JP2009108231A - Polyester composition - Google Patents

Polyester composition Download PDF

Info

Publication number
JP2009108231A
JP2009108231A JP2007283127A JP2007283127A JP2009108231A JP 2009108231 A JP2009108231 A JP 2009108231A JP 2007283127 A JP2007283127 A JP 2007283127A JP 2007283127 A JP2007283127 A JP 2007283127A JP 2009108231 A JP2009108231 A JP 2009108231A
Authority
JP
Japan
Prior art keywords
film
polyester
particles
acid component
polyester composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007283127A
Other languages
Japanese (ja)
Other versions
JP5265902B2 (en
Inventor
Tatsuya Ogawa
達也 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2007283127A priority Critical patent/JP5265902B2/en
Publication of JP2009108231A publication Critical patent/JP2009108231A/en
Application granted granted Critical
Publication of JP5265902B2 publication Critical patent/JP5265902B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyester composition having excellent dimensional stability when it is processed into a film etc., and attaining a high Young's modulus even without using an excessive stretching ratio. <P>SOLUTION: The polyester composition contains a polyester whose acid component comprises a 6,6'-(alkylenedioxy)di-2-naphthoic acid component or a dicarboxylic acid component of phenylene- or naphthalene-diyl and whose glycol component is a 2-4C alkylene glycol component and also particles whose area circle equivalent mean diameter of primary particles lies below 100 nm, wherein the acid component of the polyester is characterized by that the content of the 6,6'-(alkylenedioxy)di-2-naphthoic acid lies in the range of 5-80 mol% with respect to the mole number of the total acid components. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸を共重合したポリエステル組成物およびそれを用いたフィルムに関する。   The present invention relates to a polyester composition copolymerized with 6,6 '-(alkylenedioxy) di-2-naphthoic acid and a film using the same.

ポリエチレンテレフタレートやポリエチレン−2,6−ナフタレートに代表されるポリエステルは優れた機械的特性、寸法安定性および耐熱性を有することから、フィルムなどに幅広く使用されている。特にポリエチレン−2,6−ナフタレートは、ポリエチレンテレフタレートよりも優れた機械的特性、寸法安定性および耐熱性を有することから、それらの要求の厳しい用途、例えば高密度磁気記録媒体などのベースフィルムなどに使用されている。しかしながら、近年の高密度磁気記録媒体などでの寸法安定性の要求、特に温度や湿度変化に対する寸法安定性の要求が高くなってきており、さらなる特性の向上が求められている。   Polyesters typified by polyethylene terephthalate and polyethylene-2,6-naphthalate have excellent mechanical properties, dimensional stability, and heat resistance, and thus are widely used for films and the like. In particular, polyethylene-2,6-naphthalate has mechanical properties, dimensional stability, and heat resistance superior to those of polyethylene terephthalate, so that it is used in demanding applications such as a base film for high-density magnetic recording media. in use. However, demands for dimensional stability in high-density magnetic recording media and the like in recent years, particularly demands for dimensional stability against changes in temperature and humidity, are increasing, and further improvement of characteristics is required.

ところで、温度や湿度の変化に対する寸法変化を小さくするには温度膨張係数や湿度膨張係数を小さくすることが必要で、ポリエチレンテレフタレートやポリエチレン−2,6−ナフタレートの場合、湿度膨張係数と温度膨張係数はともにヤング率と非常に密接な関係にあり、ヤング率が高いほど一般的に低くなる。ヤング率を高める方法としては、延伸倍率を高めるなどして分子配向を高める方法や充填剤などを含有させる方法(特許文献1〜4)がある。しかしながら、前者の方法は、延伸倍率を高めていくにつれて苛酷な条件となり根本的な解決とはならず、また、後者の方法では、ヤング率は確かに高められるものの温度膨張係数や湿度膨張係数に対しては効果がなかった。   By the way, it is necessary to reduce the temperature expansion coefficient and the humidity expansion coefficient in order to reduce the dimensional change with respect to changes in temperature and humidity. In the case of polyethylene terephthalate or polyethylene-2,6-naphthalate, the humidity expansion coefficient and the temperature expansion coefficient are required. Both are very closely related to Young's modulus, with higher Young's modulus generally lowering. As a method for increasing the Young's modulus, there are a method for increasing the molecular orientation by increasing the draw ratio and a method for containing a filler (Patent Documents 1 to 4). However, the former method becomes a severe condition as the draw ratio is increased, and it does not become a fundamental solution. There was no effect on it.

一方、特許文献5〜7には6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸のエステル化合物であるジエチル−6,6’−(アルキレンジオキシ)ジ−2−ナフトエートから得られるポリアルキレン−6,6’−(アルキレンジオキシ)ジ−2−ナフトエートが提案されている。該公報によると、結晶性で、融点が294℃のポリエチレン−6,6’−(エチレンジオキシ)ジ−2−ナフトエートが具体的に提示されている。   On the other hand, Patent Documents 5 to 7 are obtained from diethyl-6,6 ′-(alkylenedioxy) di-2-naphthoate, which is an ester compound of 6,6 ′-(alkylenedioxy) di-2-naphthoic acid. Polyalkylene-6,6 ′-(alkylenedioxy) di-2-naphthoate has been proposed. According to this publication, polyethylene-6,6 '-(ethylenedioxy) di-2-naphthoate which is crystalline and has a melting point of 294 ° C. is specifically presented.

しかしながら、これら特許文献で提示されたポリアルキレン−6,6’−(アルキレンジオキシ)ジ−2−ナフトエートは、融点が非常に高く、また結晶性も非常に高いことからフィルムなどに製膜しようとすると、溶融状態での流動性に乏しくて押出しが不均一化したり、押出した後延伸しようとしても結晶化が進んで高倍率で延伸すると破断したりするなどの問題があった。また、湿度膨張係数は非常に小さいものの、温度膨張係数が非常に高いという問題もあった。ちなみに、特許文献4の実施例1に開示されたフィルムを見ると、ヤング率は製膜方向が485kg/mm、幅方向が1110kg/mmもあるものの、温度膨張係数は16.5〜19ppm/℃と、ヤング率に関係なく非常に高い値を示していた。 However, since polyalkylene-6,6 ′-(alkylenedioxy) di-2-naphthoate presented in these patent documents has a very high melting point and very high crystallinity, it should be formed into a film or the like. Then, there was a problem that the fluidity in the molten state was poor and the extrusion became non-uniform, or even when trying to stretch after extrusion, crystallization progressed and the film would break when stretched at a high magnification. In addition, although the humidity expansion coefficient is very small, there is also a problem that the temperature expansion coefficient is very high. Incidentally, referring to the film disclosed in Example 1 of Patent Document 4, the Young's modulus is the direction of film is 485 kg / mm 2, although the width direction is also 1110kg / mm 2, the thermal expansion coefficient 16.5~19ppm / ° C and a very high value regardless of the Young's modulus.

特開平6−128466号公報JP-A-6-128466 特開平1−144452号公報Japanese Unexamined Patent Publication No. 1-144452 特開2003−82202号公報JP 2003-82202 A 特開2002−225198号公報JP 2002-225198 A 特開昭60−135428号公報JP-A-60-135428 特開昭60−221420号公報JP-A-60-212420 特開昭61−145724号公報JP 61-145724 A

本発明の目的は、フィルムなどの成形体にしたときにより高度のヤング率とより低い湿度膨張係数とを発現させることができる新規なポリエステル組成物を提供することにある。   An object of the present invention is to provide a novel polyester composition capable of expressing a higher Young's modulus and a lower humidity expansion coefficient when formed into a molded body such as a film.

本発明者は、6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分を共重合成分として用いたとき、驚くべきことにポリアルキレン−6,6’−(アルキレンジオキシ)ジ−2−ナフトエートとその共重合相手であるポリエステルの両方の優れた特性を兼備するフィルムが得られるとの知見を得た。そして、この6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分を共重合成分として用いたポリエステルに一次粒子の面積円相当平均径が100nm未満の粒子を含有させると、同じ延伸倍率でもヤング率の高いフィルムや繊維などの成形体が得られることを、見出し本発明に到達した。   The present inventors surprisingly found that when a 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component is used as a copolymerization component, polyalkylene-6,6 ′-(alkylenedioxy) di- It was found that a film having excellent properties of both 2-naphthoate and polyester as a copolymerization partner thereof can be obtained. When the polyester using the 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component as a copolymerization component contains particles having an area equivalent circle diameter of primary particles of less than 100 nm, the same draw ratio is obtained. However, the inventors have found that a molded body such as a film or fiber having a high Young's modulus can be obtained and reached the present invention.

かくして本発明によれば、酸成分が下記構造式(I)および(II)からなり、下記構造式(I)の割合が、全酸成分のモル数を基準として、5〜80モル%の範囲にあること、およびグリコール成分が下記構造式(III)であることを具備するポリエステルと、一次粒子の面積円相当平均径が100nm未満の粒子とを含有するポリエステル組成物が提供される。   Thus, according to the present invention, the acid component consists of the following structural formulas (I) and (II), and the ratio of the following structural formula (I) is in the range of 5 to 80 mol% based on the number of moles of the total acid component. And a polyester composition containing a polyester having a glycol component represented by the following structural formula (III) and particles having an average equivalent-area diameter of primary particles of less than 100 nm.

Figure 2009108231
(上記構造式(I)中のRは炭素数1〜10のアルキレン基を、上記構造式(II)中のRはフェニレン基またはナフタレンジイル基、上記構造式(III)中のRは炭素数2〜4のアルキレン基を示す。)
Figure 2009108231
(R 1 in the structural formula (I) is an alkylene group having 1 to 10 carbon atoms, R 2 in the structural formula (II) is a phenylene group or a naphthalenediyl group, and R 3 in the structural formula (III). Represents an alkylene group having 2 to 4 carbon atoms.)

さらに本発明によれば、本発明のポリエステル組成物の好ましい態様として、一次粒子の面積円相当平均径が100nm未満の粒子の含有量が、組成物の重量を基準として、0.05〜10重量%であること、粒子がベーマイト、アルミナ、シリカからなる群より選ばれる少なくとも一種の粒子であることの少なくともいずれか一つを具備するポリエステル組成物も提供される。   Furthermore, according to the present invention, as a preferred embodiment of the polyester composition of the present invention, the content of particles having an area-equivalent mean diameter of primary particles of less than 100 nm is 0.05 to 10% based on the weight of the composition. %, And at least one of the particles selected from the group consisting of boehmite, alumina, and silica are also provided.

