JP2008022045A - Receiver, transmitter and data communication system - Google Patents

Receiver, transmitter and data communication system Download PDF

Info

Publication number
JP2008022045A
JP2008022045A JP2006189428A JP2006189428A JP2008022045A JP 2008022045 A JP2008022045 A JP 2008022045A JP 2006189428 A JP2006189428 A JP 2006189428A JP 2006189428 A JP2006189428 A JP 2006189428A JP 2008022045 A JP2008022045 A JP 2008022045A
Authority
JP
Japan
Prior art keywords
signal
frequency
receiver
transmitter
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006189428A
Other languages
Japanese (ja)
Inventor
Yoshinobu Nakayama
義宣 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006189428A priority Critical patent/JP2008022045A/en
Publication of JP2008022045A publication Critical patent/JP2008022045A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Superheterodyne Receivers (AREA)
  • Transmitters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a receiver, a transmitter and data communication system materializing an inexpensive RFID and a tag in which a local oscillation circuit needing a high frequency amplifier circuit in IF or an intermediate frequency amplifier circuit for mixing a high frequency received signal around a high frequency carrier with another high frequency to produce an intermediate frequency is not provided into a card, and the local oscillation circuit is provided in the transmitter, the transmitter generates a local oscillation signal and transmits the local oscillation signal together with a transmission signal, a mixer in the card obtains a signal with a frequency lower than the original frequency signal by the intermediate frequency, and the card amplifies or demodulates the obtained signal. <P>SOLUTION: The receiver includes an antenna for separately receiving two frequencies, the mixer for mixing a first received signal including a signal to be modulated with a second received signal having frequency different from the frequency of the first received signal, and a filter for generating the intermediate frequency including the signal to be modulated from a received signal resulting from mixing the two received signals in the mixer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は受信機、送信機及びデータ通信システムに関し、詳細にはRFID(Radio Frequency Identification)、又はタグ等、カード状の受信機や送信機を用い、無線を使ってデータの送受信を行うデータ通信システムに関する。   The present invention relates to a receiver, a transmitter, and a data communication system, and more specifically, data communication that uses a card-like receiver or transmitter, such as RFID (Radio Frequency Identification) or a tag, to transmit and receive data wirelessly. About the system.

従来、無線を用いて非接触で認証を行う、いわゆるRFIDなどにおいて、ホスト側(送信機)との間で、非接触で送受信して、電池などを必要とせず、受動的な動作のみでデータを受け取り、また場合によっては送信する機能を有するカードやタグが、特許文献1などに提案されている。このような送受信に用いられる無線の受信には、送信される無線の電力を電源として再生し、単に電源としての電力を送信しカード側で受信して、その電力により、カードが伝えるべきデータを送信する場合や、ホスト側の送信データを復調するために同電力を使いながら無線に用いられる周波数を増幅するなど高周波による受信機を必要とすることがある。   Conventionally, in so-called RFID that performs non-contact authentication using radio, data is transmitted / received to / from the host side (transmitter) in a non-contact manner and requires only a passive operation without requiring a battery. A card or tag having a function of receiving and possibly transmitting a card has been proposed in Patent Document 1 and the like. For wireless reception used for such transmission / reception, the transmitted wireless power is regenerated as a power source, the power as a power source is simply transmitted and received at the card side, and the data to be transmitted by the card is determined by the power. In the case of transmission, a receiver with high frequency may be required, such as amplifying a frequency used for radio while using the same power to demodulate transmission data on the host side.

また、RFIDに用いられるICチップなどの小型化低廉化によって昨今のRFIDの技術は完成の域に達したに見えることも多い中で、無線通信に用いる周波数帯は従来から多く用いられてきた磁気変調型の約120〜135kHzあるいは13.56MHz帯に加え、さらに高周波帯のマイクロ波帯の、860〜960MHz帯及び2.45GHz帯なども用いられる。更に、カード側で単に再生直流電源を発生しこの電源によってIDの変調信号を発生し送り返す場合だけでなく、ホスト側で変調されたデータ信号を復調しカード側で表示や記録するなどの機能が必要となる場合もある。これら何れのケースでも、再生電力を利用して高周波増幅器が使えることは、単に回路構成上で受動回路のみを利用する場合に比べ、格段の利用価値が増す。   In addition, the frequency band used for wireless communication has been widely used in the past because the recent RFID technology often appears to have been completed due to the miniaturization and cost reduction of IC chips used in RFID. In addition to the modulation type of about 120 to 135 kHz or 13.56 MHz band, the microwave band of 860 to 960 MHz, the 2.45 GHz band, and the like are used. In addition to simply generating a reproduction DC power supply on the card side and generating and sending back an ID modulation signal with this power supply, the function of demodulating the data signal modulated on the host side and displaying or recording on the card side is provided. It may be necessary. In any of these cases, the fact that a high-frequency amplifier can be used by using regenerative power has a much higher utility value than when only a passive circuit is used in the circuit configuration.

