JP2008202109A - Plating film-polyimide stacked body, and method for producing the same - Google Patents

Plating film-polyimide stacked body, and method for producing the same Download PDF

Info

Publication number
JP2008202109A
JP2008202109A JP2007040640A JP2007040640A JP2008202109A JP 2008202109 A JP2008202109 A JP 2008202109A JP 2007040640 A JP2007040640 A JP 2007040640A JP 2007040640 A JP2007040640 A JP 2007040640A JP 2008202109 A JP2008202109 A JP 2008202109A
Authority
JP
Japan
Prior art keywords
polyimide
group
plating film
carboxyl
amine compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007040640A
Other languages
Japanese (ja)
Other versions
JP5240812B2 (en
Inventor
Tokihiko Yokoshima
時彦 横島
Hiroshi Nakagawa
博 仲川
Masahiro Aoyanagi
昌宏 青柳
Toshiyuki Goshima
敏之 五島
Shintaro Nakajima
慎太郎 中島
Shigemasa Segawa
繁昌 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PI R&D Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
PI R&D Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PI R&D Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical PI R&D Co Ltd
Priority to JP2007040640A priority Critical patent/JP5240812B2/en
Publication of JP2008202109A publication Critical patent/JP2008202109A/en
Application granted granted Critical
Publication of JP5240812B2 publication Critical patent/JP5240812B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plating film-polyimide stacked body in which a plating film having high flatness is stacked on polyimide at high adhesion without increasing the roughness of the polyimide surface, and to provide a method for producing the same. <P>SOLUTION: The surface of polyimide having a carboxyl group and/or a carboxyl derivative group is surface-treated with an aqueous solution comprising an organic amine compound in which both terminals of each molecule chain separated from each other have an amino group(s) by one or more, respectively, thus the carboxyl group and/or carboxyl derivative group and the amino group at either terminal in the organic amine compound are reacted, and the carboxyl group and/or carboxyl derivative group is modified with the molecule of the amine compound. Next, catalyzing treatment is performed with a metal-containing activation solution, thus a metal catalyst is imparted to the amino group at the other terminal in the amine compound molecule. Then, electroless plating is performed with the metal catalyst as a nucleus, so as to form an electroless plating film, thus the plating film-polyimide stacked body is produced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、フレキシブルプリント配線板のベース基材として用いられる屈曲性に優れた有機絶縁材料であるポリイミド上に、ポリイミド表面のラフネスを増加させることなく、密着性よくめっき皮膜を積層しためっき皮膜−ポリイミド積層体及びその製造方法に関する。   The present invention is a plating film obtained by laminating a plating film with good adhesion on polyimide, which is an organic insulating material excellent in flexibility, used as a base substrate of a flexible printed wiring board without increasing the roughness of the polyimide surface. The present invention relates to a polyimide laminate and a method for producing the same.

電子機器の小型化や高機能化により、実装配線材料の微細化に対応したフレキシブルプリント配線板用材料の高性能化への要求が高まっている。配線層の微細化、薄膜化に対応するためには、ラフネスを少なくして成膜しなくてはならない。これまでには、ポリイミドにUVランプを照射することで、C−C結合、C−O結合などを切断し、マイクロアンカーを形成させ、絶縁層の表面に数10nmのラフネスを形成させて、ナノアンカー効果を利用する方法や、Pd触媒核を固定後、めっき法により金属薄膜を成膜する方法が検討されている。   Due to the downsizing and high functionality of electronic devices, there is an increasing demand for higher performance of flexible printed wiring board materials that meet the miniaturization of mounting wiring materials. In order to cope with the miniaturization and thinning of the wiring layer, the film must be formed with reduced roughness. So far, by irradiating the polyimide with a UV lamp, the C—C bond, the C—O bond, etc. are cut, the microanchor is formed, and the roughness of several tens of nm is formed on the surface of the insulating layer. A method of utilizing the anchor effect and a method of forming a metal thin film by plating after fixing the Pd catalyst nucleus have been studied.

後者の方法としては、例えば、強アルカリを用いてポリイミドのイミド結合を開裂させ、内部にPdイオンを浸透させ、その後、還元によりポリイミド表層に無電解めっきのためのPd触媒化層を形成し、無電解めっき処理する方法がある。この方法では、形成後に熱処理を行うことで、再度イミド結合を形成させることができるため、結果としてポリイミド上に安定した無電解めっき用の触媒核が形成される反面、薄膜化の阻害となる数10〜200nmの金属−ポリイミドコンポジット層が形成されてしまう。また、強アルカリによる前処理も必要である。また、ポリイミド表面を酸素アッシングすることで水酸基を形成し、その後にシランカップリング剤をポリイミド上に塗布して、アミノ基を形成後に触媒化して無電解めっき処理する方法もある。   As the latter method, for example, the polyimide imide bond is cleaved using a strong alkali, Pd ions are permeated into the inside, and then a Pd-catalyzed layer for electroless plating is formed on the polyimide surface layer by reduction. There is a method of electroless plating. In this method, an imide bond can be formed again by performing a heat treatment after the formation, and as a result, a stable catalyst core for electroless plating is formed on the polyimide, but a number that hinders thinning. A 10-200 nm metal-polyimide composite layer is formed. In addition, pretreatment with a strong alkali is also necessary. There is also a method in which a hydroxyl group is formed by oxygen ashing on the polyimide surface, and then a silane coupling agent is applied on the polyimide, and after forming an amino group, it is catalyzed and electrolessly plated.

特開2006−54357号公報JP 2006-54357 A 特開2002−226972号公報JP 2002-226972 A 特開2002−84049号公報JP 2002-84049 A 特開平10−245444号公報Japanese Patent Laid-Open No. 10-245444 特開2001−168496号公報Japanese Patent Laid-Open No. 2001-168896 特開2000−261128号公報JP 2000-261128 A 特開2003−158373号公報JP 2003-158373 A 特開昭49−52252号公報Japanese Patent Laid-Open No. 49-52252 特開昭52−32943号公報JP 52-32943 A 特開昭63−111199号公報JP-A-63-1111199 特開平9−104839号公報JP-A-9-104839 特開2003−327905号公報JP 2003-327905 A 特開2003−327907号公報JP 2003-327907 A 特開2005−162954号公報Japanese Patent Laid-Open No. 2005-162954

フレキシブルプリント配線板の微細加工のためには、フレキシブルプリント配線板を形成する配線層自体の薄膜化とその表面の平坦性の向上が要求される一方で、配線層の平坦化のために導体である配線層を積層する樹脂等の絶縁体の表面を平坦化すると、配線層と絶縁体との界面での接着力が低下するという問題が生じる。   For microfabrication of flexible printed wiring boards, it is required to reduce the thickness of the wiring layer itself that forms the flexible printed wiring board and to improve the flatness of the surface. When the surface of an insulator such as a resin for laminating a certain wiring layer is flattened, there arises a problem that the adhesive force at the interface between the wiring layer and the insulator is lowered.

本発明は、上記事情に鑑みなされたもので、ポリイミド上に、ポリイミド表面のラフネスを増加させることなく、平坦性の高いめっき皮膜を密着性よく積層しためっき皮膜−ポリイミド積層体及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a plating film-polyimide laminate in which a highly flat plating film is laminated with good adhesion on polyimide without increasing the roughness of the polyimide surface. The purpose is to provide.

電着ポリイミドは、その成膜機構から分子内に多数のカルボキシル基を持つために、一般的なポリイミドに比べてカルボキシル基による表面反応を期待できることから、本発明者は、カルボキシル基を反応活性点に使用したポリイミドの活性化処理を検討した。   Since the electrodeposition polyimide has a large number of carboxyl groups in the molecule due to its film formation mechanism, surface reaction by carboxyl groups can be expected compared to general polyimides. The activation treatment of the polyimide used in this study was examined.

そして、本発明者は、上記目的を達成するため鋭意検討を行った結果、電着ポリイミドなどの、表面にカルボキシル基(−COOH)及び/又はカルボキシル誘導基(−COO-+(R+は有機カチオン基又は無機カチオンを示す))を有するポリイミドの表面を、
互いに離間する分子鎖両末端にアミノ基を各々一つ以上有する有機アミン化合物を含有する水溶液で表面処理することにより、カルボキシル基及び/又はカルボキシル誘導基と、有機アミン化合物の一方の末端のアミノ基とを反応させて、カルボキシル基及び/又はカルボキシル誘導基を上記アミン化合物分子で修飾し、
次いで、金属を含む活性化溶液で触媒化処理することにより、アミン化合物分子の他方の末端のアミノ基に金属触媒を付与し、
次いで、金属触媒を核として無電解めっきして無電解めっき皮膜を形成することにより、ポリイミド表面のラフネスを増加させることなく、ポリイミド上に、平坦性の高いめっき皮膜が密着性よく積層しためっき皮膜−ポリイミド積層体が得られることを知見し、本発明をなすに至った。
As a result of intensive studies to achieve the above object, the present inventor has found that the surface of the electrodeposited polyimide or the like has a carboxyl group (—COOH) and / or a carboxyl derivative group (—COO R + (R + is The surface of a polyimide having an organic cation group or an inorganic cation)))
Surface treatment with an aqueous solution containing an organic amine compound having one or more amino groups at both ends of the molecular chains that are spaced apart from each other allows the carboxyl group and / or carboxyl derivative group and the amino group at one end of the organic amine compound And the carboxyl group and / or carboxyl derivative group is modified with the amine compound molecule,
Next, a metal catalyst is imparted to the amino group at the other end of the amine compound molecule by catalyzing with an activation solution containing a metal,
Next, by forming an electroless plating film by electroless plating using a metal catalyst as a nucleus, a plating film in which a highly flat plating film is laminated with good adhesion on polyimide without increasing the roughness of the polyimide surface. -It discovered that a polyimide laminated body was obtained and came to make this invention.