本発明によれば、ポリアルキレン−6,6’−(アルキレンジオキシ)ジ−2−ナフトエートの優れた湿度膨張係数が小さいという特性を維持しつつ、製膜性を高度に高めることができ、その結果驚くべきことに従来の技術から予測できない優れた温度膨張係数が低いという寸法安定性をも同時に具備するポリエステル組成物が得られ、しかも該ポリエステル組成物に、一次粒子の面積円相当平均径が100nm未満の微細な粒子を含有させることで、同じ延伸条件ならより高いヤング率を有するフィルムや繊維などの成形体に形成することができる。   According to the present invention, while maintaining the characteristic that the excellent coefficient of humidity expansion of polyalkylene-6,6 ′-(alkylenedioxy) di-2-naphthoate is small, the film-forming property can be highly enhanced, As a result, a polyester composition having surprisingly low dimensional stability that has a low temperature expansion coefficient that cannot be predicted from the prior art is obtained, and the polyester composition has an area-equivalent mean diameter of primary particles. Can be formed into a molded body such as a film or a fiber having a higher Young's modulus under the same stretching conditions.

したがって、本発明によれば、湿度と温度による影響も加味した高度の寸法安定性と高ヤング率とが求められる用途、特に高密度磁気記録媒体のベースフィルムに適したフィルム用のポリエステル組成物が提供される。   Therefore, according to the present invention, there is provided a polyester composition for a film that is suitable for a base film of a high-density magnetic recording medium, particularly for applications that require a high degree of dimensional stability and high Young's modulus in consideration of the effects of humidity and temperature. Provided.

<ポリエステル組成物>
本発明のポリエステル組成物を形成するポリエステルは、酸成分が前述の構造式(I)と構造式(II)からなり、グリコール成分が前述の構造式(III)からなる。
前述の構造式(I)で示される具体的な酸成分としては、Rの部分が炭素数1〜10のアルキレン基であるものであり、好ましくは6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸成分、6,6’−(トリメチレンジオキシ)ジ−2−ナフトエ酸成分および6,6’−(ブチレンジオキシ)ジ−2−ナフトエ酸成分などが挙げられ、これらの中でも本発明の効果の点からは、上記一般式(I)におけるRの炭素数が偶数のものが好ましく、特にRの炭素数が2である6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸成分が好ましい。
<Polyester composition>
In the polyester forming the polyester composition of the present invention, the acid component consists of the structural formula (I) and the structural formula (II), and the glycol component consists of the structural formula (III).
Specific examples of the acid component represented by the structural formula (I) are those in which R 1 is an alkylene group having 1 to 10 carbon atoms, and preferably 6,6 ′-(ethylenedioxy) di -2-naphthoic acid component, 6,6 ′-(trimethylenedioxy) di-2-naphthoic acid component and 6,6 ′-(butyleneoxy) di-2-naphthoic acid component, etc. Among these, from the viewpoint of the effect of the present invention, those having an even number of carbon atoms of R 1 in the general formula (I) are preferred, and in particular, 6,6 ′-(ethylenedioxy) di having 2 carbon atoms of R 1. A 2-naphthoic acid component is preferred.

前述の構造式(II)で示される酸成分としては、テレフタル酸成分、イソフタル酸成分、2,6−ナフタレンジカルボン酸成分、2,7−ナフタレンジカルボン酸成分などが挙げられる。これらの中でも、機械的特性などの点からテレフタル酸成分、2、6−ナフタレンジカルボン酸成分が好ましく、特に2、6−ナフタレンジカルボン酸成分が好ましい。   Examples of the acid component represented by the structural formula (II) include a terephthalic acid component, an isophthalic acid component, a 2,6-naphthalenedicarboxylic acid component, and a 2,7-naphthalenedicarboxylic acid component. Among these, a terephthalic acid component and a 2,6-naphthalenedicarboxylic acid component are preferable from the viewpoint of mechanical properties, and a 2,6-naphthalenedicarboxylic acid component is particularly preferable.

また、前述の構造式(III)で示される具体的なグリコール成分としては、エチレングリコール成分、トリメチレングリコール成分、テトラメチレングリコール成分などが挙げられ、機械的特性などの点からグリコール酸成分の90モル%以上はエチレングリコール成分であることが好ましく、さらに95〜100モル%がエチレングリコール成分であることが好ましい。   Specific examples of the glycol component represented by the structural formula (III) include an ethylene glycol component, a trimethylene glycol component, a tetramethylene glycol component, and the like. The mol% or more is preferably an ethylene glycol component, and more preferably 95 to 100 mol% is an ethylene glycol component.

ところで、本発明の特徴の一つは、ポリエステルの酸成分の内、全酸成分のモル数を基準として、5〜80モル%の範囲で上記構造式(I)で示される6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分が共重合されていることである。6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分の割合が下限未満では、湿度膨張係数の低減効果などが発現されがたい。一方、上限は成形性などの観点から80モル%以下が好ましく、さらに50モル%未満であることが好ましい。また、驚くべきことに、6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分による湿度膨張係数の低減効果は、少量で非常に効率的に発現され、50モル%未満の部分ですでに特許文献3の実施例に記載されたフィルムと同等もしくはそれ以下の湿度膨張係数が達成されており、上限以上添加しても湿度膨張係数の観点からの効果は飽和状態になるともいえる。そのような観点から、好ましい6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分の共重合量の上限は、45モル%以下、さらに40モル%以下、よりさらに35モル%以下、特に30モル%以下であり、他方下限は、5モル%以上、さらに7モル%以上、よりさらに10モル%以上、特に15モル%以上である。   By the way, one of the characteristics of the present invention is that the 6,6′- represented by the structural formula (I) is in the range of 5 to 80 mol% based on the number of moles of the total acid component among the acid components of the polyester. (Alkylenedioxy) di-2-naphthoic acid component is copolymerized. When the ratio of the 6,6 '-(alkylenedioxy) di-2-naphthoic acid component is less than the lower limit, the effect of reducing the humidity expansion coefficient is hardly exhibited. On the other hand, the upper limit is preferably 80 mol% or less, and more preferably less than 50 mol% from the viewpoint of moldability. Surprisingly, the 6,6 '-(alkylenedioxy) di-2-naphthoic acid component reduces the coefficient of humidity expansion very efficiently in a small amount and is less than 50 mol%. In addition, a humidity expansion coefficient equivalent to or lower than that of the film described in the example of Patent Document 3 has been achieved, and it can be said that the effect from the viewpoint of the humidity expansion coefficient is saturated even when the upper limit is added. From such a viewpoint, the upper limit of the copolymerization amount of the preferred 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component is 45 mol% or less, further 40 mol% or less, and further 35 mol% or less. In particular, it is 30 mol% or less, and the other lower limit is 5 mol% or more, further 7 mol% or more, still more 10 mol% or more, particularly 15 mol% or more.

このような特定量の6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分を共重合したポリエステルを用いることで、温度膨張係数と湿度膨張係数も小さい成形品、例えばフィルムなどを製造することができる。   By using a polyester obtained by copolymerizing such a specific amount of 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component, a molded product having a low temperature expansion coefficient and a low humidity expansion coefficient, such as a film, is produced. can do.

本発明におけるポリエステルは、本発明の効果を阻害しない範囲で、それ自体公知の他の共重合成分を共重合しても良いし、また、ポリエーテルイミドや液晶性樹脂などをブレンドしてもよい。   The polyester in the present invention may be copolymerized with other copolymerization components known per se within a range not impairing the effects of the present invention, or may be blended with a polyetherimide or a liquid crystalline resin. .

つぎに、本発明におけるポリエステルは、DSCで測定した融点が、200〜260℃の範囲、さらに210〜255℃の範囲、特に220〜253℃の範囲にあることが製膜性の点から好ましい。融点が上記上限を越えると、溶融押し出しして成形する際に、流動性を高めるにはより高温にすることが必要となって熱劣化しやすくなり、他方溶融温度を低くすると流動性が劣り、吐出などが不均一化しやすくなる。一方、上記下限未満になると、製膜性は優れるものの、ポリエステルの持つ機械的特性などが損なわれやすくなる。なお、通常他の酸成分を共重合して融点を下げれば、同時に機械的特性などが低下するが、製膜性が向上するためか、機械的特性なども優れたものとすることができる。   Next, the polyester according to the present invention preferably has a melting point measured by DSC in the range of 200 to 260 ° C., further in the range of 210 to 255 ° C., particularly in the range of 220 to 253 ° C. from the viewpoint of film forming property. When the melting point exceeds the above upper limit, when molding by melt extrusion, it is necessary to make the temperature higher to increase the fluidity, and it tends to be thermally deteriorated, and on the other hand, if the melting temperature is lowered, the fluidity is inferior, Discharge is likely to be non-uniform. On the other hand, when the ratio is less than the above lower limit, the film forming property is excellent, but the mechanical properties of the polyester are easily impaired. In general, if other acid components are copolymerized to lower the melting point, the mechanical properties and the like are reduced at the same time. However, the film forming property is improved, or the mechanical properties and the like can be improved.

また、本発明におけるポリエステルは、DSCで測定したガラス転移温度(以下、Tgと称することがある。)が、90〜119℃の範囲、さらに95〜118℃の範囲、特に100〜117℃の範囲にあることが、耐熱性や寸法安定性の点から好ましい。なお、このような融点やガラス転移温度は、共重合成分の種類と共重合量、そして副生物であるジアルキレングリコールの制御などによって調整できる。   Further, the polyester in the present invention has a glass transition temperature (hereinafter sometimes referred to as Tg) measured by DSC in the range of 90 to 119 ° C, more preferably in the range of 95 to 118 ° C, particularly in the range of 100 to 117 ° C. It is preferable from the viewpoint of heat resistance and dimensional stability. Such a melting point and glass transition temperature can be adjusted by controlling the type and amount of copolymerization component, dialalkylene glycol as a byproduct.