一般に、これら送受信系におけるホスト側たる送信機は、シリコン系の回路を有し、少数であるため高速応答回路を搭載できる自由度があるものの、カード側である受信機は、極めて小型で安価であることが求められることから、回路上さまざまな制約がある。特に、有機半導体で作製し多数のカードを印刷作製できるようにした極めて安価な受信系を作製する場合には、多くは受動的な動作のみで作製し、また能動回路として有機FETなどを用いる場合には、電源が必要となり、かつ帯域にとりわけ大きな制限が設けられることが多い。
特開2005−176090号公報
In general, the transmitter on the host side in these transmission / reception systems has a silicon-based circuit, and since there are few, there is a degree of freedom to mount a high-speed response circuit, but the receiver on the card side is extremely small and inexpensive. There are various restrictions on the circuit because it is required. In particular, when creating extremely inexpensive receiver systems that are made of organic semiconductors and are capable of printing a large number of cards, many are made only by passive operation, and organic FETs are used as active circuits. Often require a power source and are particularly limited in bandwidth.
JP 2005-176090 A

そこで、周波数をいわばダウンコンバートするために中間周波増幅を利用することが考えられるが、局部発振を行うためには結局、高周波回路が必要となり、高周波回路を避けることができなかった。例えば、従来のデータ通信システムの受信器の構成を示す図6の中間周波増幅に用いる周波数は、これら中間周波増幅に関わる周波数をできる限り下げるためには、狭帯域の空中線601からの受信信号の搬送波の周波数fに匹敵する周波数を増幅しなければならない。よって、中間周波増幅器605から局部発振器603に供給される局部発振信号に対しては、高周波増幅回路を必要としていた。なお、図6において、ホスト機は従来型の送信機であるため図示を省略している。また、図7は従来のデータ通信システムの受信器の別の構成を示すブロック図であるが、この例は受信信号に用いる増幅器は高周波増幅器を用いる必要があるという例である。図7に示すように、図6と比して簡単な構成にする場合は、さらに受動型の検波回路である高周波増幅器701を用いることで、増幅器を用いないで受信データを復調することができるが、受信信号を復調のための利得調整などに必要な帰還などによる安定な動作は期待できない。 Thus, it is conceivable to use intermediate frequency amplification to down-convert the frequency. However, in order to perform local oscillation, a high frequency circuit is eventually required, and the high frequency circuit cannot be avoided. For example, the frequency used for the intermediate frequency amplification in FIG. 6 showing the configuration of the receiver of the conventional data communication system is to reduce the frequency related to the intermediate frequency amplification as much as possible. A frequency comparable to the carrier frequency f 1 must be amplified. Therefore, a high frequency amplifier circuit is required for the local oscillation signal supplied from the intermediate frequency amplifier 605 to the local oscillator 603. In FIG. 6, the host machine is a conventional transmitter and is not shown. FIG. 7 is a block diagram showing another configuration of the receiver of the conventional data communication system. In this example, the amplifier used for the received signal needs to use a high-frequency amplifier. As shown in FIG. 7, when the configuration is simpler than that of FIG. 6, the reception data can be demodulated without using an amplifier by using a high frequency amplifier 701 which is a passive detection circuit. However, stable operation due to feedback necessary for gain adjustment for demodulating the received signal cannot be expected.

本発明はこれらの問題点を解決するためのものであり、高周波たる搬送波を中心とした高周波の受信信号を別の高周波と混合し中間周波を発生させるためのIFまたは中間周波増幅回路において高周波増幅回路を必要とする局部発振回路をカード内設けず、送信機側に配置して発生させ、信号とともに送信して、カードで受信した局部発振信号とともに混合器によって中間周波によるもとの信号より低い周波数の信号を得て、増幅しあるいは復調せしめ、廉価なRFID、タグを実現するための送信機、受信機及びデータ送受信システムを提供することを目的とする。 The present invention is for solving these problems, and a high frequency amplification is performed in an IF or intermediate frequency amplification circuit for mixing a high frequency reception signal centering on a high frequency carrier wave with another high frequency to generate an intermediate frequency. A local oscillator circuit that requires a circuit is not provided in the card, but is placed on the transmitter side, generated, transmitted with the signal, and mixed with the local oscillation signal received by the card from the original signal due to the intermediate frequency An object of the present invention is to provide a transmitter, a receiver, and a data transmission / reception system for obtaining a low-frequency signal, amplifying or demodulating it, and realizing an inexpensive RFID and tag.

前記問題点を解決するために、本発明の受信機は、2つの周波数を分離して受信する空中線を有し、更には被変調信号を含む第1の受信信号と、第1の受信信号とは周波数が異なる第2の受信信号とを混合する混合器と、混合器で混合した受信信号から被変調信号を含む中間周波を生成する濾波器とを有することに特徴がある。よって、カード状の受信機で高周波増幅回路を必要とする局部発振回路を使うことなくデータ信号を含む第1の受信信号を低周波の変調信号に変換できるようになり、有機半導体によるトランジスタなどによる増幅回路を用いた信号処理が可能になる。特に、印刷技術で作製可能な有機FETによる増幅回路が作製できるようになることで、低価格な受信機を容易に作製可能となる。   In order to solve the above problems, the receiver of the present invention has an antenna that receives two frequencies separately, and further includes a first received signal including a modulated signal, a first received signal, Is characterized by having a mixer for mixing the second received signals having different frequencies and a filter for generating an intermediate frequency including the modulated signal from the received signals mixed by the mixer. Accordingly, the first reception signal including the data signal can be converted into a low-frequency modulation signal without using a local oscillation circuit that requires a high-frequency amplifier circuit in the card-like receiver, and the organic semiconductor transistor is used. Signal processing using an amplifier circuit becomes possible. In particular, since an amplifier circuit using an organic FET that can be manufactured by a printing technique can be manufactured, an inexpensive receiver can be easily manufactured.

