JP2006259124A - Cold mirror - Google Patents

Cold mirror Download PDF

Info

Publication number
JP2006259124A
JP2006259124A JP2005075272A JP2005075272A JP2006259124A JP 2006259124 A JP2006259124 A JP 2006259124A JP 2005075272 A JP2005075272 A JP 2005075272A JP 2005075272 A JP2005075272 A JP 2005075272A JP 2006259124 A JP2006259124 A JP 2006259124A
Authority
JP
Japan
Prior art keywords
film
refractive index
infrared
thin film
cold mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005075272A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kawai
合 安 洋 河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWAI OPTICAL CO Ltd
Original Assignee
KAWAI OPTICAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWAI OPTICAL CO Ltd filed Critical KAWAI OPTICAL CO Ltd
Priority to JP2005075272A priority Critical patent/JP2006259124A/en
Publication of JP2006259124A publication Critical patent/JP2006259124A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold mirror which has the fewer number of layered layers and further provides high reflectance of visible light. <P>SOLUTION: The cold mirror A has: a substrate 1; a dielectric multilayered film 3 where thin films having refractive indices different from each other are alternately layered; and an IR transmission film 2 having a refractive index higher than the refractive index of any thin film forming the dielectric multilayered film 3. The IR transmission film 2 is interposed between the substrate 1 and the dielectric multilayered film 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、可視光線を反射し、赤外線を透過するコールドミラーに関するものである。 The present invention relates to a cold mirror that reflects visible light and transmits infrared light.

従来、ハロゲンランプ、メタルハライドランプなどの赤外線(熱線)を伴う光源に使用するミラーとして、誘電体多層膜を利用して可視光線を反射させ、不要な赤外線を透過させて放熱を行うコールドミラーが知られている。このコールドミラーは、基板上に、低屈折率薄膜とこの薄膜よりも屈折率の高い高屈折率薄膜とを交互に積層し、光波の干渉を利用して可視光線を反射させるものであり、高い可視光線の反射率を得るためには同じ光学的膜厚の薄膜を数多く積層する必要があった。(例えば、特許文献1の第3頁右上欄参照)。
特開昭63−311301号公報
Conventionally, as a mirror used for light sources with infrared rays (heat rays) such as halogen lamps and metal halide lamps, cold mirrors that use a dielectric multilayer film to reflect visible rays and transmit unnecessary infrared rays to dissipate heat are known. It has been. This cold mirror is one in which a low-refractive index thin film and a high-refractive index thin film having a higher refractive index than this thin film are alternately laminated on a substrate, and reflects visible light by utilizing interference of light waves. In order to obtain the reflectance of visible light, it was necessary to stack many thin films having the same optical thickness. (For example, refer to the upper right column on page 3 of Patent Document 1).
JP-A-63-311301

しかしながら、薄膜の積層数が多くなればなるほど工程が増えて製造に手間が掛かると共に、積層数に比例して膜厚が厚くなり、薄膜の剥離が起こりやすくなるという問題があった。 However, as the number of thin film layers increases, the number of processes increases and labor is required for manufacturing, and the film thickness increases in proportion to the number of stacks, and the thin film is likely to peel off.

本発明は、上述の問題を解決するためになされたものであり、少ない積層数で高い可視光線の反射率を得ることのできるコールドミラーを提供するものである。 The present invention has been made in order to solve the above-described problems, and provides a cold mirror capable of obtaining a high visible light reflectance with a small number of stacked layers.

請求項1に係る手段は、基板と、屈折率の異なる薄膜が交互に積層された誘電体多層膜と、前記誘電体多層膜を構成するいずれの薄膜の屈折率よりも高い屈折率を有する赤外線透過膜と、を有し、前記基板と前記誘電体多層膜との間に、前記赤外線透過膜を介在させた構成のコールドミラーである。 The means according to claim 1 includes a substrate, a dielectric multilayer film in which thin films having different refractive indexes are alternately laminated, and an infrared ray having a refractive index higher than a refractive index of any thin film constituting the dielectric multilayer film. A cold mirror having a configuration in which the infrared transmission film is interposed between the substrate and the dielectric multilayer film.

請求項2に係る手段は、請求項1に記載の発明において、赤外線透過膜が珪素(Si)、ゲルマニウム(Ge)の中から選ばれたいずれか一の物質からなる構成のコールドミラーである。 According to a second aspect of the present invention, there is provided the cold mirror according to the first aspect of the invention, wherein the infrared transmission film is made of any one material selected from silicon (Si) and germanium (Ge).

請求項3に係る手段は、請求項1または請求項2に記載の発明において、赤外線透過膜の光学的膜厚が、λIR/2(λIRは透過させたい赤外線の設計中心波長)である構成のコールドミラーである。 According to a third aspect of the present invention, in the invention of the first or second aspect, the optical film thickness of the infrared transmitting film is λ IR / 2 (λ IR is the designed center wavelength of infrared light to be transmitted). A cold mirror of the configuration.

本発明のコールドミラーは、基板と誘電体多層膜との間に赤外線透過膜を介在させたため、不要な赤外線を透過させて放熱を行いつつ、誘電体多層膜を構成する薄膜が少ない積層数であっても高い可視光線の反射率を得ることが可能となる。 In the cold mirror of the present invention, since the infrared transmission film is interposed between the substrate and the dielectric multilayer film, the number of thin films constituting the dielectric multilayer film is small, while transmitting heat by transmitting unnecessary infrared rays. Even if it exists, it becomes possible to obtain the reflectance of a high visible ray.

本発明の実施の形態を、図1に基づき説明する。
本発明のコールドミラーAは、基板1と、赤外線透過膜2と、誘電体多層膜3とを備えており、基板1と誘電体多層膜3との間に、赤外線透過膜2を介在させた構成となっている。
An embodiment of the present invention will be described with reference to FIG.
The cold mirror A of the present invention includes a substrate 1, an infrared transmission film 2, and a dielectric multilayer film 3, and the infrared transmission film 2 is interposed between the substrate 1 and the dielectric multilayer film 3. It has a configuration.

基板1は、この基板1上に形成される赤外線透過膜2および誘電体多層膜3を支持すると共に、熱線である赤外線を透過させたり、一旦吸収してコールドミラーAの背面A1側から放熱させたりする媒体でもある。したがって、基板1は、赤外線を透過させる場合にあってはガラスやプラスチック等の赤外線透過材料が用いられ、赤外線を一旦吸収する場合にあっては金属やセラミックス等の熱伝導率、放熱性の良い材料が用いられる。 The substrate 1 supports the infrared transmission film 2 and the dielectric multilayer film 3 formed on the substrate 1 and transmits infrared rays as heat rays, or once absorbs and dissipates heat from the back surface A1 side of the cold mirror A. It is also a medium. Accordingly, the substrate 1 is made of an infrared transmitting material such as glass or plastic when transmitting infrared rays, and has a good thermal conductivity and heat dissipation such as metal and ceramics when absorbing infrared rays once. Material is used.

前述の赤外線透過膜2は、後記する誘電体多層膜3を構成するいずれの薄膜の屈折率よりも高い屈折率を有し、可視光線を反射して赤外線を透過する例えば珪素(Si)、ゲルマニウム(Ge)などの材料が用いられる。 The aforementioned infrared transmission film 2 has a refractive index higher than that of any of the thin films constituting the dielectric multilayer film 3 to be described later, and reflects infrared rays and transmits infrared rays, for example, silicon (Si), germanium A material such as (Ge) is used.

なお、赤外線透過膜2の光学的膜厚は(2m−1)×λIR/2(λIRは透過させたい赤外線の設計中心波長、mは自然数)とするのが好ましい。誘電体多層膜3と赤外線透過膜2との界面bでの赤外線の反射光、および赤外線透過膜2と基板1との界面aでの赤外線の反射光が干渉し、赤外線の反射が弱められるためである。なお、好適にはλIR/2(m=1)が用いられる。より薄い赤外線透過膜2で同じ効果が得られるためである。 The optical film thickness of the infrared transmission film 2 is preferably (2m−1) × λ IR / 2 (λ IR is the designed center wavelength of infrared light to be transmitted and m is a natural number). Infrared reflected light at the interface b between the dielectric multilayer film 3 and the infrared transmitting film 2 and infrared reflected light at the interface a between the infrared transmitting film 2 and the substrate 1 interfere with each other, and the infrared reflection is weakened. It is. Preferably, λ IR / 2 (m = 1) is used. This is because the same effect can be obtained with a thinner infrared transmitting film 2.

前述の誘電体多層膜3は、屈折率の異なる薄膜が交互に積層されたものであり、たとえば屈折率の異なる薄膜として低屈折率薄膜4と、この低屈折率薄膜4よりも高い屈折率を有する高屈折率薄膜5とが交互に積層されている。また、可視光線の波長帯域全体に渡って透過する材料が好ましく、二酸化珪素(SiO2)、酸化珪素(SiO)、フッ化マグネシウム(MgF2)、二酸化チタン(TiO2)、五酸化タンタル(Ta35)、五酸化ニオブ(Nb35)、酸化ジルコニウム(ZrO2)、酸化ハフニウム(HfO2)、酸化マグネシウム(MgO)、酸化アルミニウム(Al23)などの物質が用いられる。 The dielectric multilayer film 3 described above is formed by alternately laminating thin films having different refractive indexes. For example, a low refractive index thin film 4 as a thin film having a different refractive index and a higher refractive index than the low refractive index thin film 4. The high-refractive-index thin films 5 are stacked alternately. In addition, a material that transmits the entire wavelength band of visible light is preferable. Silicon dioxide (SiO 2 ), silicon oxide (SiO), magnesium fluoride (MgF 2 ), titanium dioxide (TiO 2 ), tantalum pentoxide (Ta) 3 O 5 ), niobium pentoxide (Nb 3 O 5 ), zirconium oxide (ZrO 2 ), hafnium oxide (HfO 2 ), magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ) and the like are used.

また、誘電体多層膜3の各薄膜の光学的膜厚は(2n−1)×λ0/4(λ0は反射させたい可視光線の設計中心波長、nは自然数)であり、好適にはλ0/4(n=1)が用いられる。より薄い薄膜で同じ反射効果が得られるためである。 Further, the optical film thickness of each thin dielectric multilayer film 3 is (2n-1) × λ 0 /4 (λ 0 is the design center wavelength of visible light desired to be reflected, n represents a natural number), preferably λ 0/4 (n = 1 ) is used. This is because the same reflection effect can be obtained with a thinner thin film.

なお、誘電体多層膜3の積層数は6層以上とするのが好ましい。6層よりも少ないと赤外線透過膜2自身の反射特性の影響でコールドミラーによって反射される反射光zの白色からの色ズレが大きくなり、例えば赤みがかった光色となってしまうためである。 Note that the number of stacked dielectric multilayer films 3 is preferably 6 or more. This is because if the number of layers is less than 6, the color shift from the white of the reflected light z reflected by the cold mirror increases due to the influence of the reflection characteristics of the infrared transmission film 2 itself, for example, a reddish light color.

次に、本発明に係るコールドミラーの製造方法について説明する。まず、基板1の表面をアルコール等で洗浄した後、基板1上に赤外線透過膜2を所定の膜厚に形成する。その後、赤外線透過膜2上に例えば前述の低屈折率薄膜4を形成し、更に低屈折率薄膜4上に高屈折率薄膜5を形成し、以下、低屈折率薄膜4と高屈折率薄膜5とを交互に所定の積層数となるように積層して形成する。また、赤外線透過膜2、低屈折率薄膜4および高屈折率薄膜5の形成方法としては、例えば真空蒸着法、スパッタリング蒸着法、あるいはその他の公知技術による方法が用いられる。 Next, the manufacturing method of the cold mirror which concerns on this invention is demonstrated. First, the surface of the substrate 1 is washed with alcohol or the like, and then an infrared transmission film 2 is formed on the substrate 1 to a predetermined thickness. Thereafter, for example, the low refractive index thin film 4 described above is formed on the infrared transmission film 2, and the high refractive index thin film 5 is further formed on the low refractive index thin film 4. Hereinafter, the low refractive index thin film 4 and the high refractive index thin film 5 are formed. Are alternately stacked so as to have a predetermined number of layers. Further, as a method for forming the infrared transmission film 2, the low refractive index thin film 4, and the high refractive index thin film 5, for example, a vacuum vapor deposition method, a sputtering vapor deposition method, or other known techniques are used.

ところで、上記では赤外線透過膜2の上面に低屈折率薄膜4を形成し、以下、高屈折率薄膜5とを交互に形成する構成について説明したが、赤外線透過膜2の上面に高屈折率薄膜5を形成し、以下、低屈折率薄膜4とを交互に形成する構成であっても構わない。また、所定の積層後のコールドミラーAの表面A2の薄膜は低屈折率薄膜4または高屈折率薄膜5のいずれであっても構わない。 In the above description, the low refractive index thin film 4 is formed on the upper surface of the infrared transmitting film 2 and the high refractive index thin film 5 is alternately formed. However, the high refractive index thin film is formed on the upper surface of the infrared transmitting film 2. 5 may be formed, and the low refractive index thin films 4 may be alternately formed below. Further, the thin film on the surface A2 of the cold mirror A after the predetermined lamination may be either the low refractive index thin film 4 or the high refractive index thin film 5.

次に、本発明に係るコールドミラーAの作用について説明する。 Next, the operation of the cold mirror A according to the present invention will be described.

可視光線および赤外線を含んでいる入射光xをコールドミラーAに照射した場合、入射光xのうち可視光線については、誘電体多層膜3を構成する低屈折率薄膜4と高屈折率薄膜5とにより光波の干渉で反射される。すなわち、低屈折率薄膜4および高屈折率薄膜5の光学的膜厚を(2n−1)×λ0/4とすることで、低屈折率薄膜4の上面に隣接する高屈折率薄膜5との界面cで反射する可視光線と、前記の低屈折率薄膜4の下面に隣接する高屈折率薄膜5との界面dで反射する可視光線とが同じ位相となって強めあい反射が起こる。また、高屈折率薄膜5の上面に隣接する低屈折率薄膜4との界面dで反射する可視光線と前記の高屈折率薄膜5の下面に隣接する低屈折率薄膜4との界面cで反射する可視光線とについても同じ位相となるため同様に反射が起こる。 When the cold mirror A is irradiated with incident light x including visible light and infrared light, the low refractive index thin film 4 and the high refractive index thin film 5 constituting the dielectric multilayer film 3 are used for visible light in the incident light x. Is reflected by interference of light waves. That is, by setting the optical thickness of the low refractive index thin film 4 and a high refractive index thin film 5 and (2n-1) × λ 0 /4, the high refractive index film 5 adjacent to the upper surface of the low refractive index thin film 4 The visible light reflected at the interface c and the visible light reflected at the interface d between the low refractive index thin film 4 and the high refractive index thin film 5 adjacent to the lower surface of the low refractive index thin film 4 have the same phase, and intensified reflection occurs. Further, visible light reflected at the interface d with the low refractive index thin film 4 adjacent to the upper surface of the high refractive index thin film 5 and reflected at the interface c between the low refractive index thin film 4 adjacent to the lower surface of the high refractive index thin film 5 are reflected. Since the same phase is applied to visible light, the reflection occurs in the same manner.

なお、低屈折率薄膜4と高屈折率薄膜5とを交互に数多く積層するのは、界面cおよび界面dの数を増やすためであり、これらの界面c、dによって可視光線を反射させて反射率を高めるためである。 The reason why a large number of the low refractive index thin films 4 and the high refractive index thin films 5 are alternately laminated is to increase the number of the interfaces c and d. The visible light is reflected and reflected by these interfaces c and d. This is to increase the rate.

ところで、可視光線の一部は誘電体多層膜3を透過して赤外線透過膜2に達するが、この可視光線の大部分は界面bによって反射される。これは、赤外線透過膜2の屈折率が、誘電体多層膜3を構成するいずれの薄膜よりも高い屈折率を有するためである。 By the way, a part of the visible light passes through the dielectric multilayer film 3 and reaches the infrared transmission film 2, but most of the visible light is reflected by the interface b. This is because the infrared transmission film 2 has a higher refractive index than any of the thin films constituting the dielectric multilayer film 3.

一方、コールドミラーAに入射した入射光xのうちの赤外線については大部分が誘電体多層膜3および赤外線透過膜2を透過して基板1と赤外線透過膜2との界面aに達する。これは、誘電体多層膜3を構成するいずれの薄膜も赤外線に対して透明であると共にこれらの薄膜による干渉(反射)がないこと、および赤外線透過膜2の材料に珪素(Si)等を使用しているため赤外線が透過することによるものである。なお、赤外線透過膜2の光学的膜厚を(2m−1)×λIR/2とすることで、界面bで反射した赤外線と、界面aで反射した赤外線とは位相が180°ずれて互いに打ち消しあい赤外線の反射がいっそう抑えられる。 On the other hand, most of the infrared light of the incident light x incident on the cold mirror A passes through the dielectric multilayer film 3 and the infrared transmission film 2 and reaches the interface a between the substrate 1 and the infrared transmission film 2. This is because any thin film constituting the dielectric multilayer film 3 is transparent to infrared rays, and there is no interference (reflection) by these thin films, and silicon (Si) or the like is used as the material of the infrared transmission film 2 This is because infrared rays are transmitted. In addition, by setting the optical film thickness of the infrared transmission film 2 to (2m−1) × λ IR / 2, the infrared rays reflected by the interface b and the infrared rays reflected by the interface a are 180 ° out of phase with each other. Counteracting infrared reflection is further suppressed.

以上のように、基板1と誘電体多層膜3との間に赤外線透過膜2を介在させることにより、可視光線にあっては赤外線透過膜2を設けることで反射率を高めることができ、赤外線にあっては放熱のために透過させることが可能となる。 As described above, by providing the infrared transmission film 2 between the substrate 1 and the dielectric multilayer film 3, the reflectance can be increased by providing the infrared transmission film 2 for visible light. In this case, it can be transmitted for heat dissipation.

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

(実施例)図1に本発明の一実施例の構成の略図を示した。基板1として厚さ3mmの洗浄済みのガラス板を用い、この基板1上に光学的膜厚がλIR/2(λIRは1500nm)となるように珪素(Si)を真空蒸着法で蒸着して赤外線透過膜2形成した。さらに、赤外線透過膜2上には低屈折率薄膜4と高屈折率薄膜5を真空蒸着法により積層数が10層となるように交互に積層して誘電体多層膜3を形成した。また、低屈折率薄膜4は光学的膜厚がλ0/4(λ0は500nm)の二酸化珪素(SiO2)薄膜とし、高屈折率薄膜5は光学的膜厚がλ0/4の二酸化チタン(TiO2)薄膜とした。なお、合計膜厚L1(赤外線透過膜2の膜厚と誘電体多層膜3の膜厚の和)は0.88μmである。 (Embodiment) FIG. 1 is a schematic diagram showing the construction of an embodiment of the present invention. A cleaned glass plate having a thickness of 3 mm is used as the substrate 1, and silicon (Si) is deposited on the substrate 1 by vacuum deposition so that the optical film thickness is λ IR / 2 (λ IR is 1500 nm). Thus, an infrared transmission film 2 was formed. Furthermore, the dielectric multilayer film 3 was formed by alternately laminating the low refractive index thin film 4 and the high refractive index thin film 5 on the infrared transmitting film 2 by vacuum vapor deposition so that the number of laminated layers becomes 10. Further, the low refractive index thin film 4 is an optical film thickness of λ 0/4 0 is 500 nm) and silicon dioxide (SiO 2) thin film of a high refractive index thin film 5 optical thickness of lambda 0/4 dioxide A titanium (TiO 2 ) thin film was obtained. The total film thickness L1 (the sum of the film thickness of the infrared transmission film 2 and the film thickness of the dielectric multilayer film 3) is 0.88 μm.

図2は本実施例のコールドミラーAにおいて入射光xの入射角を0度としたときの反射率の分光特性を示している。 FIG. 2 shows the spectral characteristics of reflectance when the incident angle of the incident light x is 0 degree in the cold mirror A of this embodiment.

(比較例1)図3に比較例1の構成の略図を示した。比較例1は実施例の赤外線透過膜2を設けない例であり、赤外線透過膜2以外は実施例と同じ構成とした。なお、基板1と誘電体多層膜3の構成および製作方法は実施例と同様であり、同一部分に同一符号を付し、詳細な説明は省略する。 (Comparative Example 1) FIG. 3 shows a schematic diagram of the structure of Comparative Example 1. Comparative Example 1 is an example in which the infrared transmission film 2 of the example is not provided, and the configuration other than the infrared transmission film 2 is the same as that of the example. The configuration and manufacturing method of the substrate 1 and the dielectric multilayer film 3 are the same as those in the embodiment, and the same reference numerals are given to the same parts, and detailed description is omitted.

図4は本比較例1のコールドミラーにおいて入射角を0度としたときの反射率の分光特性を示しているが、前述の実施例との比較した場合、赤外線の透過率は概ね同じであるのに対し、可視光線の反射率が小さいことが判る。換言すれば、実施例のように赤外線透過膜2を設けることにより可視光線の反射率を高めることが可能となる。 FIG. 4 shows the spectral characteristics of the reflectance when the incident angle is set to 0 degree in the cold mirror of Comparative Example 1, but the infrared transmittance is substantially the same when compared with the above-described embodiment. On the other hand, it can be seen that the reflectance of visible light is small. In other words, the reflectance of visible light can be increased by providing the infrared transmission film 2 as in the embodiment.

(比較例2)図5に比較例2の構成の略図、図6に比較例2の入射角0度における反射率の分光特性を示した。比較例2は比較例1の低屈折率薄膜4と高屈折率薄膜5の積層数を増やし、実施例とほぼ同等な可視光線の反射率を得ることができる構成とした例であるが、積層数は24層(実施例の2.4倍)、合計膜厚L2(誘電体多層膜3の膜厚)は1.58μm(実施例の1.8倍)とする必要があった。 (Comparative Example 2) FIG. 5 shows a schematic diagram of the structure of Comparative Example 2, and FIG. 6 shows the spectral characteristics of the reflectance of Comparative Example 2 at an incident angle of 0 degrees. Comparative Example 2 is an example in which the number of layers of the low refractive index thin film 4 and the high refractive index thin film 5 of Comparative Example 1 is increased, and a visible light reflectance substantially equivalent to that of the example can be obtained. The number was 24 layers (2.4 times that of the example), and the total film thickness L2 (thickness of the dielectric multilayer film 3) was required to be 1.58 μm (1.8 times that of the example).

本発明の一実施例の構成を示す略図である。1 is a schematic diagram showing the configuration of an embodiment of the present invention. 図1のコールドミラーの反射率の分光特性を示す図である。It is a figure which shows the spectral characteristic of the reflectance of the cold mirror of FIG. 比較例1のコールドミラーの構成を示す略図である。6 is a schematic diagram showing a configuration of a cold mirror of Comparative Example 1; 図3のコールドミラーの反射率の分光特性を示す図である。It is a figure which shows the spectral characteristic of the reflectance of the cold mirror of FIG. 比較例2のコールドミラーの構成を示す略図である。6 is a schematic diagram showing a configuration of a cold mirror of Comparative Example 2; 図5のコールドミラーの反射率の分光特性を示す図である。It is a figure which shows the spectral characteristic of the reflectance of the cold mirror of FIG.

符号の説明Explanation of symbols

A コールドミラー
1 基板
2 赤外線透過膜
3 誘電体多層膜
4 低屈折率薄膜
5 高屈折率薄膜
x 入射光
z 反射光
A Cold mirror 1 Substrate 2 Infrared transmitting film 3 Dielectric multilayer 4 Low refractive index thin film 5 High refractive index thin film x Incident light z Reflected light

Claims (3)

基板と、
屈折率の異なる薄膜が交互に積層された誘電体多層膜と、
前記誘電体多層膜を構成するいずれの薄膜の屈折率よりも高い屈折率を有する赤外線透過膜と、
を有し、
前記基板と前記誘電体多層膜との間に、前記赤外線透過膜を介在させたことを特徴とするコールドミラー。
A substrate,
A dielectric multilayer film in which thin films having different refractive indexes are alternately laminated;
An infrared transmission film having a refractive index higher than the refractive index of any thin film constituting the dielectric multilayer film;
Have
A cold mirror, wherein the infrared transmission film is interposed between the substrate and the dielectric multilayer film.
赤外線透過膜は珪素(Si)、ゲルマニウム(Ge)の中から選ばれたいずれか一の物質からなることを特徴とする請求項1に記載のコールドミラー。 2. The cold mirror according to claim 1, wherein the infrared transmission film is made of any one material selected from silicon (Si) and germanium (Ge). 赤外線透過膜の光学的膜厚は、λIR/2(λIRは透過させたい赤外線の設計中心波長)であることを特徴とする請求項1または請求項2に記載のコールドミラー。 3. The cold mirror according to claim 1, wherein an optical film thickness of the infrared transmitting film is λ IR / 2 (λ IR is a designed center wavelength of infrared light to be transmitted).
JP2005075272A 2005-03-16 2005-03-16 Cold mirror Pending JP2006259124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005075272A JP2006259124A (en) 2005-03-16 2005-03-16 Cold mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005075272A JP2006259124A (en) 2005-03-16 2005-03-16 Cold mirror

Publications (1)

Publication Number Publication Date
JP2006259124A true JP2006259124A (en) 2006-09-28

Family

ID=37098483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005075272A Pending JP2006259124A (en) 2005-03-16 2005-03-16 Cold mirror

Country Status (1)

Country Link
JP (1) JP2006259124A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134630A (en) * 2013-01-09 2014-07-24 Asahi Kasei E-Materials Corp Optical system
JP2014529090A (en) * 2011-06-06 2014-10-30 ユニバーシティー オブ フロリダ リサーチ ファウンデーション, インコーポレイテッドUniversity Of Florida Research Foundation, Inc. Transparent infrared to visible up-conversion device
JP2015167105A (en) * 2014-03-04 2015-09-24 スタンレー電気株式会社 visible light source
KR101806698B1 (en) * 2016-05-30 2017-12-07 현대자동차주식회사 An infrared optical filter
CN112859216A (en) * 2021-01-14 2021-05-28 北京科技大学 Multilayer thin film structure with significant directionally selective emissivity
WO2022185944A1 (en) 2021-03-01 2022-09-09 国立大学法人東海国立大学機構 Optical product and condenser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0588002A (en) * 1991-09-27 1993-04-09 Matsushita Electric Ind Co Ltd Infrared optical parts
JPH0678903U (en) * 1993-04-12 1994-11-04 株式会社小糸製作所 Shield beam lamp
JPH10125281A (en) * 1996-10-24 1998-05-15 Iwasaki Electric Co Ltd Metal halide lamp with transparent heat insulation film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0588002A (en) * 1991-09-27 1993-04-09 Matsushita Electric Ind Co Ltd Infrared optical parts
JPH0678903U (en) * 1993-04-12 1994-11-04 株式会社小糸製作所 Shield beam lamp
JPH10125281A (en) * 1996-10-24 1998-05-15 Iwasaki Electric Co Ltd Metal halide lamp with transparent heat insulation film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529090A (en) * 2011-06-06 2014-10-30 ユニバーシティー オブ フロリダ リサーチ ファウンデーション, インコーポレイテッドUniversity Of Florida Research Foundation, Inc. Transparent infrared to visible up-conversion device
JP2014134630A (en) * 2013-01-09 2014-07-24 Asahi Kasei E-Materials Corp Optical system
JP2015167105A (en) * 2014-03-04 2015-09-24 スタンレー電気株式会社 visible light source
KR101806698B1 (en) * 2016-05-30 2017-12-07 현대자동차주식회사 An infrared optical filter
CN107450119A (en) * 2016-05-30 2017-12-08 现代自动车株式会社 Infrared filter
US10175398B2 (en) 2016-05-30 2019-01-08 Hyundai Motor Company Infrared optical filter having glass ceramic layer comprising 19-20% potassium oxide
CN107450119B (en) * 2016-05-30 2021-04-23 现代自动车株式会社 Infrared filter
CN112859216A (en) * 2021-01-14 2021-05-28 北京科技大学 Multilayer thin film structure with significant directionally selective emissivity
WO2022185944A1 (en) 2021-03-01 2022-09-09 国立大学法人東海国立大学機構 Optical product and condenser

Similar Documents

Publication Publication Date Title
JP2008020563A (en) Dielectric multilayer film filter
JP2007183525A (en) Dielectric multilayer film filter
US6310729B1 (en) Dichroic mirror
KR20010034105A (en) Anti-reflective polymer constructions and method for producing same
US20090207495A1 (en) Wavelength separation film and filter for optical communication using the same
JP2003029027A (en) Near ir ray cut filter
JP2009204577A (en) Light-transmitting member and timepiece provided with same
JP5888124B2 (en) Multilayer filter and method for manufacturing multilayer filter
JP4171362B2 (en) Transparent substrate with antireflection film
JP2006259124A (en) Cold mirror
JP4914955B2 (en) ND filter with IR cut function
JPH11202127A (en) Dichroic mirror
JP2007333806A (en) Antireflection film and optical member
JPH07111482B2 (en) Multi-layer antireflection film
JP2019059986A (en) Method for forming thin film, and optical element
EP1628146B1 (en) Optical low pass filter
JPH10153705A (en) Dichroic mirror
JP2000347002A (en) Antireflection film
JP6982951B2 (en) Silicon substrate with functional film for infrared rays
JP2005266211A (en) Multilayer film reflecting mirror
JP2935765B2 (en) Manufacturing method of dichroic mirror
JP5125251B2 (en) Optical thin film laminate
US20160252662A1 (en) Reflector and microscope
JP3276182B2 (en) Surface reflector
JPH04145677A (en) High efficiency reflector for visible laser beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071019

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Effective date: 20100427

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20101005

Free format text: JAPANESE INTERMEDIATE CODE: A02