ところで、本発明のポリエステル組成物は、成形体としたときにより高いヤング率を発現させる点から、一次粒子の面積円相当平均径の上限が100nm未満である粒子を含有することが必要であり、好ましくは一次粒子の面積円相当平均径の上限が50nm未満である粒子を含有することが好ましい。このような微細な粒子がポリエステル組成物中に分散されていることで、分子鎖の動きが拘束されるためか、ヤング率などの機械的物性を向上させることができる。一方、含有する粒子の一次粒子の面積円相当径の下限は、通常0.5nm以上であり、一次粒子の凝集を抑えてより高度にヤング率の向上効果を発現させやすいことから1.0nm以上、さらに5nm以上であることが好ましい。なお、本発明における一次粒子とは、後述の透過型電子顕微鏡観察により、それ以上分離できない最小単位の粒子として観察されるものであり、一次粒子の面積円相当平均径は後述のとおりそれぞれ直交する3方向から観察した一次粒子の面積円相当径を平均化したものである。   By the way, the polyester composition of the present invention needs to contain particles whose upper limit of the area-equivalent circle average diameter of the primary particles is less than 100 nm from the viewpoint of expressing a higher Young's modulus when formed into a molded body, It is preferable to contain particles whose upper limit of the area circle equivalent average diameter of the primary particles is less than 50 nm. Since such fine particles are dispersed in the polyester composition, the mechanical properties such as Young's modulus can be improved because the movement of the molecular chain is restricted. On the other hand, the lower limit of the area equivalent circle diameter of the primary particles contained is usually 0.5 nm or more, and 1.0 nm or more because it is easy to express the Young's modulus improvement effect to a higher degree by suppressing aggregation of the primary particles. Further, it is preferably 5 nm or more. The primary particles in the present invention are observed as the smallest unit particles that cannot be further separated by observation with a transmission electron microscope, which will be described later, and the average equivalent area diameter of the primary particles is orthogonal as described later. The area equivalent circle diameters of primary particles observed from three directions are averaged.

また、本発明のポリエステル組成物は、得られる成形品のヤング率を向上させる観点から、前述のの粒子を、ポリエステル組成物の重量を基準として、0.05重量%以上、好ましくは0.07重量%以上、さらに好ましくは0.1重量%以上含有していることが好ましい。含有量が下限未満では、粒子の数が少なく、ヤング率の向上効果も十分に発現されがたい。なお、含有量の上限は、通常、高密度磁気記録媒体のベースフィルムとして用いる場合は、フィルム表面の平坦性をより高度に維持しやすいことから、ポリエステル組成物の重量を基準として、10重量%以下、さらに5重量%以下であることが好ましい。なお、一次粒子の面積円相当径が100nm以上もしくは50nm以上の粒子が混在する場合、一次粒子の面積円相当平均径が上限以下の粒子の含有量は以下のように算出する。まず、横軸を一次粒子の面積円相当径、縦軸を一次粒子の頻度とした粒度分布のチャートを作成し、ピークと隣接するピークの半分以下でかつもっとも頻度の低くなる谷部とを抽出し、隣接する谷部の間に含まれる一次粒子を一つの粒子の群として判断する。そして、前述の一次粒子の面積円相当平均径を満足する粒子群の含有量を、一次粒子の面積円相当平均径が上限以下の粒子の含有量とした。   In addition, the polyester composition of the present invention has a particle content of 0.05% by weight or more, preferably 0.07% based on the weight of the polyester composition, from the viewpoint of improving the Young's modulus of the molded article obtained. It is preferably contained in an amount of not less than wt%, more preferably not less than 0.1 wt%. When the content is less than the lower limit, the number of particles is small, and the effect of improving the Young's modulus is hardly exhibited. Note that the upper limit of the content is usually 10% by weight based on the weight of the polyester composition, because when used as a base film of a high-density magnetic recording medium, the flatness of the film surface is easily maintained to a higher degree. Hereinafter, it is further preferably 5% by weight or less. When particles having an area equivalent circle diameter of primary particles of 100 nm or more or 50 nm or more coexist, the content of particles having an area circle equivalent average diameter of the primary particles equal to or less than the upper limit is calculated as follows. First, create a chart of particle size distribution with the horizontal axis as the equivalent area diameter of primary particles and the vertical axis as the frequency of primary particles, and extract the valleys that are less than half of the adjacent peak and the lowest frequency. Then, primary particles included between adjacent valleys are determined as a group of particles. Then, the content of the particle group satisfying the area circle equivalent average diameter of the primary particles was defined as the content of particles having an area circle equivalent average diameter of the primary particles equal to or less than the upper limit.

本発明における前述の粒子は、一次粒子の面積円相当平均径が本発明の範囲を満たすものであれば、特に限定されるものではないが、耐熱性や分散性の観点から、ベーマイト、アルミナおよびシリカからなる群より選ばれる少なくとも一種の粒子であることが好ましい。   The aforementioned particles in the present invention are not particularly limited as long as the area equivalent circle diameter of the primary particles satisfies the scope of the present invention, but from the viewpoint of heat resistance and dispersibility, boehmite, alumina and It is preferably at least one kind of particles selected from the group consisting of silica.

ベーマイト粒子としては、前記の特性を満足するものであれば特に制限されないが、一次粒子の形状が板状もしくは針状のものが好ましく、特に針状のものが本発明の効果の点から好ましい。アルミナ粒子としては、前記の特性を満足するものであれば特に制限されないが、より本発明の効果が得られやすいことから、主たる結晶形態がγ、δ、θから選ばれる少なくとも1種であることが好ましい。シリカ粒子としては、前記の特性を満足するものであれば特に制限されず、水ガラス法やアルコキシド法などによって製造することができる。   The boehmite particles are not particularly limited as long as they satisfy the above characteristics, but the primary particles are preferably plate-shaped or needle-shaped, and needle-shaped particles are particularly preferable from the viewpoint of the effect of the present invention. The alumina particles are not particularly limited as long as they satisfy the above-mentioned characteristics, but the main crystal form is at least one selected from γ, δ, and θ because the effects of the present invention are more easily obtained. Is preferred. The silica particles are not particularly limited as long as they satisfy the above characteristics, and can be produced by a water glass method or an alkoxide method.

ところで、本発明のポリエステル組成物およびフィルムは、上述のような一次粒子の面積円相当平均径を満足する粒子を含有していればよく、単成分系に限られず粒径や組成の異なる他の粒子を併用しても良い。また、ヤング率の向上とは別に、一次粒子の面積円相当平均径が前述の上限を越えるような粒子を、得られるフィルムなどの成形体に優れた取扱い性などを具備させるために、含有させても良く、具体的な粒子としては、それ自体公知の有機粒子や無機粒子などが挙げられる。   By the way, the polyester composition and the film of the present invention need only contain particles satisfying the area circle equivalent average diameter of the primary particles as described above, and are not limited to a single component system, but may have other particle diameters and compositions different from each other. Particles may be used in combination. In addition to the improvement of Young's modulus, the particles whose average diameter equivalent to the area circle of the primary particles exceeds the above-mentioned upper limit are included in order to provide the molded article such as a film with excellent handleability. Specific examples of the particles include known organic particles and inorganic particles.

<成形品>
本発明のポリエステル組成物は、溶融製膜して、シート状に押出すことでフィルムとすることができる。磁気テープなどのベースフィルムとして用いる場合、ベースフィルムがフィルムにかかる応力などによって伸びないようにフィルム面方向における少なくとも一方向は、ヤング率が6.0GPa以上という高いヤング率を有することが好ましい。また、このように高いヤング率を得られるフィルムに具備させることで、湿度膨張係数や温度膨張係数の低減を図ることができる。好ましいヤング率は、フィルムの長手方向が5.1〜11GPa、さらに5.2〜10GPa、特に5.5〜9GPaの範囲であり、フィルムの幅方向が5.0〜11GPa、さらに6〜10GPa、特に7〜10GPaの範囲である。
<Molded product>
The polyester composition of the present invention can be formed into a film by melting and forming into a sheet. When used as a base film such as a magnetic tape, it is preferable that at least one direction in the film surface direction has a high Young's modulus of 6.0 GPa or more so that the base film does not stretch due to stress applied to the film. Further, by providing the film having such a high Young's modulus, it is possible to reduce the humidity expansion coefficient and the temperature expansion coefficient. The preferred Young's modulus is 5.1 to 11 GPa in the longitudinal direction of the film, more preferably in the range of 5.2 to 10 GPa, particularly 5.5 to 9 GPa, and 5.0 to 11 GPa in the width direction of the film, further 6 to 10 GPa. In particular, it is in the range of 7-10 GPa.

<ポリエステル組成物の製造方法>
つぎに、本発明におけるポリエステル組成物の製造方法について、詳述する。
まず、6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸もしくはそのエステル形成性誘導体と例えば2,6−ナフタレンジカルボン酸やテレフタル酸もしくはそのエステル形成性誘導体と、例えばエチレングリコールとをエステル化反応もしくはエステル交換反応させ、ポリエステル前駆体を製造する。そして、このようにして得られたポリエステル前駆体を重合触媒の存在下で重合し、必要に応じて固相重合などを施しても良い。このようにして得られるポリエステルのP−クロロフェノール/1,1,2,2−テトラクロロエタン(重量比40/60)の混合溶媒を用いて35℃で測定した固有粘度は、0.4〜1.5dl/g、さらに0.5〜1.3dl/gの範囲にあることが取扱い性や機械的特性などの点から好ましい。なお、前述の構造式(I)と(II)の割合が異なる2種類のポリマーを作り、前述の構造式(I)と(II)の割合が目的となるようにそれらを溶融混練してもよい。
<Method for producing polyester composition>
Below, the manufacturing method of the polyester composition in this invention is explained in full detail.
First, ester 6,6 ′-(alkylenedioxy) di-2-naphthoic acid or an ester-forming derivative thereof such as 2,6-naphthalenedicarboxylic acid or terephthalic acid or an ester-forming derivative thereof and ethylene glycol, for example. The polyester precursor is produced by the reaction of esterification or transesterification. The polyester precursor thus obtained may be polymerized in the presence of a polymerization catalyst, and solid phase polymerization or the like may be performed as necessary. The intrinsic viscosity measured at 35 ° C. using a mixed solvent of P-chlorophenol / 1,1,2,2-tetrachloroethane (weight ratio 40/60) of the polyester thus obtained is 0.4 to 1. 0.5 dl / g, and more preferably in the range of 0.5 to 1.3 dl / g is preferable from the viewpoints of handleability and mechanical properties. Two types of polymers having different proportions of the above structural formulas (I) and (II) can be prepared and melt kneaded so that the proportions of the above structural formulas (I) and (II) are aimed. Good.