また、第2の受信信号に対してMOS容量による利得調整を行う利得調整回路を有することにより、受信機の中間周波を発生するための局部発振信号の利得調整を、DCバイアス印加で変化するMOS容量の変化による低域濾波器の遮断周波数の変化に伴い、遮断周波数付近より高い周波数における第2の受信信号の利得制御が可能になる。   In addition, by having a gain adjustment circuit that adjusts the gain of the second received signal by the MOS capacitance, the gain adjustment of the local oscillation signal for generating the intermediate frequency of the receiver can be changed by applying a DC bias. With the change of the cutoff frequency of the low-pass filter due to the change of the capacity, the gain control of the second received signal at a frequency higher than the vicinity of the cutoff frequency becomes possible.

更に、第1の受信信号の搬送波とともに送信される被変調信号の周波数の大きさは少なくとも第1の受信信号の周波数と第2の受信信号の差周波数の大きさより小さいことにより、受信機内における被変調信号を含む第1の受信信号を第2の受信信号と混合し濾波器を通して得た被変調信号を含む低周波への周波数変調信号の変調度が1より大きくなることなく受信し復調できる。   Furthermore, the magnitude of the frequency of the modulated signal transmitted with the carrier wave of the first received signal is at least smaller than the magnitude of the difference frequency between the frequency of the first received signal and the second received signal, so The first received signal including the modulated signal is mixed with the second received signal and can be received and demodulated without the modulation degree of the frequency modulated signal to the low frequency including the modulated signal obtained through the filter being greater than 1.

また、第2の受信信号を受信機内の電力として検波して直流電源を得る直流電源再生回路を有することにより、変調されたデータ信号を含む第1の受信信号の送信機による送信電力に影響を与えない、局部発振信号たる第2の送信信号による電力を受信機内の増幅器などへの電源として使用できるようになる。   Also, by having a DC power supply regeneration circuit that detects the second received signal as power in the receiver and obtains a DC power supply, the transmission power by the transmitter of the first received signal including the modulated data signal is affected. The power by the second transmission signal, which is a local oscillation signal that is not given, can be used as a power source for an amplifier in the receiver.

更に、第1の受信信号の信号に対する応答信号を、第2の受信信号をそのまま、あるいは非線形素子又は非線形回路を通して発生した高調波で変調する変調部を有し、この変調部により変調した応答信号を送信機側へ送信することにより、送信機によるデータ信号たる被変調波を含む第1の受信信号に影響を与えにくい第2の受信信号を用いてかつその高調波を使うため受信機からの送信信号によっても影響を与えにくくできるようになった。   Furthermore, it has a modulation part which modulates the response signal with respect to the signal of the 1st received signal with the harmonic which generate | occur | produced the 2nd received signal as it is or through a non-linear element or a non-linear circuit, and the response signal modulated by this modulation part Is transmitted from the receiver to the transmitter side by using the second received signal that hardly affects the first received signal including the modulated wave that is the data signal by the transmitter and using its harmonics. It is now possible to make it difficult to influence the transmission signal.

また、第2の受信信号を受信したときの同じ空中線を使って変調波を送信機側へ送信することにより、局部発振信号として用いる第2の周波数の高調波を使うため、被変調信号たる第1の送信信号を受信機によって受信する際に混信せずに、送信機による第2の送信信号を受信機が受信する空中線をそのまま利用でき、かつ送信機の送信に用いていた空中線により受信できるようになった。   In addition, by transmitting the modulated wave to the transmitter side using the same antenna when the second received signal is received, the second frequency harmonic used as the local oscillation signal is used, so Without receiving interference when the first transmission signal is received by the receiver, the antenna on which the receiver receives the second transmission signal from the transmitter can be used as it is, and can be received by the antenna used for transmission of the transmitter. It became so.

更に、別の発明としての送信機は、被変調信号を含む第1の送信信号を送信するとともに、第1の送信信号とは異なる第2の送信信号を送信することに特徴がある。よって、受信機の周波数変換に用いる局部発振回路を、高周波増幅回路を組み込める送信機側に分担させることが可能になる。   Furthermore, a transmitter according to another invention is characterized in that it transmits a first transmission signal including a modulated signal and transmits a second transmission signal different from the first transmission signal. Therefore, the local oscillation circuit used for frequency conversion of the receiver can be shared by the transmitter side in which the high frequency amplifier circuit can be incorporated.

また、第1の送信信号の搬送波とともに送信される被変調信号の周波数の大きさは、少なくとも第1の送信信号の周波数と第2の送信信号の差周波数の大きさより小さい。よって、受信機内における被変調信号を含む第1の受信信号を第2の受信信号と混合し濾波器を通して得た被変調信号を含む低周波への周波数変調信号の変調度が1より大きくなることなく受信し復調できる。   Further, the magnitude of the frequency of the modulated signal transmitted together with the carrier wave of the first transmission signal is at least smaller than the magnitude of the difference frequency between the frequency of the first transmission signal and the second transmission signal. Therefore, the modulation degree of the frequency modulation signal to the low frequency including the modulated signal obtained by mixing the first received signal including the modulated signal in the receiver with the second received signal through the filter is greater than 1. Can be received and demodulated.