即ち、本発明は下記めっき皮膜−ポリイミド積層体及びめっき皮膜−ポリイミド積層体の製造方法を提供する。
[1]表面にカルボキシル基(−COOH)及び/又はカルボキシル誘導基(−COO-+(R+は有機カチオン基又は無機カチオンを示す))を有するポリイミド上に、めっき皮膜が積層されためっき皮膜−ポリイミド積層体であって、
上記カルボキシル基及び/又はカルボキシル誘導基が、互いに離間する分子鎖両末端にアミノ基を各々一つ以上有する有機アミン化合物の一方の末端のアミノ基との反応により修飾され、かつ上記アミン化合物分子の他方の末端のアミノ基に金属触媒が付与されて、上記めっき皮膜として金属触媒を核として成膜された無電解めっき皮膜が積層されてなることを特徴とするめっき皮膜−ポリイミド積層体。
[2]上記ポリイミドが、電着ポリイミドであることを特徴とする[1]記載のめっき皮膜−ポリイミド積層体。
[3]上記電着ポリイミドが、カルボキシル基(−COOH)及び/又はカルボキシル誘導基(−COO-+(R+は有機カチオン基又は無機カチオンを示す))を分子構造内に有するポリイミド前駆体及びアニオン性ポリイミドから選ばれるポリイミド化合物の水溶液又は水と有機溶媒との混合溶媒溶液であるポリイミド電着液から、電着にて成膜したポリイミド薄膜であることを特徴とする[2]記載のめっき皮膜−ポリイミド積層体。
[4]上記ポリイミドが、カルボキシル基(−COOH)及び/又はカルボキシル誘導基(−COO-+(R+は有機カチオン基又は無機カチオンを示す))を分子構造内に有するポリイミド前駆体及びアニオン性ポリイミドから選ばれるポリイミド化合物の水溶液又は水と有機溶媒との混合溶媒溶液を基材上に塗布し、加熱することにより成膜したポリイミド薄膜であることを特徴とする[1]記載のめっき皮膜−ポリイミド積層体。
[5]上記有機アミン化合物が、炭素数2以上のアルキルポリアミン化合物であることを特徴とする[1]乃至[4]のいずれかに記載のめっき皮膜−ポリイミド積層体。
[6]ポリイミド上に、めっき皮膜が積層されためっき皮膜−ポリイミド積層体を製造する方法であって、
表面にカルボキシル基(−COOH)及び/又はカルボキシル誘導基(−COO-+(R+は有機カチオン基又は無機カチオンを示す))を有するポリイミドの該表面を、
互いに離間する分子鎖両末端にアミノ基を各々一つ以上有する有機アミン化合物を含有する水溶液で表面処理することにより、上記カルボキシル基及び/又はカルボキシル誘導基と、上記有機アミン化合物の一方の末端のアミノ基とを反応させて、上記カルボキシル基及び/又はカルボキシル誘導基を上記アミン化合物分子で修飾し、
次いで、金属を含む活性化溶液で触媒化処理することにより、上記アミン化合物分子の他方の末端のアミノ基に金属触媒を付与し、
次いで、上記金属触媒を核として無電解めっきして無電解めっき皮膜を形成することを特徴とするめっき皮膜−ポリイミド積層体の製造方法。
[7]上記ポリイミドが、電着ポリイミドであることを特徴とする[6]記載のめっき皮膜−ポリイミド積層体の製造方法。
[8]上記電着ポリイミドが、カルボキシル基(−COOH)及び/又はカルボキシル誘導基(−COO-+(R+は有機カチオン基又は無機カチオンを示す))を分子構造内に有するポリイミド前駆体及びアニオン性ポリイミドから選ばれるポリイミド化合物の水溶液又は水と有機溶媒との混合溶媒溶液であるポリイミド電着液から、電着にて成膜したポリイミド薄膜であることを特徴とする[7]記載のめっき皮膜−ポリイミド積層体の製造方法。
[9]上記ポリイミドが、カルボキシル基(−COOH)及び/又はカルボキシル誘導基(−COO-+(R+は有機カチオン基又は無機カチオンを示す))を分子構造内に有するポリイミド前駆体及びアニオン性ポリイミドから選ばれるポリイミド化合物の水溶液又は水と有機溶媒との混合溶媒溶液を基材上に塗布し、加熱することにより成膜したポリイミド薄膜であることを特徴とする[6]記載のめっき皮膜−ポリイミド積層体の製造方法。
[10]上記有機アミン化合物が、炭素数2以上のアルキルポリアミン化合物であることを特徴とする[6]乃至[9]のいずれかに記載のめっき皮膜−ポリイミド積層体の製造方法。
That is, this invention provides the manufacturing method of the following plating film-polyimide laminated body and plating film-polyimide laminated body.
[1] Plating in which a plating film is laminated on a polyimide having a carboxyl group (—COOH) and / or a carboxyl derivative group (—COO R + (R + represents an organic cation group or an inorganic cation)) on the surface A film-polyimide laminate,
The carboxyl group and / or carboxyl derivative group is modified by reaction with an amino group at one end of an organic amine compound having one or more amino groups at both ends of the molecular chain that are separated from each other, and A plating film-polyimide laminate, wherein a metal catalyst is imparted to the amino group at the other end, and an electroless plating film formed using the metal catalyst as a nucleus is laminated as the plating film.
[2] The plating film-polyimide laminate according to [1], wherein the polyimide is an electrodeposited polyimide.
[3] A polyimide precursor in which the electrodeposited polyimide has a carboxyl group (—COOH) and / or a carboxyl derivative group (—COO R + (R + represents an organic cation group or an inorganic cation)) in the molecular structure. And a polyimide thin film formed by electrodeposition from a polyimide electrodeposition solution, which is an aqueous solution of a polyimide compound selected from an anionic polyimide or a mixed solvent solution of water and an organic solvent, according to [2] Plating film-polyimide laminate.
[4] A polyimide precursor and an anion in which the polyimide has a carboxyl group (—COOH) and / or a carboxyl derivative group (—COO R + (R + represents an organic cation group or an inorganic cation)) in the molecular structure. The plating film according to [1], which is a polyimide thin film formed by applying an aqueous solution of a polyimide compound selected from conductive polyimide or a mixed solvent solution of water and an organic solvent on a substrate and heating the substrate. -Polyimide laminate.
[5] The plating film-polyimide laminate according to any one of [1] to [4], wherein the organic amine compound is an alkyl polyamine compound having 2 or more carbon atoms.
[6] A method for producing a plating film-polyimide laminate in which a plating film is laminated on polyimide,
The surface of the polyimide having a carboxyl group (—COOH) and / or a carboxyl derivative group (—COO R + (R + represents an organic cation group or an inorganic cation)) on the surface;
Surface treatment with an aqueous solution containing an organic amine compound having one or more amino groups at both ends of molecular chains separated from each other allows the carboxyl group and / or carboxyl derivative group and one end of the organic amine compound to Reacting with an amino group to modify the carboxyl group and / or carboxyl derivative group with the amine compound molecule;
Next, a metal catalyst is imparted to the amino group at the other end of the amine compound molecule by catalyzing with an activation solution containing a metal,
Next, a method for producing a plating film-polyimide laminate, comprising forming an electroless plating film by electroless plating using the metal catalyst as a nucleus.
[7] The method for producing a plating film-polyimide laminate according to [6], wherein the polyimide is an electrodeposited polyimide.
[8] A polyimide precursor in which the electrodeposited polyimide has a carboxyl group (—COOH) and / or a carboxyl derivative group (—COO R + (R + represents an organic cation group or an inorganic cation)) in the molecular structure. And a polyimide thin film formed by electrodeposition from a polyimide electrodeposition solution, which is an aqueous solution of a polyimide compound selected from an anionic polyimide or a mixed solvent solution of water and an organic solvent, [7] Manufacturing method of plating film-polyimide laminate.
[9] A polyimide precursor and an anion in which the polyimide has a carboxyl group (—COOH) and / or a carboxyl derivative group (—COO R + (R + represents an organic cation group or an inorganic cation)) in the molecular structure. The plating film according to [6], which is a polyimide thin film formed by applying an aqueous solution of a polyimide compound selected from conductive polyimide or a mixed solvent solution of water and an organic solvent on a substrate and heating the substrate. -Manufacturing method of a polyimide laminated body.
[10] The method for producing a plated film-polyimide laminate according to any one of [6] to [9], wherein the organic amine compound is an alkyl polyamine compound having 2 or more carbon atoms.

ポリイミド内部にイオン性の分子が存在すると絶縁特性、誘電率が悪くなるが、本発明においては、ポリイミドの表面に有機アミン化合物を導入するため、ポリイミド内部にイオン性の分子が存在しない。また、ポリイミド表面を荒らすことがないので、ラフネスも極めて低いものとなる。   If ionic molecules are present inside the polyimide, the insulating properties and the dielectric constant deteriorate, but in the present invention, since an organic amine compound is introduced on the surface of the polyimide, there are no ionic molecules inside the polyimide. Further, since the polyimide surface is not roughened, the roughness is extremely low.

本発明によれば、ポリイミド上に、ポリイミド表面のラフネスを増加させることなく、平坦性の高いめっき皮膜を密着性よく積層しためっき皮膜−ポリイミド積層体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the plating film-polyimide laminated body which laminated | stacked the plating film with high flatness with sufficient adhesiveness on polyimide can be provided, without increasing the roughness of the polyimide surface.

また、本発明の製造方法によれば、めっき皮膜−ポリイミド積層体を、水系の浸漬処理のみで、短時間の浸漬時間でポリイミド上に配線層となるめっき皮膜を成膜して製造することが可能であり、また高価な薬剤を使用しなくても成膜が可能で、高温での熱処理が必要でないなど、従来法に比べて簡便かつ低コストで、平坦、かつ密着性の高いめっき皮膜を形成することができる。   In addition, according to the production method of the present invention, the plating film-polyimide laminate can be produced by forming a plating film to be a wiring layer on the polyimide in a short immersion time only by an aqueous immersion treatment. It is possible to form a film without using expensive chemicals, and there is no need for heat treatment at a high temperature. Can be formed.

以下、本発明について更に詳しく説明する。
本発明のめっき皮膜−ポリイミド積層体は、表面にカルボキシル基(−COOH)及び/又はカルボキシル誘導基(−COO-+(R+は有機カチオン基又は無機カチオンを示す))を有するポリイミド上に、めっき皮膜が積層されためっき皮膜−ポリイミド積層体であり、カルボキシル基及び/又はカルボキシル誘導基が、互いに離間する分子鎖両末端にアミノ基を各々一つ以上有する有機アミン化合物の一方の末端のアミノ基との反応により修飾され、かつアミン化合物分子の他方の末端のアミノ基に金属触媒が付与されて、めっき皮膜として金属触媒を核として成膜された無電解めっき皮膜が積層されてなるものである。
Hereinafter, the present invention will be described in more detail.
The plating film-polyimide laminate of the present invention is formed on a polyimide having a carboxyl group (—COOH) and / or a carboxyl derivative group (—COO R + (R + represents an organic cation group or an inorganic cation)) on the surface. A plating film-polyimide laminate in which a plating film is laminated, wherein a carboxyl group and / or a carboxyl derivative group is formed at one end of an organic amine compound each having one or more amino groups at both ends of molecular chains separated from each other An electroless plating film that is modified by a reaction with an amino group and a metal catalyst is added to the amino group at the other end of the amine compound molecule. It is.

具体的には、図1に示されるような、ポリイミド1上に、有機アミン化合物2と金属触媒3を介して無電解めっき皮膜4が積層された構造のものが挙げられる。   Specifically, as shown in FIG. 1, a structure in which an electroless plating film 4 is laminated on a polyimide 1 via an organic amine compound 2 and a metal catalyst 3 is exemplified.

このようなめっき皮膜−ポリイミド積層体は、表面にカルボキシル基(−COOH)及び/又はカルボキシル誘導基(−COO-+(R+は有機カチオン基又は無機カチオンを示す))を有するポリイミドの該表面を、互いに離間する分子鎖両末端にアミノ基を各々一つ以上有する有機アミン化合物を含有する水溶液で表面処理することにより、上記カルボキシル基及び/又はカルボキシル誘導基と、上記有機アミン化合物の一方の末端のアミノ基とを反応させて、上記カルボキシル基及び/又はカルボキシル誘導基を上記アミン化合物分子で修飾し、次いで、金属を含む活性化溶液で触媒化処理することにより、上記アミン化合物分子の他方の末端のアミノ基に金属触媒を付与し、次いで、上記金属触媒を核として無電解めっきして無電解めっき皮膜を形成することにより製造することができる。 Such a plating film-polyimide laminate is composed of a polyimide having a carboxyl group (—COOH) and / or a carboxyl derivative group (—COO R + (R + represents an organic cation group or an inorganic cation)) on the surface. Surface treatment is performed with an aqueous solution containing an organic amine compound having at least one amino group at both ends of molecular chains that are separated from each other, whereby one of the carboxyl group and / or the carboxyl derivative group and the organic amine compound. The carboxyl group and / or carboxyl derivative group is modified with the amine compound molecule by reacting with the amino group at the end of the compound, and then catalyzed with an activation solution containing a metal. A metal catalyst is applied to the amino group at the other end, and then electroless plating is performed using the above metal catalyst as a nucleus. It can be prepared by forming a plating film.

本発明におけるポリイミドは、表面にカルボキシル基(−COOH)及び/又はカルボキシル誘導基(−COO-+(R+は有機カチオン基又は無機カチオンを示す))を有するものであればよく、特に限定されないが、このようなものとしては、例えば電着によって形成したポリイミド薄膜が好適である。電着ポリイミドは、その成膜機構から分子内に多数のカルボキシル基及び/又はカルボキシル誘導基を持つために、一般的なポリイミドに比べてカルボキシル基による表面反応を利用したカルボキシル基の修飾に有利である。 The polyimide in the present invention is not particularly limited as long as it has a carboxyl group (—COOH) and / or a carboxyl derivative group (—COO R + (R + represents an organic cation group or an inorganic cation)) on the surface. However, as such, for example, a polyimide thin film formed by electrodeposition is suitable. Electrodeposition polyimide has many carboxyl groups and / or carboxyl derivative groups in the molecule due to its film formation mechanism, and is therefore advantageous for modification of carboxyl groups using surface reaction by carboxyl groups compared to general polyimides. is there.