また、前述のポリエステル前駆体を製造する工程でエチレングリコール成分などのグリコール成分は、全酸成分のモル数に対して、1.1〜6倍、さらに2〜5倍、特に3〜5倍用いることが生産性の点から好ましい。   In addition, the glycol component such as an ethylene glycol component is used 1.1 to 6 times, further 2 to 5 times, particularly 3 to 5 times the number of moles of the total acid component in the step of producing the polyester precursor. It is preferable from the viewpoint of productivity.

また、ポリエステルの前駆体を製造する際の反応温度としてはエチレングリコールなどのグリコール成分の沸点以上で行うことが好ましく、特に190℃〜250℃の範囲で行なうことが好ましい。190℃よりも低いと反応が十分に進行しにくく、250℃よりも高いと副反応物であるジエチレングリコールなどのジアルキレングリコールが生成しやすい。また、反応を常圧下で行うこともできるが、さらに生産性を高めるために加圧下で反応を行ってもよい。より詳しくは反応圧力は絶対圧力で10kPa以上200kPa以下、反応温度は通常150℃以上250℃以下、好ましくは180℃以上230℃以下で、反応時間10分以上10時間以下、好ましくは30分以上7時間以下行われるのが好ましい。このエステル化反応やエステル交換反応によってポリエステル前駆体としての反応物が得られる。   The reaction temperature for producing the polyester precursor is preferably higher than the boiling point of a glycol component such as ethylene glycol, and particularly preferably in the range of 190 ° C to 250 ° C. When the temperature is lower than 190 ° C., the reaction does not proceed sufficiently. When the temperature is higher than 250 ° C., a dialkylene glycol such as diethylene glycol, which is a side reaction product, is likely to be generated. In addition, the reaction can be performed under normal pressure, but the reaction may be performed under pressure in order to further increase productivity. More specifically, the reaction pressure is 10 to 200 kPa in absolute pressure, the reaction temperature is usually 150 to 250 ° C., preferably 180 to 230 ° C., the reaction time is 10 to 10 hours, preferably 30 to 7 minutes. It is preferable to be performed for less than an hour. A reaction product as a polyester precursor is obtained by this esterification reaction or transesterification reaction.

ポリエステルの前駆体を製造する反応工程では、公知のエステル化もしくはエステル交換反応触媒を用いてもよい。例えばアルカリ金属化合物、アルカリ土類金属化合物、チタン化合物などが上げられる。   In the reaction step for producing the polyester precursor, a known esterification or transesterification reaction catalyst may be used. For example, an alkali metal compound, an alkaline earth metal compound, a titanium compound, and the like can be given.

つぎに、重縮合反応について説明する。まず、重縮合温度は得られるポリエステルの融点以上でかつ230〜280℃以下、より好ましくは融点より5℃以上高い温度から融点より30℃高い温度の範囲である。重縮合反応では通常50Pa以下の減圧下で行うのが好ましい。50Paより高いと重縮合反応に要する時間が長くなり且つ重合度の高い共重合ポリエステルを得ることが困難になる。   Next, the polycondensation reaction will be described. First, the polycondensation temperature is in the range of a temperature not lower than the melting point of the obtained polyester and not higher than 230 to 280 ° C, more preferably not lower than 5 ° C and higher than the melting point by 30 ° C. The polycondensation reaction is usually preferably performed under a reduced pressure of 50 Pa or less. If it is higher than 50 Pa, the time required for the polycondensation reaction becomes long, and it becomes difficult to obtain a copolyester having a high degree of polymerization.

重縮合触媒としては、少なくとも一種の金属元素を含む金属化合物が挙げられる。なお、重縮合触媒はエステル化反応やエステル交換反応の触媒として併用してもよい。金属元素としては、チタン、ゲルマニウム、アンチモン、アルミニウム、ニッケル、亜鉛、スズ、コバルト、ロジウム、イリジウム、ジルコニウム、ハフニウム、リチウム、カルシウム、マグネシウムなどが挙げられる。より好ましい金属としては、チタン、ゲルマニウム、アンチモン、アルミニウム、スズなどであり、中でも、チタン化合物はエステル化反応やエステル交換反応と重縮合反応との双方の反応で、高い活性を発揮するので特に好ましい。   Examples of the polycondensation catalyst include metal compounds containing at least one metal element. In addition, you may use together a polycondensation catalyst as a catalyst of esterification reaction or transesterification. Examples of the metal element include titanium, germanium, antimony, aluminum, nickel, zinc, tin, cobalt, rhodium, iridium, zirconium, hafnium, lithium, calcium, and magnesium. More preferable metals are titanium, germanium, antimony, aluminum, tin, etc. Among them, titanium compounds are particularly preferable because they exhibit high activity in both esterification reaction, transesterification reaction and polycondensation reaction. .

これらの触媒は単独でも、あるいは併用してもよい。かかる触媒量は、共重合ポリエステルの繰り返し単位のモル数に対して、0.001〜0.5モル%、さらには0.005〜0.2モル%が好ましい。   These catalysts may be used alone or in combination. The amount of the catalyst is preferably 0.001 to 0.5 mol%, more preferably 0.005 to 0.2 mol%, based on the number of moles of the repeating unit of the copolyester.

ところで、前述の粒子の添加方法としては、特に制限されず、それ自体公知の添加方法を採用できる。例えば、重合反応段階でグリコールスラリーの状態で粒子を添加する方法や、得られたポリマーに混練押出機で粒子を溶融混練する方法などが挙げられる。粒子の分散性の観点からは、重合反応段階でグリコールスラリーの状態で粒子を添加して高濃度で粒子を含有するポリエステル組成物の粒子マスターポリマーを作成し、該粒子マスターポリマーを、粒子を含有しないポリエステルで希釈するのが好ましい。   By the way, the addition method of the aforementioned particles is not particularly limited, and a known addition method can be employed. For example, a method of adding particles in the state of a glycol slurry in the polymerization reaction stage, a method of melt-kneading particles with a kneading extruder to the obtained polymer, and the like can be mentioned. From the viewpoint of particle dispersibility, a particle master polymer of a polyester composition containing particles at a high concentration is prepared by adding particles in a glycol slurry state in the polymerization reaction stage, and the particle master polymer contains particles. It is preferred to dilute with no polyester.

本発明のポリエステル組成物には、本発明の効果を阻害しない範囲で、他の熱可塑性ポリマー、紫外線吸収剤等の安定剤、酸化防止剤、可塑剤、滑剤、難燃剤、離型剤、顔料、核剤、充填剤あるいはガラス繊維、炭素繊維、層状ケイ酸塩などを必要に応じて配合しても良い。他種熱可塑性ポリマーとしては、脂肪族ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート、ABS樹脂、ポリメチルメタクリレート、ポリアミド系エラストマー、ポリエステル系エラストマー、ポリエーテルイミド、ポリイミドなどが挙げられる。   The polyester composition of the present invention includes other thermoplastic polymers, stabilizers such as ultraviolet absorbers, antioxidants, plasticizers, lubricants, flame retardants, mold release agents, and pigments, as long as the effects of the present invention are not impaired. Further, a nucleating agent, a filler or glass fiber, carbon fiber, layered silicate, etc. may be blended as necessary. Examples of other types of thermoplastic polymers include aliphatic polyester resins, polyamide resins, polycarbonates, ABS resins, polymethyl methacrylate, polyamide elastomers, polyester elastomers, polyetherimides, polyimides, and the like.

<フィルムの製造方法>
本発明のポリエステル組成物を原料とし、これを乾燥後、該ポリエステル組成物の融点(Tm:℃)ないし(Tm+50)℃の温度に加熱された押出機に供給して、例えばTダイなどのダイよりシート状に押出す。なお、使用する本発明のポリエステル組成物は、1種類に限られず、例えば前述の構造式(I)の割合が多いポリマーと、前述の構造式(II)の多いポリマーとを作り、前述の構造式(I)と(II)の割合が目的の範囲となるようにそれらを溶融混練して用いてもよく、そのような方法を採用することで、前述の構造式(I)と(II)の割合を任意に且つ簡便に変更することができる。この押出されたシート状物を回転している冷却ドラムなどで急冷固化して未延伸フィルムとし、さらに該未延伸フィルムを二軸延伸することで二軸配向フィルムとすることができる。
<Film production method>
The polyester composition of the present invention is used as a raw material, dried, and then supplied to an extruder heated to a temperature of the melting point (Tm: ° C.) to (Tm + 50) ° C. of the polyester composition. Extrude into a sheet. In addition, the polyester composition of the present invention to be used is not limited to one type, for example, a polymer having a large proportion of the above structural formula (I) and a polymer having a large amount of the above structural formula (II) are prepared. They may be used by being melt-kneaded so that the ratio of the formulas (I) and (II) is within the target range. By adopting such a method, the above structural formulas (I) and (II) The ratio can be arbitrarily and easily changed. The extruded sheet can be rapidly cooled and solidified with a rotating cooling drum or the like to form an unstretched film, and the unstretched film can be biaxially stretched to obtain a biaxially oriented film.

なお、後述の延伸を進行させやすくする観点から、冷却ドラムによる冷却は非常に速やかに行なうことが好ましく、特許文献3に記載されるような80℃といった高温ではなく、20〜60℃という低温で行なうことが好ましい。このような低温で行うことで、未延伸フィルムの状態での結晶化が抑制され、その後の延伸をよりスムーズに行える。   In addition, from the viewpoint of facilitating the later-described stretching, it is preferable to perform cooling with a cooling drum very quickly, not at a high temperature of 80 ° C. as described in Patent Document 3, but at a low temperature of 20-60 ° C. It is preferable to do so. By performing at such a low temperature, crystallization in the state of an unstretched film is suppressed, and subsequent stretching can be performed more smoothly.

二軸延伸としては、逐次二軸延伸でも同時二軸延伸でもよい。
ここでは、逐次二軸延伸で、縦延伸、横延伸および熱処理をこの順で行う製造方法を一例として挙げて説明する。まず、最初の縦延伸はポリエステルのガラス転移温度(Tg:℃)ないし(Tg+40)℃の温度で、3〜8倍に延伸し、次いで横方向に先の縦延伸よりも高温で(Tg+10)〜(Tg+50)℃の温度で3〜8倍に延伸し、さらに熱処理としてポリマーの融点以下の温度でかつ(Tg+50)〜(Tg+150)℃の温度で1〜20秒熱固定処理するのが好ましい。なお、熱固定の時間はさらに1〜15秒が好ましい。
Biaxial stretching may be sequential biaxial stretching or simultaneous biaxial stretching.
Here, a manufacturing method in which longitudinal stretching, lateral stretching, and heat treatment are performed in this order by sequential biaxial stretching will be described as an example. First, the first longitudinal stretching is performed at a glass transition temperature (Tg: ° C.) to (Tg + 40) ° C. of polyester at 3 to 8 times, and then at a higher temperature than the previous longitudinal stretching (Tg + 10) in the transverse direction. It is preferable that the film is stretched 3 to 8 times at a temperature of (Tg + 50) ° C., and further heat-treated at a temperature not higher than the melting point of the polymer and at a temperature of (Tg + 50) to (Tg + 150) ° C. for 1 to 20 seconds. The heat setting time is preferably 1 to 15 seconds.

なお、通常であれば、延伸倍率を上げると製膜安定性が損なわれるが、本発明にかかるポリエステル組成物は延伸性が非常に高いので、そのような問題は無く、特に延伸倍率をより高くできることから、厚みが10μm以下、さらに8μm以下の薄いフィルムで特に有用である。なお、フィルムの厚みの下限は特に制限されないが、通常1μm程度、好ましくは3μmである。   Normally, when the stretch ratio is increased, the film-forming stability is impaired, but the polyester composition according to the present invention has very high stretchability, so there is no such problem, and in particular, the stretch ratio is higher. Therefore, it is particularly useful for a thin film having a thickness of 10 μm or less, more preferably 8 μm or less. The lower limit of the thickness of the film is not particularly limited, but is usually about 1 μm, preferably 3 μm.

前述の説明は逐次二軸延伸について説明したが、縦延伸と横延伸とを同時に行う同時二軸延伸でも製造でき、例えば先で説明した延伸倍率や延伸温度などを参考にすればよい。   In the above description, sequential biaxial stretching has been described. However, simultaneous biaxial stretching in which longitudinal stretching and lateral stretching are simultaneously performed can also be produced. For example, the stretching ratio and the stretching temperature described above may be referred to.

また、二軸配向ポリエステルフィルムが積層フィルムの場合、2種以上の溶融ポリエステル組成物をダイ内で積層してからフィルム状に押出し、好ましくはそれぞれのポリエステル組成物の融点(Tm:℃)ないし(Tm+70)℃の温度で押出すか、2種以上の溶融ポリエステル組成物をダイから押出した後に積層し、急冷固化して積層未延伸フィルムとし、ついで前述の単層フィルムの場合と同様な方法で二軸延伸および熱処理を行うとよい。このとき、全てのフィルム層が本発明のポリエステル組成物である必要はなく、少なくとも一つのフィルム層が本発明のポリエステル組成物からなるものであれば良い。また、二軸配向フィルムの表面に塗布層を設けてもよく、その場合、前記した未延伸フィルムまたは一軸延伸フィルムの片面または両面に所望の塗布液を塗布し、後は前述の単層フィルムの場合と同様な方法で二軸延伸および熱処理を行うことが好ましい。   Further, when the biaxially oriented polyester film is a laminated film, two or more kinds of molten polyester compositions are laminated in a die and then extruded into a film, preferably the melting point (Tm: ° C.) to ( Extrude at a temperature of Tm + 70) ° C., or extrude two or more molten polyester compositions from a die, laminate them, rapidly solidify them to form a laminated unstretched film, and then apply the same method as in the case of the above-mentioned single-layer film. Axial stretching and heat treatment may be performed. At this time, it is not necessary that all the film layers are the polyester composition of the present invention, and it is sufficient that at least one film layer is made of the polyester composition of the present invention. In addition, a coating layer may be provided on the surface of the biaxially oriented film. In that case, a desired coating solution is applied to one side or both sides of the unstretched film or the uniaxially stretched film described above, and after that, Biaxial stretching and heat treatment are preferably performed in the same manner as in the case.

本発明によれば、本発明のポリエステル組成物からなる二軸配向ポリエステルフィルムをベースフィルムとし、その一方の面に非磁性層および磁性層をこの順で形成し、他方の面にバックコート層を形成することで磁気記録テープとすることもできる。   According to the present invention, a biaxially oriented polyester film comprising the polyester composition of the present invention is used as a base film, a nonmagnetic layer and a magnetic layer are formed in this order on one side, and a backcoat layer is formed on the other side. By forming it, a magnetic recording tape can be obtained.

以下に実施例及び比較例を挙げ、本発明をより具体的に説明する。なお、本発明では、以下の方法により、その特性を測定および評価した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In the present invention, the characteristics were measured and evaluated by the following methods.

(1)固有粘度
得られたポリエステルの固有粘度はP−クロロフェノール/1,1,2,2−テトラクロロエタン(40/60重量比)の混合溶媒を用いてポリマーを溶解して35℃で測定して求めた。
(1) Intrinsic viscosity The intrinsic viscosity of the obtained polyester was measured at 35 ° C by dissolving the polymer using a mixed solvent of P-chlorophenol / 1,1,2,2-tetrachloroethane (40/60 weight ratio). And asked.

(2)共重合量
グリコール成分については、試料10mgをp−クロロフェノール:1,1,2,2−テトラクロロエタン=3:1(容積比)混合溶液0.5mlに80℃で溶解し、イソプロピルアミンを加えて、十分に混合した後に600MのH−NMR(日立電子製 JEOL A600)にて80℃で測定し、それぞれのグリコール成分量を測定した。
また、芳香族ジカルボン酸成分については、試料50mgをp−クロロフェノール:1,1,2,2−テトラクロロエタン=3:1混合溶液0.5mlに140℃で溶解し、400M 13C−NMR(日立電子 JEOL A600)にて140℃で測定し、それぞれの酸成分量を測定した。
(2) Copolymerization amount For the glycol component, 10 mg of a sample was dissolved in 0.5 ml of a mixed solution of p-chlorophenol: 1,1,2,2-tetrachloroethane = 3: 1 (volume ratio) at 80 ° C. amine was added, measured at 80 ° C. at 1 600M after thorough mixing H-NMR (Hitachi Denshi Ltd. JEOL A600), were measured each glycol component amount.
As for the aromatic dicarboxylic acid component, 50 mg of a sample was dissolved in 0.5 ml of a mixed solution of p-chlorophenol: 1,1,2,2-tetrachloroethane = 3: 1 at 140 ° C., and 400 M 13 C-NMR ( Hitachi Electron JEOL A600) was measured at 140 ° C., and the amount of each acid component was measured.

(3)ヤング率
得られたフィルムを試料巾10mm、長さ15cmで切り取り、チャック間100mm、引張速度10mm/分、チャート速度500mm/分の条件で万能引張試験装置(東洋ボールドウィン製、商品名:テンシロン)にて引っ張る。得られた荷重―伸び曲線の立ち上がり部の接線よりヤング率を計算する。
(3) Young's modulus The obtained film was cut out with a sample width of 10 mm and a length of 15 cm, and a universal tensile testing apparatus (product name: Toyo Baldwin, trade name: 100 mm between chucks, tensile speed 10 mm / min, chart speed 500 mm / min). Pull with Tensilon). The Young's modulus is calculated from the tangent of the rising portion of the obtained load-elongation curve.

(4)温度膨張係数(αt)
得られたフィルムを、フィルムの幅方向が測定方向となるように長さ15mm、幅5mmに切り出し、真空理工製TMA3000にセットし、窒素雰囲気下(0%RH)、60℃で30分前処理し、その後室温まで降温させる。その後25℃から70℃まで2℃/minで昇温して、各温度でのサンプル長を測定し、次式より温度膨張係数(αt)を算出する。なお、測定方向が切り出した試料の長手方向であり、5回測定し、その平均値を用いた。
αt={(L60−L40)}/(L40×△T)}+0.5
ここで、上記式中のL40は40℃のときのサンプル長(mm)、L60は60℃のときのサンプル長(mm)、△Tは20(=60−40)℃、0.5は石英ガラスの温度膨張係数(×10−6/℃)である。
(4) Temperature expansion coefficient (αt)
The obtained film was cut into a length of 15 mm and a width of 5 mm so that the width direction of the film was a measurement direction, set in TMA3000 manufactured by Vacuum Riko, and pretreated at 60 ° C. for 30 minutes in a nitrogen atmosphere (0% RH). Then, the temperature is lowered to room temperature. Thereafter, the temperature is raised from 25 ° C. to 70 ° C. at 2 ° C./min, the sample length at each temperature is measured, and the temperature expansion coefficient (αt) is calculated from the following equation. In addition, the measurement direction is the longitudinal direction of the sample cut out, the measurement was performed 5 times, and the average value was used.
αt = {(L 60 −L 40 )} / (L 40 × ΔT)} + 0.5
Here, L 40 in the above formula is the sample length (mm) at 40 ° C., L 60 is the sample length (mm) at 60 ° C., ΔT is 20 (= 60-40) ° C., 0.5 Is the temperature expansion coefficient (× 10 −6 / ° C.) of quartz glass.

(5)湿度膨張係数(αh)
得られたフィルムを、フィルムの幅方向が測定方向となるように長さ15mm、幅5mmに切り出し、真空理工製TMA3000にセットし、30℃の窒素雰囲気下で、湿度30%RHと湿度70%RHにおけるそれぞれのサンプルの長さを測定し、次式にて湿度膨張係数を算出する。なお、測定方向が切り出した試料の長手方向であり、5回測定し、その平均値をαhとした。
αh=(L70−L30)/(L30×△H)
ここで、上記式中のL30は30%RHのときのサンプル長(mm)、L70は70%RHのときのサンプル長(mm)、△H:40(=70−30)%RHである。
(5) Humidity expansion coefficient (αh)
The obtained film was cut into a length of 15 mm and a width of 5 mm so that the width direction of the film would be the measurement direction, set in TMA3000 manufactured by Vacuum Riko, and a humidity of 30% RH and a humidity of 70% under a nitrogen atmosphere at 30 ° C. The length of each sample in RH is measured, and a humidity expansion coefficient is calculated by the following equation. In addition, the measurement direction is the longitudinal direction of the cut out sample, the measurement was performed 5 times, and the average value was αh.
αh = (L 70 −L 30 ) / (L 30 × ΔH)
Here, L 30 in the above formula is a sample length (mm) when 30% RH, L 70 is a sample length (mm) when 70% RH, ΔH: 40 (= 70-30)% RH is there.