更に、別の発明としてのデータ通信システムは、上記受信機と、上記送信機とを含んで構築することに特徴がある。よって、高周波増幅回路を必要とする局部発振回路をカード内設けず、送信機側に配置して発生させ、信号とともに送信して、カードで受信した局部発振信号とともに混合器によって中間周波によるもとの信号より低い周波数の信号を得て、増幅しあるいは復調することができる。   Furthermore, the data communication system as another invention is characterized by being constructed including the receiver and the transmitter. Therefore, a local oscillation circuit that requires a high-frequency amplifier circuit is not provided in the card, but is generated by being arranged on the transmitter side, transmitted together with the signal, and mixed with the local oscillation signal received by the card. A signal having a lower frequency than the above signal can be obtained and amplified or demodulated.

本発明のデータ通信システムによれば、受信機における局部発振器を不要とすることで高周波回路を用いることなく低周波増幅回路も構成でき、送信機側に局部発振器を配置して発生させ、信号とともに送信して、カードで受信した局部発振信号とともに混合器によって中間周波によるもとの信号より低い周波数の信号を得て増幅しあるいは復調することができる。   According to the data communication system of the present invention, it is possible to construct a low frequency amplifier circuit without using a high frequency circuit by eliminating the need for a local oscillator in the receiver. A signal having a lower frequency than the original signal due to the intermediate frequency can be obtained and amplified or demodulated by the mixer together with the local oscillation signal transmitted and received by the card.

図1は本発明の第1の実施の形態例に係るデータ通信システムのシステム構成を示すブロック図である。同図において、図6と同じ参照符号は同じ構成要素を示す。なお、各増幅器で使用する電源を記入していない。同図に示す本実施の形態例の受信機100は、図6に示す従来の受信機600と異なる構成として、高周波増幅回路を必要とする局部発振器603の代わりに送信機200側に局部発振器201として設け、局部発振器201により発生した第2の送信信号fは送信機200の狭帯域の空中線202、受信機100の狭帯域の空中線103を通して混合器602へ送られる。混合器602は理想的にはDBM(Double Balanced Mixer)のような一種の乗算器の特性をもつ素子を用いたり、高周波増幅が可能なFETを用いて混合することになるが、インピーダンス整合の取れた2線でも受動的な構成が可能である。当然、帯域の心配はない。このように、局部発振に用いる第1の送信信号fに匹敵する周波数を発生するための高周波発生回路が不要となるため、受信機100における局部発振器を不要とすることで、高周波回路を用いることなく低周波増幅回路102も構成できるようになる。いわば、高周波回路を担当する部分である局部発振を、ホスト側である送信機200の方に分担させているのである。なお、有機半導体を用いた太陽電池や有機材料を主体とした印刷できる電池などを回路とともに印刷したり、局部発振用に受信した信号を整流した直流電源を用いても良い。 FIG. 1 is a block diagram showing a system configuration of a data communication system according to a first embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 6 denote the same components. Note that the power supply used in each amplifier is not entered. The receiver 100 of this embodiment shown in the figure has a configuration different from that of the conventional receiver 600 shown in FIG. 6, and a local oscillator 201 is provided on the transmitter 200 side instead of the local oscillator 603 that requires a high-frequency amplifier circuit. The second transmission signal f 2 generated by the local oscillator 201 is sent to the mixer 602 through the narrow band antenna 202 of the transmitter 200 and the narrow band antenna 103 of the receiver 100. The mixer 602 ideally uses an element having a kind of multiplier characteristic such as a DBM (Double Balanced Mixer) or an FET capable of high-frequency amplification, but the impedance matching can be ensured. A passive configuration is possible with only two wires. Of course, there is no worry about bandwidth. In this way, since a high frequency generation circuit for generating a frequency comparable to the first transmission signal f 1 used for local oscillation is not required, a high frequency circuit is used by eliminating the need for a local oscillator in the receiver 100. The low-frequency amplifier circuit 102 can also be configured without this. In other words, local oscillation, which is a part in charge of the high frequency circuit, is shared by the transmitter 200 on the host side. Note that a solar cell using an organic semiconductor, a battery that can be printed mainly using an organic material, or the like may be printed together with a circuit, or a DC power source that rectifies a signal received for local oscillation may be used.

また、利得調整は、図2に示す利得調整制御回路300のように、抵抗302と有機半導体によるMOS構造のダイオード303を用いればMOS容量成分は高速応答するため、振幅の大きい入力信号301は、出力信号304のように狭い振幅にできる。更に、低域濾波器のMOS容量部に印加されるDC成分によって、容量が変化するので、図3の矢印のように利得曲線を、図中の破線を含めた範囲で変化でき、入力された第2の送信信号fのスペクトルの周波数を表す成分は、入力した信号周波数が低域濾波器の遮断周波数付近より高いとき、利得制御ができる。この部分は高周波を用いるため、必要に応じて配線パターンによる伝送インピーダンスはもちろん整合されている。有機半導体によるMOS容量もシリコン系と同様にDCバイアスにより空乏層が変化し容量変化が得られる。よって、(搬送波との差周波|f−f|)>(被変調信号の周波数の大きさdf)となるようにf及びfを設定されることで、低い周波数による増幅が可能になる。なお、MOS容量は、有機半導体を用いて印刷によって作製されたMOS容量である。 In addition, the gain adjustment uses a resistor 302 and an organic semiconductor MOS structure diode 303 as in the gain adjustment control circuit 300 shown in FIG. The output signal 304 can be made as narrow as possible. Furthermore, since the capacitance changes depending on the DC component applied to the MOS capacitor portion of the low-pass filter, the gain curve can be changed within the range including the broken line in FIG. components representing the frequency of the second spectrum of the transmission signal f 2 of when the input signal frequency higher than the vicinity of the cutoff frequency of the low pass filter can gain control. Since this portion uses high frequency, the transmission impedance of the wiring pattern is naturally matched as necessary. Similarly to the silicon-based MOS capacitor, the depletion layer changes due to the DC bias, and the capacitance can be changed. Therefore, by setting f 1 and f 2 so that (difference frequency with carrier wave | f 1 −f 2 |)> (frequency magnitude df of modulated signal), amplification at a low frequency is possible. become. The MOS capacitor is a MOS capacitor manufactured by printing using an organic semiconductor.

図4は本発明の第2の実施の形態例に係るデータ通信システムのシステム構成を示すブロック図である。同図において、図1と同じ参照符号は同じ構成要素を示す。図4の送信機500のサーキュレータ501や受信機400のサーキュレータ401は、ストリップラインの構成で作製されるため、受動回路の範囲で実現できる。図4に示す第2の実施の形態例によれば、局部発振用に用いた第2の送信信号fは、被変調波たる送信データ信号を含んだ第1の送信信号fとは分離された信号として送信できるため、さらに受信機400側の直流電源再生回路402や受信機400側からの送信に必要な搬送波を発生させている。つまり、第1の送信信号fとはなるべく異なる(高調波でもない)周波数であることが望ましく、受動非線形素子406を用いて第1の送信信号fとは違いしかももともと正弦波として送られてくる信号を図示していない帯域フィルタを通して、歪みの少ない正弦波として受信機側で受信されたのち、利用することができる。例えば、図4に示したように第2の高調波のみを帯域濾波器101を通して2×fの周波数として発生させ、混合器に供給することにより変調部403で受信機側の送信データを空中線103を通して送信できる。もともとf用の空中線103であるため、2×fの周波数の送信にも比較的高い効率で空中線103により送信が可能である。これについては空中線202についても同様である。ホスト機である送信機側の空中線202を通して受信した2×fの周波数を搬送波とする信号はサーキュレータ501によって分離されて送信機側の高周波増幅器502を含む回路を通して増幅し検波されて受信機側から送信されてきた受信データ信号を復調できる。図4においては、受信機側の応答信号が送信機側へ戻ってくるため、応答の状況に対応して、局部発振器201の出力調整が可能になる。したがって、送受信の安定のための調整手段は、図1に示した第1の実施の形態例で実施した利得調整回路だけでなく送信機側からも可能になる。 FIG. 4 is a block diagram showing a system configuration of a data communication system according to the second embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 denote the same components. Since the circulator 501 of the transmitter 500 and the circulator 401 of the receiver 400 in FIG. 4 are manufactured in a stripline configuration, they can be realized in the range of a passive circuit. According to the second embodiment shown in FIG. 4, the second transmission signal f 2 used for local oscillation is separated from the first transmission signal f 1 including the transmission data signal which is a modulated wave. Therefore, a carrier wave necessary for transmission from the DC power supply regeneration circuit 402 on the receiver 400 side or the receiver 400 side is further generated. That is, it is desirable that the frequency be different from the first transmission signal f 1 as much as possible (and not a harmonic), and the passive nonlinear element 406 is used to transmit the signal as a sine wave, which is different from the first transmission signal f 1. The incoming signal can be used after it is received as a sine wave with less distortion through a band filter (not shown). For example, as shown in FIG. 4, only the second harmonic is generated as a frequency of 2 × f 2 through the bandpass filter 101 and is supplied to the mixer, whereby the transmission data on the receiver side is sent to the antenna by the modulator 403. 103 can be transmitted. Since originally a aerial 103 for f 2, by 2 × aerial 103 with relatively high efficiency in the transmission of the frequency of f 2 it is possible transmission. The same applies to the antenna 202. A signal having a carrier frequency of 2 × f 2 received through the antenna 202 on the transmitter side which is the host device is separated by the circulator 501 and amplified and detected through a circuit including the high frequency amplifier 502 on the transmitter side. The received data signal transmitted from can be demodulated. In FIG. 4, since the response signal on the receiver side returns to the transmitter side, the output of the local oscillator 201 can be adjusted in accordance with the response status. Therefore, adjustment means for stable transmission and reception is possible not only from the gain adjustment circuit implemented in the first embodiment shown in FIG. 1, but also from the transmitter side.

このようなデータ通信システムによって、局部発振などの高周波を送信機500に分担させただけでなく、直流電源再生回路402による主要な電力としての直流再生電源のための供給源としても、また、受信機400側からホスト側の送信機500へ送信するための搬送波2×fとしても利用するための効率的な利用を付加することができるようになる。 Such a data communication system not only allows the transmitter 500 to share high frequencies such as local oscillation, but also serves as a supply source for the DC regenerative power source as the main power by the DC power source regenerative circuit 402. It is possible to add efficient use for use as a carrier wave 2 × f 2 for transmission from the transmitter 400 side to the transmitter 500 on the host side.

なお、低周波増幅器102からの帰還信号は、空中線103より受信した局部発振回路に相当する信号fの利得や濾波周波数の微調整を受動回路のみで制御するための信号で、制御信号自体は低周波回路で、有機半導体を用いた印刷によって作製されたMOS容量と数点の受動素子により構成することができる。検波後の信号による受信データ信号は、データとしてデータ処理部404で処理されて出力し、表示部405での表示、記録及び送信機500への応答信号処理に用いることができるようになる。これも通常の受信機において安定な受信のためには、従来の図6の局部発振器603を制御することで行われ、もちろん高周波回路が構成できるならば万全であるが、図1や図4のような局部発振を分離することで受動回路あるいは、受信した再生電源による動作だけで制御が可能である。 The feedback signal from the low-frequency amplifier 102 is a signal for controlling the gain and filtering frequency of the signal f 2 corresponding to the local oscillation circuit received from the antenna 103 only by a passive circuit, and the control signal itself is The low-frequency circuit can be composed of a MOS capacitor manufactured by printing using an organic semiconductor and several passive elements. The received data signal by the signal after detection is processed and output as data by the data processing unit 404, and can be used for display on the display unit 405, recording, and response signal processing to the transmitter 500. This is also performed by controlling the conventional local oscillator 603 in FIG. 6 for stable reception in a normal receiver. Of course, it is perfectly possible if a high-frequency circuit can be configured. By separating such local oscillation, the control can be performed only by the operation of the passive circuit or the received reproduction power source.

図5は第1の送信信号及び第2の送信信号並びに差信号の利得を示す図である。同図に示すように、差信号は、図1の送信機200の空中線204及び受信機100の空中線601を通して得た第1の送信信号f(及び被変調信号df)と、送信機200の局部発振器201で発振し空中線202及び受信機100の空中線103を通して受信した第2の送信信号fとを混合したときの差信号である。同図からわかるように、第1の送信信号fより低い第2の送信信号fとの差周波によってf−f±dfとなる信号を得ている。実際には、大小関係に関わらず、|f−f|±dfの被変調信号が得られ、図中最も左の信号成分を適切な濾波器によって分離していわゆる中間増幅をした後、被変調信号成分を検波することができる。第1の送信信号fと第2の送信信号fとの周波数の差の大きさは、少なくとも被変調信号の周波数dfの大きさより大きくなければならない。このように、適切な第2の送信信号の周波数を選べば、被変調信号が持っている周波数に近い周波数帯域のAC増幅が可能になり低雑音で安定な増幅が可能になる。 FIG. 5 is a diagram illustrating gains of the first transmission signal, the second transmission signal, and the difference signal. As shown in the figure, the difference signal is obtained by transmitting the first transmission signal f 1 (and the modulated signal df) obtained through the antenna 204 of the transmitter 200 and the antenna 601 of the receiver 100 of FIG. This is a difference signal when the second transmission signal f 2 oscillated by the local oscillator 201 and received through the antenna 202 of the receiver 100 and the antenna 103 of the receiver 100 is mixed. As can be seen from the figure, a signal which is f 1 −f 2 ± df is obtained by the difference frequency with the second transmission signal f 2 lower than the first transmission signal f 1 . Actually, a modulated signal of | f 1 −f 2 | ± df is obtained regardless of the magnitude relationship, and the leftmost signal component in the figure is separated by an appropriate filter, so-called intermediate amplification, The modulated signal component can be detected. The magnitude of the frequency difference between the first transmission signal f 1 and the second transmission signal f 2 must be at least larger than the magnitude of the frequency df of the modulated signal. Thus, if an appropriate frequency of the second transmission signal is selected, AC amplification in a frequency band close to the frequency of the modulated signal is possible, and stable amplification with low noise becomes possible.

以上の説明において変調方式については触れなかったが、基本的にはどのような変調方式でも、例えばASK、FSK、PSKなどいずれも、あるいは第1の送信信号fがないDSBやSSBなどの変調方式を用いても良い。また、受信系に用いる有機半導体FETに限らず、高周波での増幅を避けるために本発明のような局部発振を送信機側に分担させて、カードやタグへの広帯域の負担を減らせることはいうまでもない。 In the above description, the modulation system has not been described. Basically, any modulation system, for example, any of ASK, FSK, PSK, etc., or modulation such as DSB or SSB without the first transmission signal f 1 is used. A method may be used. In addition to the organic semiconductor FET used in the receiving system, in order to avoid amplification at high frequencies, it is possible to share the local oscillation as in the present invention on the transmitter side and reduce the burden on the card and tag over a wide band. Needless to say.

なお、本発明は上記各実施の形態例に限定されるものではなく、特許請求の範囲内に記載であれば多種の変形や置換可能であることは言うまでもない。   The present invention is not limited to the above embodiments, and it goes without saying that various modifications and substitutions are possible as long as they are described in the scope of the claims.

本発明の第1の実施の形態例に係るデータ通信システムのシステム構成を示すブロック図である。It is a block diagram which shows the system configuration | structure of the data communication system which concerns on the 1st example of an embodiment of this invention. 利得調整制御回路の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of a gain adjustment control circuit. 第2の送信信号fのスペクトルの周波数−利得の曲線を示す特性図である。Frequency of the second spectrum of the transmission signal f 2 of the - is a characteristic diagram showing a gain curve. 本発明の第2の実施の形態例に係るデータ通信システムのシステム構成を示すブロック図である。It is a block diagram which shows the system configuration | structure of the data communication system which concerns on the 2nd Example of this invention. 第1の送信信号及び第2の送信信号並びに差信号の利得を示す図である。It is a figure which shows the gain of a 1st transmission signal, a 2nd transmission signal, and a difference signal. 従来のデータ通信システムの受信器の構成を示すブロック図である。It is a block diagram which shows the structure of the receiver of the conventional data communication system. 従来のデータ通信システムの受信器の別の構成を示すブロック図である。It is a block diagram which shows another structure of the receiver of the conventional data communication system.

符号の説明Explanation of symbols

100,400,600,700;受信機、101;帯域濾波器、
102;低周波増幅器、103,202,204,601;空中線、
200,500;送信機、201,603;局部発振器、
203,502;高周波増幅器、300;利得調整制御回路、
301;入力信号、302;抵抗、303;ダイオード、
304;出力信号、401,501;サーキュレータ、
402;直流電源再生回路、403;変調部、404;データ処理部、
405;表示部、406;受動非線形素子、602;混合器、
604;低域濾波器、605;中間周波増幅器。
100, 400, 600, 700; receiver, 101; bandpass filter,
102; low frequency amplifier, 103, 202, 204, 601; antenna
200,500; transmitter, 201,603; local oscillator,
203, 502; high-frequency amplifier, 300; gain adjustment control circuit,
301; input signal; 302; resistor; 303; diode;
304; output signal, 401, 501; circulator,
402; DC power supply regeneration circuit; 403; modulation unit; 404; data processing unit;
405; display unit, 406; passive nonlinear element, 602; mixer,
604; low-pass filter, 605; intermediate frequency amplifier.

Claims (9)

2つの周波数を分離して受信する空中線を有する受信機において、
被変調信号を含む第1の受信信号と、該第1の受信信号とは周波数が異なる第2の受信信号とを混合する混合器と、該混合器で混合した受信信号から被変調信号を含む中間周波を生成する濾波器とを有することを特徴とする受信機。
In a receiver having an antenna that receives two frequencies separately,
A mixer that mixes a first received signal including a modulated signal and a second received signal having a frequency different from that of the first received signal, and includes a modulated signal from the received signal mixed by the mixer And a filter for generating an intermediate frequency.
前記第2の受信信号に対してMOS容量による利得調整を行う利得調整回路を有することを特徴とする請求項1記載の受信機。   The receiver according to claim 1, further comprising a gain adjustment circuit that performs gain adjustment with a MOS capacitor on the second reception signal. 前記第1の受信信号の搬送波とともに送信される前記被変調信号の周波数の大きさは、少なくとも前記第1の受信信号の周波数と前記第2の受信信号の差周波数の大きさより小さいことを特徴とする請求項1又は2に記載の受信機。   The frequency of the modulated signal transmitted together with the carrier wave of the first received signal is at least smaller than the difference frequency between the frequency of the first received signal and the second received signal. The receiver according to claim 1 or 2. 前記第2の受信信号を受信機内の電力として検波して直流電源を得る直流電源再生回路を有することを特徴とする請求項1〜3のいずれか1項に記載の受信機。   4. The receiver according to claim 1, further comprising: a DC power supply regeneration circuit that detects the second received signal as electric power in the receiver to obtain a DC power supply. 5. 前記第1の受信信号の信号に対する応答信号を、前記第2の受信信号をそのまま、あるいは非線形素子又は非線形回路を通して発生した高調波で変調する変調部を有し、該変調部により変調した応答信号を送信機側へ送信することを特徴とする請求項1〜4のいずれか1項に記載の受信機。   A response signal modulated by the modulation unit, the modulation unit modulating the response signal to the signal of the first reception signal with the second reception signal as it is or with a harmonic generated through a non-linear element or a non-linear circuit; The receiver according to claim 1, wherein the receiver is transmitted to the transmitter side. 前記第2の受信信号を受信したときの同じ前記空中線を使って変調波を送信機側へ送信することを特徴とする1〜5のいずれか1項に記載の受信機。   The receiver according to any one of claims 1 to 5, wherein a modulated wave is transmitted to the transmitter side using the same antenna when the second received signal is received. 被変調信号を含む第1の送信信号を送信するとともに、前記第1の送信信号とは異なる第2の送信信号を送信することを特徴とする送信機。   A transmitter characterized by transmitting a first transmission signal including a modulated signal and transmitting a second transmission signal different from the first transmission signal. 前記第1の送信信号の搬送波とともに送信される前記被変調信号の周波数の大きさは、少なくとも前記第1の送信信号の周波数と前記第2の送信信号の差周波数の大きさより小さいことを特徴とする請求項7記載の送信機。   The frequency of the modulated signal transmitted together with the carrier wave of the first transmission signal is at least smaller than the difference frequency between the frequency of the first transmission signal and the second transmission signal. The transmitter according to claim 7. 請求項1〜6のいずれか1項に記載の受信機と、請求項7又は8に記載の送信機とを含んで構築することを特徴とするデータ通信システム。   A data communication system comprising the receiver according to any one of claims 1 to 6 and the transmitter according to claim 7 or 8.
JP2006189428A 2006-07-10 2006-07-10 Receiver, transmitter and data communication system Pending JP2008022045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006189428A JP2008022045A (en) 2006-07-10 2006-07-10 Receiver, transmitter and data communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006189428A JP2008022045A (en) 2006-07-10 2006-07-10 Receiver, transmitter and data communication system

Publications (1)

Publication Number Publication Date
JP2008022045A true JP2008022045A (en) 2008-01-31

Family

ID=39077715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006189428A Pending JP2008022045A (en) 2006-07-10 2006-07-10 Receiver, transmitter and data communication system

Country Status (1)

Country Link
JP (1) JP2008022045A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218847A (en) * 2008-03-10 2009-09-24 Nidek Co Ltd Communication circuit and visual reproduction auxiliary device provided with the same
JP2017508129A (en) * 2013-12-02 2017-03-23 アンライセンスド チンプ テクノロジーズ エルエルシーUnlicensed Chimp Technologies, LLC Local positioning and response system
JP2020537861A (en) * 2017-10-12 2020-12-24 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag Safe condition of electrical machinery
CN113114113A (en) * 2021-05-14 2021-07-13 浙江大学 Frequency signal generating circuit and method based on double-frequency wireless power supply

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037033A (en) * 1989-06-02 1991-01-14 Yamatake Honeywell Co Ltd Radio receiver
JPH09214366A (en) * 1996-02-06 1997-08-15 Denso Corp Data communication equipment
JP2001053640A (en) * 1999-08-11 2001-02-23 Communication Research Laboratory Mpt Device and method for radio communication
JP2003124841A (en) * 2001-10-12 2003-04-25 Lintec Corp System and device for radio communication
JP2003152586A (en) * 2001-11-09 2003-05-23 Siemens Kk Radio communications equipment, radio equipment, and radio communication system
JP2003163601A (en) * 2001-11-27 2003-06-06 Sharp Corp Millimeter wave radio transmitter, millimeter wave radio receiver and millimeter wave band communication system
JP2007143116A (en) * 2005-10-19 2007-06-07 Seiko Epson Corp Wireless communication device
JP2007143050A (en) * 2005-11-22 2007-06-07 Nippon Telegr & Teleph Corp <Ntt> High-frequency radio communication system and high-frequency radio communication method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037033A (en) * 1989-06-02 1991-01-14 Yamatake Honeywell Co Ltd Radio receiver
JPH09214366A (en) * 1996-02-06 1997-08-15 Denso Corp Data communication equipment
JP2001053640A (en) * 1999-08-11 2001-02-23 Communication Research Laboratory Mpt Device and method for radio communication
JP2003124841A (en) * 2001-10-12 2003-04-25 Lintec Corp System and device for radio communication
JP2003152586A (en) * 2001-11-09 2003-05-23 Siemens Kk Radio communications equipment, radio equipment, and radio communication system
JP2003163601A (en) * 2001-11-27 2003-06-06 Sharp Corp Millimeter wave radio transmitter, millimeter wave radio receiver and millimeter wave band communication system
JP2007143116A (en) * 2005-10-19 2007-06-07 Seiko Epson Corp Wireless communication device
JP2007143050A (en) * 2005-11-22 2007-06-07 Nippon Telegr & Teleph Corp <Ntt> High-frequency radio communication system and high-frequency radio communication method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218847A (en) * 2008-03-10 2009-09-24 Nidek Co Ltd Communication circuit and visual reproduction auxiliary device provided with the same
JP2017508129A (en) * 2013-12-02 2017-03-23 アンライセンスド チンプ テクノロジーズ エルエルシーUnlicensed Chimp Technologies, LLC Local positioning and response system
JP2020537861A (en) * 2017-10-12 2020-12-24 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag Safe condition of electrical machinery
CN113114113A (en) * 2021-05-14 2021-07-13 浙江大学 Frequency signal generating circuit and method based on double-frequency wireless power supply

Similar Documents

Publication Publication Date Title
US7983328B2 (en) Data transmission device
JP3788921B2 (en) Wireless communication system, receiving apparatus, wireless communication apparatus, and wireless communication method
JP5630648B2 (en) Reception device, reception method, and electronic device
US20090215423A1 (en) Multi-port correlator and receiver having the same
KR20080097115A (en) Radio frequency identification devices
US7604167B2 (en) Active backscatter wireless display terminal
US7548737B2 (en) System and apparatus for a direct conversion receiver and transmitter
US8313025B2 (en) Wireless display tag (WDT) using active and backscatter transceivers
JP2008022045A (en) Receiver, transmitter and data communication system
US7835716B2 (en) RF receiving apparatus and method using DC offset free baseband signal
JP2007143105A (en) Rf receiver and method for completely removing leakage component from received signal
JP4421350B2 (en) Harmonic mixer and radio apparatus including the same
US7212787B2 (en) Wireless audio transmission system
US7979034B2 (en) Architecture for RFID tag reader/writer
JP4907423B2 (en) Transmitter
JP4391291B2 (en) Wireless device
JP2008187227A (en) Rfid reader
KR100911821B1 (en) Radio Frequency IDentification tag
CN111049553B (en) Low-power-consumption verification method for IEC14443 non-contact card
JP3980026B2 (en) Transmitter
CN111371472B (en) Transmitter-receiver comprising an electronic chip
JP4528650B2 (en) Wireless communication device and non-contact IC card reader / writer device
KR101294492B1 (en) Radio Frequency IDentification transmitter/receiver device
JP2004072243A (en) Communication apparatus
KR20100060954A (en) Communication system for improveing power effeciency, and wireless signal process method having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090423

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110617