電着塗装法として知られている電着法により成膜した電着ポリイミド薄膜は、カルボキシル基(−COOH)及び/又はカルボキシル誘導基(−COO-+を分子構造内に有するポリイミド前駆体及びアニオン性ポリイミドから選ばれるポリイミド化合物の水溶液又は水と有機溶媒との混合溶媒溶液を電着液(電着用組成物)として、この電着液に浸漬した被着物上に電着により成膜することができる。上記カルボキシル誘導基のR+としては、不対電子を有する原子構造を有する有機カチオン基、特に不対電子を有する窒素を分子中に含む有機カチオン基が望ましい。例えば、三級アミン系が好ましく、トリエチルアミン系[(CH3CH23+]、トリメチルアミン系[(CH33+]、トリエタノールアミン系[(CH2OHCH23+、(CH2OHCH22HN+、(CH2OHCH2)H2+]などが挙げられる。また、アニリン系[C67+]なども用いることができる。また、イオン化傾向が高いLi+、Na+、K+、Rb+、Cs+、Fr+等の無機カチオンも好ましい。このような電着液としては、電着によるポリイミド薄膜の成膜に用いられる公知の電着液を用いることができる。 An electrodeposited polyimide thin film formed by an electrodeposition method known as an electrodeposition coating method includes a polyimide precursor having a carboxyl group (—COOH) and / or a carboxyl derivative group (—COO R + in the molecular structure), and Forming a film by electrodeposition on an adherend immersed in this electrodeposition liquid, using an aqueous solution of a polyimide compound selected from anionic polyimide or a mixed solvent solution of water and an organic solvent as an electrodeposition liquid (electrodeposition composition) The R + of the carboxyl-derived group is preferably an organic cation group having an atomic structure having an unpaired electron, particularly an organic cation group containing nitrogen having an unpaired electron in the molecule. Are preferable, triethylamine type [(CH 3 CH 2 ) 3 N + ], trimethylamine type [(CH 3 ) 3 N + ], triethanolamine type [(CH 2 OH CH 2 ) 3 N + , (CH 2 OHCH 2 ) 2 HN + , (CH 2 OHCH 2 ) H 2 N + ], etc. It is also possible to use aniline [C 6 H 7 N + ] and the like. Inorganic cations such as Li + , Na + , K + , Rb + , Cs + , and Fr + , which have a high ionization tendency, are also preferable. The well-known electrodeposition liquid used can be used.

ポリイミド電着液としては、例えば、特開昭49−52252号公報(特許文献8)、特開昭52−32943号公報(特許文献9)、特開昭63−111199号公報(特許文献10)等に記載されているポリイミド前駆体を用いるもの、例えば、ポリアミック酸を、水、又は水と極性有機溶媒等の有機溶媒とに溶解させた溶液を電着液として用いるものが挙げられる。   As the polyimide electrodeposition liquid, for example, JP-A-49-52252 (Patent Document 8), JP-A-52-32943 (Patent Document 9), JP-A-63-111199 (Patent Document 10). And the like, for example, those using a solution obtained by dissolving a polyamic acid in water or water and an organic solvent such as a polar organic solvent as an electrodeposition solution.

また、アニオン性ポリイミド、例えば、特開平9−104839号公報(特許文献11)等に記載されているランダム共重合アニオン性ポリイミドを用いるもの、特開2003−327905号公報(特許文献12)、特開2003−327907号公報(特許文献13)等に記載されているブロック共重合ポリイミドを用いる電着液を挙げることもできるが、得られる電着ポリイミド膜の密着性が良好となる観点から、ブロック共重合アニオン性ポリイミドを用いるものが特に好ましい。   In addition, anionic polyimides, for example, those using random copolymerized anionic polyimides described in JP-A-9-104839 (Patent Document 11), JP-A 2003-327905 (Patent Document 12), Although the electrodeposition liquid using the block copolymerization polyimide described in the open 2003-327907 gazette (patent document 13) etc. can also be mentioned, from a viewpoint from which the adhesiveness of the electrodeposition polyimide film obtained becomes favorable, it is a block. Those using a copolymerized anionic polyimide are particularly preferred.

この電着液としては、ジアミンと酸二無水物との反応生成物からなるランダム共重合アニオン性ポリイミド又はブロック共重合アニオン性ポリイミドを含むものが挙げられる。   As this electrodeposition liquid, what contains the random copolymerization anionic polyimide or the block copolymerization anionic polyimide which consists of a reaction product of diamine and an acid dianhydride is mentioned.

上記ジアミンとしては、芳香族ジアミンを含むことが好ましく、芳香族ジアミンとしては、o−,m−,p−フェニレンジアミン、2,4−ジアミノトルエン、2,5−ジアミノトルエン、2,4−ジアミノキシレン、ジアミノジュレン、1,5−ジアミノナフタレン、2,6−ジアミノナフタレン、ベンジジン、4,4’−ジアミノターフェニル、4,4’−ジアミノクォーターフェニル、4,4’−ジアミノジフェニルメタン、1,2−ビス(アニリノ)エタン、4,4’−ジアミノジフェニルエーテル、ジアミノジフェニルスルホン、2,2−ビス(p−アミノフェニル)プロパン、3,3’−ジメチルベンジジン、3,3’−ジメチル−4,4’−ジアミノジフェニルエーテル、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、ジアミノトルエン、1,4−ビス(p−アミノフェノキシ)ベンゼン、4,4’−ビス−(p−アミノフェノキシ)ビフェニル、2,2−ビス{4−(p−アミノフェノキシ)フェニル}プロパン、4,4’−ビス(3−アミノフェノキシフェニル)ジフェニルスルホン、2,2−ビス{4−(p−アミノフェノキシ)フェニル}ヘキサフルオロプロパンなどが挙げられる。また、2,6−ジアミノピリジンなどの芳香族ジアミン以外のジアミンを含んでいてもよい。2,6−ジアミノピリジンを含むポリイミドは、分子内に酸基と塩基とを持ち、ポリマー相互作用によって、良好なポリイミド薄膜を成膜する。更には、水に対する親和性を増し、水溶性電着液として安定となり、得られた電着膜が平滑で緻密になる利点がある。   The diamine preferably includes an aromatic diamine, and examples of the aromatic diamine include o-, m-, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, and 2,4-diamino. Xylene, diaminodurene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, benzidine, 4,4′-diaminoterphenyl, 4,4′-diaminoquaterphenyl, 4,4′-diaminodiphenylmethane, 1, 2-bis (anilino) ethane, 4,4′-diaminodiphenyl ether, diaminodiphenyl sulfone, 2,2-bis (p-aminophenyl) propane, 3,3′-dimethylbenzidine, 3,3′-dimethyl-4, 4'-diaminodiphenyl ether, 3,3'-dimethyl-4,4'-diaminodiphenyl Tan, diaminotoluene, 1,4-bis (p-aminophenoxy) benzene, 4,4′-bis- (p-aminophenoxy) biphenyl, 2,2-bis {4- (p-aminophenoxy) phenyl} propane 4,4′-bis (3-aminophenoxyphenyl) diphenylsulfone, 2,2-bis {4- (p-aminophenoxy) phenyl} hexafluoropropane, and the like. Further, it may contain a diamine other than an aromatic diamine such as 2,6-diaminopyridine. Polyimide containing 2,6-diaminopyridine has an acid group and a base in the molecule, and forms a good polyimide thin film by polymer interaction. Furthermore, there is an advantage that the affinity for water is increased, the water-soluble electrodeposition solution is stabilized, and the obtained electrodeposition film is smooth and dense.

また、酸二無水物としては、ピロメリット酸二無水物、1,2,3,4−ベンゼンテトラカルボン酸二無水物、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物、3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、2,3,2’,3’−ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ビス(2,3−ジカルボキシフェニル)エーテル二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、ビス(2,3−ジカルボキシフェニル)スルホン二無水物、4,4’−{2,2,2−トリフルオロ−1−(トリフルオロメチル)エチリデン}ビス(1,2−ベンゼンジカルボン酸無水物)、9,9−ビス{4−(3,4−ジカルボキシフェノキシ)フェニル}フルオレン二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、2,3,5,6−ピリジンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物等の芳香族テトラカルボン酸二無水物を挙げることができる。   Examples of the acid dianhydride include pyromellitic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride, 2,3,2 ′, 3′-benzophenonetetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic acid Dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxy) Phenyl) ether dianhydride, bis (2,3-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (2,3-dicarboxyphenyl) sulfone 4,4 ′-{2,2,2-trifluoro-1- (trifluoromethyl) ethylidene} bis (1,2-benzenedicarboxylic anhydride), 9,9-bis {4- (3 4-dicarboxyphenoxy) phenyl} fluorene dianhydride, 1,2,5,6-naphthalene tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 1,4,5 , 8-Naphthalenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, bicyclo [2.2.2 And aromatic tetracarboxylic dianhydrides such as octo-7-ene-2,3,5,6-tetracarboxylic dianhydride.

ジアミンと酸二無水物との反応生成物からなるランダム共重合アニオン性ポリイミド又はブロック共重合アニオン性ポリイミドでアニオンになる基は、テトラカルボン酸二無水物成分が有していてもよいが、アニオン性基を有するジアミンをジアミン成分の1つとして用いることも好ましい。ポリイミドの耐熱性、被電着物との密着性、重合度向上のため、このようなアニオン性基含有ジアミンは、芳香族ジアミンであることが好ましい。アニオン基はカルボキシル基が望ましく、ジアミノカルボン酸が好ましい。このようなアニオン性基含有芳香族ジアミンの例として、3,5−ジアミノ安息香酸、2,4−ジアミノフェニル酢酸、2,5−ジアミノテレフタル酸、3,3’−ジカルボキシ−4,4’−ジアミノジフェニルメタン、3,5−ジアミノパラトルイル酸、3,5−ジアミノ−2−ナフタレンカルボン酸、1,4−ジアミノ−2−ナフタレンカルボン酸等の芳香族ジアミノカルボン酸を挙げることができ、3,5−ジアミノ安息香酸が特に好ましい。このようなアニオン性基含有芳香族ジアミンは、単独で用いることもできるし、複数種類を組み合わせて用いることもできる。また、アニオン基を有さないジアミンと組み合わせてもよい。   Random copolymerized anionic polyimide consisting of a reaction product of diamine and acid dianhydride or a group that becomes an anion in a block copolymerized anionic polyimide may have a tetracarboxylic dianhydride component, It is also preferable to use a diamine having a functional group as one of the diamine components. Such an anionic group-containing diamine is preferably an aromatic diamine in order to improve the heat resistance of the polyimide, the adhesion to the electrodeposit, and the degree of polymerization. The anionic group is preferably a carboxyl group, and is preferably a diaminocarboxylic acid. Examples of such anionic group-containing aromatic diamines include 3,5-diaminobenzoic acid, 2,4-diaminophenylacetic acid, 2,5-diaminoterephthalic acid, 3,3′-dicarboxy-4,4 ′. And aromatic diaminocarboxylic acids such as -diaminodiphenylmethane, 3,5-diaminoparatoluic acid, 3,5-diamino-2-naphthalenecarboxylic acid, 1,4-diamino-2-naphthalenecarboxylic acid, and the like. , 5-diaminobenzoic acid is particularly preferred. Such anionic group-containing aromatic diamines can be used alone or in combination of a plurality of types. Moreover, you may combine with the diamine which does not have an anion group.

ランダム共重合アニオン性ポリイミド及びブロック共重合アニオン性ポリイミドは、これらのジアミンと酸二無水物とをほぼ等量用いて、加熱、脱水することにより得られる。ブロック共重合アニオン性ポリイミドの場合は、逐次添加反応によって製造され、第一段階で、酸二無水物とジアミンからポリイミドオリゴマーとし、第二段階で、更に酸二無水物及び/又はジアミンを添加して、重縮合してブロック共重合アニオン性ポリイミドとする。本発明において、ランダム共重合アニオン性ポリイミド及びブロック共重合アニオン性ポリイミドの分子量(ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算値)は50,000〜100,000、特に60,000〜80,000が好適である。   Random copolymerized anionic polyimide and block copolymerized anionic polyimide can be obtained by heating and dehydrating using approximately equal amounts of these diamines and acid dianhydrides. In the case of a block copolymerized anionic polyimide, it is produced by a sequential addition reaction. In the first stage, a polyimide oligomer is formed from acid dianhydride and diamine, and in the second stage, acid dianhydride and / or diamine is further added. Then, polycondensation is performed to obtain a block copolymerized anionic polyimide. In the present invention, the molecular weight of the random copolymerized anionic polyimide and the block copolymerized anionic polyimide (polystyrene conversion value by gel permeation chromatography (GPC)) is 50,000 to 100,000, particularly 60,000 to 80,000. Is preferred.

このランダム共重合アニオン性ポリイミド及びブロック共重合アニオン性ポリイミドは、通常、塩基性化合物で中和したものとして電着液に用いられる。この塩基性化合物としては、N−ジメチルエタノール、トリエチルアミン、トリエタノールアミン、N−ジメチルベンジルアミン、N−メチルモルホリンが用いられるが、N−ジメチルエタノールやN−メチルモルホリンが好適である。中和剤(塩基性化合物)の使用量はポリイミドが溶液中で溶解または安定に分散する程度であって、通常は化学量論中和量の30モル%以上、特に30〜200モル%であることが好ましい。また、電着液中の中和されたポリイミドの固形分濃度は5〜15質量%であることが好ましい。   This random copolymerized anionic polyimide and block copolymerized anionic polyimide are usually used in an electrodeposition solution as neutralized with a basic compound. As the basic compound, N-dimethylethanol, triethylamine, triethanolamine, N-dimethylbenzylamine, and N-methylmorpholine are used, and N-dimethylethanol and N-methylmorpholine are preferable. The amount of the neutralizing agent (basic compound) used is such that the polyimide is dissolved or stably dispersed in the solution, and is usually 30 mol% or more, particularly 30 to 200 mol% of the stoichiometric neutralization amount. It is preferable. Moreover, it is preferable that the solid content density | concentration of the neutralized polyimide in an electrodeposition liquid is 5-15 mass%.

一方、電着液の溶媒としては、水と有機溶媒とが用いられ、有機溶媒としては、このランダム共重合アニオン性ポリイミド及びブロック共重合アニオン性ポリイミドを溶解する水溶性極性有機溶媒、例えば、N−メチルピロリドン、N,N’−ジメチルアセトアミド、N,N’−ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、テトラヒドロチオフェン−1,1−オキシド等が用いられる。好ましくは毒性の少ないN−メチルピロリドン、テトラヒドロチオフェン−1,1−オキシドが好ましい。これら水溶性極性有機溶媒は、上述したブロック共重合アニオン性ポリイミドを製造する際の反応溶媒として用いたものでもよい。   On the other hand, water and an organic solvent are used as the solvent for the electrodeposition solution, and the organic solvent is a water-soluble polar organic solvent that dissolves the random copolymerized anionic polyimide and the block copolymerized anionic polyimide, for example, N -Methylpyrrolidone, N, N'-dimethylacetamide, N, N'-dimethylformamide, dimethyl sulfoxide, tetramethylurea, tetrahydrothiophene-1,1-oxide, etc. are used. N-methylpyrrolidone and tetrahydrothiophene-1,1-oxide, which are less toxic, are preferred. These water-soluble polar organic solvents may be those used as a reaction solvent when the above-described block copolymerized anionic polyimide is produced.

また、電着液に含まれる有機溶媒としては、ランダム共重合アニオン性ポリイミド及びブロック共重合アニオン性ポリイミドを溶解する油溶性溶媒を用いてもよい。油溶性溶媒は、電着後の被着物に析出したポリイミド樹脂のフロー性を高め、塗膜の平滑性を向上させる点で効果がある。またその結果として、電着液の貯蔵安定性を高めることができる。ここで油溶性溶媒とは、実質的に水に不溶性か又は難溶性の有機溶媒を意味する。ランダム共重合アニオン性ポリイミド及びブロック共重合アニオン性ポリイミドを溶解する油溶性溶媒としては、1−アセトナフトン、アセトフェノン、ベンジルアセトン、メチルアセトフェノン、ジメチルアセトフェノン、プロピオフェノン、バレロフェノン、アニソール、安息香酸メチル、安息香酸ベンジルなどが挙げられる。   Moreover, as the organic solvent contained in the electrodeposition liquid, an oil-soluble solvent that dissolves the random copolymerized anionic polyimide and the block copolymerized anionic polyimide may be used. The oil-soluble solvent is effective in that it improves the flowability of the polyimide resin deposited on the adherend after electrodeposition and improves the smoothness of the coating film. As a result, the storage stability of the electrodeposition liquid can be enhanced. Here, the oil-soluble solvent means an organic solvent that is substantially insoluble or hardly soluble in water. Examples of oil-soluble solvents for dissolving random copolymerized anionic polyimide and block copolymerized anionic polyimide include 1-acetonaphthone, acetophenone, benzylacetone, methylacetophenone, dimethylacetophenone, propiophenone, valerophenone, anisole, methyl benzoate, benzoic acid Examples include benzyl acid.

更に、電着液に含まれる有機溶媒としては、フェニル基、フルフリル基又はナフチル基を有するアルコール等のポリイミドに対する貧溶媒を併用することが好ましく、このようなものとしては、例えばベンジルアルコール、置換ベンジルアルコール、フルフリルアルコールなどを挙げることができる。   Further, as the organic solvent contained in the electrodeposition liquid, it is preferable to use a poor solvent for polyimide such as an alcohol having a phenyl group, a furfuryl group or a naphthyl group, and examples thereof include benzyl alcohol and substituted benzyl. Examples thereof include alcohol and furfuryl alcohol.

電着液中の溶媒の濃度は85〜95質量%であるが、有機溶媒の濃度は15〜85質量%、特に20〜70質量%であり、溶媒として水を併用する場合、これと上述した中和されたポリイミドの固形分濃度との残部が水の濃度となる。なお、上記油溶性溶媒を用いる場合、電着液中の油溶性溶媒の濃度は10〜30質量%であることが好ましく、また、上記ポリイミドに対する貧溶媒を用いる場合、電着液中の貧溶媒の濃度は5〜15質量%であることが好ましい。電着液のpHは、ほぼ中性乃至弱塩基性(例えばpH=7〜9、好ましくは7.5〜8)であることが好ましい。   Although the concentration of the solvent in the electrodeposition liquid is 85 to 95% by mass, the concentration of the organic solvent is 15 to 85% by mass, particularly 20 to 70% by mass. The balance with the solid content concentration of the neutralized polyimide is the concentration of water. In addition, when using the said oil-soluble solvent, it is preferable that the density | concentration of the oil-soluble solvent in an electrodeposition liquid is 10-30 mass%, and when using the poor solvent with respect to the said polyimide, the poor solvent in an electrodeposition liquid The concentration of is preferably 5 to 15% by mass. It is preferable that the pH of the electrodeposition liquid is approximately neutral to weakly basic (for example, pH = 7 to 9, preferably 7.5 to 8).

上述した電着液としては、株式会社ピーアイ技術研究所製の可溶型ブロック共重合ポリイミド電着液Q−EDシリーズ(例えば、Q−ED−21−129、Q−ED−x−069等)などの市販品を用いることができる。   As the above-mentioned electrodeposition liquid, soluble block copolymerization polyimide electrodeposition liquid Q-ED series (for example, Q-ED-21-129, Q-ED-x-069, etc.) manufactured by PI Engineering Laboratory Co., Ltd. Commercial products such as can be used.

電着条件は、従来公知の条件をそのまま採用することができる。例えば、ランダム共重合アニオン性ポリイミド又はブロック共重合アニオン性ポリイミドを用いる場合、導電性被着物を温度15〜35℃にて電着液に浸漬し、陰極としてCu、Pt等の電極を用い、電圧20〜400V、好ましくは50〜200Vで、通電時間30秒〜10分間、好ましくは1〜5分間通電することにより導電性被着物の表面に溶媒を含むポリイミド薄膜が成膜される。   Conventionally known conditions can be adopted as electrodeposition conditions. For example, when using a random copolymerized anionic polyimide or a block copolymerized anionic polyimide, the conductive adherend is immersed in an electrodeposition solution at a temperature of 15 to 35 ° C., and an electrode such as Cu or Pt is used as a cathode. A polyimide thin film containing a solvent is formed on the surface of the conductive deposit by energizing at 20 to 400 V, preferably 50 to 200 V, and energizing time 30 seconds to 10 minutes, preferably 1 to 5 minutes.

更に、洗浄、風乾後、90〜220℃、好ましくは90〜180℃で、10分〜2時間、好ましく30分〜1時間加熱して溶媒を揮発させることにより乾燥され、固化したポリイミド薄膜が得られる。また、溶媒を揮発させ乾燥させる方法としては、基材を減圧雰囲気に置いてもよい。このときの圧力は1/2気圧以下、処理時間としては30分以上が望ましい。更に、加熱処理と減圧雰囲気に置くことを組み合わせても別途に実施してもよい。電着ポリイミド薄膜の膜厚は、特に限定されないが、通常1〜100μmである。   Furthermore, after washing and air drying, the polyimide thin film is obtained by drying and solidifying by heating at 90 to 220 ° C., preferably 90 to 180 ° C., for 10 minutes to 2 hours, preferably 30 minutes to 1 hour to volatilize the solvent. It is done. Moreover, as a method of evaporating and drying the solvent, the substrate may be placed in a reduced pressure atmosphere. The pressure at this time is preferably ½ atm or less and the treatment time is preferably 30 minutes or more. Further, the heat treatment and placing in a reduced pressure atmosphere may be combined or performed separately. Although the film thickness of an electrodeposition polyimide thin film is not specifically limited, Usually, it is 1-100 micrometers.

この場合、ポリイミド薄膜が成膜される基材(電着における被着物)は、電着時には陽極となる(導電性を有する)ものが挙げられ、例えば、Cu、Ag、Au、Ni等の金属が挙げられる。   In this case, the substrate on which the polyimide thin film is formed (the adherend in electrodeposition) can be an anode (having conductivity) during electrodeposition, for example, a metal such as Cu, Ag, Au, Ni, etc. Is mentioned.

また、本発明においては、ポリイミドとして、カルボキシル基(−COOH)及び/又はカルボキシル誘導基(−COO-+(R+は有機カチオン基又は無機カチオンを示す))を分子構造内に有するポリイミド前駆体及びアニオン性ポリイミドから選ばれるポリイミド化合物の水溶液又は水と有機溶媒との混合溶媒溶液、即ち、上述したポリイミド電着液(電着組成物)を基材上に塗布し、加熱することにより成膜したポリイミド薄膜を用いることもできる。この場合、カルボキシル誘導基を含まないもの(カルボキシル基のみのもの)を用いることや、ポリイミド化合物中のカルボキシル誘導基を酸処理により全てカルボキシル基としてから用いることは、後述する有機アミン化合物との反応性が向上する点で有利である。 In the present invention, as a polyimide, a polyimide precursor having a carboxyl group (—COOH) and / or a carboxyl derivative group (—COO R + (R + represents an organic cation group or an inorganic cation)) in the molecular structure. An aqueous solution of a polyimide compound selected from a body and an anionic polyimide or a mixed solvent solution of water and an organic solvent, that is, the above-described polyimide electrodeposition liquid (electrodeposition composition) is applied onto a substrate and heated. A coated polyimide thin film can also be used. In this case, use of a compound that does not contain a carboxyl-derived group (one having only a carboxyl group), or that all carboxyl-derived groups in the polyimide compound are used as a carboxyl group by acid treatment is a reaction with an organic amine compound described later. This is advantageous in that the property is improved.

このポリイミド薄膜も、表面にカルボキシル基(−COOH)及び/又はカルボキシル誘導基(−COO-+(R+は有機カチオン基又は無機カチオンを示す))を有することから、一般的なポリイミドに比べてカルボキシル基による表面反応を利用したカルボキシル基の修飾に有利である。 Since this polyimide thin film also has a carboxyl group (—COOH) and / or a carboxyl derivative group (—COO R + (R + represents an organic cation group or an inorganic cation)) on the surface, it is compared with a general polyimide. Therefore, it is advantageous for modification of the carboxyl group utilizing the surface reaction by the carboxyl group.

この場合、基材は導電性を有するものに限られず、種々の材質のものが挙げられ、具体的には、Cu、Ag、Au、Ni等の導電性金属、Si等の非導電性金属、セラミックス、有機樹脂などが挙げられる。   In this case, the base material is not limited to those having conductivity, and examples thereof include various materials, specifically, conductive metals such as Cu, Ag, Au, and Ni, non-conductive metals such as Si, Examples thereof include ceramics and organic resins.

基材への塗布は、スピンコート等公知の手法を適用できる。また、加熱は、通常60〜350℃、特に90〜300℃で、1分〜3時間、特に3分〜1時間程度である。なお、直接高温で熱処理を行うと、平滑性が劣化することがあるので多段ステップで加熱した方がよい。また、基材へポリイミド電着液を塗布する前に、密着性を更に向上させるために、基材を予めシランカップリング剤により処理してもよい。   A known technique such as spin coating can be applied to the substrate. The heating is usually 60 to 350 ° C., particularly 90 to 300 ° C., and is about 1 minute to 3 hours, particularly about 3 minutes to 1 hour. Note that if heat treatment is performed directly at a high temperature, smoothness may deteriorate, so it is better to heat in a multi-step. Moreover, before apply | coating a polyimide electrodeposition liquid to a base material, in order to improve adhesiveness further, you may process a base material with a silane coupling agent previously.

次に、ポリイミド表面を、有機アミン化合物を含有する水溶液で表面処理することにより、ポリイミド表面上のカルボキシル基及び/又はカルボキシル誘導基と、有機アミン化合物のアミノ基とを反応させて、カルボキシル基及び/又はカルボキシル誘導基をアミン化合物分子で修飾する。   Next, the surface of the polyimide is surface-treated with an aqueous solution containing an organic amine compound, whereby the carboxyl group and / or carboxyl derivative group on the polyimide surface is reacted with the amino group of the organic amine compound, and the carboxyl group and The carboxyl derivative group is modified with an amine compound molecule.

有機アミン化合物としては、互いに離間する分子鎖両末端にアミノ基を各々一つ以上有する有機アミン化合物を用いる。この場合、一方の末端のアミノ基は、上述したカルボキシル基及び/又はカルボキシル誘導基と反応して結合し、
−COO-+NH3−
又は、これが脱水した
−CO−NH−
で示される構造を形成するものと考えられ、この構造が、密着性の向上に寄与するものと考えられる。一方、他方の末端のアミノ基には、後述する触媒化処理において、アミノ基が金属イオンを錯化して触媒が付与される。
As the organic amine compound, an organic amine compound having one or more amino groups at both ends of molecular chains that are separated from each other is used. In this case, the amino group at one end reacts with and binds to the carboxyl group and / or carboxyl derivative group described above,
-COO - ... + NH3-
Or this is dehydrated -CO-NH-
It is considered that this structure contributes to the improvement of adhesion. On the other hand, the amino group at the other end is given a catalyst by complexing metal ions with the amino group in the catalyzing treatment described later.

このような有機アミン化合物としては、例えば、エチレンジアミン、プロピレンジアミン等のアルキルジアミン、ジエチレントリアミン等の好ましくは炭素数2以上、好ましくは2〜5のアルキルポリアミン化合物を挙げることができる。アミノ基は、互いに離間する分子鎖両末端にアミノ基を各々一つ以上有していればよく、アミノ基を3個以上有する場合は、上記分子鎖両末端以外のアミノ基は、分子鎖末端に位置していても、分子鎖末端以外に位置していてもよい、   Examples of such organic amine compounds include alkyl polyamine compounds having preferably 2 or more carbon atoms, preferably 2 to 5 carbon atoms, such as alkyl diamines such as ethylene diamine and propylene diamine, and diethylene triamine. The amino group only needs to have one or more amino groups at both ends of the molecular chain that are separated from each other. When the amino group has three or more amino groups, the amino groups other than the both ends of the molecular chain are Or may be located other than the molecular chain end,

この表面処理は、有機アミン化合物を含有する水溶液中にポリイミドを浸漬させるなどの方法で接触させればよい。有機アミン化合物水溶液中の有機アミン化合物の濃度は0.001〜10mol/L、特に0.01〜1mol/Lとすることができる。浸漬は、有機アミン化合物の濃度にもよるが、室温(例えば20℃)〜90℃で、5秒〜30分、特に1〜10分とすることができる。表面処理後、必要により水洗により過剰の有機アミン化合物を除去すればよい。   This surface treatment may be performed by a method such as immersing polyimide in an aqueous solution containing an organic amine compound. The concentration of the organic amine compound in the aqueous organic amine compound solution can be 0.001 to 10 mol / L, particularly 0.01 to 1 mol / L. Immersion can be performed at room temperature (for example, 20 ° C.) to 90 ° C. for 5 seconds to 30 minutes, particularly 1 to 10 minutes, depending on the concentration of the organic amine compound. After the surface treatment, if necessary, excess organic amine compound may be removed by washing with water.

次に、金属を含む活性化溶液で触媒化処理(活性化処理)することにより、アミン化合物分子のカルボキシル基及び/又はカルボキシル誘導基と反応していない他方の末端のアミノ基に金属触媒を付与する。この触媒化は、Au、Ni、Pd、Ag、Cuなど後述する無電解めっきを行うための触媒となるものならば、いずれの金属を用いてもよいが、通常、活性の高いPd、Agが用いられ、Pdが一般的である。このような触媒化処理に用いられる活性化溶液は、市販の活性化溶液を用いることができ、例えば、浸漬処理等の方法で、アミノ基に対する触媒化処理の公知の条件で処理することができる。また、必要に応じて、触媒化処理後に、ジメチルアミンボラン水溶液等のアクセラレーション処理液に浸漬することによりアクセラレーション処理を施してもよい。なお、触媒化処理後及びアクセラレーション処理後は、いずれも水洗により過剰の触媒化溶液、アクセラレーション処理液を除去すればよい。   Next, a metal catalyst is imparted to the amino group at the other end that has not reacted with the carboxyl group and / or carboxyl derivative group of the amine compound molecule by performing a catalyst treatment (activation treatment) with an activation solution containing a metal. To do. For this catalysis, any metal such as Au, Ni, Pd, Ag, and Cu can be used as long as it becomes a catalyst for performing electroless plating, which will be described later. Usually, highly active Pd and Ag are used. Pd is common. A commercially available activation solution can be used as the activation solution used for such a catalyst treatment. For example, the solution can be treated under a known condition of a catalyst treatment for amino groups by a method such as immersion treatment. . Moreover, you may perform an acceleration process by immersing in an acceleration process liquid, such as a dimethylamine borane aqueous solution, after a catalyzing process as needed. It should be noted that after the catalyzing treatment and the acceleration treatment, both the excess catalyzing solution and the acceleration treating solution may be removed by washing with water.

次に、金属触媒を核として無電解めっき皮膜が積層される。この無電解めっきには従来公知の無電解めっき浴を用いることができ、例えば、無電解NiPめっき浴や無電解NiBめっき浴を用いて無電解ニッケル皮膜、無電解Cuめっきを用いて無電解Cuめっき薄膜を形成することが可能である。なお、無電解めっき皮膜の膜厚は、適宜設定されるが、通常20nm〜5μmである。また、無電解めっき皮膜上に、電気めっきにより更に電気めっき皮膜を形成することも可能である。   Next, an electroless plating film is laminated using the metal catalyst as a nucleus. For this electroless plating, a conventionally known electroless plating bath can be used. For example, an electroless NiP plating bath or an electroless NiB plating bath is used, an electroless nickel film, and an electroless Cu plating is used. It is possible to form a plating thin film. In addition, although the film thickness of an electroless-plating film | membrane is set suitably, it is 20 nm-5 micrometers normally. Further, it is possible to further form an electroplating film on the electroless plating film by electroplating.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not limited to the following Example.

[実施例1]
真空蒸着法により厚さ20nmのTi層と厚さ100nmのAu層が順に積層されたシリコン基板上を、10容量%硫酸水溶液中で揺動させながら60秒間浸漬することにより酸洗浄を施し、水洗した。
[Example 1]
A silicon substrate on which a Ti layer having a thickness of 20 nm and an Au layer having a thickness of 100 nm are sequentially laminated by vacuum deposition is immersed in a 10% by volume sulfuric acid aqueous solution for 60 seconds to perform acid cleaning, and then washed with water. did.

次に、酸洗浄を施した基板に、以下の前処理(プレディップ1及び2)を施した。
プレディップ1:市販の電着液用希釈液(株式会社ピーアイ技術研究所製)中で揺動させながら15秒間浸漬。
プレディップ2:市販の電着液(株式会社ピーアイ技術研究所製 Q−ED−x−069)中で揺動させながら15秒間浸漬。
Next, the following pretreatments (pre-dips 1 and 2) were applied to the acid-washed substrate.
Pre-dip 1: Immersion for 15 seconds while rocking in a commercially available diluent for electrodeposition (made by PI Engineering Laboratory Co., Ltd.).
Pre-dip 2: Immersion for 15 seconds while rocking in a commercially available electrodeposition solution (Q-ED-x-069 manufactured by PI Engineering Laboratory Co., Ltd.).

次に、上記前処理を施した基板を市販の電着液(株式会社ピーアイ技術研究所製 Q−ED−x−069)に室温で浸漬し、対極をPt線とし、回転ディスク電極製膜装置(RDE)を用い、印加電圧60V(電圧制御)、通電時間5分として、Au層(被電着面積8mmφ)上にポリイミド薄膜(厚さ50μm)を電着した。   Next, the substrate subjected to the above pretreatment is immersed in a commercially available electrodeposition solution (Q-ED-x-069 manufactured by PI Engineering Laboratory Co., Ltd.) at room temperature, and the counter electrode is made into a Pt wire, and a rotating disk electrode film forming apparatus. Using (RDE), a polyimide thin film (thickness: 50 μm) was electrodeposited on the Au layer (electrodeposition area: 8 mmφ) with an applied voltage of 60 V (voltage control) and an energization time of 5 minutes.

電着後、ポリイミド薄膜を成膜した基板を、市販の電着液用希釈液(株式会社ピーアイ技術研究所製)中で揺動させながら15秒間浸漬し、その後、90℃で30分間、大気中で加熱乾燥し、更に、1日間真空乾燥した。   After electrodeposition, the substrate on which the polyimide thin film was formed was immersed for 15 seconds while swinging in a commercially available diluent for electrodeposition (manufactured by PI Engineering Laboratory Co., Ltd.), and then at 90 ° C. for 30 minutes. It was dried by heating in a vacuum and further dried under vacuum for 1 day.

次に、得られたポリイミド薄膜を水洗し、表1に示される有機アミン化合物を含む表面処理液(水溶液)に、表1に示される条件で浸漬してポリイミド薄膜の表面を処理し、水洗した。   Next, the obtained polyimide thin film was washed with water, immersed in a surface treatment liquid (aqueous solution) containing an organic amine compound shown in Table 1 under the conditions shown in Table 1, the surface of the polyimide thin film was treated, and washed with water. .

Figure 2008202109
Figure 2008202109

次に、表面処理後の基板を、表2に示される活性化溶液(水溶液)に、表2に示される条件で浸漬して触媒化処理を施して水洗し、更に、表3に示されるアクセラレーション処理液(水溶液)に、表3に示される条件で浸漬してアクセラレーション処理を施して水洗した。   Next, the substrate after the surface treatment is immersed in an activation solution (aqueous solution) shown in Table 2 under the conditions shown in Table 2, subjected to a catalytic treatment, washed with water, and further accelerated as shown in Table 3. The solution was immersed in an aqueous treatment solution (aqueous solution) under the conditions shown in Table 3 for acceleration treatment and washed with water.

Figure 2008202109
Figure 2008202109

Figure 2008202109
Figure 2008202109

次に、アクセラレーション処理後のポリイミド薄膜に、無電解NiPめっき浴(ニムデンHDX(上村工業株式会社製))を用い、表4に示される条件で無電解NiPめっきして、無電解NiPめっき皮膜(膜厚0.1μm)を成膜した。めっき皮膜の成膜後、水洗後、乾燥して、めっき皮膜−ポリイミド積層体を得た。   Next, an electroless NiP plating bath (Nimden HDX (manufactured by Uemura Kogyo Co., Ltd.)) is used for the polyimide thin film after the acceleration treatment, and electroless NiP plating is performed under the conditions shown in Table 4. (Film thickness 0.1 μm) was formed. After the plating film was formed, washed with water, and dried to obtain a plating film-polyimide laminate.

Figure 2008202109
Figure 2008202109

得られた無電解ニッケルめっき皮膜の密着性を下記剥離試験により、平坦性を目視により評価した。   The adhesion of the obtained electroless nickel plating film was visually evaluated by the following peel test.

剥離試験:成膜後、ピンセットや指で軽くこすって剥離がないものを良好とした。   Peeling test: After film formation, the sample was rubbed lightly with tweezers or fingers to make it good.

その結果、無電解ニッケルめっき皮膜の密着性及び平坦性のいずれも良好であった。   As a result, both the adhesion and flatness of the electroless nickel plating film were good.

[実施例2]
アクセラレーション処理後のポリイミド薄膜への無電解めっきとして、表5に示される無電解NiBめっき浴を用い、表5に示される条件で無電解NiBめっきして、無電解NiBめっき皮膜(膜厚0.1μm)を成膜した以外は実施例1と同様の方法でめっき皮膜−ポリイミド積層体を得、これを評価した。
[Example 2]
As the electroless plating on the polyimide thin film after the acceleration treatment, an electroless NiB plating bath shown in Table 5 is used, and electroless NiB plating is performed under the conditions shown in Table 5 to form an electroless NiB plating film (thickness 0). 0.1 μm) was obtained in the same manner as in Example 1 except that a plating film-polyimide laminate was obtained and evaluated.

Figure 2008202109
Figure 2008202109

その結果、無電解ニッケルめっき皮膜の密着性及び平坦性のいずれも良好であった。   As a result, both the adhesion and flatness of the electroless nickel plating film were good.

[実施例3]
ポリイミド薄膜の成膜後の乾燥(加熱乾燥及び真空乾燥)を、90℃で30分間の大気中の加熱乾燥と、これに続く180℃で30分間の大気中の加熱乾燥とした以外は、実施例1と同様の方法でめっき皮膜−ポリイミド積層体を得、これを評価した。
[Example 3]
Except for the drying (heat drying and vacuum drying) after film formation of the polyimide thin film, except that the heating drying in the atmosphere at 90 ° C. for 30 minutes and the heating drying in the atmosphere at 180 ° C. for 30 minutes following this were carried out. A plating film-polyimide laminate was obtained in the same manner as in Example 1 and evaluated.

その結果、無電解ニッケルめっき皮膜の密着性及び平坦性のいずれも良好であった。   As a result, both the adhesion and flatness of the electroless nickel plating film were good.

[実施例4]
ポリイミド薄膜の成膜後の乾燥(加熱乾燥及び真空乾燥)を、90℃で30分間の大気中の加熱乾燥と、これに続く180℃で30分間の大気中の加熱乾燥とした以外は、実施例2と同様の方法でめっき皮膜−ポリイミド積層体を得、これを評価した。
[Example 4]
Except for the drying (heat drying and vacuum drying) after film formation of the polyimide thin film, except that the heating drying in the atmosphere at 90 ° C. for 30 minutes and the heating drying in the atmosphere at 180 ° C. for 30 minutes following this were carried out. A plating film-polyimide laminate was obtained in the same manner as in Example 2, and this was evaluated.

その結果、無電解ニッケルめっき皮膜の密着性及び平坦性のいずれも良好であった。   As a result, both the adhesion and flatness of the electroless nickel plating film were good.

[実施例5]
シリコン基板を、シランカップリング剤(Q−AM−CP02 株式会社ピーアイ技術研究所製)をスピンコートし、90℃で、5分加熱することによりシランカップリング剤処理を施した。
[Example 5]
The silicon substrate was spin-coated with a silane coupling agent (Q-AM-CP02 manufactured by PI Engineering Laboratory Co., Ltd.) and heated at 90 ° C. for 5 minutes to give a silane coupling agent treatment.

次に、シランカップリング剤処理を施した基板に、カルボキシル誘導基を含まない(カルボキシル基のみを含む)ポリイミド(Q−ED−x−069のポリイミドワニス)を10%含むN−メチルピロリドンを溶媒とする電着ポリイミド溶液をスピンコートした。   Next, N-methylpyrrolidone containing 10% of polyimide (Q-ED-x-069 polyimide varnish) not containing a carboxyl derivative group (containing only a carboxyl group) on a substrate treated with a silane coupling agent was used as a solvent. The electrodeposited polyimide solution was spin coated.

スピンコート後、基板を、90℃で30分間、大気中で加熱乾燥し、更に、1日間真空乾燥して、ポリイミド薄膜を成膜した。   After spin coating, the substrate was heated and dried at 90 ° C. for 30 minutes in the air, and further vacuum-dried for 1 day to form a polyimide thin film.

次に、得られたポリイミド薄膜を水洗し、表1に示される有機アミン化合物を含む表面処理液に、表1に示される条件で浸漬してポリイミド薄膜の表面を処理し、水洗した。   Next, the obtained polyimide thin film was washed with water, immersed in a surface treatment solution containing an organic amine compound shown in Table 1 under the conditions shown in Table 1, the surface of the polyimide thin film was treated, and washed with water.

次に、表面処理後の基板を、表2に示される活性化溶液に、表2に示される条件で浸漬して触媒化処理を施して水洗し、更に、表3に示されるアクセラレーション処理液に、表3に示される条件で浸漬してアクセラレーション処理を施して水洗した。   Next, the substrate after the surface treatment is immersed in an activation solution shown in Table 2 under the conditions shown in Table 2 to perform a catalytic treatment, and is washed with water. Further, an acceleration treatment liquid shown in Table 3 is used. Then, it was immersed in the conditions shown in Table 3 for acceleration treatment and washed with water.

次に、アクセラレーション処理後のポリイミド薄膜に、無電解NiPめっき浴(ニムデンHDX(上村工業株式会社製))を用い、表4に示される条件で無電解NiPめっきして、無電解NiPめっき皮膜(膜厚0.1μm)を成膜した。めっき皮膜の成膜後、水洗後、乾燥して、めっき皮膜−ポリイミド積層体を得た。   Next, an electroless NiP plating bath (Nimden HDX (manufactured by Uemura Kogyo Co., Ltd.)) is used for the polyimide thin film after the acceleration treatment, and electroless NiP plating is performed under the conditions shown in Table 4. (Film thickness 0.1 μm) was formed. After the plating film was formed, washed with water, and dried to obtain a plating film-polyimide laminate.

得られた無電解ニッケルめっき皮膜の密着性及び平坦性を実施例1と同様の方法により評価した。   The adhesion and flatness of the obtained electroless nickel plating film were evaluated by the same method as in Example 1.

その結果、無電解ニッケルめっき皮膜の密着性及び平坦性のいずれも良好であった。   As a result, both the adhesion and flatness of the electroless nickel plating film were good.

[実施例6]
アクセラレーション処理後のポリイミド薄膜への無電解めっきとして、表5に示される無電解NiBめっき浴を用い、表5に示される条件で無電解NiBめっきして、無電解NiBめっき皮膜(膜厚0.1μm)を成膜した以外は実施例5と同様の方法でめっき皮膜−ポリイミド積層体を得、これを評価した。
[Example 6]
As the electroless plating on the polyimide thin film after the acceleration treatment, an electroless NiB plating bath shown in Table 5 is used, and electroless NiB plating is performed under the conditions shown in Table 5 to form an electroless NiB plating film (thickness 0). 0.1 μm) was obtained, and a plating film-polyimide laminate was obtained in the same manner as in Example 5 and evaluated.

その結果、無電解ニッケルめっき皮膜の密着性及び平坦性のいずれも良好であった。   As a result, both the adhesion and flatness of the electroless nickel plating film were good.

[実施例7]
アクセラレーション処理後のポリイミド薄膜への無電解めっきとして、表6に示される無電解NiPめっき浴を用い、表6に示される条件で無電解NiPめっきして、無電解NiPめっき皮膜(膜厚0.1μm)を成膜した以外は実施例5と同様の方法でめっき皮膜−ポリイミド積層体を得、これを評価した。
[Example 7]
As the electroless plating on the polyimide thin film after the acceleration treatment, an electroless NiP plating bath shown in Table 6 is used, and electroless NiP plating is performed under the conditions shown in Table 6 to obtain an electroless NiP plating film (thickness 0). 0.1 μm) was obtained, and a plating film-polyimide laminate was obtained in the same manner as in Example 5 and evaluated.

Figure 2008202109
Figure 2008202109

その結果、無電解ニッケルめっき皮膜の密着性及び平坦性のいずれも良好であった。   As a result, both the adhesion and flatness of the electroless nickel plating film were good.

[実施例8]
ポリイミド薄膜の成膜後の乾燥(加熱乾燥及び真空乾燥)を、90℃で30分間の大気中の加熱乾燥と、これに続く180℃で30分間の大気中の加熱乾燥とした以外は、実施例5と同様の方法でめっき皮膜−ポリイミド積層体を得、これを評価した。
[Example 8]
Except for the drying (heat drying and vacuum drying) after film formation of the polyimide thin film, except that the heating drying in the atmosphere at 90 ° C. for 30 minutes and the heating drying in the atmosphere at 180 ° C. for 30 minutes following this were carried out. A plating film-polyimide laminate was obtained in the same manner as in Example 5, and this was evaluated.

その結果、無電解ニッケルめっき皮膜の密着性及び平坦性のいずれも良好であった。   As a result, both the adhesion and flatness of the electroless nickel plating film were good.

[実施例9]
ポリイミド薄膜の成膜後の乾燥(加熱乾燥及び真空乾燥)を、90℃で30分間の大気中の加熱乾燥と、これに続く180℃で30分間の大気中の加熱乾燥とした以外は、実施例6と同様の方法でめっき皮膜−ポリイミド積層体を得、これを評価した。
[Example 9]
Except for the drying (heat drying and vacuum drying) after film formation of the polyimide thin film, except that the heating drying in the atmosphere at 90 ° C. for 30 minutes and the heating drying in the atmosphere at 180 ° C. for 30 minutes following this were carried out. A plating film-polyimide laminate was obtained in the same manner as in Example 6 and evaluated.

その結果、無電解ニッケルめっき皮膜の密着性及び平坦性のいずれも良好であった。   As a result, both the adhesion and flatness of the electroless nickel plating film were good.

[実施例10]
シリコン基板を、シランカップリング剤(Q−AM−CP02 株式会社ピーアイ技術研究所製)をスピンコートし、90℃で、5分加熱することによりシランカップリング剤処理を施した。
[Example 10]
The silicon substrate was spin-coated with a silane coupling agent (Q-AM-CP02 manufactured by PI Engineering Laboratory Co., Ltd.) and heated at 90 ° C. for 5 minutes to give a silane coupling agent treatment.

次に、シランカップリング剤処理を施した基板に、市販の電着液(株式会社ピーアイ技術研究所製 Q−ED−x−069)をスピンコートした。   Next, a commercially available electrodeposition liquid (Q-ED-x-069 manufactured by PI Technical Research Institute Co., Ltd.) was spin-coated on the substrate subjected to the silane coupling agent treatment.

スピンコート後、基板を、90℃で30分間、大気中で加熱乾燥し、更に、1日間真空乾燥して、ポリイミド薄膜を成膜した。   After spin coating, the substrate was heated and dried at 90 ° C. for 30 minutes in the air, and further vacuum-dried for 1 day to form a polyimide thin film.

次に、得られたポリイミド薄膜を水洗し、表1に示される有機アミン化合物を含む表面処理液に、表1に示される条件で浸漬してポリイミド薄膜の表面を処理し、水洗した。   Next, the obtained polyimide thin film was washed with water, immersed in a surface treatment solution containing an organic amine compound shown in Table 1 under the conditions shown in Table 1, the surface of the polyimide thin film was treated, and washed with water.

次に、表面処理後の基板を、表2に示される活性化溶液に、表2に示される条件で浸漬して触媒化処理を施して水洗し、更に、表3に示されるアクセラレーション処理液に、表3に示される条件で浸漬してアクセラレーション処理を施して水洗した。   Next, the substrate after the surface treatment is immersed in an activation solution shown in Table 2 under the conditions shown in Table 2 to perform a catalytic treatment, and is washed with water. Further, an acceleration treatment liquid shown in Table 3 is used. Then, it was immersed in the conditions shown in Table 3 for acceleration treatment and washed with water.

次に、アクセラレーション処理後のポリイミド薄膜に、無電解NiPめっき浴(ニムデンHDX(上村工業株式会社製))を用い、表4に示される条件で無電解NiPめっきして、無電解NiPめっき皮膜(膜厚0.1μm)を成膜した。めっき皮膜の成膜後、水洗後、乾燥して、めっき皮膜−ポリイミド積層体を得た。   Next, an electroless NiP plating bath (Nimden HDX (manufactured by Uemura Kogyo Co., Ltd.)) is used for the polyimide thin film after the acceleration treatment, and electroless NiP plating is performed under the conditions shown in Table 4. (Film thickness 0.1 μm) was formed. After the plating film was formed, washed with water, and dried to obtain a plating film-polyimide laminate.

得られた無電解ニッケルめっき皮膜の密着性及び平坦性を実施例1と同様の方法により評価した。   The adhesion and flatness of the obtained electroless nickel plating film were evaluated by the same method as in Example 1.

その結果、無電解ニッケルめっき皮膜の密着性及び平坦性のいずれも良好であった。   As a result, both the adhesion and flatness of the electroless nickel plating film were good.

[実施例11]
アクセラレーション処理後のポリイミド薄膜への無電解めっきとして、表5に示される無電解NiBめっき浴を用い、表5に示される条件で無電解NiBめっきして、無電解NiBめっき皮膜(膜厚0.1μm)を成膜した以外は実施例10と同様の方法でめっき皮膜−ポリイミド積層体を得、これを評価した。
[Example 11]
As the electroless plating on the polyimide thin film after the acceleration treatment, an electroless NiB plating bath shown in Table 5 is used, and electroless NiB plating is performed under the conditions shown in Table 5 to form an electroless NiB plating film (thickness 0). 0.1 μm) was obtained in the same manner as in Example 10 except that a plating film-polyimide laminate was obtained and evaluated.

その結果、無電解ニッケルめっき皮膜の密着性及び平坦性のいずれも良好であった。   As a result, both the adhesion and flatness of the electroless nickel plating film were good.

[実施例12]
アクセラレーション処理後のポリイミド薄膜への無電解めっきとして、表6に示される無電解NiPめっき浴を用い、表6に示される条件で無電解NiPめっきして、無電解NiPめっき皮膜(膜厚0.1μm)を成膜した以外は実施例10と同様の方法でめっき皮膜−ポリイミド積層体を得、これを評価した。
[Example 12]
As the electroless plating on the polyimide thin film after the acceleration treatment, an electroless NiP plating bath shown in Table 6 is used, and electroless NiP plating is performed under the conditions shown in Table 6 to obtain an electroless NiP plating film (thickness 0). 0.1 μm) was obtained in the same manner as in Example 10 except that a plating film-polyimide laminate was obtained and evaluated.

その結果、無電解ニッケルめっき皮膜の密着性及び平坦性のいずれも良好であった。   As a result, both the adhesion and flatness of the electroless nickel plating film were good.

[実施例13]
ポリイミド薄膜の成膜後の乾燥(加熱乾燥及び真空乾燥)を、90℃で30分間の大気中の加熱乾燥と、これに続く180℃で30分間の大気中の加熱乾燥とした以外は、実施例10と同様の方法でめっき皮膜−ポリイミド積層体を得、これを評価した。
[Example 13]
Except for the drying (heat drying and vacuum drying) after film formation of the polyimide thin film, except that the heating drying in the atmosphere at 90 ° C. for 30 minutes and the heating drying in the atmosphere at 180 ° C. for 30 minutes following this were carried out. A plating film-polyimide laminate was obtained in the same manner as in Example 10, and this was evaluated.

その結果、無電解ニッケルめっき皮膜の密着性及び平坦性のいずれも良好であった。   As a result, both the adhesion and flatness of the electroless nickel plating film were good.

[実施例14]
ポリイミド薄膜の成膜後の乾燥(加熱乾燥及び真空乾燥)を、90℃で30分間の大気中の加熱乾燥と、これに続く180℃で30分間の大気中の加熱乾燥とした以外は、実施例11と同様の方法でめっき皮膜−ポリイミド積層体を得、これを評価した。
[Example 14]
Except for the drying (heat drying and vacuum drying) after film formation of the polyimide thin film, except that the heating drying in the atmosphere at 90 ° C. for 30 minutes and the heating drying in the atmosphere at 180 ° C. for 30 minutes following this were carried out. A plating film-polyimide laminate was obtained in the same manner as in Example 11 and evaluated.

その結果、無電解ニッケルめっき皮膜の密着性及び平坦性のいずれも良好であった。   As a result, both the adhesion and flatness of the electroless nickel plating film were good.

[比較例1]
ポリイミド薄膜成膜後の、有機アミン化合物を含む表面処理液による表面処理を実施しなかった以外は実施例2と同様の方法でめっき皮膜−ポリイミド積層体を製造しようとしたが、無電解めっき皮膜が析出しなかった。
[Comparative Example 1]
An attempt was made to produce a plating film-polyimide laminate in the same manner as in Example 2 except that surface treatment with a surface treatment solution containing an organic amine compound was not carried out after the polyimide thin film was formed. Did not precipitate.

[比較例2]
ポリイミド薄膜成膜後の、有機アミン化合物を含む表面処理液による表面処理を実施しなかった以外は実施例5と同様の方法でめっき皮膜−ポリイミド積層体を製造しようとしたが、無電解めっき皮膜が析出しなかった。
[Comparative Example 2]
An attempt was made to produce a plating film-polyimide laminate in the same manner as in Example 5 except that the surface treatment with a surface treatment liquid containing an organic amine compound was not performed after the polyimide thin film was formed. Did not precipitate.

[比較例3]
ポリイミド薄膜成膜後の、有機アミン化合物を含む表面処理液による表面処理を実施しなかった以外は実施例6と同様の方法でめっき皮膜−ポリイミド積層体を製造しようとしたが、無電解めっき皮膜が析出しなかった。
[Comparative Example 3]
An attempt was made to produce a plating film-polyimide laminate in the same manner as in Example 6 except that surface treatment with a surface treatment solution containing an organic amine compound was not performed after the polyimide thin film was formed. Did not precipitate.

[比較例4]
ポリイミド薄膜成膜後の、有機アミン化合物を含む表面処理液による表面処理を実施しなかった以外は実施例11と同様の方法でめっき皮膜−ポリイミド積層体を製造しようとしたが、無電解めっき皮膜が析出しなかった。
[Comparative Example 4]
An attempt was made to produce a plating film-polyimide laminate in the same manner as in Example 11 except that the surface treatment with a surface treatment liquid containing an organic amine compound was not performed after the polyimide thin film was formed. Did not precipitate.

[比較例5]
ポリイミド薄膜成膜後の、有機アミン化合物を含む表面処理液による表面処理を実施しなかった以外は実施例12と同様の方法でめっき皮膜−ポリイミド積層体を製造しようとしたが、無電解めっき皮膜が析出しなかった。
[Comparative Example 5]
An attempt was made to produce a plating film-polyimide laminate in the same manner as in Example 12 except that surface treatment with a surface treatment solution containing an organic amine compound was not performed after the polyimide thin film was formed. Did not precipitate.

[比較例6]
ポリイミド薄膜成膜後の、有機アミン化合物を含む表面処理液による表面処理を、表7に示されるアルカリ処理液(水溶液)を用いた表7に示される条件でのアルカリ処理に変えた以外は、実施例5と同様の方法でめっき皮膜−ポリイミド積層体を得、これを評価した。
[Comparative Example 6]
Except for changing the surface treatment with the surface treatment liquid containing an organic amine compound after the polyimide thin film formation to the alkali treatment under the conditions shown in Table 7 using the alkali treatment liquid (aqueous solution) shown in Table 7, A plating film-polyimide laminate was obtained in the same manner as in Example 5 and evaluated.

Figure 2008202109
Figure 2008202109

その結果、無電解ニッケルめっき反応はほとんど起きず、皮膜は連続膜にならず、安定した析出が得られなかった。   As a result, the electroless nickel plating reaction hardly occurred, the film did not become a continuous film, and stable deposition could not be obtained.

[比較例7]
ポリイミド薄膜成膜後の、有機アミン化合物を含む表面処理液による表面処理を、表7に示されるアルカリ処理液を用いた表7に示される条件でのアルカリ処理に変えた以外は、実施例6と同様の方法でめっき皮膜−ポリイミド積層体を得、これを評価した。
[Comparative Example 7]
Example 6 except that the surface treatment with the surface treatment liquid containing the organic amine compound after the polyimide thin film was formed was changed to the alkali treatment under the conditions shown in Table 7 using the alkali treatment liquid shown in Table 7. A plating film-polyimide laminate was obtained in the same manner as above and evaluated.

その結果、無電解ニッケルめっき皮膜は不連続部分が多く,安定した析出が得られなかった。また、めっき薄膜の大部分は非常に薄く、金属光沢が得られなかった。   As a result, the electroless nickel plating film had many discontinuous portions, and stable deposition was not obtained. Further, most of the plated thin film was very thin and no metallic luster was obtained.

[比較例8]
ポリイミド薄膜成膜後の、有機アミン化合物を含む表面処理液による表面処理を、表7に示されるアルカリ処理液を用いた表7に示される条件でのアルカリ処理に変えた以外は、実施例10と同様の方法でめっき皮膜−ポリイミド積層体を得、これを評価した。
[Comparative Example 8]
Example 10 except that the surface treatment with the surface treatment liquid containing the organic amine compound after the polyimide thin film was formed was changed to the alkali treatment under the conditions shown in Table 7 using the alkali treatment liquid shown in Table 7. A plating film-polyimide laminate was obtained in the same manner as above and evaluated.

その結果、無電解ニッケルめっき反応はほとんど起きず、皮膜は連続膜にならず、安定した析出が得られなかった。   As a result, the electroless nickel plating reaction hardly occurred, the film did not become a continuous film, and stable deposition could not be obtained.

本発明のめっき皮膜−ポリイミド積層体の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the plating film-polyimide laminated body of this invention.

符号の説明Explanation of symbols

1 ポリイミド
2 有機アミン化合物
3 金属触媒
4 無電解めっき皮膜
1 Polyimide 2 Organic amine compound 3 Metal catalyst 4 Electroless plating film

Claims (10)