(6)一次粒子の面積円相当径(nm)
粒子を含有するポリエステル組成物をチップ状に成形し、チップの長軸方向に直交する方向にウルトラミクロトームでスライスする。スライスした超薄切片の厚みは200nmとする。そして、それぞれの方向にスライスした超薄切片の断面を透過型電子顕微鏡で20万倍に拡大して、分離できない最小単位の粒子を一次粒子とし、各断面方向について一次粒子300個の個々の面積円相当径を求め、3つの断面方向の個々の面積円相当径、すなわち900個の面積円相当径の平均値を一次粒子の面積円相当平均径とした。
(6) Area equivalent circle diameter of primary particles (nm)
The polyester composition containing the particles is formed into a chip shape and sliced with an ultramicrotome in a direction perpendicular to the major axis direction of the chip. The sliced ultrathin section has a thickness of 200 nm. Then, the cross section of the ultrathin slice sliced in each direction is magnified 200,000 times with a transmission electron microscope, the smallest unit particle that cannot be separated is taken as the primary particle, and the individual areas of 300 primary particles in each cross-sectional direction The equivalent circle diameter was determined, and the area equivalent circle diameters in the three cross-sectional directions, that is, the average value of 900 area equivalent circle diameters was defined as the area equivalent circle average diameter of the primary particles.

(7)粒子の含有量
ポリエステルは溶解し粒子は溶解させない溶媒を選択し、ポリエステル組成物を溶解処理した後、粒子をポリエステルから遠心分離し、ポリエステル組成物の全体重量に対する粒子重量の比率(重量%)をもって粒子の含有量とする。なお、複数種の粒子が併用されている場合は、前記一次粒子の面積円相当平均径の測定から粒度分布を作成してそれぞれの粒子の存在量の比を求める。そして、前述の遠心分離によって求められる粒子の含有量と前述の粒子存在量の比とから、それぞれの粒子の含有量を求めればよい。
(7) Content of particles A solvent that dissolves polyester but does not dissolve particles is selected. After the polyester composition is dissolved, the particles are centrifuged from the polyester, and the ratio of the weight of the particles to the total weight of the polyester composition (weight) %) Is the particle content. In addition, when a plurality of types of particles are used in combination, a particle size distribution is created from the measurement of the area circle equivalent average diameter of the primary particles, and the ratio of the abundance of each particle is obtained. And what is necessary is just to obtain | require content of each particle | grain from the content of the particle | grains calculated | required by the above-mentioned centrifugation and the ratio of the above-mentioned particle existence amount.

[実施例1]
2,6−ナフタレンジカルボン酸ジメチル、6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸そしてエチレングリコールとを、チタンテトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.66dl/gで、酸成分の73モル%が2,6−ナフタレンジカルボン酸成分、酸成分の27モル%が6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分、グリコール成分の98モル%がエチレングリコール成分、2モル%がジエチレングリコール成分であるポリエステルを得た。なお、該ポリエステルには、重縮合反応の前に表1に示すように針状ベーマイト粒子を含有させた。このポリエステルの融点は240℃、ガラス転移温度は117℃であった。
[Example 1]
Dimethyl 2,6-naphthalenedicarboxylate, 6,6 ′-(ethylenedioxy) di-2-naphthoic acid and ethylene glycol were subjected to esterification and transesterification in the presence of titanium tetrabutoxide, and then further The polycondensation reaction was carried out to give an intrinsic viscosity of 0.66 dl / g, 73 mol% of the acid component being 2,6-naphthalenedicarboxylic acid component, and 27 mol% of the acid component being 6,6 ′-(alkylenedioxy). A polyester was obtained in which 98 mol% of the di-2-naphthoic acid component and glycol component were ethylene glycol components and 2 mol% were diethylene glycol components. The polyester contained acicular boehmite particles as shown in Table 1 before the polycondensation reaction. This polyester had a melting point of 240 ° C. and a glass transition temperature of 117 ° C.

このようにして得られたポリエステルを、押し出し機に供給して290℃でダイから溶融状態で回転中の温度50℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が135℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率6.2倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、140℃で横方向(幅方向)に延伸倍率6.3倍で延伸し、その後200℃で10秒間熱固定処理を行い、厚さ6μmの二軸延伸フィルムを得た。
得られたポリエステル組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
The polyester thus obtained was supplied to an extruder and extruded from a die at 290 ° C. onto a cooling drum having a rotating temperature of 50 ° C. to form an unstretched film. Then, between two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 135 ° C., and stretching in the machine direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 6.2. And this uniaxially stretched film is led to a stenter, stretched at 140 ° C. in the transverse direction (width direction) at a stretching ratio of 6.3 times, then heat-set at 200 ° C. for 10 seconds, and biaxially stretched with a thickness of 6 μm. A film was obtained.
The properties of the obtained polyester composition and biaxially oriented polyester film are shown in Table 1.

[実施例2および3]
実施例1において、含有させる粒子を表1に示すように変更した以外は同様な操作を繰り返した。
得られたポリエステル組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Examples 2 and 3]
In Example 1, the same operation was repeated except that the particles to be contained were changed as shown in Table 1.
The properties of the obtained polyester composition and biaxially oriented polyester film are shown in Table 1.

[比較例1]
実施例1において、粒子を含有させないように変更した以外は、実施例1と同様な操作を繰り返した。
得られたポリエステル組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Comparative Example 1]
The same operation as in Example 1 was repeated except that Example 1 was changed so as not to contain particles.
The properties of the obtained polyester composition and biaxially oriented polyester film are shown in Table 1.

[比較例2]
実施例1において、含有させる粒子を表1に示すように変更した以外は同様な操作を繰り返した。
得られた二軸配向ポリエステルフィルムの特性を表1に示す。
[Comparative Example 2]
In Example 1, the same operation was repeated except that the particles to be contained were changed as shown in Table 1.
The characteristics of the obtained biaxially oriented polyester film are shown in Table 1.

[実施例4]
2,6−ナフタレンジカルボン酸ジメチル、6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸そしてエチレングリコールとを、チタンテトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.72dl/gで、酸成分の94モル%が2,6−ナフタレンジカルボン酸成分、酸成分の6モル%が6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分、グリコール成分の99モル%がエチレングリコール成分、1モル%がジエチレングリコール成分であるポリエステルを得た。なお、該ポリエステルには、重縮合反応の前に表1に示すように針状ベーマイト粒子を含有させた。このポリエステルの融点は255℃、ガラス転移温度は119℃であった。
[Example 4]
Dimethyl 2,6-naphthalenedicarboxylate, 6,6 ′-(ethylenedioxy) di-2-naphthoic acid and ethylene glycol were subjected to esterification and transesterification in the presence of titanium tetrabutoxide, and then further The polycondensation reaction was carried out, the intrinsic viscosity was 0.72 dl / g, 94 mol% of the acid component was 2,6-naphthalenedicarboxylic acid component, and 6 mol% of the acid component was 6,6 ′-(alkylenedioxy). A polyester was obtained in which 99 mol% of the di-2-naphthoic acid component and glycol component were an ethylene glycol component and 1 mol% was a diethylene glycol component. The polyester contained acicular boehmite particles as shown in Table 1 before the polycondensation reaction. This polyester had a melting point of 255 ° C. and a glass transition temperature of 119 ° C.

このようにして得られたポリエステルを、押し出し機に供給して290℃でダイから溶融状態で回転中の温度50℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が140℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率5.3倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、140℃で横方向(幅方向)に延伸倍率4.0倍で延伸し、その後200℃で10秒間熱固定処理を行い、厚さ8μmの二軸延伸フィルムを得た。
得られたポリエステル組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
The polyester thus obtained was supplied to an extruder and extruded from a die at 290 ° C. onto a cooling drum having a rotating temperature of 50 ° C. to form an unstretched film. Then, between the two sets of rollers having different rotation speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 140 ° C., and stretching in the machine direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 5.3 times. Then, this uniaxially stretched film is guided to a stenter, stretched in the transverse direction (width direction) at 140 ° C. at a stretch ratio of 4.0 times, and then heat-set at 200 ° C. for 10 seconds, and biaxially stretched with a thickness of 8 μm A film was obtained.
The properties of the obtained polyester composition and biaxially oriented polyester film are shown in Table 1.

[実施例5]
2,6−ナフタレンジカルボン酸ジメチル、6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸そしてエチレングリコールとを、チタンテトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.77dl/gで、酸成分の80モル%が2,6−ナフタレンジカルボン酸成分、酸成分の20モル%が6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分、グリコール成分の99モル%がエチレングリコール成分、1モル%がジエチレングリコール成分であるポリエステルを得た。なお、該ポリエステルには、重縮合反応の前に表1に示すように針状ベーマイト粒子を含有させた。このポリエステルの融点は252℃、ガラス転移温度は116℃であった。
[Example 5]
Dimethyl 2,6-naphthalenedicarboxylate, 6,6 ′-(ethylenedioxy) di-2-naphthoic acid and ethylene glycol were subjected to esterification and transesterification in the presence of titanium tetrabutoxide, and then further The polycondensation reaction was carried out, the intrinsic viscosity was 0.77 dl / g, 80 mol% of the acid component was 2,6-naphthalenedicarboxylic acid component, and 20 mol% of the acid component was 6,6 ′-(alkylenedioxy). A polyester was obtained in which 99 mol% of the di-2-naphthoic acid component and glycol component were an ethylene glycol component and 1 mol% was a diethylene glycol component. The polyester contained acicular boehmite particles as shown in Table 1 before the polycondensation reaction. The polyester had a melting point of 252 ° C. and a glass transition temperature of 116 ° C.

このようにして得られたポリエステルを、押し出し機に供給して290℃でダイから溶融状態で回転中の温度50℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が135℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率5.5倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、140℃で横方向(幅方向)に延伸倍率4.3倍で延伸し、その後210℃で10秒間熱固定処理を行い、厚さ6μmの二軸延伸フィルムを得た。
得られたポリエステル組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
The polyester thus obtained was supplied to an extruder and extruded from a die at 290 ° C. onto a cooling drum having a rotating temperature of 50 ° C. to form an unstretched film. Then, between two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 135 ° C., and stretching in the machine direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 5.5. Then, this uniaxially stretched film is led to a stenter, stretched at a stretching ratio of 4.3 times in the transverse direction (width direction) at 140 ° C., and then heat-set at 210 ° C. for 10 seconds, and biaxially stretched with a thickness of 6 μm. A film was obtained.
The properties of the obtained polyester composition and biaxially oriented polyester film are shown in Table 1.

[実施例6]
2,6−ナフタレンジカルボン酸ジメチル、6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸そしてエチレングリコールとを、チタンテトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.75dl/gで、酸成分の65モル%が2,6−ナフタレンジカルボン酸成分、酸成分の35モル%が6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分、グリコール成分の98モル%がエチレングリコール成分、2モル%がジエチレングリコール成分であるポリエステルを得た。なお、該ポリエステルには、重縮合反応の前に表1に示すように針状ベーマイト粒子を含有させた。このポリエステルの融点は247℃、ガラス転移温度は116℃であった。
[Example 6]
Dimethyl 2,6-naphthalenedicarboxylate, 6,6 ′-(ethylenedioxy) di-2-naphthoic acid and ethylene glycol were subjected to esterification and transesterification in the presence of titanium tetrabutoxide, and then further The polycondensation reaction was performed, and the intrinsic viscosity was 0.75 dl / g, 65 mol% of the acid component was 2,6-naphthalenedicarboxylic acid component, and 35 mol% of the acid component was 6,6 ′-(alkylenedioxy). A polyester was obtained in which 98 mol% of the di-2-naphthoic acid component and glycol component were ethylene glycol components and 2 mol% were diethylene glycol components. The polyester contained acicular boehmite particles as shown in Table 1 before the polycondensation reaction. This polyester had a melting point of 247 ° C. and a glass transition temperature of 116 ° C.

このようにして得られたポリエステルを、押し出し機に供給して290℃でダイから溶融状態で回転中の温度50℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が140℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率5.5倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、140℃で横方向(幅方向)に延伸倍率6.0倍で延伸し、その後210℃で10秒間熱固定処理を行い、厚さ7μmの二軸延伸フィルムを得た。
得られたポリエステル組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
The polyester thus obtained was supplied to an extruder and extruded from a die at 290 ° C. onto a cooling drum having a rotating temperature of 50 ° C. to form an unstretched film. Then, between the two sets of rollers having different rotation speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 140 ° C., and stretching in the machine direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 5.5. Then, this uniaxially stretched film is guided to a stenter, stretched at 140 ° C. in the transverse direction (width direction) at a stretch ratio of 6.0 times, and then heat-set at 210 ° C. for 10 seconds to be biaxially stretched with a thickness of 7 μm A film was obtained.
The properties of the obtained polyester composition and biaxially oriented polyester film are shown in Table 1.

[実施例7]
2,6−ナフタレンジカルボン酸ジメチル、6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸そしてエチレングリコールとを、チタンテトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.70dl/gで、酸成分の30モル%が2,6−ナフタレンジカルボン酸成分、酸成分の70モル%が6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分、グリコール成分の98モル%がエチレングリコール成分、2モル%がジエチレングリコール成分であるポリエステルを得た。なお、該ポリエステルには、重縮合反応の前に表1に示すように針状ベーマイト粒子を含有させた。このポリエステルの融点は268℃、ガラス転移温度は101℃であった。
[Example 7]
Dimethyl 2,6-naphthalenedicarboxylate, 6,6 ′-(ethylenedioxy) di-2-naphthoic acid and ethylene glycol were subjected to esterification and transesterification in the presence of titanium tetrabutoxide, and then further The polycondensation reaction was carried out, the intrinsic viscosity was 0.70 dl / g, 30 mol% of the acid component was 2,6-naphthalenedicarboxylic acid component, and 70 mol% of the acid component was 6,6 ′-(alkylenedioxy). A polyester was obtained in which 98 mol% of the di-2-naphthoic acid component and glycol component were ethylene glycol components and 2 mol% were diethylene glycol components. The polyester contained acicular boehmite particles as shown in Table 1 before the polycondensation reaction. This polyester had a melting point of 268 ° C. and a glass transition temperature of 101 ° C.

このようにして得られたポリエステルを、押し出し機に供給して300℃でダイから溶融状態で回転中の温度50℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が135℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率4.0倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、140℃で横方向(幅方向)に延伸倍率3.8倍で延伸し、その後200℃で10秒間熱固定処理を行い、厚さ10μmの二軸延伸フィルムを得た。
得られたポリエステル組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
The polyester thus obtained was supplied to an extruder and extruded from a die at 300 ° C. in a molten state onto a cooling drum having a temperature of 50 ° C. and rotating into a sheet to obtain an unstretched film. Then, between two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 135 ° C., and stretching in the machine direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 4.0. And this uniaxially stretched film is led to a stenter, stretched at 140 ° C. in the transverse direction (width direction) at a stretching ratio of 3.8 times, then heat-set at 200 ° C. for 10 seconds, and biaxially stretched with a thickness of 10 μm. A film was obtained.
The properties of the obtained polyester composition and biaxially oriented polyester film are shown in Table 1.

[実施例8および9]
実施例1において、針状ベーマイト粒子の含有量を表1に示すように変更した以外は同様な操作を繰り返した。
得られたポリエステル組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Examples 8 and 9]
In Example 1, the same operation was repeated except that the content of acicular boehmite particles was changed as shown in Table 1.
The properties of the obtained polyester composition and biaxially oriented polyester film are shown in Table 1.

[実施例10]
テレフタル酸ジメチル、6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸そしてエチレングリコールとを、チタンテトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.68dl/gで、酸成分の80モル%がテレフタル酸成分、酸成分の20モル%が6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分、グリコール成分の98モル%がエチレングリコール成分、2モル%がジエチレングリコール成分であるポリエステルを得た。なお、該ポリエステルには、重縮合反応の前に表1に示すように針状ベーマイト粒子を含有させた。このポリエステルの融点は230℃、ガラス転移温度は85℃であった。
[Example 10]
Esterification and transesterification of dimethyl terephthalate, 6,6 '-(ethylenedioxy) di-2-naphthoic acid and ethylene glycol in the presence of titanium tetrabutoxide, followed by polycondensation reaction And the intrinsic viscosity is 0.68 dl / g, 80 mol% of the acid component is terephthalic acid component, 20 mol% of the acid component is 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component, glycol component A polyester having 98 mol% of ethylene glycol component and 2 mol% of diethylene glycol component was obtained. The polyester contained acicular boehmite particles as shown in Table 1 before the polycondensation reaction. This polyester had a melting point of 230 ° C. and a glass transition temperature of 85 ° C.

このようにして得られたポリエステルを、押し出し機に供給して290℃でダイから溶融状態で回転中の温度50℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が105℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率5.0倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、115℃で横方向(幅方向)に延伸倍率5.0倍で延伸し、その後210℃で3秒間熱固定処理を行い、厚さ10μmの二軸延伸フィルムを得た。
得られたポリエステル組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
The polyester thus obtained was supplied to an extruder and extruded from a die at 290 ° C. onto a cooling drum having a rotating temperature of 50 ° C. to form an unstretched film. Then, between two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 105 ° C., and stretching in the longitudinal direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 5.0. Then, this uniaxially stretched film is guided to a stenter, stretched at 115 ° C. in the transverse direction (width direction) at a stretch ratio of 5.0 times, then heat-set at 210 ° C. for 3 seconds, and biaxially stretched with a thickness of 10 μm. A film was obtained.
The properties of the obtained polyester composition and biaxially oriented polyester film are shown in Table 1.

[比較例3]
実施例4において、粒子を含有させないように変更した以外は、実施例4と同様な操作を繰り返した。
得られたポリエステル組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Comparative Example 3]
In Example 4, the same operation as in Example 4 was repeated except that the particle was not contained.
The properties of the obtained polyester composition and biaxially oriented polyester film are shown in Table 1.

[比較例4]
実施例5において、粒子を含有させないように変更した以外は、実施例5と同様な操作を繰り返した。
得られたポリエステル組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Comparative Example 4]
The same operation as in Example 5 was repeated except that Example 5 was changed so as not to contain particles.
The properties of the obtained polyester composition and biaxially oriented polyester film are shown in Table 1.

[比較例5]
実施例6において、粒子を含有させないように変更した以外は、実施例6と同様な操作を繰り返した。
得られたポリエステル組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Comparative Example 5]
In Example 6, the same operation as in Example 6 was repeated except that the particle was not contained.
The properties of the obtained polyester composition and biaxially oriented polyester film are shown in Table 1.

[比較例6]
実施例7において、粒子を含有させないように変更した以外は、実施例7と同様な操作を繰り返した。
得られたポリエステル組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Comparative Example 6]
In Example 7, the same operation as in Example 7 was repeated except that the particle was not contained.
The properties of the obtained polyester composition and biaxially oriented polyester film are shown in Table 1.

[比較例7]
実施例10において、粒子を含有させないように変更した以外は、実施例10と同様な操作を繰り返した。
得られたポリエステル組成物および二軸配向ポリエステルフィルムの特性を表1に示す。
[Comparative Example 7]
In Example 10, the same operation as in Example 10 was repeated except that the particle was not contained.
The properties of the obtained polyester composition and biaxially oriented polyester film are shown in Table 1.

[比較例8]
2,6−ナフタレンジカルボン酸ジメチルとエチレングリコールとを、チタンテトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.62dl/gで、グリコール成分の1.5モル%がジエチレングリコール成分であるポリエチレン−2,6−ナフタレートを得た。なお、該ポリエチレン−2,6−ナフタレートには、重縮合反応の前に平均粒径0.5μmのシリカ粒子を、得られる樹脂組成物の重量を基準として、0.2重量%となるように含有させた。このポリエチレン−2,6−ナフタレートの融点は270℃、ガラス転移温度は120℃であった。
[Comparative Example 8]
Dimethyl 2,6-naphthalenedicarboxylate and ethylene glycol are subjected to an esterification reaction and a transesterification reaction in the presence of titanium tetrabutoxide, followed by a polycondensation reaction to obtain an intrinsic viscosity of 0.62 dl / g. Polyethylene-2,6-naphthalate in which 1.5 mol% of the glycol component was a diethylene glycol component was obtained. The polyethylene-2,6-naphthalate contains silica particles having an average particle diameter of 0.5 μm before the polycondensation reaction so that the amount is 0.2% by weight based on the weight of the resin composition obtained. Contained. This polyethylene-2,6-naphthalate had a melting point of 270 ° C. and a glass transition temperature of 120 ° C.

このようにして得られたポリエチレン−2,6−ナフタレートを、押し出し機に供給して300℃でダイから溶融状態で回転中の温度60℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が140℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率3.0倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、140℃で横方向(幅方向)に延伸倍率4.3倍で延伸し、その後200℃で10秒間熱固定処理を行い、厚さ10μmの二軸延伸フィルムを得た。
得られた二軸配向ポリエステルフィルムの特性を表1に示す。
The polyethylene-2,6-naphthalate thus obtained was supplied to an extruder and extruded from a die at 300 ° C. in a molten state onto a cooling drum at a temperature of 60 ° C. during rotation to form an unstretched film. . Then, between the two sets of rollers having different rotation speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 140 ° C., and stretching in the machine direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 3.0. And this uniaxially stretched film is led to a stenter, stretched at a stretching ratio of 4.3 times in the transverse direction (width direction) at 140 ° C., and then heat-set at 200 ° C. for 10 seconds to be biaxially stretched with a thickness of 10 μm. A film was obtained.
The characteristics of the obtained biaxially oriented polyester film are shown in Table 1.

[比較例9]
比較例8において、製膜方向の延伸温度を140℃に、製膜方向の延伸倍率を4.0倍に、幅方向の延伸温度を140℃に、幅方向の延伸倍率を4.0倍に、熱固定処理温度を200℃に変更するほかは同様な操作を繰り返して二軸延伸フィルムを得た。
得られた二軸配向ポリエステルフィルムの特性を表1に示す。
[Comparative Example 9]
In Comparative Example 8, the stretching temperature in the film forming direction was 140 ° C., the stretching ratio in the film forming direction was 4.0 times, the stretching temperature in the width direction was 140 ° C., and the stretching ratio in the width direction was 4.0 times. The same operation was repeated except that the heat setting treatment temperature was changed to 200 ° C. to obtain a biaxially stretched film.
The characteristics of the obtained biaxially oriented polyester film are shown in Table 1.

[比較例10]
比較例8において、製膜方向の延伸温度を140℃に、製膜方向の延伸倍率を4.5倍に、幅方向の延伸温度を140℃に、幅方向の延伸倍率を3.4倍に、熱固定処理温度を200℃に変更するほかは同様な操作を繰り返して二軸延伸フィルムを得た。
得られた二軸配向ポリエステルフィルムの特性を表1に示す。
[Comparative Example 10]
In Comparative Example 8, the stretching temperature in the film forming direction is 140 ° C., the stretching ratio in the film forming direction is 4.5 times, the stretching temperature in the width direction is 140 ° C., and the stretching ratio in the width direction is 3.4 times. The same operation was repeated except that the heat setting treatment temperature was changed to 200 ° C. to obtain a biaxially stretched film.
The characteristics of the obtained biaxially oriented polyester film are shown in Table 1.

Figure 2009108231
Figure 2009108231

表1中のNAは2,6−ナフタレンジカルボン酸成分、TAはテレフタル酸成分、ENAは6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸成分、EGはエチレングリコール成分、DEGはジエチレングリコール成分、fは体積球状係数、MDはフィルムの製膜方向、TDはフィルムの幅方向、αhは湿度膨張係数、αtが温度膨張係数を示す。   In Table 1, NA is 2,6-naphthalenedicarboxylic acid component, TA is terephthalic acid component, ENA is 6,6 '-(ethylenedioxy) di-2-naphthoic acid component, EG is ethylene glycol component, and DEG is diethylene glycol. Component, f is a volume spherical coefficient, MD is a film forming direction, TD is a film width direction, αh is a humidity expansion coefficient, and αt is a temperature expansion coefficient.

本発明のポリエステル組成物は、フィルム、ボトルまたは繊維などの材料として用いることができる。特に二軸配向ポリエステルフィルムとした場合、高いヤング率と優れた寸法安定性を有することから、特に高密度磁気記録媒体のベースフィルムとして、好適に使用することができる。   The polyester composition of the present invention can be used as a material such as a film, a bottle or a fiber. In particular, when a biaxially oriented polyester film is used, since it has a high Young's modulus and excellent dimensional stability, it can be suitably used particularly as a base film for a high-density magnetic recording medium.

Claims (3)

酸成分が下記構造式(I)および(II)からなり、下記構造式(I)の割合が、全酸成分のモル数を基準として、5〜80モル%の範囲にあること、およびグリコール成分が下記構造式(III)であることを具備するポリエステルと、一次粒子の面積円相当平均径が100nm未満の粒子とを含有することを特徴とするポリエステル組成物。
Figure 2009108231
(上記構造式(I)中のRは炭素数1〜10のアルキレン基を、上記構造式(II)中のRはフェニレン基またはナフタレンジイル基、上記構造式(III)中のRは炭素数2〜4のアルキレン基を示す。)
The acid component comprises the following structural formulas (I) and (II), and the proportion of the following structural formula (I) is in the range of 5 to 80 mol% based on the number of moles of the total acid component, and the glycol component A polyester composition comprising: a polyester having a structural formula (III) below; and particles having an area equivalent circle diameter of primary particles of less than 100 nm.
Figure 2009108231
(R 1 in the structural formula (I) is an alkylene group having 1 to 10 carbon atoms, R 2 in the structural formula (II) is a phenylene group or a naphthalenediyl group, and R 3 in the structural formula (III). Represents an alkylene group having 2 to 4 carbon atoms.)
粒子の含有量が、組成物の重量を基準として、0.05〜10重量%である請求項1記載のポリエステル組成物。   The polyester composition according to claim 1, wherein the content of the particles is 0.05 to 10% by weight based on the weight of the composition. 粒子がベーマイト、アルミナ、シリカからなる群より選ばれる少なくとも一種の粒子である請求項1記載のポリエステル組成物。   The polyester composition according to claim 1, wherein the particles are at least one kind of particles selected from the group consisting of boehmite, alumina, and silica.
JP2007283127A 2007-10-31 2007-10-31 Polyester composition Expired - Fee Related JP5265902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007283127A JP5265902B2 (en) 2007-10-31 2007-10-31 Polyester composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007283127A JP5265902B2 (en) 2007-10-31 2007-10-31 Polyester composition

Publications (2)

Publication Number Publication Date
JP2009108231A true JP2009108231A (en) 2009-05-21
JP5265902B2 JP5265902B2 (en) 2013-08-14

Family

ID=40777069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007283127A Expired - Fee Related JP5265902B2 (en) 2007-10-31 2007-10-31 Polyester composition

Country Status (1)

Country Link
JP (1) JP5265902B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135428A (en) * 1983-12-23 1985-07-18 Teijin Ltd Aromatic polyester and its production
JPS60221420A (en) * 1984-04-17 1985-11-06 Teijin Ltd Polyester film
JPH0516224A (en) * 1991-07-12 1993-01-26 Diafoil Co Ltd Biaxially oriented polyester film
JPH07207129A (en) * 1994-01-10 1995-08-08 Toray Ind Inc Polyester composition
JP2002192596A (en) * 2000-12-25 2002-07-10 Fuji Photo Film Co Ltd High surface hardness film and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135428A (en) * 1983-12-23 1985-07-18 Teijin Ltd Aromatic polyester and its production
JPS60221420A (en) * 1984-04-17 1985-11-06 Teijin Ltd Polyester film
JPH0516224A (en) * 1991-07-12 1993-01-26 Diafoil Co Ltd Biaxially oriented polyester film
JPH07207129A (en) * 1994-01-10 1995-08-08 Toray Ind Inc Polyester composition
JP2002192596A (en) * 2000-12-25 2002-07-10 Fuji Photo Film Co Ltd High surface hardness film and its manufacturing method

Also Published As

Publication number Publication date
JP5265902B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5275849B2 (en) Biaxially oriented multilayer laminated polyester film
JP2010031174A (en) Polyester resin composition and biaxially oriented film using the same
JP5271124B2 (en) Biaxially oriented multilayer laminated polyester film
JP5265902B2 (en) Polyester composition
JP2010031116A (en) Biaxially oriented polyester film and magnetic recording medium using it
JP5199611B2 (en) Polyester composition
JP5492569B2 (en) Polyester resin, process for producing the same, and biaxially oriented polyester film using the same
JP5074215B2 (en) Biaxially oriented laminated film
JP4971875B2 (en) Biaxially oriented polyester film
JP5735370B2 (en) Aromatic polyester resin composition and oriented polyester film
JP2009255475A (en) Biaxially oriented laminated polyester film
JP5214903B2 (en) Biaxially oriented polyester film
JP5209219B2 (en) Biaxially oriented polyester film
JP2010031139A (en) Copolyester resin composition, method for manufacturing the same, and biaxially oriented film comprising the same
JP4934063B2 (en) Biaxially oriented polyester film
JP5209263B2 (en) Polyester composition
JP5788729B2 (en) Oriented polyester film
JP2009149808A (en) Polyester resin composition, and biaxially oriented film using the same
JP2009280757A (en) Polyester composition and biaxially oriented film using the same
JP5209218B2 (en) Biaxially oriented polyester film
JP5074298B2 (en) Copolyethylene-2,6-naphthalenedicarboxylate and biaxially oriented film
JP2009155426A (en) Polyester composition and biaxially oriented film using the same
JP2009167342A (en) Biaxially oriented polyester film
JP5694865B2 (en) Polyester composition, method for producing the same, and biaxially oriented polyester film
JP5027467B2 (en) Polyester resin composition and biaxially oriented polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100802

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110707

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees