halide. Can be synthesized.

原料である両末端ビニリデン結合含有オリゴオレフィンは、本発明者らが開発した高度制御熱分解(Macromolecules, 28, 7973(1995)参照。)によるポリオレフィンの熱分解生成物として得られる。   The oligoolefin containing a vinylidene bond at both ends as a raw material is obtained as a pyrolysis product of polyolefin by highly controlled pyrolysis (see Macromolecules, 28, 7973 (1995)) developed by the present inventors.

ポリプロピレンを例に説明すると、高度制御熱分解法によって得られるポリプロピレンの熱分解生成物は、数平均分子量Mnが1000〜50000程度、分散度Mw/Mnが2程度、1分子当たりのビニリデン基の平均数が1.5〜1.8程度であり、分解前の原料ポリプロピレンの立体規則性を保持しているという特性を有している。分解前の原料のポリプロピレンの重量平均分子量は、好ましくは1万〜100万の範囲内、さらに好ましくは20万〜80万の範囲内である。   Taking polypropylene as an example, the pyrolysis product of polypropylene obtained by the highly controlled pyrolysis method has a number average molecular weight Mn of about 1,000 to 50,000, a degree of dispersion Mw / Mn of about 2, and an average of vinylidene groups per molecule The number is about 1.5 to 1.8, and it has the property that the stereoregularity of the raw material polypropylene before decomposition is maintained. The weight average molecular weight of the raw material polypropylene before decomposition is preferably in the range of 10,000 to 1,000,000, more preferably in the range of 200,000 to 800,000.

熱分解装置としては、Journal of PolymerScience:Polymer Chemistry Edition, 21, 703(1983)に開示された装置を用いることができる。パイレックス(R)ガラス製熱分解装置の反応容器内にポリプロピレンを入れて、減圧下、溶融ポリマー相を窒素ガスで激しくバブリングし、揮発性生成物を抜き出すことにより、2次反応を抑制しながら、所定温度で所定時間、熱分解反応させる。熱分解反応終了後、反応容器中の残存物を熱キシレンに溶解し、熱時濾過後、アルコールで再沈殿させ精製する。再沈物を濾過回収して、真空乾燥することにより両末端ビニリデン結合含有オリゴプロピレンが得られる。 As the thermal decomposition apparatus, an apparatus disclosed in Journal of Polymer Science: Polymer Chemistry Edition, 21, 703 (1983) can be used. While suppressing the secondary reaction by putting polypropylene in a reaction vessel of a Pyrex (R) glass pyrolysis apparatus, bubbling the molten polymer phase vigorously with nitrogen gas under reduced pressure, and extracting a volatile product, A thermal decomposition reaction is performed at a predetermined temperature for a predetermined time. After completion of the thermal decomposition reaction, the residue in the reaction vessel is dissolved in hot xylene, filtered while hot, and then reprecipitated with alcohol for purification. The reprecipitate is collected by filtration and dried in vacuo to obtain oligopropylene containing vinylidene bonds at both ends.

熱分解条件は、分解前のポリプロピレンの分子量と最終目的物のブロック共重合体の1次構造から生成物の分子量を予測し、予め実施した実験の結果を勘案して調整する。熱分解温度は300℃〜450℃の範囲が好ましい。300℃より低い温度では、ポリプロピレンの熱分解反応が充分に進行しない恐れがあり、450℃より高い温度では、熱分解生成物の劣化が進行する恐れがある。   The thermal decomposition conditions are adjusted by predicting the molecular weight of the product from the molecular weight of polypropylene before decomposition and the primary structure of the final target block copolymer, and taking into consideration the results of experiments conducted in advance. The thermal decomposition temperature is preferably in the range of 300 ° C to 450 ° C. If the temperature is lower than 300 ° C, the thermal decomposition reaction of polypropylene may not proceed sufficiently, and if the temperature is higher than 450 ° C, the degradation of the thermal decomposition product may progress.

ヒドロキシル化は、上記方法に従って得られた両末端ビニリデン結合含有オリゴオレフィンの2重結合を、ヒドロホウ素化に続く、酸化反応によってヒドロキシル化することにより達成される。例えば、テトラヒドロフランを溶媒とし、まずホウ素化試薬を加えてヒドロホウ素化する。ホウ素化試薬としては、9−ボランビシクロノナンやボラン−テトラヒドロフラン錯体を用いることができる。ヒドロホウ素化後の反応溶液に過酸化水素水を加え、酸化反応させると両末端ヒドロキシル基含有オリゴオレフィンが得られる。   Hydroxylation is achieved by hydroxylating the double bond of the both-end vinylidene bond-containing oligoolefin obtained according to the above-described method by hydroboration followed by an oxidation reaction. For example, tetrahydrofuran is first used as a solvent, and a boronation reagent is first added to hydroborate. As the boration reagent, 9-boranebicyclononane or borane-tetrahydrofuran complex can be used. When a hydrogen peroxide solution is added to the reaction solution after hydroboration to cause an oxidation reaction, a hydroxyl group-containing oligoolefin is obtained.

続いて、上のように得られた両末端ヒドロキシル基含有オリゴオレフィンを、適当なα−ハロアシルハライドを用いてエステル化反応を行うことにより、一般式(1)で表される両末端ハロゲン化オリゴオレフィンが得られる。   Subsequently, the both-end hydroxyl group-containing oligoolefin obtained as described above is subjected to esterification reaction using an appropriate α-haloacyl halide to thereby perform both-end halogenation represented by the general formula (1). Oligoolefin is obtained.

ここで、α−ハロアシルハライドとは、α位の炭素がハロゲン化されたアシルハライドを意味し、工業的に容易に入手することが可能である。   Here, the α-haloacyl halide means an acyl halide in which the carbon at the α-position is halogenated and can be easily obtained industrially.

反応は、酸ハロゲン化物とアルコールによる通常のエステル化反応で行うことができる。具体的には、トリエチルアミン等の塩基の存在下、α−ハロアシルハライドと両末端ヒドロキシル基含有オリゴオレフィンとを反応させれば良い。   The reaction can be carried out by a normal esterification reaction with an acid halide and an alcohol. Specifically, an α-haloacyl halide and a hydroxyl group-containing oligoolefin may be reacted in the presence of a base such as triethylamine.

トリブロック共重合体
本発明に係るトリブロック共重合体は、上で説明した両末端ハロゲン化オリゴオレフィンを開始剤として用い、通常公知のビニル系モノマー、特に、(メタ)アクリル酸メチル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、N−イソプロピル(メタ)アクリルアミド、(メタ)アクリル酸2−ヒドロキシメチル、(メタ)アクリル酸2−ジメチルアミノエチル、(メタ)アクリロニトリル、又はスチレンを原子移動ラジカル重合させることにより得られ、上記一般式(2)の構造を有する。
Triblock Copolymer The triblock copolymer according to the present invention uses the above-described both-end halogenated oligoolefin as an initiator, and is usually a known vinyl monomer, particularly methyl (meth) acrylate, (meta ) Methyl acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, N-isopropyl (meth) acrylamide, 2-hydroxymethyl (meth) acrylate, (meth) It is obtained by atom transfer radical polymerization of 2-dimethylaminoethyl acrylate, (meth) acrylonitrile, or styrene, and has the structure of the above general formula (2).

一般式(1)において、R、R、R、n、およびXに関しては、上で定義した通りであり、Aは上記一般式(3)で表されるビニル系重合体ブロックである。また、繰り返し単位数mは、特に制限はないが、通常1〜10000の整数である。 In the general formula (1), R 1 , R 2 , R 3 , n, and X are as defined above, and A is a vinyl polymer block represented by the general formula (3). . The number m of repeating units is not particularly limited, but is usually an integer of 1 to 10,000.

また、特に、アクリル酸t−ブチルによるトリブロック共重合体は、容易に加水分解され、アクリル酸とのトリブロック共重合体(R:H、R:−COOH)を与える。 In particular, a triblock copolymer of t-butyl acrylate is easily hydrolyzed to give a triblock copolymer with acrylic acid (R 4 : H, R 5 : -COOH).

本発明のトリブロック共重合体は両末端のブロックと、それをつなぐブロック(オリゴオレフィンブロック)の極性が相異する。従って、極性の相異する2種類以上の重合体の相溶化剤として利用することができる。また、ビニル系重合体ブロックが親水性の共重合体(例えば、R:H、R:−COOHの場合)に関しては、両親媒性を有することから、界面活性剤として利用することができる。 In the triblock copolymer of the present invention, the polarities of the blocks at both ends and the block (oligoolefin block) connecting them are different. Therefore, it can be used as a compatibilizer for two or more types of polymers having different polarities. Moreover, since the vinyl polymer block is amphiphilic with respect to a hydrophilic copolymer (for example, in the case of R 4 : H, R 5 : -COOH), it can be used as a surfactant. .

また、本発明のトリブロック共重合体は、両末端にハロゲン原子を有するので、原子移動ラジカルカップリング反応を行うことにより、さらに高分子量化したマルチブロック共重合体を合成することも可能である。   In addition, since the triblock copolymer of the present invention has halogen atoms at both ends, it is possible to synthesize a multiblock copolymer having a higher molecular weight by performing an atom transfer radical coupling reaction. .

ここで、原子移動ラジカルカップリングはラジカルの反応性を応用した公知のカップリング反応である(例えば、e−Polymers 2005、no.49、第1頁〜11頁参照)。一般的に、ビニル系重合体ブロックが、再結合反応を主たる停止反応として生起するスチレンなどのモノマーによって構成されているトリブロック共重合体を使用する場合には、原子移動ラジカルカップリングを行うことにより、直接マルチブロック共重合体を合成することができる。一方、メタクリル酸メチル等停止反応として再結合と不均化の二種類を生起するモノマーによって構成されているトリブロック共重合体は、必要に応じて原子移動ラジカル重合によりスチレン等の再結合反応を生起するモノマーを末端に導入した後で、原子移動ラジカルカップリングさせることでマルチブロック共重合体へと変換することができる。   Here, the atom transfer radical coupling is a known coupling reaction in which radical reactivity is applied (for example, see e-Polymers 2005, no. 49, pages 1 to 11). In general, when using a triblock copolymer in which a vinyl polymer block is composed of a monomer such as styrene that occurs as a main termination reaction, a recombination reaction should be performed by atom transfer radical coupling. Thus, a multi-block copolymer can be directly synthesized. On the other hand, triblock copolymers composed of monomers that generate two types of recombination and disproportionation as a termination reaction such as methyl methacrylate can undergo recombination reactions such as styrene by atom transfer radical polymerization as necessary. After the monomer to be generated is introduced to the terminal, it can be converted into a multiblock copolymer by atom transfer radical coupling.

トリブロック共重合体の製造方法
本発明に係るトリブロック共重合体の製造方法は、上で説明した両末端ハロゲン化オリゴオレフィンを開始剤として用い、通常公知のビニル系モノマー、特に、(メタ)アクリル酸メチル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、N−イソプロピル(メタ)アクリルアミド、(メタ)アクリル酸2−ヒドロキシメチル、(メタ)アクリル酸2−ジメチルアミノエチル、(メタ)アクリロニトリル、又はスチレンを原子移動ラジカル重合させることを特徴とする。
Method for Producing Triblock Copolymer The method for producing a triblock copolymer according to the present invention uses the above-described halogenated oligoolefins as described above as initiators, and generally known vinyl monomers, particularly (meth) Methyl acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, N-isopropyl (meth) acrylamide, (meth) acrylic acid 2 -Atom transfer radical polymerization of hydroxymethyl, 2-dimethylaminoethyl (meth) acrylate, (meth) acrylonitrile, or styrene.

原子移動ラジカル重合は、有機ハロゲン化物またはハロゲン化スルホニル化合物を開始剤とし、周期律表第8族、9族、10族または11族元素を中心金属とする金属錯体を触媒として重合することを特徴とする、公知の重合方法である。(たとえば、マティジャスツェウスキー(Matyjaszewski)ら、ジャーナルオブアメリカンケミカルソサエティ(J.Am.Chem.Soc.)、1995年、117巻、5614頁、マクロモレキュールズ(Macromolecules)、1995年、28巻、7901頁、サイエンス(Science)、1996年、272巻、866頁、または、澤本(Sawamoto)ら、マクロモレキュールズ(Macromolecules)、1995年、28巻、1721頁参照)。   Atom transfer radical polymerization is characterized in that an organic halide or a sulfonyl halide compound is used as an initiator and a metal complex having a group 8 element, group 9, group 10 or group 11 element as a central metal is polymerized as a catalyst. This is a known polymerization method. (For example, Mattyjaszewski et al., Journal of American Chemical Society (J. Am. Chem. Soc.), 1995, 117, 5614, Macromolecules, 1995, 28. Vol., 7901, Science, 1996, 272, 866, or Sawamoto et al., Macromolecules, 1995, 28, 1721).

原子移動ラジカル重合の触媒として用いられる遷移金属錯体としては、とくに制限はないが、好ましいものとして、1価および0価の銅、2価のルテニウム、2価の鉄、ならびに、2価のニッケルの錯体があげられる。これらの中でも、コストや反応制御の点から銅の錯体が好ましい。   The transition metal complex used as a catalyst for atom transfer radical polymerization is not particularly limited, but preferred are monovalent and zerovalent copper, divalent ruthenium, divalent iron, and divalent nickel. Complex. Among these, a copper complex is preferable from the viewpoint of cost and reaction control.

1価の銅化合物としては、たとえば、塩化第一銅、臭化第一銅、ヨウ化第一銅、シアン化第一銅、酸化第一銅、過塩素酸第一銅などがあげられる。その中でも塩化第一銅、臭化第一銅が、重合の制御の観点から好ましい。   Examples of the monovalent copper compound include cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, cuprous oxide, cuprous perchlorate, and the like. Of these, cuprous chloride and cuprous bromide are preferred from the viewpoint of polymerization control.

使用する配位子は、とくに限定されないが、開始剤、単量体、および溶媒を考慮して、必要とする反応速度の関係から適宜決定すればよい。1価の銅化合物を用いる場合、配位子として、2,2′−ビピリジルおよびその誘導体(たとえば4,4′−ジノリル−2,2′−ビピリジル、4,4′−ジ(5−ノリル)−2,2′−ビピリジルなど)などの2,2′−ビピリジル系化合物、1,10−フェナントロリンおよびその誘導体(たとえば4,7−ジノリル−1,10−フェナントロリン、5,6−ジノリル−1,10−フェナントロリンなど)などの1,10−フェナントロリン系化合物、テトラメチルジエチレントリアミン(TMEDA)、ペンタメチルジエチレントリアミン(PMDETA)、ヘキサメチル(2−アミノエチル)アミンなどのポリアミンなどを使用することができる。   The ligand to be used is not particularly limited, but may be appropriately determined from the relationship of the required reaction rate in consideration of the initiator, the monomer, and the solvent. When a monovalent copper compound is used, 2,2′-bipyridyl and its derivatives (for example, 4,4′-dinolyl-2,2′-bipyridyl, 4,4′-di (5-noryl)) are used as a ligand. 2,2'-bipyridyl compounds such as -2,2'-bipyridyl and the like, 1,10-phenanthroline and its derivatives (for example, 4,7-dinolyl-1,10-phenanthroline, 5,6-dinolyl-1, 1,10-phenanthroline compounds such as 10-phenanthroline), polyamines such as tetramethyldiethylenetriamine (TMEDA), pentamethyldiethylenetriamine (PMDETA), and hexamethyl (2-aminoethyl) amine can be used.

また、2価の塩化ルテニウムのトリストリフェニルホスフィン錯体(RuCl(PPh)も触媒として好ましい。ルテニウム化合物を触媒として用いる場合は、活性化剤としてアルミニウムアルコキシド類を添加してもよい。さらに、2価の鉄のビストリフェニルホスフィン錯体(FeCl(PPh)、2価のニッケルのビストリフェニルホスフィン錯体(NiCl(PPh)、及び2価のニッケルのビストリブチルホスフィン錯体(NiBr(PBu)も触媒として好ましい。 A tristriphenylphosphine complex of divalent ruthenium chloride (RuCl 2 (PPh 3 ) 3 ) is also preferable as a catalyst. When a ruthenium compound is used as a catalyst, aluminum alkoxides may be added as an activator. Further, a divalent iron bistriphenylphosphine complex (FeCl 2 (PPh 3 ) 2 ), a divalent nickel bistriphenylphosphine complex (NiCl 2 (PPh 3 ) 2 ), and a divalent nickel bistributylphosphine complex (NiBr 2 (PBu 3 ) 2 ) is also preferable as a catalyst.

重合反応は、通常室温〜200℃の範囲、好ましくは50〜100℃の範囲で行なうことができる。   The polymerization reaction is usually performed in the range of room temperature to 200 ° C, preferably in the range of 50 to 100 ° C.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、各実施例において分子量は、GPC分析装置(HLC−8121GPC/HT(東ソー(株)製))で測定した。その際、THFを移動相として測定し、ポリスチレン換算の分子量を求めた。また、NMRはFT−NMR:JNM−GX400(日本電子(株)製)を使用した。SEMは日立製S-3000Nを用いて加速電圧15kVで観察した。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples. In each example, the molecular weight was measured with a GPC analyzer (HLC-8121GPC / HT (manufactured by Tosoh Corporation)). At that time, THF was measured as a mobile phase, and the molecular weight in terms of polystyrene was determined. Moreover, NMR used FT-NMR: JNM-GX400 (made by JEOL Ltd.). The SEM was observed with an acceleration voltage of 15 kV using a Hitachi S-3000N.

(実施例1):両末端ブロモ化オリゴプロピレン(iPP−Br)の合成
下記(1)〜(3)に示す方法により、両末端ブロモ化オリゴプロピレン(iPP−Br)を合成した。
Example 1 Synthesis of Both-Terminal Brominated Oligopropylene (iPP-Br) Both-end brominated oligopropylene (iPP-Br) was synthesized by the method shown in (1) to (3) below.

(1)両末端ビニリデン結合含有オリゴプロピレン(iPP−TVD)の合成
熱分解装置として試料量最大5kgのラボスケール高度制御熱分解装置を使用した。市販のイソタクチックポリプロピレン(ノバテックPP(日本ポリプロピレン株式会社製)、グレード:EA9A、メルトフローインデックス(MFR):0.5g/10min)2kgを反応器に仕込み、系内を窒素置換後、2mmHgに減圧して、反応器を200℃に加熱して溶融した。その後、390℃に設定されたメタルバスに反応器を沈め、熱分解を行った。熱分解中は、系内を2mmHg程度の減圧状態に保ち、溶融ポリマーを導入されたキャピラリーから排出される窒素ガスのバブリングによって攪拌した。3時間経過後、反応器をメタルバスからあげ、室温まで冷却した後、反応系を常圧にし、反応器内の残渣を熱キシレンにて溶解した後、メタノールに滴下して再沈殿精製した。得られたポリマーは収率77%、数平均分子量(Mn)が7500、分散度(Mw/Mn)が1.78、一分子当たり末端二重結合の平均数(fTVD)が1.78であった。
(1) Synthesis of both-terminal vinylidene bond-containing oligopropylene (iPP-TVD) A lab scale highly controlled pyrolyzer having a sample amount of 5 kg was used as a pyrolyzer. 2 kg of commercially available isotactic polypropylene (Novatech PP (manufactured by Nippon Polypropylene Co., Ltd.), grade: EA9A, melt flow index (MFR): 0.5 g / 10 min) was charged into the reactor, and the system was purged with nitrogen to 2 mmHg. Under reduced pressure, the reactor was heated to 200 ° C. to melt. Thereafter, the reactor was submerged in a metal bath set at 390 ° C., and pyrolysis was performed. During the thermal decomposition, the system was kept at a reduced pressure of about 2 mmHg and stirred by bubbling nitrogen gas discharged from the capillary into which the molten polymer was introduced. After 3 hours, the reactor was lifted from the metal bath, cooled to room temperature, the reaction system was brought to normal pressure, the residue in the reactor was dissolved in hot xylene, and then added dropwise to methanol for reprecipitation purification. The obtained polymer had a yield of 77%, a number average molecular weight (Mn) of 7500, a dispersity (Mw / Mn) of 1.78, and an average number of terminal double bonds per molecule (fTVD) of 1.78. It was.

(2)両末端ヒドロキシル化オリゴプロピレン(iPP−OH)の合成
高度制御熱分解によって得られた両末端ビニリデン結合含有オリゴプロピレン(Mn:1000、Mw/Mn:1.1、fTVD:1.80)20gおよびテトラヒドロフラン(THF)200mlを反応器に仕込み、窒素置換後、60mlのボラン−テトラヒドロフラン錯体(BH−THF)THF溶液(1M)を加え、環流下で3時間加熱した。その後、氷浴中で5N水酸化ナトリウム水溶液60mlを加え、続いて、30%過酸化水素水溶液60mlを加え、環流下で15時間加熱した。反応後、反応混合物をメタノールに注ぎ、再沈殿精製し、両末端ヒドロキシル化オリゴプロピレン(iPP−OH)を得た。
(2) Synthesis of both-end hydroxylated oligopropylene (iPP-OH) Both-end vinylidene bond-containing oligopropylene obtained by highly controlled pyrolysis (Mn: 1000, Mw / Mn: 1.1, fTVD: 1.80) 20 g and 200 ml of tetrahydrofuran (THF) were charged into the reactor, and after substitution with nitrogen, 60 ml of borane-tetrahydrofuran complex (BH 3 -THF) in THF (1M) was added and heated under reflux for 3 hours. Thereafter, 60 ml of 5N aqueous sodium hydroxide solution was added in an ice bath, followed by 60 ml of 30% aqueous hydrogen peroxide solution, and heated at reflux for 15 hours. After the reaction, the reaction mixture was poured into methanol and purified by reprecipitation to obtain a both-end hydroxylated oligopropylene (iPP-OH).

(3)両末端臭素化オリゴプロピレン(iPP−Br)の合成
上記の両末端ヒドロキシル化オリゴプロピレン(iPP−OH、Mn:1000)10gと、トリエチルアミン5.6mlおよびクロロホルムを反応器に仕込み、窒素置換後、2−ブロモイソブチリルブロミド(BiBB)のクロロホルム溶液(BiBB/CHCl=5ml/20ml)を滴下し、24時間室温で攪拌した。反応後、1NHCl/メタノール溶液に反応溶液を注ぎ、再沈殿精製し、両末端臭素化オリゴプロピレン(iPP−Br)を合成した。
(3) Synthesis of both-end brominated oligopropylene (iPP-Br) 10 g of the above-mentioned both-end hydroxylated oligopropylene (iPP-OH, Mn: 1000), 5.6 ml of triethylamine and chloroform were charged into the reactor, and the nitrogen substitution was performed. Thereafter, a chloroform solution of 2-bromoisobutyryl bromide (BiBB) (BiBB / CHCl 3 = 5 ml / 20 ml) was added dropwise and stirred at room temperature for 24 hours. After the reaction, the reaction solution was poured into 1N HCl / methanol solution and purified by reprecipitation to synthesize both-end brominated oligopropylene (iPP-Br).

図1に、上記で得られたiPP−Br(図1a)、iPP−OH(図1b)、およびiPP−TVD(図1c)のプロトンNMRを示す。また、図2に、種々の数平均分子量を有するiPP−BrのプロトンNMRを示す。   FIG. 1 shows proton NMR of iPP-Br (FIG. 1a), iPP-OH (FIG. 1b), and iPP-TVD (FIG. 1c) obtained above. FIG. 2 shows proton NMR of iPP-Br having various number average molecular weights.

(実施例2):ポリメタクリル酸メチル−ポリプロピレントリブロック共重合体の合成
上記の両末端臭素化オリゴプロピレン0.635g、臭化銅(I)0.1435gをシュレンク管に仕込み、窒素置換後、脱気したメタクリル酸メチル4.26ml、o−キシレン10ml、1,1,4,7,7−ペンタメチルジエチレントリアミン(PMDETA)209μlを加え、室温で30分攪拌した後、80℃で6時間加熱攪拌した。反応終了後、反応溶液をメタノールに注ぎ、再沈殿精製した。得られたトリブロック共重合体は、Mnが10700、Mw/Mnが1.50であった。
(Example 2): Synthesis of polymethyl methacrylate-polypropylene triblock copolymer 0.635 g of both ends brominated oligopropylene and 0.1435 g of copper (I) bromide were charged into a Schlenk tube, and after nitrogen substitution, 4.26 ml of degassed methyl methacrylate, 10 ml of o-xylene, and 209 μl of 1,1,4,7,7-pentamethyldiethylenetriamine (PMDETA) were added and stirred at room temperature for 30 minutes, and then heated and stirred at 80 ° C. for 6 hours. did. After completion of the reaction, the reaction solution was poured into methanol and purified by reprecipitation. The obtained triblock copolymer had Mn of 10700 and Mw / Mn of 1.50.

(実施例3):ポリスチレン−ポリプロピレントリブロック共重合体の合成
上記の両末端臭素化オリゴプロピレン1.275g、臭化銅(I)0.2869gをシュレンク管に仕込み、窒素置換後、脱気したスチレン23ml、トルエン60ml、PMDETA418μlを加え、室温で30分攪拌した後、80℃で6時間加熱攪拌した。反応終了後、反応溶液をメタノールに注ぎ、再沈殿精製した。得られたトリブロック共重合体は、Mnが8700、Mw/Mnが1.24であった。
(Example 3): Synthesis of polystyrene-polypropylene triblock copolymer 1.275 g of both ends brominated oligopropylene and 0.2869 g of copper (I) bromide were charged into a Schlenk tube, deaerated after being purged with nitrogen. 23 ml of styrene, 60 ml of toluene and 418 μl of PMDETA were added and stirred at room temperature for 30 minutes, and then heated and stirred at 80 ° C. for 6 hours. After completion of the reaction, the reaction solution was poured into methanol and purified by reprecipitation. The obtained triblock copolymer had Mn of 8700 and Mw / Mn of 1.24.

(実施例4):ポリアクリル酸エチル−ポリプロピレントリブロック共重合体の合成
両末端臭素化オリゴプロピレン(Mn:1000)0.0635g、臭化銅(I)0.0143gをシュレンク管に仕込み、窒素置換後、脱気したアクリル酸エチル1.1ml、トルエン3ml、PMDETA 20.9ulを加え、室温で30分撹拌後、120℃で3時間加熱撹拌した。反応後、反応溶液をメタノールに注ぎ、再沈殿精製した。得られたトリブロック共重合体はMn:10700、Mw/Mn:1.57であった。
(Example 4): Synthesis of polyethyl acrylate-polypropylene triblock copolymer 0.0635 g of both ends brominated oligopropylene (Mn: 1000) and 0.0143 g of copper (I) bromide were charged into a Schlenk tube, and nitrogen was added. After replacement, 1.1 ml of degassed ethyl acrylate, 3 ml of toluene, and 20.9 ul of PMDETA were added, and the mixture was stirred at room temperature for 30 minutes and then heated and stirred at 120 ° C. for 3 hours. After the reaction, the reaction solution was poured into methanol and purified by reprecipitation. The obtained triblock copolymer was Mn: 10700 and Mw / Mn: 1.57.

(実施例5)ポリアクリル酸n−ブチル−ポリプロピレントリブロック共重合体の合成
両末端臭素化オリゴプロピレン(Mn:1000)0.0635g、臭化銅(I)0.0143gをシュレンク管に仕込み、窒素置換後、脱気したアクリル酸n−ブチル1.4ml、トルエン3ml、PMDETA 20.9ulを加え、室温で30分撹拌後、120℃で3時間加熱撹拌した。反応後、反応溶液をメタノールに注ぎ、再沈殿精製した。得られたトリブロック共重合体はMn:10400、Mw/Mn:2.25であった。
(Example 5) Synthesis of polyacrylic acid n-butyl-polypropylene triblock copolymer Both ends brominated oligopropylene (Mn: 1000) 0.0635 g, copper (I) bromide 0.0143 g was charged into a Schlenk tube, After replacement with nitrogen, 1.4 ml of degassed n-butyl acrylate, 3 ml of toluene and 20.9 ul of PMDETA were added, and the mixture was stirred at room temperature for 30 minutes and then heated and stirred at 120 ° C. for 3 hours. After the reaction, the reaction solution was poured into methanol and purified by reprecipitation. The obtained triblock copolymer was Mn: 10400 and Mw / Mn: 2.25.

(実施例6)ポリアクリル酸t−ブチル−ポリプロピレントリブロック共重合体の合成
両末端臭素化オリゴプロピレン(Mn:1000)0.0635g、臭化銅(I)0.0143gをシュレンク管に仕込み、窒素置換後、脱気したアクリル酸t−ブチル1.5ml、トルエン3ml、PMDETA 20.9ulを加え、室温で30分撹拌後、120℃で3時間加熱撹拌した。反応後、反応溶液をメタノールに注ぎ、再沈殿精製した。得られたトリブロック共重合体はMn:12100、Mw/Mn:1.63であった。
(Example 6) Synthesis of poly (t-butyl acrylate-polypropylene) triblock copolymer 0.0635 g of both ends brominated oligopropylene (Mn: 1000) and 0.0143 g of copper (I) bromide were charged into a Schlenk tube. After replacement with nitrogen, 1.5 ml of degassed t-butyl acrylate, 3 ml of toluene and 20.9 ul of PMDETA were added, and the mixture was stirred at room temperature for 30 minutes and then heated and stirred at 120 ° C. for 3 hours. After the reaction, the reaction solution was poured into methanol and purified by reprecipitation. The obtained triblock copolymer was Mn: 12100 and Mw / Mn: 1.63.

(実施例7)ポリアクリル酸t−ブチル−ポリプロピレントリブロック共重合体の加水分解によるポリアクリル酸−ポリプロピレントリブロック共重合体への変換
ポリアクリル酸t−ブチル−ポリプロピレントリブロック共重合体(Mn:10000)1gをフラスコに仕込み、窒素置換後、トリフルオロ酢酸1ml及び脱水クロロホルム5mlを加え、室温で24時間撹拌した。反応後、蒸留にて溶媒、トリフルオロ酢酸及びt−ブチルアルコールを除去して、ポリアクリル酸−ポリプロピレントリブロック共重合体を得た。
Example 7 Conversion of poly (acrylic acid) t-butyl-polypropylene triblock copolymer to polyacrylic acid-polypropylene triblock copolymer by hydrolysis Poly (t-butyl-polypropylene triblock copolymer) (Mn : 10000) 1 g was charged into the flask, and after nitrogen substitution, 1 ml of trifluoroacetic acid and 5 ml of dehydrated chloroform were added, and the mixture was stirred at room temperature for 24 hours. After the reaction, the solvent, trifluoroacetic acid and t-butyl alcohol were removed by distillation to obtain a polyacrylic acid-polypropylene triblock copolymer.

(実施例8)ポリスチレン−ポリプロピレントリブロック共重合体の原子移動ラジカルカップリングによるポリスチレン−ポリプロピレンマルチブロック共重合体の合成
ポリスチレン−ポリプロピレントリブロック共重合体(Mn:8700)0.87g、銅(0)0.1272g及び臭化銅(I)0.0287gを反応器に仕込み、窒素置換後、脱気したo−キシレン1ml及びPMDETA460μlを仕込み、80℃で5時間撹拌した。反応後、反応溶液をメタノールに注ぎ、再沈殿精製することにより、下記式(4)で表される繰り返し単位を有するマルチブロック共重合体を得た。当該マルチブロック共重合体のMn:25000、Mw/Mn:3.66であった。
(Example 8) Synthesis of polystyrene-polypropylene multiblock copolymer by atom transfer radical coupling of polystyrene- polypropylene triblock copolymer 0.87 g of polystyrene-polypropylene triblock copolymer (Mn: 8700), copper (0 ) 0.1272 g and copper (I) bromide 0.0287 g were charged into the reactor, and after nitrogen substitution, 1 ml of degassed o-xylene and 460 μl of PMDETA were charged and stirred at 80 ° C. for 5 hours. After the reaction, the reaction solution was poured into methanol and purified by reprecipitation to obtain a multi-block copolymer having a repeating unit represented by the following formula (4). It was Mn: 25000 and Mw / Mn: 3.66 of the multiblock copolymer.

(実施例9)トリブロック共重合体の相溶化性能の評価
下記(1)に示す方法により、トリブロック共重合体(PMMA−iPP−PMMA)を合成し、その相溶化性能を評価した。
(Example 9) Evaluation of compatibilization performance of triblock copolymer A triblock copolymer (PMMA-iPP-PMMA) was synthesized by the method shown in (1) below, and the compatibilization performance was evaluated.

(1)ポリメタクリル酸メチル−ポリプロピレントリブロック共重合体(PMMA−iPP−PMMA)の合成
両末端臭素化オリゴプロピレン(Mn=14000)0.7g、臭化銅(I)0.0143gをシュレンク管に仕込み、窒素置換後、脱気したメタクリル酸メチル3.19ml、o−キシレン5ml、PMDETA20.9μlを加え、室温で30分撹拌した後、120℃で5時間加熱撹拌した。反応終了後、反応溶液をメタノールに注ぎ、再沈殿精製した。プロトンNMRにより得られたトリブロック共重合体の組成はiPP:PMMA=1:0.89であった。
(1) Synthesis of polymethyl methacrylate-polypropylene triblock copolymer (PMMA-iPP-PMMA) 0.7 g of brominated oligopropylene at both ends (Mn = 14000) and 0.0143 g of copper bromide (I) were Schlenk tubes Then, 3.19 ml of degassed methyl methacrylate, 5 ml of o-xylene, and 20.9 μl of PMDETA were added, and the mixture was stirred at room temperature for 30 minutes and then heated and stirred at 120 ° C. for 5 hours. After completion of the reaction, the reaction solution was poured into methanol and purified by reprecipitation. The composition of the triblock copolymer obtained by proton NMR was iPP: PMMA = 1: 0.89.

(2)相溶化性能の評価
iPP(日本ポリプロ製、NOVATEC PP EA9、Mn:160,000)とPMMA(アルドリッチ製、Mn:80,000)をそれぞれ2.5g及び上で合成したPMMA−iPP−PMMAを0.5g採取し、キシレン200mlとともにナスフラスコ中で140℃で加熱撹拌した。完全に溶解した後、メタノール2000ml中にゆっくりと滴下し、生成した沈殿を回収後、減圧加温乾燥してブレンドパウダーを得た。ブレンドパウダーを200℃で溶融混練後、200℃でヒートプレスしてシートを作成した。得られたシートを液体窒素で冷却し、破断後、クロロホルム還流下でPMMA相をエッチングした後、破断面をSEMにより観察した。得られたSEM像を図3(a)に示す。また、比較として、PMMA−iPP−PMMAを添加しない以外は上記と同様の条件で実験を行い、同様の条件で作製したサンプルについてSEM像を観察した。得られたSEMを図3(b)に示す。
(2) Evaluation of compatibilization performance 2.5 g of iPP (manufactured by Nippon Polypro, NOVATEC PP EA9, Mn: 160,000) and PMMA (manufactured by Aldrich, Mn: 80,000) and PMMA-iPP- synthesized above 0.5 g of PMMA was collected and stirred with heating at 140 ° C. in an eggplant flask together with 200 ml of xylene. After complete dissolution, the solution was slowly dropped into 2000 ml of methanol, and the produced precipitate was collected and dried by heating under reduced pressure to obtain a blend powder. The blended powder was melt-kneaded at 200 ° C. and then heat pressed at 200 ° C. to prepare a sheet. The obtained sheet was cooled with liquid nitrogen, and after fracture, the PMMA phase was etched under reflux of chloroform, and then the fracture surface was observed by SEM. The obtained SEM image is shown in FIG. For comparison, an experiment was performed under the same conditions as described above except that PMMA-iPP-PMMA was not added, and an SEM image was observed for a sample manufactured under the same conditions. The obtained SEM is shown in FIG.

図3(a)を図3(b)と比較することにより、本発明のトリブロック共重合体を添加したサンプルにおいては、PMMAに由来する空孔サイズの大幅な低下が確認され、本発明のトリブロック共重合体が極めて高い相溶化性能を有することが分かる。   By comparing FIG. 3 (a) with FIG. 3 (b), in the sample to which the triblock copolymer of the present invention was added, a significant decrease in the pore size derived from PMMA was confirmed. It can be seen that the triblock copolymer has a very high compatibilization performance.

本発明による両末端ハロゲン化オリゴオレフィンは、原子移動ラジカル重合の重合開始剤として用いることで、種々のモノマーと反応してトリブロック共重合体を生成することが可能なので、機能性コポリマー(相溶性、両親媒性、接着性、耐衝撃性、生体適合性などを有するコポリマー)の製造原料として使用することができる。   The both-end halogenated oligoolefin according to the present invention can be used as a polymerization initiator for atom transfer radical polymerization to react with various monomers to form a triblock copolymer. , A copolymer having amphiphilicity, adhesiveness, impact resistance, biocompatibility, and the like.

また、本発明のトリブロック共重合体は、極性の相異する2種類以上の重合体の相溶化剤などとして利用することができる。   The triblock copolymer of the present invention can be used as a compatibilizer for two or more types of polymers having different polarities.

図1は、iPP−Br(図1a)、iPP−OH(図1b)およびiPP−TVD(図1c)のプロトンNMR(400MHz、CDCl)を示す。FIG. 1 shows proton NMR (400 MHz, CDCl 3 ) of iPP-Br (FIG. 1a), iPP-OH (FIG. 1b) and iPP-TVD (FIG. 1c). 図2は、種々の数平均分子量を有するiPP−BrのプロトンNMR(400MHz、CDCl)を示す。FIG. 2 shows proton NMR (400 MHz, CDCl 3 ) of iPP-Br having various number average molecular weights. 図3は、実施例9で得られたSEM像であり、図3(a)はPMMA−iPP−PMMAを添加したサンプルのSEM像を示し、図3(b)はPMMA−iPP−PMMAを添加しないで調製したサンプルのSEM像である。3 is an SEM image obtained in Example 9, FIG. 3 (a) shows an SEM image of a sample to which PMMA-iPP-PMMA is added, and FIG. 3 (b) is an example to which PMMA-iPP-PMMA is added. It is a SEM image of the sample prepared without doing.

Claims (4)

下記一般式(1)で表される両末端ハロゲン化オリゴオレフィン。
(式中、RおよびRは、それぞれ独立して水素、メチル基、又はフェニル基を表す。また、各Rは、H、−CH、−C、および−CHCH(CHからなる群から独立に選択され、Xはハロゲン原子、nは10〜1000の整数である。)。
Both-end halogenated oligoolefin represented by the following general formula (1).
(In the formula, R 1 and R 2 each independently represent hydrogen, a methyl group, or a phenyl group. Also, each R 3 represents H, —CH 3 , —C 2 H 5 , and —CH 2 CH. (CH 3 ) 2 is independently selected from the group consisting of 2 , X is a halogen atom, and n is an integer of 10 to 1000.
が−CH、RおよびRがいずれもメチル基、XがBrである請求項1記載の両末端ハロゲン化オリゴオレフィン。 The both-end halogenated oligoolefin according to claim 1 , wherein R 3 is -CH 3 , R 1 and R 2 are all methyl groups, and X is Br. 下記一般式(2)で表されるトリブロック共重合体。
(式中、RおよびRは、それぞれ独立して水素、メチル基、又はフェニル基を表す。また、各Rは、H、−CH、−C、および−CHCH(CHからなる群から独立に選択され、Xはハロゲン原子、nは10〜1000の整数である。またAは、ビニル系重合体ブロックを意味し、下記一般式(3)で表される。
(ただし式中、Rはメチル基又は水素を、Rは、−COOCH、−COOC、−COOnBu、−COOtBu、−CONHCH(CH、−COOCHCHOH、−COOCHCHN(CH、−CN、−COOH又はフェニル基を表す。また、mは1〜10000の整数である。))。
A triblock copolymer represented by the following general formula (2).
(In the formula, R 1 and R 2 each independently represent hydrogen, a methyl group, or a phenyl group. Also, each R 3 represents H, —CH 3 , —C 2 H 5 , and —CH 2 CH. (CH 3 ) 2 is independently selected from the group consisting of 2 , X is a halogen atom, n is an integer of 10 to 1000. A is a vinyl polymer block, and is represented by the following general formula (3). Is done.
(Wherein, R 4 is a methyl group or hydrogen, R 5 is —COOCH 3 , —COOC 2 H 5 , —COOnBu, —COOtBu, —CONHCH (CH 3 ) 2 , —COOCH 2 CH 2 OH, — COOCH 2 CH 2 N (CH 3 ) 2, -CN, represents -COOH or a phenyl group. Further, m is an integer of 1 to 10,000.)).
下記一般式(1)で表される両末端ハロゲン化オリゴオレフィン
(式中、RおよびRは、それぞれ独立して水素、メチル基、又はフェニル基を表す。また、各Rは、H、−CH、−C、および−CHCH(CHからなる群から独立に選択され、Xはハロゲン原子、nは10〜1000の整数である。)を開始剤として、
(メタ)アクリル酸メチル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、N−イソプロピル(メタ)アクリルアミド、(メタ)アクリル酸2−ヒドロキシメチル、(メタ)アクリル酸2−ジメチルアミノエチル、(メタ)アクリロニトリル、又はスチレンを原子移動ラジカル重合させることを特徴とする、トリブロック共重合体の製造方法。
Both-end halogenated oligoolefin represented by the following general formula (1)
(In the formula, R 1 and R 2 each independently represent hydrogen, a methyl group, or a phenyl group. Also, each R 3 represents H, —CH 3 , —C 2 H 5 , and —CH 2 CH. (Independently selected from the group consisting of (CH 3 ) 2 , X is a halogen atom, and n is an integer of 10 to 1000).
Methyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, N-isopropyl (meth) acrylamide, (meth) A process for producing a triblock copolymer, characterized by atom transfer radical polymerization of 2-hydroxymethyl acrylate, 2-dimethylaminoethyl (meth) acrylate, (meth) acrylonitrile, or styrene.
JP2008118691A 2007-12-10 2008-04-30 Both-end halogenated oligoolefin and triblock copolymer using the same Active JP5248909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008118691A JP5248909B2 (en) 2007-12-10 2008-04-30 Both-end halogenated oligoolefin and triblock copolymer using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007318848 2007-12-10
JP2007318848 2007-12-10
JP2008118691A JP5248909B2 (en) 2007-12-10 2008-04-30 Both-end halogenated oligoolefin and triblock copolymer using the same

Publications (2)

Publication Number Publication Date
JP2009161724A true JP2009161724A (en) 2009-07-23
JP5248909B2 JP5248909B2 (en) 2013-07-31

Family

ID=40964699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008118691A Active JP5248909B2 (en) 2007-12-10 2008-04-30 Both-end halogenated oligoolefin and triblock copolymer using the same

Country Status (1)

Country Link
JP (1) JP5248909B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225765A (en) * 2010-04-22 2011-11-10 Kanagawa Univ METHOD FOR PRODUCING POLYBENZAMIDE-b-POLYSTYRENE BLOCK COPOLYMER
WO2013039152A1 (en) * 2011-09-13 2013-03-21 学校法人日本大学 Polyolefin having terminal double bond, and method for producing same
WO2014105290A1 (en) * 2012-12-24 2014-07-03 Exxonmobil Research And Engineering Company Alternating block copolymer and process for making
US9474941B2 (en) 2011-11-25 2016-10-25 Dunlop Sports Co., Ltd. Golf ball material and golf ball using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656919A (en) * 1992-08-05 1994-03-01 Nippon Oil & Fats Co Ltd Organic peroxide and its use
JP2000119334A (en) * 1998-10-15 2000-04-25 Kanegafuchi Chem Ind Co Ltd Polymer
JP2000198825A (en) * 1998-04-28 2000-07-18 Kanegafuchi Chem Ind Co Ltd Block copolymer
JP2002161142A (en) * 2000-11-24 2002-06-04 Takashi Sawaguchi Polyolefin and polyolefin block copolymer
JP2005514500A (en) * 2001-12-31 2005-05-19 ポリセリックス リミテッド Block copolymer
JP2005530905A (en) * 2002-06-27 2005-10-13 アメルシャム・バイオサイエンシーズ・アクチボラグ Polymer support with novel pore structure
WO2006014607A2 (en) * 2004-07-19 2006-02-09 Boston Scientific Scimed, Inc. Medical devices containing radiation resistant block copolymer
WO2007007675A1 (en) * 2005-07-07 2007-01-18 Mitsui Chemicals, Inc. Polyolefin having polymer chain responsive to stimulus
JP2009538704A (en) * 2006-06-01 2009-11-12 ボストン サイエンティフィック リミテッド Medical device with improved performance

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656919A (en) * 1992-08-05 1994-03-01 Nippon Oil & Fats Co Ltd Organic peroxide and its use
JP2000198825A (en) * 1998-04-28 2000-07-18 Kanegafuchi Chem Ind Co Ltd Block copolymer
JP2000119334A (en) * 1998-10-15 2000-04-25 Kanegafuchi Chem Ind Co Ltd Polymer
JP2002161142A (en) * 2000-11-24 2002-06-04 Takashi Sawaguchi Polyolefin and polyolefin block copolymer
JP2005514500A (en) * 2001-12-31 2005-05-19 ポリセリックス リミテッド Block copolymer
JP2005530905A (en) * 2002-06-27 2005-10-13 アメルシャム・バイオサイエンシーズ・アクチボラグ Polymer support with novel pore structure
WO2006014607A2 (en) * 2004-07-19 2006-02-09 Boston Scientific Scimed, Inc. Medical devices containing radiation resistant block copolymer
WO2007007675A1 (en) * 2005-07-07 2007-01-18 Mitsui Chemicals, Inc. Polyolefin having polymer chain responsive to stimulus
JP2009538704A (en) * 2006-06-01 2009-11-12 ボストン サイエンティフィック リミテッド Medical device with improved performance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225765A (en) * 2010-04-22 2011-11-10 Kanagawa Univ METHOD FOR PRODUCING POLYBENZAMIDE-b-POLYSTYRENE BLOCK COPOLYMER
WO2013039152A1 (en) * 2011-09-13 2013-03-21 学校法人日本大学 Polyolefin having terminal double bond, and method for producing same
JPWO2013039152A1 (en) * 2011-09-13 2015-03-26 学校法人日本大学 Polyolefin containing terminal double bond and process for producing the same
US9474941B2 (en) 2011-11-25 2016-10-25 Dunlop Sports Co., Ltd. Golf ball material and golf ball using the same
WO2014105290A1 (en) * 2012-12-24 2014-07-03 Exxonmobil Research And Engineering Company Alternating block copolymer and process for making

Also Published As

Publication number Publication date
JP5248909B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP3542580B2 (en) Method for synthesizing polymers by free radical polymerization controlled by halogenated xanthates
KR100567615B1 (en) Method for Synthesizing Block Polymer by Controlled Radical Polymerization
TW397852B (en) Processes of atom or group transfer radical polymerization using macroinitiator and of making a (co)polymer
JP5264030B2 (en) Catalytic process for the controlled polymerization of free-radically (co) polymerizable monomers and functional polymer systems produced thereby
US6512060B1 (en) Atom or group transfer radical polymerization
US20060258826A1 (en) Atom or group transfer radical polymerization
US7935769B2 (en) Method for preparing a living polymer comprising methacrylic and/or methacrylate units
WO2013039152A1 (en) Polyolefin having terminal double bond, and method for producing same
JP2009503234A (en) Method for producing aromatic vinyl polymer using (meth) acrylic macroinitiator
JP5867699B2 (en) Ionic conductor
JP5248909B2 (en) Both-end halogenated oligoolefin and triblock copolymer using the same
JP4848531B2 (en) Polymer with excellent heat resistance
JP5083556B2 (en) Living radical polymerization initiator and method for producing polymer
Lin et al. Grafting well-defined polymers onto unsaturated PVDF using thiol-ene reactions
JP6710046B2 (en) Composite material and manufacturing method thereof
JP5017674B2 (en) ABA type triblock copolymer
JP3853719B2 (en) Both-end thiolated oligopropylene
JP4665270B2 (en) Polymer radical polymerization initiator, process for producing the same, and graft polymer obtained using the same
JP2011252164A (en) Method for producing polymer excellent in heat resistance
JP2007522333A (en) Telechelic polymers containing reactive functional groups
JP2013103490A (en) Laminate
US7452939B2 (en) Polyesterified block copolymer and process for producing the same
JP2006257293A (en) Method for producing polymer and block copolymer
JP5872540B2 (en) Method for producing chlorinated hyperbranched polymer
JP2000198853A (en) Resin and water absorbing resin

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100823

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110202

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110728

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110815

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130411

R150 Certificate of patent or registration of utility model

Ref document number: 5248909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250