表面にカルボキシル基(−COOH)及び/又はカルボキシル誘導基(−COO-+(R+は有機カチオン基又は無機カチオンを示す))を有するポリイミド上に、めっき皮膜が積層されためっき皮膜−ポリイミド積層体であって、
上記カルボキシル基及び/又はカルボキシル誘導基が、互いに離間する分子鎖両末端にアミノ基を各々一つ以上有する有機アミン化合物の一方の末端のアミノ基との反応により修飾され、かつ上記アミン化合物分子の他方の末端のアミノ基に金属触媒が付与されて、上記めっき皮膜として金属触媒を核として成膜された無電解めっき皮膜が積層されてなることを特徴とするめっき皮膜−ポリイミド積層体。
Plating film-polyimide in which a plating film is laminated on a polyimide having a carboxyl group (—COOH) and / or a carboxyl derivative group (—COO R + (R + represents an organic cation group or an inorganic cation)) on the surface A laminate,
The carboxyl group and / or carboxyl derivative group is modified by reaction with an amino group at one end of an organic amine compound having one or more amino groups at both ends of the molecular chain that are separated from each other, and A plating film-polyimide laminate, wherein a metal catalyst is imparted to the amino group at the other end, and an electroless plating film formed using the metal catalyst as a nucleus is laminated as the plating film.
上記ポリイミドが、電着ポリイミドであることを特徴とする請求項1記載のめっき皮膜−ポリイミド積層体。   The plating film-polyimide laminate according to claim 1, wherein the polyimide is an electrodeposited polyimide. 上記電着ポリイミドが、カルボキシル基(−COOH)及び/又はカルボキシル誘導基(−COO-+(R+は有機カチオン基又は無機カチオンを示す))を分子構造内に有するポリイミド前駆体及びアニオン性ポリイミドから選ばれるポリイミド化合物の水溶液又は水と有機溶媒との混合溶媒溶液であるポリイミド電着液から、電着にて成膜したポリイミド薄膜であることを特徴とする請求項2記載のめっき皮膜−ポリイミド積層体。 The electrodeposited polyimide is a polyimide precursor and anionic having a carboxyl group (—COOH) and / or a carboxyl derivative group (—COO R + (R + represents an organic cation group or an inorganic cation)) in the molecular structure. The plating film according to claim 2, which is a polyimide thin film formed by electrodeposition from a polyimide electrodeposition solution which is an aqueous solution of a polyimide compound selected from polyimides or a mixed solvent solution of water and an organic solvent. Polyimide laminate. 上記ポリイミドが、カルボキシル基(−COOH)及び/又はカルボキシル誘導基(−COO-+(R+は有機カチオン基又は無機カチオンを示す))を分子構造内に有するポリイミド前駆体及びアニオン性ポリイミドから選ばれるポリイミド化合物の水溶液又は水と有機溶媒との混合溶媒溶液を基材上に塗布し、加熱することにより成膜したポリイミド薄膜であることを特徴とする請求項1記載のめっき皮膜−ポリイミド積層体。 From the polyimide precursor and anionic polyimide in which the polyimide has a carboxyl group (—COOH) and / or a carboxyl derivative group (—COO R + (R + represents an organic cation group or an inorganic cation)) in the molecular structure. The plating film-polyimide laminate according to claim 1, which is a polyimide thin film formed by applying an aqueous solution of a selected polyimide compound or a mixed solvent solution of water and an organic solvent on a substrate and heating the substrate. body. 上記有機アミン化合物が、炭素数2以上のアルキルポリアミン化合物であることを特徴とする請求項1乃至4のいずれか1項記載のめっき皮膜−ポリイミド積層体。   The plating film-polyimide laminate according to any one of claims 1 to 4, wherein the organic amine compound is an alkyl polyamine compound having 2 or more carbon atoms. ポリイミド上に、めっき皮膜が積層されためっき皮膜−ポリイミド積層体を製造する方法であって、
表面にカルボキシル基(−COOH)及び/又はカルボキシル誘導基(−COO-+(R+は有機カチオン基又は無機カチオンを示す))を有するポリイミドの該表面を、
互いに離間する分子鎖両末端にアミノ基を各々一つ以上有する有機アミン化合物を含有する水溶液で表面処理することにより、上記カルボキシル基及び/又はカルボキシル誘導基と、上記有機アミン化合物の一方の末端のアミノ基とを反応させて、上記カルボキシル基及び/又はカルボキシル誘導基を上記アミン化合物分子で修飾し、
次いで、金属を含む活性化溶液で触媒化処理することにより、上記アミン化合物分子の他方の末端のアミノ基に金属触媒を付与し、
次いで、上記金属触媒を核として無電解めっきして無電解めっき皮膜を形成することを特徴とするめっき皮膜−ポリイミド積層体の製造方法。
A method for producing a plating film-polyimide laminate in which a plating film is laminated on polyimide,
The surface of the polyimide having a carboxyl group (—COOH) and / or a carboxyl derivative group (—COO R + (R + represents an organic cation group or an inorganic cation)) on the surface;
Surface treatment with an aqueous solution containing an organic amine compound having one or more amino groups at both ends of molecular chains separated from each other allows the carboxyl group and / or carboxyl derivative group and one end of the organic amine compound to Reacting with an amino group to modify the carboxyl group and / or carboxyl derivative group with the amine compound molecule;
Next, a metal catalyst is imparted to the amino group at the other end of the amine compound molecule by catalyzing with an activation solution containing a metal,
Next, a method for producing a plating film-polyimide laminate, comprising forming an electroless plating film by electroless plating using the metal catalyst as a nucleus.
上記ポリイミドが、電着ポリイミドであることを特徴とする請求項6記載のめっき皮膜−ポリイミド積層体の製造方法。   The said polyimide is an electrodeposited polyimide, The manufacturing method of the plating film-polyimide laminated body of Claim 6 characterized by the above-mentioned. 上記電着ポリイミドが、カルボキシル基(−COOH)及び/又はカルボキシル誘導基(−COO-+(R+は有機カチオン基又は無機カチオンを示す))を分子構造内に有するポリイミド前駆体及びアニオン性ポリイミドから選ばれるポリイミド化合物の水溶液又は水と有機溶媒との混合溶媒溶液であるポリイミド電着液から、電着にて成膜したポリイミド薄膜であることを特徴とする請求項7記載のめっき皮膜−ポリイミド積層体の製造方法。 The electrodeposited polyimide is a polyimide precursor and anionic having a carboxyl group (—COOH) and / or a carboxyl derivative group (—COO R + (R + represents an organic cation group or an inorganic cation)) in the molecular structure. The plating film according to claim 7, which is a polyimide thin film formed by electrodeposition from a polyimide electrodeposition solution which is an aqueous solution of a polyimide compound selected from polyimides or a mixed solvent solution of water and an organic solvent. A method for producing a polyimide laminate. 上記ポリイミドが、カルボキシル基(−COOH)及び/又はカルボキシル誘導基(−COO-+(R+は有機カチオン基又は無機カチオンを示す))を分子構造内に有するポリイミド前駆体及びアニオン性ポリイミドから選ばれるポリイミド化合物の水溶液又は水と有機溶媒との混合溶媒溶液を基材上に塗布し、加熱することにより成膜したポリイミド薄膜であることを特徴とする請求項6記載のめっき皮膜−ポリイミド積層体の製造方法。 From the polyimide precursor and anionic polyimide in which the polyimide has a carboxyl group (—COOH) and / or a carboxyl derivative group (—COO R + (R + represents an organic cation group or an inorganic cation)) in the molecular structure. The plating film-polyimide laminate according to claim 6, which is a polyimide thin film formed by coating an aqueous solution of a selected polyimide compound or a mixed solvent solution of water and an organic solvent on a substrate and heating the substrate. Body manufacturing method. 上記有機アミン化合物が、炭素数2以上のアルキルポリアミン化合物であることを特徴とする請求項6乃至9のいずれか1項記載のめっき皮膜−ポリイミド積層体の製造方法。   The method for producing a plated film-polyimide laminate according to any one of claims 6 to 9, wherein the organic amine compound is an alkyl polyamine compound having 2 or more carbon atoms.
JP2007040640A 2007-02-21 2007-02-21 Plating film-polyimide laminate and method for producing the same Expired - Fee Related JP5240812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007040640A JP5240812B2 (en) 2007-02-21 2007-02-21 Plating film-polyimide laminate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007040640A JP5240812B2 (en) 2007-02-21 2007-02-21 Plating film-polyimide laminate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008202109A true JP2008202109A (en) 2008-09-04
JP5240812B2 JP5240812B2 (en) 2013-07-17

Family

ID=39779905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007040640A Expired - Fee Related JP5240812B2 (en) 2007-02-21 2007-02-21 Plating film-polyimide laminate and method for producing the same

Country Status (1)

Country Link
JP (1) JP5240812B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013129856A (en) * 2011-12-20 2013-07-04 Adeka Corp Pretreatment agent for use in electroless plating, and pretreatment method for use in electroless plating employing the same
JP2019052354A (en) * 2017-09-15 2019-04-04 トヨタ自動車株式会社 Method for manufacturing intake manifold

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6312766B2 (en) * 2016-09-23 2018-04-18 日本エレクトロプレイテイング・エンジニヤース株式会社 Laminate structure of metal film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570961A (en) * 1991-09-17 1993-03-23 Hitachi Chem Co Ltd Catalyst for electroless plating, production of the same and its utilization method
JPH09104839A (en) * 1995-10-12 1997-04-22 Dainippon Toryo Co Ltd Polyimide composition for electrodeposition and coating film
JP2000053914A (en) * 1998-08-05 2000-02-22 Sumitomo Metal Mining Co Ltd Polyimide resin solution for electrodeposition and production of copper-polyimide resin base plate using the same
JP2002208768A (en) * 2001-01-12 2002-07-26 Hitachi Ltd Method for forming metal plated film onto polyimide substrate
JP2004266199A (en) * 2003-03-04 2004-09-24 National Institute Of Advanced Industrial & Technology Wiring forming method using electrolysis deposition organic insulating film
JP2005116745A (en) * 2003-10-07 2005-04-28 Matsushita Electric Works Ltd Conductor coating polyimide film and manufacturing method thereof
JP2006054357A (en) * 2004-08-13 2006-02-23 Nippon Steel Chem Co Ltd Laminate for flexible printed-wiring board, and its manufacturing method
JP2008050694A (en) * 2006-07-25 2008-03-06 Ube Ind Ltd Multiranched polyimide for promoting electroless plating, metal-coated multibranched polyimide and method for producing them

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570961A (en) * 1991-09-17 1993-03-23 Hitachi Chem Co Ltd Catalyst for electroless plating, production of the same and its utilization method
JPH09104839A (en) * 1995-10-12 1997-04-22 Dainippon Toryo Co Ltd Polyimide composition for electrodeposition and coating film
JP2000053914A (en) * 1998-08-05 2000-02-22 Sumitomo Metal Mining Co Ltd Polyimide resin solution for electrodeposition and production of copper-polyimide resin base plate using the same
JP2002208768A (en) * 2001-01-12 2002-07-26 Hitachi Ltd Method for forming metal plated film onto polyimide substrate
JP2004266199A (en) * 2003-03-04 2004-09-24 National Institute Of Advanced Industrial & Technology Wiring forming method using electrolysis deposition organic insulating film
JP2005116745A (en) * 2003-10-07 2005-04-28 Matsushita Electric Works Ltd Conductor coating polyimide film and manufacturing method thereof
JP2006054357A (en) * 2004-08-13 2006-02-23 Nippon Steel Chem Co Ltd Laminate for flexible printed-wiring board, and its manufacturing method
JP2008050694A (en) * 2006-07-25 2008-03-06 Ube Ind Ltd Multiranched polyimide for promoting electroless plating, metal-coated multibranched polyimide and method for producing them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013129856A (en) * 2011-12-20 2013-07-04 Adeka Corp Pretreatment agent for use in electroless plating, and pretreatment method for use in electroless plating employing the same
JP2019052354A (en) * 2017-09-15 2019-04-04 トヨタ自動車株式会社 Method for manufacturing intake manifold

Also Published As

Publication number Publication date
JP5240812B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
TWI424012B (en) Method for surface modification of polyimide resin layer and method for manufacturing sheet metal paste
TWI450918B (en) Surface treatment method of polyimide resin and method for producing metal foil laminated body
JPH02190475A (en) Conditioning of organic polymeric substance
TW583274B (en) Polyimide resin precursor solution, laminates for electronic components made by using the solution and process for production of the laminates
TW201102267A (en) Metalized polyimide film and flexible printed circuit board using the same
JP2008227126A (en) Fine coaxial wire, its manufacturing method, and semiconductor device
JP5240812B2 (en) Plating film-polyimide laminate and method for producing the same
JP4654647B2 (en) Polyamideimide film with metal for circuit board and method for producing the same
JP4998871B2 (en) Electrodeposited polyimide thin film and method for forming the same
JP5129111B2 (en) LAMINATE MANUFACTURING METHOD AND CIRCUIT WIRING BOARD MANUFACTURING METHOD
TW201442043A (en) Method of producing conductive coating film, and conductive coating film
TWI449482B (en) Manufacturing method for circuit wiring board
US7081304B2 (en) Surface conductive resin, process for forming the same and wiring board
JP2008227147A (en) Conduction line path structure, its production method, and wiring substrate
WO2001038086A1 (en) Member having metallic layer, its manufacturing method, and its application
JP3691952B2 (en) Wiring board and manufacturing method thereof
JP7120695B1 (en) Resin film laminate, method for producing same, and method for producing metal-coated resin
JP2009283528A (en) Polyimide base printed wiring board and method of manufacturing the same
JP4956702B2 (en) Cu-Ni-organic electrodeposition thin film laminated structure and method for forming the same
JP5115980B2 (en) Method for manufacturing circuit wiring board
JP5115981B2 (en) Method for manufacturing circuit wiring board
TWI449481B (en) Manufacturing method for circuit wiring board
TW499501B (en) Member having metallic layer, its manufacturing method
JP2007077439A (en) Method for metallizing surface of polyimide resin material
JP2003105084A (en) Resin with electroconductive surface, manufacturing method therefor and wiring substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees