JP2006257238A - Organic electroluminescent device - Google Patents

Organic electroluminescent device Download PDF

Info

Publication number
JP2006257238A
JP2006257238A JP2005075769A JP2005075769A JP2006257238A JP 2006257238 A JP2006257238 A JP 2006257238A JP 2005075769 A JP2005075769 A JP 2005075769A JP 2005075769 A JP2005075769 A JP 2005075769A JP 2006257238 A JP2006257238 A JP 2006257238A
Authority
JP
Japan
Prior art keywords
group
general formula
layer
atom
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005075769A
Other languages
Japanese (ja)
Other versions
JP4727262B2 (en
Inventor
Satoshi Sano
聡 佐野
Tatsuya Igarashi
達也 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2005075769A priority Critical patent/JP4727262B2/en
Priority to US11/372,272 priority patent/US7781074B2/en
Publication of JP2006257238A publication Critical patent/JP2006257238A/en
Application granted granted Critical
Publication of JP4727262B2 publication Critical patent/JP4727262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/186Metal complexes of the light metals other than alkali metals and alkaline earth metals, i.e. Be, Al or Mg
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic platinum complex having good light emission properties (luminance, quantum efficiency, driving voltage), durability, and vapor deposition properties, and a light-emitting device containing the same. <P>SOLUTION: An organic electroluminescent device comprises an organic layer containing at least one compound represented by formula (I). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、白金錯体、および有機電界発光素子(素子)に関する。   The present invention relates to a platinum complex and an organic electroluminescent element (element).

近年の有機EL素子開発においては、外部量子効率向上の研究が種々行われており、中でも、イリジウムや白金といった重金属を用いたりん光発光材料を含有する素子が高い効率を達し、着目されている。
白金を使用した発光材料の開発においては、アリール基をエーテル結合で連結した例が報告されている(例えば、非特許文献1参照。)。この白金錯体は、従来報告されていたオクタエチルポルフィリン白金錯体などの4座配位白金錯体(例えば、特許文献1、2参照。)より、発光波長の短波化が可能となっている点がその特徴として挙げられる。
しかしながら、前記非特許文献1に記載の白金錯体は、室温での発光が極めて弱いという問題があった。また残る単座配位子が、特に塩素原子のようなハロゲン原子を用いた場合、それを含む発光材料では、素子の耐久性が低くその改良が望まれていた。
米国特許第6,303,238B1号明細書 米国特許第6,653,564B1号明細書 「ジャーナル・オブ・オルガノメタリック・ケミストリー(Journal of Organometallic Chemistry」,2004年、第689巻,p.2888−2899
In recent organic EL device development, various studies on improving external quantum efficiency have been conducted, and among them, devices containing phosphorescent materials using heavy metals such as iridium and platinum have achieved high efficiency and are attracting attention. .
In the development of a light emitting material using platinum, an example in which an aryl group is connected by an ether bond has been reported (for example, see Non-Patent Document 1). This platinum complex has a feature that the emission wavelength can be shortened from the conventionally reported tetradentate platinum complex such as octaethylporphyrin platinum complex (for example, see Patent Documents 1 and 2). Listed as a feature.
However, the platinum complex described in Non-Patent Document 1 has a problem that light emission at room temperature is extremely weak. In addition, when the remaining monodentate ligand uses a halogen atom such as a chlorine atom, the light emitting material containing it has low durability of the device, and its improvement has been desired.
US Pat. No. 6,303,238 B1 US Pat. No. 6,653,564B1 “Journal of Organometallic Chemistry”, 2004, 689, p. 2888-2899.

本発明の目的は、発光特性(輝度、量子収率、駆動電圧)、耐久性、蒸着性が良好な白金錯体、およびそれを含む素子の提供にある。   An object of the present invention is to provide a platinum complex having good light emission characteristics (luminance, quantum yield, driving voltage), durability, and vapor deposition, and an element including the same.

前記実情に鑑み本発明者らは、鋭意研究を行ったところ、上記課題を解決しうることを見出し本発明を完成した。
即ち、本発明は下記の手段により達成されるものである。
In view of the above circumstances, the present inventors have conducted intensive research and found that the above problems can be solved, thereby completing the present invention.
That is, the present invention is achieved by the following means.

<1> 一対の電極間に発光層を含む少なくとも一層の有機層を有する有機電界発光素子であって、下記一般式(I)で表される化合物の少なくとも一種を有機層に含有することを特徴とする有機電界発光素子。 <1> An organic electroluminescent device having at least one organic layer including a light emitting layer between a pair of electrodes, wherein the organic layer contains at least one compound represented by the following general formula (I). An organic electroluminescent element.

Figure 2006257238
Figure 2006257238

[式中、Q1は炭素原子とともに不飽和の環を形成するのに必要な原子群を表す。Q2およびQ3はそれぞれ独立に窒素原子とともに不飽和の環を形成するのに必要な原子群を表す。Xは白金原子に共有結合で結合する原子を含有する部分構造を表す。A1は連結基を表し、B1、B2およびB3は、それぞれ独立に連結基、あるいは単結合を表す。ただし、Xが置換あるいは無置換のアリール基を表す場合、B1とB3がともに単結合であることはない。m及びnは、それぞれ独立に0又は1を表す。ただし、mとnがともに1であることはない。mあるいはnが0の場合、Q2および窒素原子とともに形成される不飽和の環、あるいは、Q3と窒素原子とともに形成される不飽和の環と、Xとは、結合していないことを意味する。] [Wherein, Q 1 represents an atomic group necessary for forming an unsaturated ring together with a carbon atom. Q 2 and Q 3 each independently represents an atomic group necessary for forming an unsaturated ring together with a nitrogen atom. X represents a partial structure containing an atom that is covalently bonded to a platinum atom. A 1 represents a linking group, and B 1 , B 2 and B 3 each independently represent a linking group or a single bond. However, when X represents a substituted or unsubstituted aryl group, both B 1 and B 3 are not a single bond. m and n each independently represents 0 or 1. However, m and n are not both 1. When m or n is 0, X represents an unsaturated ring formed with Q 2 and a nitrogen atom, or an unsaturated ring formed with Q 3 and a nitrogen atom, and X is not bonded. To do. ]

<2> 前記一般式(I)が下記一般式(II)で表されることを特徴とする上記<1>に記載の有機電界発光素子。 <2> The organic electroluminescence device according to <1>, wherein the general formula (I) is represented by the following general formula (II).

Figure 2006257238
Figure 2006257238

[式中、R1、R2およびR3はそれぞれ独立に置換基を表す。p1、p2およびp3は各々独立に0〜3の整数を表す。A1、B1、B2、B3、m、nおよびXは、前記一般式(I)におけるA1、B1、B2、B3、m、nおよびXと同じ意味を表す。] [Wherein, R 1 , R 2 and R 3 each independently represents a substituent. p 1, p 2 and p 3 each independently represent an integer of 0-3. A 1, B 1, B 2 , B 3, m, n and X have the same meanings as A 1, B 1, B 2 , B 3, m, n and X in the general formula (I). ]

<3> 前記一般式(I)が下記一般式(III)で表されることを特徴とする上記<1>に記載の有機電界発光素子。 <3> The organic electroluminescent element as described in <1> above, wherein the general formula (I) is represented by the following general formula (III).

Figure 2006257238
Figure 2006257238

[式中、R1、R2、R3、p1、p2およびp3は一般式(II)におけるR1、R2、R3、p1、p2およびp3は同じ意味を表す。A1、B2、B3、m、nおよびXは、一般式(I)におけるA1、B2、B3、m、nおよびXと同じ意味を表す。] [Wherein R 1 , R 2 , R 3 , p 1 , p 2 and p 3 represent the same meaning in R 1 , R 2 , R 3 , p 1 , p 2 and p 3 in the general formula (II) . A 1, B 2, B 3 , m, n and X have the same meanings as A 1, B 2, B 3 , m, n and X in the general formula (I). ]

<4> 前記一般式(I)が下記一般式(IV)で表されることを特徴とする上記<1>に記載の有機電界発光素子。 <4> The organic electroluminescence device according to <1>, wherein the general formula (I) is represented by the following general formula (IV).

Figure 2006257238
Figure 2006257238

[式中、A1およびB1は、一般式(I)におけるA1およびB1と同じ意味を表す。R1、R2、R3、p1、p2およびp3は一般式(II)におけるR1、R2、R3、p1、p2およびp3と同じ意味を表す。] [Wherein, A 1 and B 1 represent the same meaning as A 1 and B 1 in formula (I). R 1, R 2, R 3 , p 1, p 2 and p 3 are as defined R 1, R 2, R 3 , p 1, p 2 and p 3 in the general formula (II). ]

<5> 前記一般式(I)が下記一般式(V)で表されることを特徴とする上記<1>に記載の有機電界発光素子。 <5> The organic electroluminescence device according to <1>, wherein the general formula (I) is represented by the following general formula (V).

Figure 2006257238
Figure 2006257238

[式中、A1は、一般式(I)におけるA1と同じ意味を表す。R1、R2、R3、p1、p2およびp3は一般式(II)におけるR1、R2、R3、p1、p2およびp3と同じ意味を表す。] [Wherein, A 1 represents the same meaning as A 1 in formula (I). R 1, R 2, R 3 , p 1, p 2 and p 3 are as defined R 1, R 2, R 3 , p 1, p 2 and p 3 in the general formula (II). ]

<6> 前記一般式(I)が下記一般式(VI)で表されることを特徴とする上記<1>に記載の有機電界発光素子。 <6> The organic electroluminescent element as described in <1> above, wherein the general formula (I) is represented by the following general formula (VI).

Figure 2006257238
Figure 2006257238

[式中、A1、B1、B2、B3、m、nおよびXは、一般式(I)におけるA1、B1、B2、B3、m、nおよびXと同じ意味を表す。R1、R2、R3、p1、p2およびp3は一般式(II)におけるR1、R2、R3、p1、p2およびp3と同じ意味を表す。] [Wherein A 1 , B 1 , B 2 , B 3 , m, n and X have the same meaning as A 1 , B 1 , B 2 , B 3 , m, n and X in the general formula (I) To express. R 1, R 2, R 3 , p 1, p 2 and p 3 are as defined R 1, R 2, R 3 , p 1, p 2 and p 3 in the general formula (II). ]

本発明によれば、発光特性(輝度、量子収率、駆動電圧)、耐久性、蒸着性が良好な白金錯体およびそれを含む発光素子を提供できる。   According to the present invention, it is possible to provide a platinum complex having excellent light emission characteristics (luminance, quantum yield, drive voltage), durability, and vapor deposition properties, and a light emitting device including the same.

本発明の有機電界発光素子は、一対の電極間に発光層を含む少なくとも一層の有機層を有し、前記一般式(I)で表される化合物(以下、「本発明の化合物」ともいう。)の少なくとも一種を有機層に含有することを特徴とする。
前記構成とすることにより、即ち、発光特性(輝度、量子収率、駆動電圧)、耐久性、蒸着性が良好な本発明の化合物を有機層に含有することにより、発光特性(輝度、量子収率、駆動電圧)、耐久性、蒸着性において優れた効果を奏する有機電界発光素子を得ることができる。
以下、前記一般式(I)で表される化合物について説明する。
The organic electroluminescent element of the present invention has at least one organic layer including a light emitting layer between a pair of electrodes, and is also referred to as a compound represented by the general formula (I) (hereinafter also referred to as “the compound of the present invention”). ) In the organic layer.
By adopting the above-described structure, that is, by containing the compound of the present invention having good light emission characteristics (brightness, quantum yield, driving voltage), durability, and vapor deposition in the organic layer, the light emission characteristics (brightness, quantum yield) are obtained. Rate, driving voltage), durability, and an organic electroluminescence device having excellent effects in vapor deposition can be obtained.
Hereinafter, the compound represented by the general formula (I) will be described.

前記一般式(I)において、Q1は炭素原子とともに不飽和の環を形成するのに必要な原子群を表す。Q2及びQ3はそれぞれ独立に窒素原子とともに不飽和の環を形成するのに必要な原子群を表す。
前記原子群は、特に限定されないが、それぞれ独立に炭素、窒素、珪素、硫黄、酸素、ゲルマニウム、リンから選択される原子より選択される原子群が好ましい。不飽和の環を形成する原子間の結合は、環内に不飽和結合を少なくとも1つを含んでいれば、単結合、二重結合、三重結合のいかなる組み合わせでもよい。
前記Q1、Q2およびQ3は、好ましくは、それぞれ独立に炭素、窒素、珪素、硫黄、酸素から形成される場合であり、より好ましくは、炭素、窒素、珪素から形成される場合であり、さらに好ましくは炭素あるいは窒素原子により形成される場合であり、特に好ましくは、Q1、Q2、Q3は炭素により形成され、Q1と炭素原子とともに形成される不飽和の環が置換ベンゼン環を表し、Q2あるいはQ3と窒素原子とともに形成される不飽和の環がそれぞれ独立に置換ピリジン環を形成する場合である。
1、Q2、Q3を構成する原子群において、さらに置換可能な場合、それぞれ独立に置換基を有していてもよい。また、これらの置換基は同一でも異なってもよい。
In the general formula (I), Q 1 represents an atomic group necessary for forming an unsaturated ring together with a carbon atom. Q 2 and Q 3 each independently represents an atomic group necessary for forming an unsaturated ring together with a nitrogen atom.
The atomic group is not particularly limited, but an atomic group selected from atoms independently selected from carbon, nitrogen, silicon, sulfur, oxygen, germanium, and phosphorus is preferable. The bond between the atoms forming the unsaturated ring may be any combination of a single bond, a double bond and a triple bond as long as it contains at least one unsaturated bond in the ring.
Q 1 , Q 2 and Q 3 are preferably each independently formed from carbon, nitrogen, silicon, sulfur and oxygen, and more preferably from carbon, nitrogen and silicon. More preferably, it is formed by a carbon or nitrogen atom, and particularly preferably, Q 1 , Q 2 and Q 3 are formed by carbon, and the unsaturated ring formed together with Q 1 and the carbon atom is substituted benzene. In this case, the unsaturated ring formed together with Q 2 or Q 3 and the nitrogen atom independently forms a substituted pyridine ring.
In the atomic group constituting Q 1 , Q 2 , and Q 3 , when further substitutable, they may each independently have a substituent. These substituents may be the same or different.

前記置換基としては例えば、アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル)、シクロアルキル基(好ましくは炭素数3〜30、より好ましくは炭素数3〜20、特に好ましくは炭素数3〜10であり、例えばシクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、   Examples of the substituent include an alkyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms such as methyl, ethyl, iso-propyl, tert-butyl. , N-octyl, n-decyl, n-hexadecyl), a cycloalkyl group (preferably having 3 to 30 carbon atoms, more preferably 3 to 20 carbon atoms, particularly preferably 3 to 10 carbon atoms, such as cyclopropyl, Cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms such as vinyl, allyl, 2-butenyl, 3-pentenyl and the like), an alkynyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, Preferably 2 to 10 carbon atoms, such as propargyl and 3-pentynyl in.),

アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、 An aryl group (preferably having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenyl, p-methylphenyl, naphthyl, anthranyl and the like), amino. Group (preferably having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 10 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino, dibenzylamino, diphenylamino, ditolylamino, etc. An alkoxy group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms, such as methoxy, ethoxy, butoxy, 2-ethylhexyloxy, etc. An aryloxy group (preferably having 6 to 30 carbon atoms, more preferably carbon 6 to 20, particularly preferably 6 to 12 carbon atoms, such as phenyloxy, 1-naphthyloxy, 2-naphthyloxy, and the like, and heterocyclic oxy groups (preferably having 1 to 30 carbon atoms, more preferably ) Has 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include pyridyloxy, pyrazyloxy, pyrimidyloxy, quinolyloxy, and the like.

アシル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、 An acyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as acetyl, benzoyl, formyl, pivaloyl, etc.), an alkoxycarbonyl group ( Preferably it has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, and examples thereof include methoxycarbonyl, ethoxycarbonyl and the like, and an aryloxycarbonyl group (preferably having a carbon number). 7 to 30, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl, and acyloxy groups (preferably 2 to 30 carbon atoms, more preferably carbon atoms). 1 to 20, particularly preferably 1 to 10 carbon atoms, for example, acetoxy, benzoyloxy An acylamino group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, and examples thereof include acetylamino and benzoylamino). ,

アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、 An alkoxycarbonylamino group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino), aryloxycarbonylamino group ( Preferably it has 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino, etc., and a sulfonylamino group (preferably 1 to 1 carbon atoms). 30, More preferably, it is C1-C20, Most preferably, it is C1-C12, for example, methanesulfonylamino, benzenesulfonylamino, etc.), a sulfamoyl group (preferably C0-30, more preferably) Has 0 to 20 carbon atoms, particularly preferably 0 to 12 carbon atoms. Amoiru, methylsulfamoyl, dimethylsulfamoyl, and the like phenylsulfamoyl.),

カルバモイル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオなどが挙げられる。)、 A carbamoyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl and the like), alkylthio. A group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio), an arylthio group (preferably having 6 to 6 carbon atoms). 30, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, and the like, and a heterocyclic thio group (preferably 1 to 30 carbon atoms, more preferably 1 carbon atom). -20, particularly preferably 1 to 12 carbon atoms, such as pyridylthio, 2-benzimidazolyl Oh, 2-benzoxazolyl thio, and 2-benzthiazolylthio the like.),

スルホニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子であり、より好ましくはフッ素原子が挙げられる。)、 A sulfonyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl and tosyl), a sulfinyl group (preferably having 1 carbon atom). To 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido groups (preferably 1 to 30 carbon atoms, more preferably C1-C20, Most preferably, it is C1-C12, for example, a ureido, methylureido, phenylureido etc. are mentioned), phosphoric acid amide groups (preferably C1-C30, more preferably carbon number) 1 to 20, particularly preferably 1 to 12 carbon atoms, such as diethyl phosphoric acid amide and phenyl phosphoric acid amide That.), Hydroxy group, a mercapto group, a halogen atom (e.g. fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or more preferably fluorine atom.)

シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル基、アゼピニル基などが挙げられる。)、シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。これらの置換基は更に置換されてもよい。 Cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, heterocyclic group (preferably having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, As, for example, nitrogen atom, oxygen atom, sulfur atom, specifically, for example, imidazolyl, pyridyl, quinolyl, furyl, thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl group, azepinyl group, etc. ), A silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, and examples thereof include trimethylsilyl and triphenylsilyl), silyloxy group (Preferably 3 to 40 carbon atoms, more preferably 3 to 3 carbon atoms. , Particularly preferably 3 to 24 carbon atoms, for example trimethylsilyloxy, etc. triphenylsilyl oxy and the like.) And the like. These substituents may be further substituted.

前記一般式(I)において、A1は連結基を表す。連結基としては特に限定されないが、炭素原子、窒素原子、酸素原子、硫黄原子、ケイ素原子、ゲルマニウム原子、りん原子から選択される1種以上の原子から構成される連結基が特に好ましく、下記の連結基群(I)より選択される基が特に好ましい。 In the general formula (I), A 1 represents a linking group. The linking group is not particularly limited, but is particularly preferably a linking group composed of one or more atoms selected from a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, a germanium atom, and a phosphorus atom. A group selected from the linking group group (I) is particularly preferred.

Figure 2006257238
Figure 2006257238

前記連結基群(I)について説明する。
前記連結基群(I)において、R4、R5、R6、R7、R8、R9、R10およびR11はそれぞれ独立に水素原子または置換基を表す。R4、R5、R6、R7、R8、R9、R10およびR11が置換基を表す場合、その置換基としては、前記Q1、Q2、およびQ3で説明した不飽和環を形成する原子群が、置換基を有する場合で説明した置換基と同じ意味を表す。R4、R5、R6、R7、R8、R9、R10およびR11が置換可能な場合、さらに置換基を有していてもよく、R4とR5、R6とR7、R8とR9がそれぞれ互いに結合し環を形成してもよく、さらにQ1、Q2あるいはQ3を構成する原子群と結合して、環を形成してもよい。R4、R5、R6、R7、R8、R9、R10およびR11が置換基を表す場合、その置換基の例としては、前記Q1、Q2、およびQ3で説明した不飽和環を形成する原子群が、置換基を有する場合で説明した置換基の例と同じ意味を表す。
The linking group group (I) will be described.
In the linking group group (I), R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 each independently represent a hydrogen atom or a substituent. When R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 represent a substituent, the substituent is the same as those described above for Q 1 , Q 2 , and Q 3. The atomic group forming the saturated ring has the same meaning as the substituent described in the case of having a substituent. When R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 can be substituted, they may further have a substituent, and R 4 and R 5 , R 6 and R 11 7 , R 8 and R 9 may be bonded to each other to form a ring, or may be further bonded to an atomic group constituting Q 1 , Q 2 or Q 3 to form a ring. When R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10, and R 11 represent a substituent, examples of the substituent are described in Q 1 , Q 2 , and Q 3 above . The group of atoms forming the unsaturated ring has the same meaning as the example of the substituent explained in the case of having a substituent.

前記A1は好ましくは、連結基群(I)より選択される場合であり、このうち−C(R4)(R5)−、−Si(R6)(R7)−、−N(R10)−、−O−、−S−あるいは−CO−を表す場合であり、より好ましくは、−C(R4)(R5)−、−Si(R6)(R7)−、−O−、あるいは−S−を表す場合であり、さらに好ましくは、−C(R4)(R5)−あるいは−O−を表す場合である。 A 1 is preferably selected from the linking group group (I), of which —C (R 4 ) (R 5 ) —, —Si (R 6 ) (R 7 ) —, —N ( R 10 ) —, —O—, —S— or —CO—, and more preferably —C (R 4 ) (R 5 ) —, —Si (R 6 ) (R 7 ) —, It is the case of representing —O— or —S—, and more preferably the case of representing —C (R 4 ) (R 5 ) — or —O—.

前記A1が−C(R4)(R5)−を表す場合、R4およびR5は、好ましくは、アルキル基、シクロアルキル基、アリール基、ハロゲン原子、アミノ基、アルキルチオ基、アリールチオ基、アルキルオキシ基、アリールオキシ基、ヒドロキシ基、メルカプト基、ハロゲン原子である。これらの基の好ましい例としては、置換基で説明した好ましい基と同義であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、ハロゲン原子、アルキルチオ基、アリールチオ基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、さらに好ましくは、アルキル基、アリール基である。これらの置換基がさらに置換可能な場合は置換基を有することができる。 When A 1 represents —C (R 4 ) (R 5 ) —, R 4 and R 5 are preferably an alkyl group, a cycloalkyl group, an aryl group, a halogen atom, an amino group, an alkylthio group, or an arylthio group. , An alkyloxy group, an aryloxy group, a hydroxy group, a mercapto group, and a halogen atom. Preferable examples of these groups are the same as those described for the substituent, and more preferable are alkyl groups, cycloalkyl groups, aryl groups, halogen atoms, alkylthio groups, arylthio groups, alkyloxy groups, aryloxy groups. Group, a halogen atom, and more preferably an alkyl group or an aryl group. When these substituents can be further substituted, they can have a substituent.

前記A1が−Si(R6)(R7)−を表す場合、R6およびR7は好ましくは、アルキル基、シクロアルキル基、アリール基、ハロゲン原子、アミノ基、アルキルチオ基、アリールチオ基、アルキルオキシ基、アリールオキシ基、ヒドロキシ基、メルカプト基、ハロゲン原子である。これらの基の好ましい例としては、置換基で説明した好ましい基と同義であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、ハロゲン原子、アルキルチオ基、アリールチオ基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、さらに好ましくは、アルキル基、アリール基である。これらの置換基がさらに置換可能な場合は置換基を有することができる。 When A 1 represents —Si (R 6 ) (R 7 ) —, R 6 and R 7 are preferably an alkyl group, a cycloalkyl group, an aryl group, a halogen atom, an amino group, an alkylthio group, an arylthio group, An alkyloxy group, an aryloxy group, a hydroxy group, a mercapto group, and a halogen atom; Preferable examples of these groups are the same as those described for the substituent, and more preferable are alkyl groups, cycloalkyl groups, aryl groups, halogen atoms, alkylthio groups, arylthio groups, alkyloxy groups, aryloxy groups. Group, a halogen atom, and more preferably an alkyl group or an aryl group. When these substituents can be further substituted, they can have a substituent.

前記A1が−N(R10)−を表す場合、R10は、好ましくは、アルキル基、シクロアルキル基、アリール基である。これらの基の好ましい例としては、置換基で説明した好ましい基と同義であり、より好ましくは、アルキル基、アリール基であり、さらに好ましくは、アリール基である。これらの置換基がさらに置換可能な場合は置換基を有することができる。 When A 1 represents —N (R 10 ) —, R 10 is preferably an alkyl group, a cycloalkyl group, or an aryl group. Preferable examples of these groups are the same as the preferable groups described for the substituent, more preferably an alkyl group and an aryl group, and still more preferably an aryl group. When these substituents can be further substituted, they can have a substituent.

前記一般式(I)においてB1、B2およびB3はそれぞれ独立に連結基、あるいは単結合を表す。ただし、Xが置換または無置換のアリール基を表す場合、B1とB3がともに単結合であることはない。
前記B1は好ましくは、前記連結基群(I)より選択される基、あるいは単結合を表す場合であり、より好ましくは、−C(R4)(R5)−、−N(R10)−、−O−、−S−、−CO−あるいは単結合を表す場合であり、さらに好ましくは−O−あるいは単結合である。B1が−C(R4)(R5)−、−Si(R6)(R7)−あるいは−N(R10)−を表す場合、その好ましい例としては、前記A1で説明した好ましい−C(R4)(R5)−、−Si(R6)(R7)−および−N(R10)−と同じ意味を表す。
In the general formula (I), B 1 , B 2 and B 3 each independently represent a linking group or a single bond. However, when X represents a substituted or unsubstituted aryl group, both B 1 and B 3 are not a single bond.
B 1 is preferably a group selected from the linking group group (I) or a single bond, and more preferably —C (R 4 ) (R 5 ) —, —N (R 10 )-, -O-, -S-, -CO- or a single bond, more preferably -O- or a single bond. In the case where B 1 represents —C (R 4 ) (R 5 ) —, —Si (R 6 ) (R 7 ) — or —N (R 10 ) —, preferred examples thereof are described in the above A 1 . Preferred meanings are the same as -C (R 4 ) (R 5 )-, -Si (R 6 ) (R 7 )-and -N (R 10 )-.

前記B2およびB3は好ましくは、それぞれ独立に連結基群(I)より選択される基、あるいは単結合を表す場合であり、より好ましくは、−C(R4)(R5)−、−O−、−S−、−SO−、−SO2−、−CO−あるいは単結合を表す場合であり、さらに好ましくは−O−、−CO−あるいは単結合である。B2およびB3が−C(R4)(R5)−、−Si(R6)(R7)−、あるいは−N(R10)−を表す場合、その好ましい例としては、前記A1で説明した好ましい−C(R4)(R5)−、−Si(R6)(R7)−および−N(R10)−と同じ意味を表す。 B 2 and B 3 are preferably each independently a group selected from the linking group group (I) or a single bond, more preferably —C (R 4 ) (R 5 ) —, In this case, —O—, —S—, —SO—, —SO 2 —, —CO— or a single bond is represented, more preferably —O—, —CO— or a single bond. When B 2 and B 3 represent —C (R 4 ) (R 5 ) —, —Si (R 6 ) (R 7 ) —, or —N (R 10 ) —, preferred examples thereof include the above A It represents the same meaning as the preferable —C (R 4 ) (R 5 ) —, —Si (R 6 ) (R 7 ) — and —N (R 10 ) — described in 1.

前記mおよびnは、それぞれ独立に0または1を表す。ただし、mとnがともに1であることはなく、一般式(I)で表される化合物が、白金原子を中心として完全な環状化合物を形成することはない。mあるいはnが0の場合、Q2および窒素原子とともに形成される不飽和の環、あるいは、Q3と窒素原子とともに形成される不飽和の環と、Xとは、結合していないことを意味する。m及びnのいずれか一方が1であることがより好ましい。 Said m and n represent 0 or 1 each independently. However, m and n are not both 1, and the compound represented by the general formula (I) does not form a complete cyclic compound centered on a platinum atom. When m or n is 0, X represents an unsaturated ring formed with Q 2 and a nitrogen atom, or an unsaturated ring formed with Q 3 and a nitrogen atom, and X is not bonded. To do. More preferably, one of m and n is 1.

前記Xは白金原子と結合する原子を含有する部分構造を表す。
前記Xで表される部分構造としては、炭素原子で白金原子に結合する基、窒素原子で白金原子に結合する基、珪素原子で白金原子に結合する基、リン原子で白金原子に結合する基、酸素原子で白金原子に結合する基、又は硫黄原子で白金原子に結合する基が好ましく、炭素原子、窒素原子、酸素原子、又は硫黄原子で白金原子に結合する基がより好ましく、硫黄原子、窒素原子、又は酸素原子で白金原子に結合する基がさらに好ましく、酸素原子で白金原子に結合する基が特に好ましい。
Said X represents the partial structure containing the atom couple | bonded with a platinum atom.
The partial structure represented by X includes a group bonded to a platinum atom by a carbon atom, a group bonded to a platinum atom by a nitrogen atom, a group bonded to a platinum atom by a silicon atom, and a group bonded to a platinum atom by a phosphorus atom. A group bonded to a platinum atom by an oxygen atom, or a group bonded to a platinum atom by a sulfur atom, more preferably a group bonded to a platinum atom by a carbon atom, a nitrogen atom, an oxygen atom, or a sulfur atom, a sulfur atom, A group bonded to a platinum atom by a nitrogen atom or an oxygen atom is more preferable, and a group bonded to a platinum atom by an oxygen atom is particularly preferable.

前記炭素原子で白金原子に結合する基としては、炭素原子で白金原子に結合する置換または無置換のアリール基、炭素原子で白金原子に結合する置換または無置換の五員環へテロアリール基、又は炭素原子で白金原子に結合する置換または無置換の六員環へテロアリール基が好ましく、炭素原子で白金原子に結合する置換アリール基が特に好ましい。   Examples of the group bonded to the platinum atom by the carbon atom include a substituted or unsubstituted aryl group bonded to the platinum atom by a carbon atom, a substituted or unsubstituted 5-membered heteroaryl group bonded to the platinum atom by a carbon atom, or A substituted or unsubstituted 6-membered heteroaryl group bonded to a platinum atom with a carbon atom is preferred, and a substituted aryl group bonded to a platinum atom with a carbon atom is particularly preferred.

前記酸素原子で結合する基としては、置換または無置換の水酸基、置換または無置換のカルボキシル基が好ましく、置換または無置換のカルボキシル基がより好ましい。   The group bonded by the oxygen atom is preferably a substituted or unsubstituted hydroxyl group or a substituted or unsubstituted carboxyl group, and more preferably a substituted or unsubstituted carboxyl group.

前記窒素原子で結合する基としては、置換アミノ基、窒素原子で結合する含窒素へテロ五員環へテロアリール基が好ましく、窒素原子で結合する含窒素へテロ五員環へテロアリール基がより好ましく、置換カルバゾール、置換ピロール、置換インドールなどが特に好ましい。   The group bonded by the nitrogen atom is preferably a substituted amino group or a nitrogen-containing hetero five-membered heteroaryl group bonded by a nitrogen atom, more preferably a nitrogen-containing hetero five-membered heteroaryl group bonded by a nitrogen atom. , Substituted carbazole, substituted pyrrole, substituted indole and the like are particularly preferable.

前記リン原子で結合する基としては、置換ホスフィノ基が好ましい。珪素原子で結合する基としては、置換シリル基が好ましい。
前記硫黄原子で結合する基としてはチオール基または置換チオール基が好ましい。
The group bonded by the phosphorus atom is preferably a substituted phosphino group. As the group bonded by a silicon atom, a substituted silyl group is preferable.
The group bonded by the sulfur atom is preferably a thiol group or a substituted thiol group.

次に、前記一般式(I)の好ましい範囲について説明する。
前記一般式(I)において、好ましくは、Q1と炭素原子とともに形成される不飽和の環が六員環であり、窒素原子とQ2および窒素原子とQ3とともに形成される不飽和の環がそれぞれ六員環であるか、あるいは、Q1と炭素原子とともに形成される不飽和の環が六員環であり、窒素原子とQ2および窒素原子とQ3とともに形成される不飽和の環がそれぞれ五員環である。
Next, a preferable range of the general formula (I) will be described.
In the general formula (I), preferably, the unsaturated ring formed together with Q 1 and the carbon atom is a six-membered ring, and the unsaturated ring formed together with the nitrogen atom and Q 2 and the nitrogen atom and Q 3 Are each a six-membered ring, or an unsaturated ring formed with Q 1 and a carbon atom is a six-membered ring, and an unsaturated ring formed with a nitrogen atom and Q 2 and a nitrogen atom and Q 3 Are five-membered rings.

次に、前記一般式(I)のより好ましい範囲について説明する。
前記一般式(I)は、より好ましくは、前記一般式(II)で表される化合物、あるいは前記一般式(III)で表される化合物を表す。
Next, a more preferable range of the general formula (I) will be described.
The general formula (I) more preferably represents a compound represented by the general formula (II) or a compound represented by the general formula (III).

前記一般式(II)について、以下に詳しく説明する。
前記一般式(II)において、式中、R1、R2およびR3はそれぞれ独立に置換基を表す。その置換基の例としては、前記一般式(I)において、前記Q1、Q2、およびQ3で説明した不飽和環を形成する原子群が、置換基を有する場合で説明した置換基と同じ意味を表す。R1、R2およびR3がさらに置換可能である場合、置換基を有していてもよい。
前記R1は、好ましくは、アルキル基、シクロアルキル基、アリール基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ヒドロキシ基、メルカプト基、ハロゲン原子、シアノ基、スルホ基、カルボキシル基、ニトロ基、スルフィノ基、ヘテロ環基、シリル基である。これらの基の好ましい例としては、置換基で説明した好ましい基と同義であり、より好ましくは、アルキル基、アリール基、スルホニル基、ハロゲン原子、シアノ基、ニトロ基、ヘテロ環基であり、最も好ましくは、アルキル基、アリール基、ハロゲン原子、シアノ基である。これらの置換基がさらに置換可能な場合は置換基を有することができる。
The general formula (II) will be described in detail below.
In the general formula (II), in the formula, R 1 , R 2 and R 3 each independently represent a substituent. Examples of the substituent include, in the general formula (I), the substituent described in the case where the atomic group forming the unsaturated ring described in Q 1 , Q 2 , and Q 3 has a substituent. Represents the same meaning. When R 1 , R 2 and R 3 can be further substituted, they may have a substituent.
R 1 is preferably an alkyl group, cycloalkyl group, aryl group, acyl group, alkoxycarbonyl group, aryloxycarbonyl group, acyloxy group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, arylthio group, hetero Ring thio group, sulfonyl group, sulfinyl group, ureido group, phosphoramide group, hydroxy group, mercapto group, halogen atom, cyano group, sulfo group, carboxyl group, nitro group, sulfino group, heterocyclic group, silyl group . Preferred examples of these groups are the same as the preferred groups described for the substituent, more preferably an alkyl group, an aryl group, a sulfonyl group, a halogen atom, a cyano group, a nitro group, and a heterocyclic group, Preferably, they are an alkyl group, an aryl group, a halogen atom, and a cyano group. When these substituents can be further substituted, they can have a substituent.

前記R2およびR3は、好ましくは、アルキル基、シクロアルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ヒドロキシ基、メルカプト基、ハロゲン原子、シアノ基、スルホ基、カルボキシル基、ニトロ基、スルフィノ基、ヘテロ環基、シリル基である。これらの基の好ましい例としては、置換基で説明した好ましい基と同義であり、より好ましくは、アルキル基、シクロアルキル基、アミノ基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基であり、さらに好ましくは、R2およびR3は、アルキル基、アルコキシ基、アミノ基である。これらの置換基がさらに置換可能な場合は置換基を有することができる。 R 2 and R 3 are preferably an alkyl group, a cycloalkyl group, an aryl group, an amino group, an alkoxy group, an aryloxy group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an acyloxy group, a sulfonylamino group, Sulfamoyl group, carbamoyl group, alkylthio group, arylthio group, heterocyclic thio group, sulfonyl group, sulfinyl group, ureido group, phosphoric acid amide group, hydroxy group, mercapto group, halogen atom, cyano group, sulfo group, carboxyl group, nitro A group, a sulfino group, a heterocyclic group, and a silyl group. Preferable examples of these groups are the same as the preferable groups described for the substituent, and more preferable are an alkyl group, a cycloalkyl group, an amino group, an aryl group, a heterocyclic group, an alkoxy group, and an aryloxy group. More preferably, R 2 and R 3 are an alkyl group, an alkoxy group, or an amino group. When these substituents can be further substituted, they can have a substituent.

前記p1、p2およびp3は各々独立に0〜3の整数を表す。p1〜p3がそれぞれ2以上の場合、複数存在するR1、R2、R3はそれぞれ同一でも異なっていてもよく、R1同士、R2同士、R3同士、R1とR2、R1とR3、あるいはR2とR3が互いに結合し環を形成してもよい。好ましくはp1、p2およびp3は0〜2であり、より好ましくは0〜1である。 P 1 , p 2 and p 3 each independently represents an integer of 0 to 3. When each of p 1 to p 3 is 2 or more, a plurality of R 1 , R 2 and R 3 may be the same or different, and R 1 , R 2 , R 3 , R 1 and R 2 , R 1 and R 3 , or R 2 and R 3 may be bonded to each other to form a ring. Preferably p 1, p 2 and p 3 is 0 to 2, more preferably 0-1.

前記A1、B1、B2、B3、m、nおよびXは、前記一般式(I)におけるA1、B1、B2、B3、m、nおよびXと同じ意味を表す。その好ましい例としては、前記一般式(I)において説明した、好ましいA1、B1、B2、B3、m、nおよびXと同義である。 Wherein A 1, B 1, B 2 , B 3, m, n and X are the A 1 in the general formula (I), B 1, B 2, B 3, m, represents the same meaning as n and X. Preferable examples thereof have the same meanings as preferable A 1 , B 1 , B 2 , B 3 , m, n and X described in the general formula (I).

次に、前記一般式(III)について説明する。
前記一般式(III)において、A1、B2、B3、m、nおよびXは、前記一般式(I)におけるA1、B2、B3、m、nおよびXと同じ意味を表す。その好ましい例としては、前記一般式(I)で説明した好ましいA1、B2、B3、m、nおよびXと同じ意味を表す。R1、R2、R3、p1、p2およびp3は前記一般式(II)におけるR1、R2、R3、p1、p2およびp3と同じ意味を表す。その好ましい例としては、前記一般式(II)で説明した好ましいR1、R2、R3、p1、p2およびp3と同じ意味を表す。
Next, the general formula (III) will be described.
In Formula (III), A 1, B 2, B 3, m, n and X have the same meanings as A 1, B 2, B 3 , m, n and X in the general formula (I) . As preferred examples thereof, the same meanings as preferred A 1 , B 2 , B 3 , m, n and X described in the general formula (I) are represented. R 1, R 2, R 3 , p 1, p 2 and p 3 are as defined R 1, R 2, R 3 , p 1, p 2 and p 3 in the general formula (II). Preferable examples thereof represent the same meaning as preferable R 1 , R 2 , R 3 , p 1 , p 2 and p 3 described in the general formula (II).

次に、前記一般式(I)のさらに好ましい範囲について説明する。
前記一般式(I)は、さらに好ましくは、下記一般式(IV)で表される化合物、あるいは下記一般式(V)で表される化合物を表す。
Next, a more preferable range of the general formula (I) will be described.
The general formula (I) more preferably represents a compound represented by the following general formula (IV) or a compound represented by the following general formula (V).

Figure 2006257238
Figure 2006257238

Figure 2006257238
Figure 2006257238

次に、前記一般式(IV)について説明する。
前記一般式(IV)において、A1およびB1は、前記一般式(I)におけるA1およびB1と同じ意味を表す。その好ましい例としては、前記一般式(I)で説明した好ましいA1およびB1と同じ意味を表す。R1、R2、R3、p1、p2およびp3は前記一般式(II)におけるR1、R2、R3、p1、p2およびp3と同じ意味を表す。その好ましい例としては、前記一般式(II)で説明した好ましいR1、R2、R3、p1、p2およびp3と同じ意味を表す。
Next, the general formula (IV) will be described.
In the general formula (IV), A 1 and B 1 represent the same meaning as A 1 and B 1 in the general formula (I). Preferable examples thereof have the same meanings as preferable A 1 and B 1 described in the general formula (I). R 1, R 2, R 3 , p 1, p 2 and p 3 are as defined R 1, R 2, R 3 , p 1, p 2 and p 3 in the general formula (II). Preferable examples thereof represent the same meaning as preferable R 1 , R 2 , R 3 , p 1 , p 2 and p 3 described in the general formula (II).

次に、前記一般式(V)について説明する。
前記一般式(V)において、A1は、前記一般式(I)におけるA1と同じ意味を表す。その好ましい例としては、前記一般式(I)で説明した好ましいA1と同じ意味を表す。R1、R2、R3、p1、p2およびp3は前記一般式(II)におけるR1、R2、R3、p1、p2およびp3と同じ意味を表す。その好ましい例としては、前記一般式(II)で説明した好ましいR1、R2、R3、p1、p2およびp3と同じ意味を表す。
Next, the general formula (V) will be described.
In the general formula (V), A 1 represents the same meaning as A 1 in the general formula (I). As a preferable example thereof, the same meaning as the preferable A 1 described in the general formula (I) is represented. R 1, R 2, R 3 , p 1, p 2 and p 3 are as defined R 1, R 2, R 3 , p 1, p 2 and p 3 in the general formula (II). Preferable examples thereof represent the same meaning as preferable R 1 , R 2 , R 3 , p 1 , p 2 and p 3 described in the general formula (II).

本発明の一般式(I)で表される化合物は低分子化合物であっても良く、また、オリゴマー化合物、ポリマー化合物(重量平均分子量(ポリスチレン換算)は好ましくは1000〜5000000、より好ましくは2000〜1000000、さらに好ましくは3000〜100000である。)であっても良い。ポリマー化合物の場合、一般式(1)で表される構造がポリマー主鎖中に含まれても良く、また、ポリマー側鎖に含まれていても良い。また、ポリマー化合物の場合、ホモポリマー化合物であっても良く、共重合体であっても良い。本発明の一般式(I)で表される化合物は低分子化合物が好ましい。   The compound represented by the general formula (I) of the present invention may be a low molecular compound, and an oligomer compound or a polymer compound (weight average molecular weight (polystyrene conversion) is preferably 1000 to 5000000, more preferably 2000 to 2000 1000000, more preferably 3000-100000). In the case of a polymer compound, the structure represented by the general formula (1) may be included in the polymer main chain, or may be included in the polymer side chain. In the case of a polymer compound, it may be a homopolymer compound or a copolymer. The compound represented by the general formula (I) of the present invention is preferably a low molecular compound.

本発明の一般式(I)で表される化合物は、有機EL素子に適用可能であり、電子輸送材料、正孔ブロック材料、電子ブロック材料、励起子ブロック材料のいずれに用いることも可能であるが、好ましくは正孔注入材料、正孔輸送材料、電子ブロック材料、発光材料であり、より好ましくは正孔注入材料、発光材料であり、さらに好ましくは発光材料である。発光材料として用いる場合、紫外発光、可視光発光、赤外発光であってもよく、また蛍光発光であっても燐光発光であってもよい。   The compound represented by the general formula (I) of the present invention can be applied to an organic EL device, and can be used for any of an electron transport material, a hole block material, an electron block material, and an exciton block material. Are preferably a hole injection material, a hole transport material, an electron block material, and a light emitting material, more preferably a hole injection material and a light emitting material, and still more preferably a light emitting material. When used as a light emitting material, it may be ultraviolet light emission, visible light light emission, or infrared light emission, and may be fluorescent light emission or phosphorescence light emission.

次に本発明の化合物の化合物例を示すが、本発明はこれに限定されない。   Next, although the compound example of the compound of this invention is shown, this invention is not limited to this.

Figure 2006257238
Figure 2006257238

Figure 2006257238
Figure 2006257238

Figure 2006257238
Figure 2006257238

Figure 2006257238
Figure 2006257238

Figure 2006257238
Figure 2006257238

Figure 2006257238
Figure 2006257238

本発明の一般式(I)で表される化合物は公知の種々の手法で合成することができる。例えば、配位子、またはその解離体と白金イオンを含有する化合物を溶媒(例えば、ハロゲン系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、ニトリル系溶媒、アミド系溶媒、スルホン系溶媒、スルホキサイド系溶媒、水などが挙げられる)の存在下又は溶媒非存在下、塩基(無機、有機の種々の塩基、例えば、ナトリウムメトキサイド、t−ブトキシカリウム、トリエチルアミン、炭酸カリウムなどが挙げられる)の存在下又は塩基非存在下、室温以下もしくは加熱(通常の加熱以外にも、マントルヒーターを使用する方法、マイクロウェーブで加熱する手法なども有効である)して得ることができる。   The compound represented by the general formula (I) of the present invention can be synthesized by various known methods. For example, a ligand or a compound containing a dissociated product thereof and a platinum ion is used as a solvent (for example, a halogen solvent, an alcohol solvent, an ether solvent, an ester solvent, a ketone solvent, a nitrile solvent, an amide solvent, In the presence or absence of a solvent such as sulfone solvent, sulfoxide solvent, water, etc., a base (a variety of inorganic and organic bases such as sodium methoxide, t-butoxy potassium, triethylamine, potassium carbonate, etc.) Or in the absence of a base, at room temperature or below or heating (in addition to normal heating, a method using a mantle heater, a method of heating with a microwave, etc. is also effective).

本発明の一般式(I)で表される化合物を合成する際の反応時間は反応の活性により異なり、特に限定されないが、中でも収率向上の観点から、1分以上5日以下が好ましく、5分以上3日以下がより好ましく、10分以上24時間以下がさらに好ましい。   The reaction time for synthesizing the compound represented by the general formula (I) of the present invention varies depending on the activity of the reaction and is not particularly limited. However, from the viewpoint of improving the yield, it is preferably 1 minute or more and 5 days or less. It is more preferably from 3 minutes to 3 days, and further preferably from 10 minutes to 24 hours.

本発明の一般式(I)で表される化合物を合成する際の反応温度は反応の活性により異なり、特に限定されないが、中でも収率向上の観点から、0℃以上300℃以下が好ましく、5℃以上250℃以下がより好ましく、10℃以上200℃以下がさらに好ましい。 The reaction temperature for synthesizing the compound represented by the general formula (I) of the present invention varies depending on the activity of the reaction and is not particularly limited. However, from the viewpoint of improving the yield, 0 ° C. or more and 300 ° C. or less are preferable. More preferably, the temperature is more than 150 ° C and less than 250 ° C, and more preferably more than 10 ° C and less than 200 ° C.

本発明の一般式(I)で表される化合物のうちで目的とする錯体の部分構造を形成している配位子を白金化合物に対し、好ましくは0.1当量〜10当量、より好ましくは0.3当量〜6当量、さらに好ましくは0.5当量〜4当量加えて合成することができる。
前記の白金化合物としては、ハロゲン化物(例えば、塩化白金、塩化白金酸カリウム等)、カルボン酸塩類(例えば、酢酸白金等)、ジケトナート類(例えば、白金アセチルアセトナート等)、有機配位子を含有する白金化合物(例えばジクロロシクロオクタジエニル白金等)又はそれらの水和物などがあげられる。
Among the compounds represented by the general formula (I) of the present invention, the ligand forming the partial structure of the target complex is preferably 0.1 equivalent to 10 equivalents, more preferably relative to the platinum compound. It can be synthesized by adding 0.3 to 6 equivalents, more preferably 0.5 to 4 equivalents.
Examples of the platinum compound include halides (for example, platinum chloride, potassium chloroplatinate), carboxylates (for example, platinum acetate), diketonates (for example, platinum acetylacetonate), and organic ligands. Examples thereof include platinum compounds (such as dichlorocyclooctadienyl platinum) or hydrates thereof.

次に、本発明の前記一般式(I)で表される化合物のうち、例示化合物(1)の具体的な合成例を示すが、この方法に限定されるものではない。   Next, although the specific synthesis example of exemplary compound (1) is shown among the compounds represented by the said general formula (I) of this invention, it is not limited to this method.

Figure 2006257238
Figure 2006257238

100mlの三ツ口フラスコに、6−ブロモピコリン酸<1>3.0g(0.015モル)、t−ブチルアルコール30g、ピリジン9.0ml(0.045モル)を加えて氷冷下攪拌しているところに、p−トルエンスルホニルクロリド5.0g(0.026モル)を加え、さらに氷冷下で1時間攪拌させた後、徐々に室温へと昇温した。反応混合物に水を加えて、粗結晶を析出させ、濾別した。粗結晶を酢酸エチルに溶解させたのち無水硫酸マグネシウムで乾燥させ、無機塩を濾過した。得られた濾液をロータリーエバポレーターにより濃縮した。得られた結晶をヘキサンで分散洗浄して、化合物<2>を3.02g(79%)の収率で得た。
1H−NMR(300MHz,CDCl3) δ=7.97(dd,J=1.2,6.8Hz,1H),7.65(t,J=8.0Hz,1H),7.62(dd,J=1.6,7.6Hz,1H),1.62(s,9H).
6-bromopicolinic acid <1> 3.0 g (0.015 mol), t-butyl alcohol 30 g, and pyridine 9.0 ml (0.045 mol) are added to a 100 ml three-necked flask and stirred under ice cooling. Then, 5.0 g (0.026 mol) of p-toluenesulfonyl chloride was added, and the mixture was further stirred for 1 hour under ice cooling, and then gradually warmed to room temperature. Water was added to the reaction mixture to precipitate crude crystals, which were filtered off. The crude crystals were dissolved in ethyl acetate and dried over anhydrous magnesium sulfate, and the inorganic salt was filtered. The obtained filtrate was concentrated by a rotary evaporator. The obtained crystals were dispersed and washed with hexane to obtain Compound <2> in a yield of 3.02 g (79%).
1 H-NMR (300 MHz, CDCl 3 ) δ = 7.97 (dd, J = 1.2, 6.8 Hz, 1H), 7.65 (t, J = 8.0 Hz, 1H), 7.62 ( dd, J = 1.6, 7.6 Hz, 1H), 1.62 (s, 9H).

500mlの三ツ口フラスコに、レゾルシノール<3>89g(0.81モル)、2−ブロモピリジン64.0g(0.405モル)、N,N−ジメチルアセトアミド168ml、炭酸カリウム168g(1.22モル)を添加し、メカニカルスターラーで8時間加熱、攪拌した。反応混合物に水、10%希塩酸を加えて中和し、酢酸エチルで水層を3回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥させ、ロータリーエバポレーターで減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーにより精製して、8.3gの化合物<4>を収率11%で得た。
1H−NMR(400MHz,CDCl3) δ=8.19(dd,J=1.2,4.8Hz,1H),7.71(ddd,J=2.0,7.2,8.0Hz,1H),7.22(t,J=8.0Hz,1H),6.98−7.05(m,2H),6.94(br.d,J=8.4Hz,1H),6.60−6.66(m,2H),6.55(br.t,J=2Hz,1H).
In a 500 ml three-necked flask, resorcinol <3> 89 g (0.81 mol), 2-bromopyridine 64.0 g (0.405 mol), N, N-dimethylacetamide 168 ml, potassium carbonate 168 g (1.22 mol). The mixture was added and heated and stirred with a mechanical stirrer for 8 hours. The reaction mixture was neutralized with water and 10% diluted hydrochloric acid, and the aqueous layer was extracted three times with ethyl acetate. The collected organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure using a rotary evaporator. The obtained residue was purified by silica gel column chromatography to obtain 8.3 g of compound <4> in a yield of 11%.
1 H-NMR (400 MHz, CDCl 3 ) δ = 8.19 (dd, J = 1.2, 4.8 Hz, 1H), 7.71 (ddd, J = 2.0, 7.2, 8.0 Hz) , 1H), 7.22 (t, J = 8.0 Hz, 1H), 6.98-7.05 (m, 2H), 6.94 (br.d, J = 8.4 Hz, 1H), 6 .60-6.66 (m, 2H), 6.55 (br.t, J = 2 Hz, 1H).

100mlの三ツ口フラスコに、化合物<4>0.940g(5.02ミリモル)、化合物<2>1.08g(5.51ミリモル)、N,N−ジメチルアセトアミド18ml、炭酸カリウム2.12g(15.3ミリモル)を入れ、140℃で12時間、加熱攪拌した。反応混合物に水を加えたのち、水層を酢酸エチルで3回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥させた後、無機塩を濾過、得られた濾液をロータリーエバポレーターにより濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物<5>を0.25g(14%)で得た。
1H−NMR(400MHz,CDCl3)δ=8.21(br.dd,J=1.6,5.2Hz,1H),7.77(s,1H),7.76(d,J=1.6Hz,1H),7.69(br.ddd,J=2.0,7.2,8.0Hz,1H),7.40(t,J=8.4Hz,1H),6.97−7.10(m,5H),6.94(d,J=8.4Hz,1H),1.59(s,9H).
In a 100 ml three-necked flask, compound <4> 0.940 g (5.02 mmol), compound <2> 1.08 g (5.51 mmol), N, N-dimethylacetamide 18 ml, potassium carbonate 2.12 g (15.15 mmol). 3 mmol), and the mixture was stirred with heating at 140 ° C. for 12 hours. After adding water to the reaction mixture, the aqueous layer was extracted three times with ethyl acetate. The collected organic layer was dried over anhydrous magnesium sulfate, inorganic salts were filtered, and the obtained filtrate was concentrated by a rotary evaporator. The obtained residue was purified by silica gel column chromatography to obtain 0.25 g (14%) of compound <5>.
1 H-NMR (400 MHz, CDCl 3 ) δ = 8.21 (br.dd, J = 1.6, 5.2 Hz, 1H), 7.77 (s, 1H), 7.76 (d, J = 1.6 Hz, 1H), 7.69 (br.ddd, J = 2.0, 7.2, 8.0 Hz, 1H), 7.40 (t, J = 8.4 Hz, 1H), 6.97. -7.10 (m, 5H), 6.94 (d, J = 8.4 Hz, 1H), 1.59 (s, 9H).

100mlの三口フラスコに、化合物<5>136mg(ミリモル)、テトラヒドロフラン5.0ml、トリフルオロ酢酸0.2mlを入れ、80℃で8時間、加熱攪拌した。反応混合物をそのまま減圧条件下で濃縮して淡黄色油状の化合物<6>を109mgを得た。この化合物<6>は、これ以上精製することなく、速やかに次の工程へと用いた。
1H−NMR(400MHz,CDCl3)δ=8.42(br.d,J=4.0Hz, 1H),8.06(m,1H),7.98(d,J=1.6Hz,1H),7.97(s,1H),7.54(t,J=8.4Hz,1H),7.33(br.t,J=6.4Hz,1H),7.25−7.30(m,1H),7.05−7.18(m,3H),7.02(br.t,2.4Hz,1H).
A 100 ml three-necked flask was charged with 136 mg (mmol) of compound <5>, 5.0 ml of tetrahydrofuran and 0.2 ml of trifluoroacetic acid, and heated and stirred at 80 ° C. for 8 hours. The reaction mixture was directly concentrated under reduced pressure to give 109 mg of pale yellow oily compound <6>. This compound <6> was immediately used for the next step without further purification.
1 H-NMR (400 MHz, CDCl 3 ) δ = 8.42 (br.d, J = 4.0 Hz, 1H), 8.06 (m, 1H), 7.98 (d, J = 1.6 Hz, 1H), 7.97 (s, 1H), 7.54 (t, J = 8.4 Hz, 1H), 7.33 (br.t, J = 6.4 Hz, 1H), 7.25-7. 30 (m, 1H), 7.05-7.18 (m, 3H), 7.02 (br.t, 2.4 Hz, 1H).

100mlの三ツ口フラスコに、化合物<6>109mg、塩化白金酸カリウム147mg(0.354ミリモル)にアセトニトリル30ml、水10mlを加えて、窒素気流下で15時間加熱還流した。反応混合物に水を加え、得られた黄色の結晶を濾別したのちアセトニトリル、水で洗浄した。得られた粗結晶をシリカゲルカラムクロマトグラフィー(溶離液:クロロホロム)により精製し、本発明の例示化合物(1)を19mg(10%、2工程)の収率で得た。
1H−NMR (400MHz,CDCl3) δ=9.44(dd,J=2.4,6.0Hz,1H),8.08(dd,J=7.6,8.8Hz,1H),7.94(dt,J=1.6,8.0Hz,1H),7.86(dd,J=1.2,6.0Hz,1H),7.34(dd,J=0.8,8.4Hz,1H),7.20−7.25(m,2H),7.04−7.08(m,1H),7.04(dd,J=1.2,8.0Hz,1H),6.99(dd,J=1.2,6.8Hz,1H).
本発明の例示化合物(1)は、ジクロロメタン溶液において、室温下で480nmに、液体窒素冷却条件下において468nmに発光極大を示した。
To a 100 ml three-necked flask, compound <6> 109 mg, potassium chloroplatinate 147 mg (0.354 mmol), acetonitrile 30 ml and water 10 ml were added and heated under reflux for 15 hours under a nitrogen stream. Water was added to the reaction mixture, and the resulting yellow crystals were filtered off and washed with acetonitrile and water. The obtained crude crystals were purified by silica gel column chromatography (eluent: chloroholom) to obtain 19 mg (10%, 2 steps) of Exemplified Compound (1) of the present invention.
1 H-NMR (400 MHz, CDCl 3 ) δ = 9.44 (dd, J = 2.4, 6.0 Hz, 1H), 8.08 (dd, J = 7.6, 8.8 Hz, 1H), 7.94 (dt, J = 1.6, 8.0 Hz, 1H), 7.86 (dd, J = 1.2, 6.0 Hz, 1H), 7.34 (dd, J = 0.8, 8.4 Hz, 1H), 7.20-7.25 (m, 2H), 7.04-7.08 (m, 1H), 7.04 (dd, J = 1.2, 8.0 Hz, 1H) ), 6.99 (dd, J = 1.2, 6.8 Hz, 1H).
Exemplified compound (1) of the present invention exhibited an emission maximum in a dichloromethane solution at 480 nm at room temperature and at 468 nm under liquid nitrogen cooling conditions.

次に、本発明の前記一般式(I)で表される化合物を含有する発光素子に関して説明する。
本発明の発光素子は、本発明の前記一般式(I)で表される化合物を利用する素子である点以外は、通常の発光システム、駆動方法、利用形態などに用いることができる。
Next, the light emitting device containing the compound represented by the general formula (I) of the present invention will be described.
The light-emitting device of the present invention can be used in ordinary light-emitting systems, driving methods, usage forms, and the like except that it is a device that uses the compound represented by the general formula (I) of the present invention.

本発明の発光素子は、種々の公知の手法により、光取り出し効率を向上させることができる。例えば、基板表面形状を加工する(例えば微細な凹凸パターンを形成する)、基板・ITO層・有機層の屈折率を制御する、基板・ITO層・有機層の膜厚を制御すること等により、光の取り出し効率を向上させ、外部量子効率を向上させることが可能である。   The light-emitting element of the present invention can improve the light extraction efficiency by various known methods. For example, by processing the substrate surface shape (for example, forming a fine concavo-convex pattern), controlling the refractive index of the substrate / ITO layer / organic layer, controlling the film thickness of the substrate / ITO layer / organic layer, etc. It is possible to improve light extraction efficiency and external quantum efficiency.

本発明の発光素子の外部量子効率としては、5%以上が好ましく、10%以上がより好ましく、13%以上がさらに好ましい。
外部量子効率の数値は20℃で素子を駆動したときの外部量子効率の最大値、もしくは、20℃で素子を駆動した時の100〜300cd/m 2 付近(好ましくは200〜300cd/m 2 )での外部量子効率の値を用いることができる。
本発明における外部量子効率の数値は、20℃で素子を駆動したときの外部量子効率の最大値をその値として採用する。
本発明においては、東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧をEL素子に印加し発光させ、その輝度をトプコン社製輝度計BM−8を用いて測定し、200cd/m 2 における外部量子効率が算出できる。
具体的には、素子の外部量子効率は、発光輝度、発光スペクトル、電流密度を測定し、その結果と比視感度曲線から算出する。すなわち、電流密度値を用い、入力した電子数を算出することができる。そして、発光スペクトルと比視感度曲線(スペクトル)を用いた積分計算により、発光輝度を発光したフォトン数に換算した。これらから外部量子効率(%)は、「(発光したフォトン数/素子に入力した電子数)×100」で計算する。
The external quantum efficiency of the light emitting device of the present invention is preferably 5% or more, more preferably 10% or more, and further preferably 13% or more.
The maximum value of the external quantum efficiency when numeric external quantum efficiency of the device is driven at 20 ° C., or around 100~300cd / m 2 when the device is driven at 20 ° C. (preferably 200~300cd / m 2) The value of external quantum efficiency at can be used.
As the numerical value of the external quantum efficiency in the present invention, the maximum value of the external quantum efficiency when the element is driven at 20 ° C. is adopted as the value.
In the present invention, using a source measure unit type 2400 manufactured by Toyo Technica, a DC constant voltage is applied to the EL element to emit light, and the luminance is measured using a luminance meter BM-8 manufactured by Topcon Corporation, and is 200 cd / m 2. The external quantum efficiency at can be calculated.
Specifically, the external quantum efficiency of the device is calculated from the result and the luminous efficiency curve obtained by measuring the emission luminance, emission spectrum, and current density. That is, the number of input electrons can be calculated using the current density value. The emission luminance was converted to the number of photons emitted by integral calculation using the emission spectrum and the relative visibility curve (spectrum). From these, the external quantum efficiency (%) is calculated by “(number of photons emitted / number of electrons input to the device) × 100”.

該発光スペクトルは、浜松ホトニクス社製のマルチ・チャンネル・アナライザーPMA−11を用いて測定することができる。   The emission spectrum can be measured using a multi-channel analyzer PMA-11 manufactured by Hamamatsu Photonics.

また、本発明の発光素子の内部量子効率としては、30%以上が好ましく、50%以上がさらに好ましく、70%以上がさらに好ましい。素子の内部量子効率は「内部量子効率=外部量子効率/光取り出し効率」で算出される。
通常の有機EL素子では光取り出し効率は約20%であるが、基板の形状、電極の形状、有機層の膜厚、無機層の膜厚、有機層の屈折率、無機層の屈折率等を工夫することにより、光取り出し効率を20%以上にすることが可能で有る。
Further, the internal quantum efficiency of the light emitting device of the present invention is preferably 30% or more, more preferably 50% or more, and further preferably 70% or more. The internal quantum efficiency of the device is calculated by “internal quantum efficiency = external quantum efficiency / light extraction efficiency”.
In a normal organic EL element, the light extraction efficiency is about 20%. However, the shape of the substrate, the shape of the electrode, the thickness of the organic layer, the thickness of the inorganic layer, the refractive index of the organic layer, the refractive index of the inorganic layer, etc. By devising it, it is possible to increase the light extraction efficiency to 20% or more.

本発明の発光素子は、陰極側から発光を取り出す、いわゆる、トップエミッション方式(特開2003−208109,2003−248441,2003−257651,2003−282261などに記載)であっても良い。   The light-emitting element of the present invention may be a so-called top emission method (described in Japanese Patent Application Laid-Open Nos. 2003-208109, 2003-248441, 2003-257651, 2003-282261, etc.) in which light emission is extracted from the cathode side.

また、本発明の発光素子の駆動耐久性は、例えば、東洋テクニカ製ソ−スメジャ−ユニット2400型等を用いて、直流電圧を有機EL素子に印加し発光させ、その輝度をトプコン社の輝度計BM−8を用いて測定して、該初期輝度が半減するまでの時間(輝度半減時間)を測定することにより評価することができる。   The driving durability of the light emitting device of the present invention is determined by applying a direct current voltage to the organic EL device to emit light using, for example, a source measure unit type 2400 manufactured by Toyo Technica Co., Ltd. It can be evaluated by measuring using BM-8 and measuring the time until the initial luminance is halved (luminance half time).

本発明の一般式(I)で表される化合物を発光材料として利用する場合が好ましい。発光材料として用いる場合は、紫外発光であっても赤外発光であっても良く、また蛍光発光であってもりん光発光であっても良い。代表的な発光素子として有機EL(エレクトロルミネッセンス)素子を挙げることができる。   The case where the compound represented by the general formula (I) of the present invention is used as a light emitting material is preferable. When used as a light emitting material, ultraviolet light emission or infrared light emission may be used, and fluorescence light emission or phosphorescence light emission may be used. An organic EL (electroluminescence) element can be mentioned as a typical light emitting element.

[有機電界発光素子]
以下、本発明の有機電界発光素子(以下、適宜「有機EL素子」と称する場合がある。)について詳細に説明する。
本発明の発光素子は基板上に陰極と陽極を有し、両電極の間に有機発光層(以下、単に「発光層」と称する場合がある。)を含む有機化合物層を有する。発光素子の性質上、陽極及び陰極のうち少なくとも一方の電極は、透明であることが好ましい。
[Organic electroluminescence device]
Hereinafter, the organic electroluminescent element of the present invention (hereinafter sometimes referred to as “organic EL element” as appropriate) will be described in detail.
The light-emitting element of the present invention has a cathode and an anode on a substrate, and an organic compound layer including an organic light-emitting layer (hereinafter sometimes simply referred to as “light-emitting layer”) between both electrodes. In view of the properties of the light emitting element, at least one of the anode and the cathode is preferably transparent.

本発明における有機層(有機化合物層)の積層の態様としては、陽極側から、正孔輸送層、発光層、電子輸送層の順に積層されている態様が好ましい。更に、正孔輸送層と発光層との間、又は、発光層と電子輸送層との間には、電荷ブロック層等を有していてもよい。陽極と正孔輸送層との間に、正孔注入層を有してもよく、陰極と電子輸送層との間には、電子注入層を有してもよい。尚、各層は複数の二次層に分かれていてもよい。   As an aspect of lamination of the organic layer (organic compound layer) in the present invention, an aspect in which a hole transport layer, a light emitting layer, and an electron transport layer are laminated in this order from the anode side is preferable. Further, a charge blocking layer or the like may be provided between the hole transport layer and the light-emitting layer, or between the light-emitting layer and the electron transport layer. A hole injection layer may be provided between the anode and the hole transport layer, and an electron injection layer may be provided between the cathode and the electron transport layer. Each layer may be divided into a plurality of secondary layers.

<基板>
本発明で使用する基板としては、有機化合物層から発せられる光を散乱又は減衰させない基板であることが好ましい。
その具体例としては、ジルコニア安定化イットリウム(YSZ)、ガラス等の無機材料、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の有機材料が挙げられる。
例えば、基板としてガラスを用いる場合、その材質については、ガラスからの溶出イオンを少なくするため、無アルカリガラスを用いることが好ましい。また、ソーダライムガラスを用いる場合には、シリカなどのバリアコートを施したものを使用することが好ましい。 有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、及び加工性に優れていることが好ましい。
<Board>
The substrate used in the present invention is preferably a substrate that does not scatter or attenuate light emitted from the organic compound layer.
Specific examples thereof include zirconia stabilized yttrium (YSZ), inorganic materials such as glass, polyesters such as polyethylene terephthalate, polybutylene phthalate, and polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, and polycycloolefin. , Organic materials such as norbornene resin and poly (chlorotrifluoroethylene).
For example, when glass is used as the substrate, alkali-free glass is preferably used as the material in order to reduce ions eluted from the glass. Moreover, when using soda-lime glass, it is preferable to use what gave barrier coatings, such as a silica. In the case of an organic material, it is preferable that it is excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, and workability.

基板の形状、構造、大きさ等については、特に制限はなく、発光素子の用途、目的等に応じて適宜選択することができる。一般的には、基板の形状としては、板状であることが好ましい。基板の構造としては、単層構造であってもよいし、積層構造であってもよく、また、単一部材で形成されていてもよいし、2以上の部材で形成されていてもよい。   There is no restriction | limiting in particular about the shape of a board | substrate, a structure, a magnitude | size, It can select suitably according to the use, purpose, etc. of a light emitting element. In general, the shape of the substrate is preferably a plate shape. The structure of the substrate may be a single layer structure, a laminated structure, may be formed of a single member, or may be formed of two or more members.

基板は、無色透明であっても、有色透明であってもよいが、有機発光層から発せられる光を散乱又は減衰等させることがない点で、無色透明であることが好ましい。   The substrate may be colorless and transparent or colored and transparent, but is preferably colorless and transparent in that it does not scatter or attenuate light emitted from the organic light emitting layer.

基板には、その表面又は裏面に透湿防止層(ガスバリア層)を設けることができる。
透湿防止層(ガスバリア層)の材料としては、窒化珪素、酸化珪素などの無機物が好適に用いられる。透湿防止層(ガスバリア層)は、例えば、高周波スパッタリング法などにより形成することができる。
熱可塑性基板を用いる場合には、更に必要に応じて、ハードコート層、アンダーコート層などを設けてもよい。
The substrate can be provided with a moisture permeation preventing layer (gas barrier layer) on the front surface or the back surface.
As a material for the moisture permeation preventive layer (gas barrier layer), inorganic materials such as silicon nitride and silicon oxide are preferably used. The moisture permeation preventing layer (gas barrier layer) can be formed by, for example, a high frequency sputtering method.
When a thermoplastic substrate is used, a hard coat layer, an undercoat layer, or the like may be further provided as necessary.

<陽極>
陽極は、通常、有機化合物層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。前述のごとく、陽極は、通常透明陽極として設けられることが好ましい。
<Anode>
The anode usually has a function as an electrode for supplying holes to the organic compound layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light-emitting element. , Can be appropriately selected from known electrode materials. As described above, the anode is usually preferably provided as a transparent anode.

陽極の材料としては、例えば、金属、合金、金属酸化物、導電性化合物、又はこれらの混合物が好適に挙げられる。
陽極材料の具体例としては、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル等の金属、さらにこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITOとの積層物などが挙げられる。この中で好ましいのは、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点からはITOが好ましい。
Suitable examples of the material for the anode include metals, alloys, metal oxides, conductive compounds, and mixtures thereof.
Specific examples of anode materials include conductive metals such as tin oxide (ATO, FTO), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO) doped with antimony and fluorine. Metals such as oxides, gold, silver, chromium, nickel, and mixtures or laminates of these metals and conductive metal oxides, inorganic conductive materials such as copper iodide and copper sulfide, polyaniline, polythiophene, polypyrrole, etc. Organic conductive materials, and a laminate of these and ITO. Among these, conductive metal oxides are preferable, and ITO is particularly preferable from the viewpoints of productivity, high conductivity, transparency, and the like.

陽極は、例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、陽極を構成する材料との適性を考慮して適宜選択した方法に従って、前記基板上に形成することができる。例えば、陽極の材料として、ITOを選択する場合には、陽極の形成は、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等に従って行うことができる。   The anode is composed of, for example, a wet method such as a printing method and a coating method, a physical method such as a vacuum deposition method, a sputtering method, and an ion plating method, and a chemical method such as a CVD and a plasma CVD method. It can be formed on the substrate according to a method appropriately selected in consideration of suitability with the material to be processed. For example, when ITO is selected as the anode material, the anode can be formed according to a direct current or high frequency sputtering method, a vacuum deposition method, an ion plating method, or the like.

本発明の有機電界発光素子において、陽極の形成位置としては特に制限はなく、発光素子の用途、目的に応じて適宜選択することができるが、前記基板上に形成されるのが好ましい。この場合、陽極は、基板における一方の表面の全部に形成されていてもよく、その一部に形成されていてもよい。   In the organic electroluminescent element of the present invention, the formation position of the anode is not particularly limited and can be appropriately selected according to the use and purpose of the light emitting element, but it is preferably formed on the substrate. In this case, the anode may be formed on the entire one surface of the substrate, or may be formed on a part thereof.

なお、陽極を形成する際のパターニングとしては、フォトリソグラフィーなどによる化学的エッチングで行ってもよいし、レーザーなどによる物理的エッチングで行ってもよく、また、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法で行ってもよい。   The patterning for forming the anode may be performed by chemical etching such as photolithography, or may be performed by physical etching using a laser or the like. It may be performed by a lift-off method or a printing method.

陽極の厚みとしては、陽極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常、10nm〜50μm程度であり、50nm〜20μmが好ましい。   The thickness of the anode can be appropriately selected depending on the material constituting the anode and cannot be generally defined, but is usually about 10 nm to 50 μm, and preferably 50 nm to 20 μm.

陽極の抵抗値としては、103Ω/□以下が好ましく、102Ω/□以下がより好ましい。陽極が透明である場合は、無色透明であっても、有色透明であってもよい。透明陽極側から発光を取り出すためには、その透過率としては、60%以上が好ましく、70%以上がより好ましい。 The resistance value of the anode is preferably 10 3 Ω / □ or less, and more preferably 10 2 Ω / □ or less. When the anode is transparent, it may be colorless and transparent or colored and transparent. In order to take out light emission from the transparent anode side, the transmittance is preferably 60% or more, and more preferably 70% or more.

なお、透明陽極については、沢田豊監修「透明電導膜の新展開」シーエムシー刊(1999)に詳述があり、ここに記載される事項を本発明に適用することができる。耐熱性の低いプラスティック基材を用いる場合は、ITO又はIZOを使用し、150℃以下の低温で成膜した透明陽極が好ましい。   The transparent anode is described in detail in Yutaka Sawada's “New Development of Transparent Conductive Film” published by CMC (1999), and the matters described here can be applied to the present invention. In the case of using a plastic substrate having low heat resistance, a transparent anode formed using ITO or IZO at a low temperature of 150 ° C. or lower is preferable.

<陰極>
陰極は、通常、有機化合物層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
<Cathode>
The cathode usually has a function as an electrode for injecting electrons into the organic compound layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light-emitting element, It can select suitably from well-known electrode materials.

陰極を構成する材料としては、例えば、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物などが挙げられる。具体例としてはアルカリ金属(たとえば、Li、Na、K、Cs等)、アルカリ土類金属(たとえばMg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム−カリウム合金、リチウム−アルミニウム合金、マグネシウム−銀合金、インジウム、イッテルビウム等の希土類金属、などが挙げられる。これらは、1種単独で使用してもよいが、安定性と電子注入性とを両立させる観点からは、2種以上を好適に併用することができる。   Examples of the material constituting the cathode include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Specific examples include alkali metals (eg, Li, Na, K, Cs, etc.), alkaline earth metals (eg, Mg, Ca, etc.), gold, silver, lead, aluminum, sodium-potassium alloys, lithium-aluminum alloys, magnesium. -Rare earth metals such as silver alloys, indium, ytterbium, and the like. These may be used alone, but two or more can be suitably used in combination from the viewpoint of achieving both stability and electron injection.

これらの中でも、陰極を構成する材料としては、電子注入性の点で、アルカリ金属やアルカリ土類金属が好ましく、保存安定性に優れる点で、アルミニウムを主体とする材料が好ましい。
アルミニウムを主体とする材料とは、アルミニウム単独、アルミニウムと0.01〜10質量%のアルカリ金属又はアルカリ土類金属との合金若しくはこれらの混合物(例えば、リチウム−アルミニウム合金、マグネシウム−アルミニウム合金など)をいう。
Among these, as a material constituting the cathode, an alkali metal or an alkaline earth metal is preferable from the viewpoint of electron injecting property, and a material mainly composed of aluminum is preferable from the viewpoint of excellent storage stability.
The material mainly composed of aluminum is aluminum alone, an alloy of aluminum and 0.01 to 10% by mass of alkali metal or alkaline earth metal, or a mixture thereof (for example, lithium-aluminum alloy, magnesium-aluminum alloy, etc.) Say.

なお、陰極の材料については、特開平2−15595号公報、特開平5−121172号公報に詳述されており、これらの公報に記載の材料は、本発明においても適用することができる。   The cathode materials are described in detail in JP-A-2-15595 and JP-A-5-121172, and the materials described in these publications can also be applied in the present invention.

陰極の形成方法については、特に制限はなく、公知の方法に従って行うことができる。例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、前記した陰極を構成する材料との適性を考慮して適宜選択した方法に従って形成することができる。例えば、陰極の材料として、金属等を選択する場合には、その1種又は2種以上を同時又は順次にスパッタ法等に従って行うことができる。   There is no restriction | limiting in particular about the formation method of a cathode, According to a well-known method, it can carry out. For example, the cathode described above is configured from a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a chemical method such as CVD or plasma CVD method. It can be formed according to a method appropriately selected in consideration of suitability with the material. For example, when a metal or the like is selected as the cathode material, one or more of them can be simultaneously or sequentially performed according to a sputtering method or the like.

陰極を形成するに際してのパターニングは、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。   Patterning when forming the cathode may be performed by chemical etching such as photolithography, physical etching by laser, or the like, or by vacuum deposition or sputtering with the mask overlaid. It may be performed by a lift-off method or a printing method.

本発明において、陰極形成位置は特に制限はなく、有機化合物層上の全部に形成されていてもよく、その一部に形成されていてもよい。
また、陰極と前記有機化合物層との間に、アルカリ金属又はアルカリ土類金属のフッ化物、酸化物等による誘電体層を0.1〜5nmの厚みで挿入してもよい。この誘電体層は、一種の電子注入層と見ることもできる。誘電体層は、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等により形成することができる。
In the present invention, the cathode formation position is not particularly limited, and may be formed on the entire organic compound layer or a part thereof.
Further, a dielectric layer made of an alkali metal or alkaline earth metal fluoride or oxide may be inserted between the cathode and the organic compound layer with a thickness of 0.1 to 5 nm. This dielectric layer can also be regarded as a kind of electron injection layer. The dielectric layer can be formed by, for example, a vacuum deposition method, a sputtering method, an ion plating method, or the like.

陰極の厚みは、陰極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常10nm〜5μm程度であり、50nm〜1μmが好ましい。
また、陰極は、透明であってもよいし、不透明であってもよい。なお、透明な陰極は、陰極の材料を1〜10nmの厚さに薄く成膜し、更にITOやIZO等の透明な導電性材料を積層することにより形成することができる。
The thickness of the cathode can be appropriately selected depending on the material constituting the cathode and cannot be generally defined, but is usually about 10 nm to 5 μm, and preferably 50 nm to 1 μm.
Further, the cathode may be transparent or opaque. The transparent cathode can be formed by depositing a thin cathode material to a thickness of 1 to 10 nm and further laminating a transparent conductive material such as ITO or IZO.

<有機層>
本発明における有機層(以下、「有機化合物層」ともいう。)について説明する。
本発明の有機電界発光素子は、1対の電極間に発光層(以下、「有機発光層」ともいう。)を含む少なくとも一層の有機化合物層を有しており、有機発光層以外の他の有機化合物層としては、前述したごとく、正孔輸送層、電子輸送層、電荷ブロック層、正孔注入層、電子注入層等の各層が挙げられる。
<Organic layer>
The organic layer (hereinafter also referred to as “organic compound layer”) in the present invention will be described.
The organic electroluminescent element of the present invention has at least one organic compound layer including a light emitting layer (hereinafter also referred to as “organic light emitting layer”) between a pair of electrodes. Examples of the organic compound layer include a hole transport layer, an electron transport layer, a charge blocking layer, a hole injection layer, and an electron injection layer as described above.

−有機化合物層の形成−
本発明の有機電界発光素子において、有機化合物層を構成する各層は、蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法等いずれによっても好適に形成することができる。
-Formation of organic compound layer-
In the organic electroluminescent element of the present invention, each layer constituting the organic compound layer can be suitably formed by any of a dry film forming method such as a vapor deposition method and a sputtering method, a transfer method, and a printing method.

−発光層(有機発光層)−
発光層は、電界印加時に、陽極、正孔注入層、又は正孔輸送層から正孔を受け取り、陰極、電子注入層、又は電子輸送層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
本発明における発光層は、発光材料のみで構成されていても良く、ホスト材料と発光材料の混合層とした構成でも良い。発光材料は蛍光発光材料でも燐光発光材料であっても良く、発光材料(ドーパント)は1種であっても2種以上であっても良い。ホスト材料は電荷輸送材料であることが好ましい。ホスト材料は1種であっても2種以上であっても良く、例えば、電子輸送性のホスト材料とホール輸送性のホスト材料を混合した構成が挙げられる。さらに、発光層中に電荷輸送性を有さず、発光しない材料を含んでいても良い。
また、発光層は1層であっても2層以上であってもよく、それぞれの層が異なる発光色で発光してもよい。
-Light emitting layer (organic light emitting layer)-
The light-emitting layer receives holes from the anode, the hole injection layer, or the hole transport layer when an electric field is applied, receives electrons from the cathode, the electron injection layer, or the electron transport layer, and recombines holes and electrons. It is a layer which has the function to provide and to emit light.
The light emitting layer in the present invention may be composed of only a light emitting material, or may be a mixed layer of a host material and a light emitting material. The light emitting material may be a fluorescent light emitting material or a phosphorescent light emitting material, and the light emitting material (dopant) may be one type or two or more types. The host material is preferably a charge transport material. The host material may be one type or two or more types, and examples thereof include a configuration in which an electron transporting host material and a hole transporting host material are mixed. Further, the light emitting layer may include a material that does not have charge transporting properties and does not emit light.
Further, the light emitting layer may be a single layer or two or more layers, and each layer may emit light in different emission colors.

本発明の一般式(I)で表される化合物と合わせて使用できる蛍光発光材料の例としては、例えば、ベンゾオキサゾール誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、スチリルベンゼン誘導体、ポリフェニル誘導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、縮合芳香族化合物、ペリノン誘導体、オキサジアゾール誘導体、オキサジン誘導体、アルダジン誘導体、ピラリジン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、シクロペンタジエン誘導体、スチリルアミン誘導体、ジケトピロロピロール誘導体、芳香族ジメチリディン化合物、8−キノリノール誘導体の金属錯体やピロメテン誘導体の金属錯体に代表される各種金属錯体等、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン誘導体などの化合物等が挙げられる。   Examples of fluorescent light-emitting materials that can be used in combination with the compound represented by the general formula (I) of the present invention include, for example, benzoxazole derivatives, benzimidazole derivatives, benzothiazole derivatives, styrylbenzene derivatives, polyphenyl derivatives, diphenylbutadiene. Derivatives, tetraphenylbutadiene derivatives, naphthalimide derivatives, coumarin derivatives, condensed aromatic compounds, perinone derivatives, oxadiazole derivatives, oxazine derivatives, aldazine derivatives, pyralidine derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives, quinacridone derivatives, pyrrolopyridines Derivatives, thiadiazolopyridine derivatives, cyclopentadiene derivatives, styrylamine derivatives, diketopyrrolopyrrole derivatives, aromatic dimethylidin compounds, 8-quinolino Various metal complexes represented by metal complexes of the metal complex and pyrromethene derivatives of derivatives, polythiophene, polyphenylene, polyphenylene-vinylene and the like of the polymer compound include compounds such as organic silane derivatives.

錯体の配位子としては、例えば、G.Wilkinson等著,Comprehensive Coordination Chemistry, Pergamon Press社1987年発行、H.Yersin著,「Photochemistry and Photophysics of Coordination Compounds」 Springer−Verlag社1987年発行、山本明夫著「有機金属化学−基礎と応用−」裳華房社1982年発行等に記載の配位子などが挙げられる。
具体的な配位子としては、好ましくは、ハロゲン配位子(好ましくは塩素配位子)、含窒素ヘテロ環配位子(例えば、フェニルピリジン、ベンゾキノリン、キノリノール、ビピリジル、フェナントロリンなど)、ジケトン配位子(例えば、アセチルアセトンなど)、カルボン酸配位子(例えば、酢酸配位子など)、一酸化炭素配位子、イソニトリル配位子、シアノ配位子であり、より好ましくは、含窒素ヘテロ環配位子である。上記錯体は、化合物中に遷移金属原子を一つ有してもよいし、また、2つ以上有するいわゆる複核錯体であってもよい。異種の金属原子を同時に含有していてもよい。
Examples of the ligand of the complex include G.I. Wilkinson et al., Comprehensive Coordination Chemistry, Pergamon Press, 1987, H.C. Examples include ligands described in Yersin's "Photochemistry and Photophysics of Coordination Compounds" published by Springer-Verlag 1987, Akio Yamamoto "Organic Metal Chemistry-Fundamentals and Applications-" .
Specific ligands are preferably halogen ligands (preferably chlorine ligands), nitrogen-containing heterocyclic ligands (eg, phenylpyridine, benzoquinoline, quinolinol, bipyridyl, phenanthroline, etc.), diketones Ligand (for example, acetylacetone), carboxylic acid ligand (for example, acetic acid ligand), carbon monoxide ligand, isonitrile ligand, cyano ligand, more preferably nitrogen-containing Heterocyclic ligand. The complex may have one transition metal atom in the compound, or may be a so-called binuclear complex having two or more. Different metal atoms may be contained at the same time.

本発明の一般式(I)で表される化合物と合わせて使用できる燐光発光材料の例としては、例えば、US 6303231 B1、US 6097147、WO 00/57676、WO 00/70655、WO 01/39234、WO 01/41512 A1、WO 02/02714 A2、WO 02/15645 A1、特開2001−247859、EP 1211257、特開2002−226495、特開2002−234894、特開2001−247859、特開2001−298470、特開2002−173674、特開2002−203678、特開2002−203679等の特許文献や、Nature、395巻、151頁(1998年)、Applied Physics Letters、75巻、4頁(1999年)、Polymer Preprints、41巻、770頁(2000年)、Journal of American Chemical Society、123巻、4304頁(2001年)、Applied Physics Letters、79巻、2082頁(1999年)等の非特許文献に記載されているものが好適に利用できる。   Examples of phosphorescent materials that can be used in combination with the compound represented by the general formula (I) of the present invention include, for example, US 6303231 B1, US 6097147, WO 00/57676, WO 00/70655, WO 01/39234, WO 01/41512 A1, WO 02/02714 A2, WO 02/15645 A1, JP 2001-247659, EP 12112257, JP 2002-226495, JP 2002-234894, JP 2001247478, JP 2001-298470 Patent Documents such as JP2002-173675, JP2002-203678, and JP2002-203679, Nature 395, 151 (1998), Applied Physics Letters, 75, 4 (19). 9), Polymer Preprints, 41, 770 (2000), Journal of American Chemical Society, 123, 4304 (2001), Applied Physics Letters, 79, 2082 (1999), etc. Those described in the literature can be suitably used.

一般式(I)で表される化合物を発光材料として用いた場合、該発光材料は、発光層中に、0.1〜40質量%含有されることが好ましく、0.5〜20質量%含有されることがより好ましい。   When the compound represented by the general formula (I) is used as a light emitting material, the light emitting material is preferably contained in the light emitting layer in an amount of 0.1 to 40% by weight, and 0.5 to 20% by weight. More preferably.

また、本発明における発光層に含有されるホスト材料としては、例えば、カルバゾール骨格を有するもの、ジアリールアミン骨格を有するもの、ピリジン骨格を有するもの、ピラジン骨格を有するもの、トリアジン骨格を有するもの及びアリールシラン骨格を有するものや、後述の正孔注入層、正孔輸送層、電子注入層、電子輸送層の項で例示されている材料が挙げられる。
ホスト材料は、発光層中に50〜99.9%質量%含有されていることが好ましく、70〜99.8質量%含有されることがより好ましい。
発光層中における発光材料とホスト材料と比率としては、特に限定されないが、中でも、発光効率および耐久性の観点から0.1:99.9〜40:60の範囲が好ましく、0.2:99.8〜20:80の範囲がより好ましく、0.5:99.5〜10:90の範囲が特に好ましい。
Examples of the host material contained in the light emitting layer in the present invention include those having a carbazole skeleton, those having a diarylamine skeleton, those having a pyridine skeleton, those having a pyrazine skeleton, those having a triazine skeleton, and aryl. Examples thereof include materials having a silane skeleton and materials exemplified in the sections of a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer described later.
The host material is preferably contained in the light emitting layer in an amount of 50 to 99.9% by mass, and more preferably 70 to 99.8% by mass.
The ratio of the light emitting material to the host material in the light emitting layer is not particularly limited, but among them, the range of 0.1: 99.9 to 40:60 is preferable from the viewpoint of light emission efficiency and durability, and 0.2: 99. The range of 0.8-20: 80 is more preferable, and the range of 0.5: 99.5-10: 90 is particularly preferable.

発光層の厚さは、特に限定されるものではないが、通常、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。   Although the thickness of a light emitting layer is not specifically limited, Usually, it is preferable that they are 1 nm-500 nm, it is more preferable that they are 5 nm-200 nm, and it is still more preferable that they are 10 nm-100 nm.

−正孔注入層、正孔輸送層−
正孔注入層、正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。正孔注入層、正孔輸送層は、具体的には、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、有機シラン誘導体、カーボン、等を含有する層であることが好ましい。
正孔注入層、正孔輸送層の厚さは、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。
正孔輸送層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。また、正孔注入層の厚さとしては、0.1nm〜200nmであるのが好ましく、0.5nm〜100nmであるのがより好ましく、1nm〜100nmであるのが更に好ましい。
正孔注入層、正孔輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
-Hole injection layer, hole transport layer-
The hole injection layer and the hole transport layer are layers having a function of receiving holes from the anode or the anode side and transporting them to the cathode side. Specifically, the hole injection layer and the hole transport layer are carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamines. Derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidin compounds, porphyrin compounds, organosilane derivatives, carbon , Etc. are preferable.
The thicknesses of the hole injection layer and the hole transport layer are each preferably 500 nm or less from the viewpoint of lowering the driving voltage.
The thickness of the hole transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and still more preferably 10 nm to 100 nm. In addition, the thickness of the hole injection layer is preferably 0.1 nm to 200 nm, more preferably 0.5 nm to 100 nm, and still more preferably 1 nm to 100 nm.
The hole injection layer and the hole transport layer may have a single-layer structure composed of one or more of the materials described above, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions. .

−電子注入層、電子輸送層−
電子注入層、電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。電子注入層、電子輸送層は、具体的には、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン誘導体、8−キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、有機シラン誘導体、等を含有する層であることが好ましい。
-Electron injection layer, electron transport layer-
The electron injection layer and the electron transport layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side. Specifically, the electron injection layer and the electron transport layer are triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, Carbodiimide derivatives, fluorenylidenemethane derivatives, distyrylpyrazine derivatives, aromatic tetracarboxylic anhydrides such as naphthalene and perylene, phthalocyanine derivatives, metal complexes of 8-quinolinol derivatives, metal phthalocyanines, benzoxazoles and benzothiazoles as ligands It is preferably a layer containing various metal complexes typified by metal complexes, organosilane derivatives, and the like.

電子注入層、電子輸送層の厚さは、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。
電子輸送層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。また、電子注入層の厚さとしては、0.1nm〜200nmであるのが好ましく、0.2nm〜100nmであるのがより好ましく、0.5nm〜50nmであるのが更に好ましい。
電子注入層、電子輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
The thicknesses of the electron injection layer and the electron transport layer are each preferably 500 nm or less from the viewpoint of lowering the driving voltage.
The thickness of the electron transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and still more preferably 10 nm to 100 nm. In addition, the thickness of the electron injection layer is preferably 0.1 nm to 200 nm, more preferably 0.2 nm to 100 nm, and still more preferably 0.5 nm to 50 nm.
The electron injection layer and the electron transport layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.

−正孔ブロック層−
正孔ブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陰極側で隣接する有機化合物層として、正孔ブロック層を設けることができる。
正孔ブロック層を構成する有機化合物の例としては、BAlq等のアルミニウム錯体、トリアゾール誘導体、BCP等のフェナントロリン誘導体、等が挙げられる。
正孔ブロック層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。
正孔ブロック層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
-Hole blocking layer-
The hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side. In the present invention, a hole blocking layer can be provided as an organic compound layer adjacent to the light emitting layer on the cathode side.
Examples of the organic compound constituting the hole blocking layer include aluminum complexes such as BAlq, triazole derivatives, phenanthroline derivatives such as BCP, and the like.
The thickness of the hole blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and still more preferably 10 nm to 100 nm.
The hole blocking layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.

<保護層>
本発明において、有機EL素子全体は、保護層によって保護されていてもよい。
保護層に含まれる材料としては、水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであればよい。
その具体例としては、In、Sn、Pb、Au、Cu、Ag、Al、Ti、Ni等の金属、MgO、SiO、SiO2、Al23、GeO、NiO、CaO、BaO、Fe23、Y23、TiO2等の金属酸化物、SiNx、SiNxy等の金属窒化物、MgF2、LiF、AlF3、CaF2等の金属フッ化物、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリウレア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体、テトラフルオロエチレンと少なくとも1種のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質等が挙げられる。
<Protective layer>
In the present invention, the entire organic EL element may be protected by a protective layer.
As a material contained in the protective layer, any material may be used as long as it has a function of preventing materials that promote device deterioration such as moisture and oxygen from entering the device.
Specific examples thereof include metals such as In, Sn, Pb, Au, Cu, Ag, Al, Ti, and Ni, MgO, SiO, SiO 2 , Al 2 O 3 , GeO, NiO, CaO, BaO, and Fe 2 O. 3 , metal oxides such as Y 2 O 3 and TiO 2 , metal nitrides such as SiN x and SiN x O y , metal fluorides such as MgF 2 , LiF, AlF 3 and CaF 2 , polyethylene, polypropylene, polymethyl Monomer mixture containing methacrylate, polyimide, polyurea, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, copolymer of chlorotrifluoroethylene and dichlorodifluoroethylene, tetrafluoroethylene and at least one comonomer A copolymer obtained by copolymerization of a copolymer having a cyclic structure in the copolymer main chain. Copolymer, 1% by weight of the water absorbing water absorption material, water absorption of 0.1% or less of moisture-proof material, and the like.

保護層の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、コーティング法、印刷法、転写法を適用できる。   The method for forming the protective layer is not particularly limited, and for example, vacuum deposition, sputtering, reactive sputtering, MBE (molecular beam epitaxy), cluster ion beam, ion plating, plasma polymerization (high frequency) Excited ion plating method), plasma CVD method, laser CVD method, thermal CVD method, gas source CVD method, coating method, printing method, transfer method can be applied.

<封止>
さらに、本発明の有機電界発光素子は、封止容器を用いて素子全体を封止してもよい。
また、封止容器と発光素子の間の空間に水分吸収剤又は不活性液体を封入してもよい。水分吸収剤としては、特に限定されることはないが、例えば、酸化バリウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、五酸化燐、塩化カルシウム、塩化マグネシウム、塩化銅、フッ化セシウム、フッ化ニオブ、臭化カルシウム、臭化バナジウム、モレキュラーシーブ、ゼオライト、酸化マグネシウム等を挙げることができる。不活性液体としては、特に限定されることはないが、例えば、パラフィン類、流動パラフィン類、パーフルオロアルカンやパーフルオロアミン、パーフルオロエーテル等のフッ素系溶剤、塩素系溶剤、シリコーンオイル類が挙げられる。
<Sealing>
Furthermore, the organic electroluminescent element of this invention may seal the whole element using a sealing container.
Further, a moisture absorbent or an inert liquid may be sealed in a space between the sealing container and the light emitting element. Although it does not specifically limit as a moisture absorber, For example, barium oxide, sodium oxide, potassium oxide, calcium oxide, sodium sulfate, calcium sulfate, magnesium sulfate, phosphorus pentoxide, calcium chloride, magnesium chloride, copper chloride Cesium fluoride, niobium fluoride, calcium bromide, vanadium bromide, molecular sieve, zeolite, magnesium oxide and the like. The inert liquid is not particularly limited, and examples thereof include fluorinated solvents such as paraffins, liquid paraffins, perfluoroalkanes, perfluoroamines, perfluoroethers, chlorinated solvents, and silicone oils. It is done.

本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト〜15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
本発明の有機電界発光素子の駆動方法については、特開平2−148687号、同6−301355号、同5−29080号、同7−134558号、同8−234685号、同8−241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書、等に記載の駆動方法を適用することができる。
The organic electroluminescence device of the present invention emits light by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode. Obtainable.
The driving method of the organic electroluminescence device of the present invention is described in JP-A-2-148687, JP-A-6-301355, JP-A-5-29080, JP-A-7-134558, JP-A-8-234658, and JP-A-8-2441047. The driving methods described in each publication, Japanese Patent No. 2784615, US Pat. Nos. 5,828,429, 6023308, and the like can be applied.

以下に本発明を実施例に基づき詳細に説明するが、本発明はこれらに限定されない。   Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited thereto.

(比較例1)
洗浄したITO基板を蒸着装置に入れ、下記のNPDを50nm蒸着し、この上に下記CBP及び下記化合物1−1’(非特許文献1記載の化合物)を10:1の質量比で40nm蒸着し、さらにこの上にBAlqを10nm、さらにこの上にAlqを30nm蒸着した。得られた有機薄膜上にパターニングしたマスク(発光面積が4mm×5mmとなる)を設置し、フッ化リチウムを3nm蒸着した後アルミニウムを60nm蒸着して有機EL素子を作製した。
得られた有機EL素子に直流定電圧(5V)を印加したが発光は検出されなかった。
(Comparative Example 1)
The cleaned ITO substrate is put in a vapor deposition apparatus, and the following NPD is vapor-deposited by 50 nm, and the following CBP and the following compound 1-1 ′ (compound described in Non-Patent Document 1) are vapor-deposited by 40 nm at a mass ratio of 10: 1. Further, 10 nm of BAlq was further deposited thereon, and 30 nm of Alq was further deposited thereon. A patterned mask (with a light emitting area of 4 mm × 5 mm) was placed on the obtained organic thin film, lithium fluoride was deposited by 3 nm, and then aluminum was deposited by 60 nm to produce an organic EL device.
Although a direct current voltage (5 V) was applied to the obtained organic EL device, no luminescence was detected.

Figure 2006257238
Figure 2006257238

(比較例2)
比較例1において、前記化合物1−1’の代わりに、国際公開特許2004−039914号パンフレットに記載の化合物1−2’を用いた以外は比較例1と同様にして有機EL素子を作成した。
得られた有機EL素子に直流定電圧(5V)を印加したところ、輝度300cd/m2で10時間発光が観測された。
(Comparative Example 2)
In Comparative Example 1, an organic EL device was produced in the same manner as in Comparative Example 1 except that Compound 1-2 ′ described in International Publication No. 2004-039914 pamphlet was used instead of Compound 1-1 ′.
When a DC constant voltage (5 V) was applied to the obtained organic EL device, light emission was observed for 10 hours at a luminance of 300 cd / m 2 .

(実施例1)
比較例1において、1−1’の代わりに、本発明の化合物(I)を用いた以外は比較例1と同様にして有機EL素子を作成した。
得られた有機EL素子に直流定電圧(5V)を印加したところ、発光が観測された。輝度300cd/m2で10時間発光させたところ、比較例2と比較して耐久性が良好であった。
Example 1
In Comparative Example 1, an organic EL device was produced in the same manner as in Comparative Example 1 except that Compound (I) of the present invention was used instead of 1-1 ′.
When a DC constant voltage (5 V) was applied to the obtained organic EL element, light emission was observed. When light was emitted for 10 hours at a luminance of 300 cd / m 2 , the durability was better than that of Comparative Example 2.

同様に本発明の一般式(I)で表される化合物を用いても、発光性能が優れ、耐久性の高い有機発光素子を作製することができる。また、本発明の化合物は、青〜緑のりん光発光が可能であり、本発明の化合物を含有することにより青〜緑発光素子を作製することができる。
本発明の発光素子は、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、光通信等の分野に好適に使用できる。また、本発明の化合物は、医療用途、蛍光増白剤、写真用材料、UV吸収材料、レーザー色素、記録メディア用材料、インクジェット用顔料、カラーフィルター用染料、色変換フィルター、分析用途等にも適用可能である。
Similarly, even when the compound represented by the general formula (I) of the present invention is used, an organic light emitting device having excellent light emitting performance and high durability can be produced. Further, the compound of the present invention can emit blue to green phosphorescence, and a blue to green light emitting element can be produced by containing the compound of the present invention.
The light emitting device of the present invention can be suitably used in the fields of display devices, displays, backlights, electrophotography, illumination light sources, recording light sources, exposure light sources, reading light sources, signs, signboards, interiors, optical communications, and the like. The compounds of the present invention can also be used in medical applications, fluorescent brighteners, photographic materials, UV absorbing materials, laser dyes, recording media materials, inkjet pigments, dyes for color filters, color conversion filters, analytical applications, etc. Applicable.

Claims (6)

一対の電極間に発光層を含む少なくとも一層の有機層を有する有機電界発光素子であって、下記一般式(I)で表される化合物の少なくとも一種を有機層に含有することを特徴とする有機電界発光素子。
Figure 2006257238
[式中、Q1は炭素原子とともに不飽和の環を形成するのに必要な原子群を表す。Q2およびQ3はそれぞれ独立に窒素原子とともに不飽和の環を形成するのに必要な原子群を表す。Xは白金原子と結合する原子を含有する部分構造を表す。
1は連結基を表し、B1、B2およびB3は、それぞれ独立に連結基、あるいは単結合を表す。ただし、Xが置換あるいは無置換のアリール基を表す場合、B1とB3がともに単結合であることはない。m及びnは、それぞれ独立に0又は1を表す。ただし、mとnがともに1であることはない。mあるいはnが0の場合、Q2および窒素原子とともに形成される不飽和の環、あるいは、Q3及び窒素原子とともに形成される不飽和の環と、Xとは、結合していないことを意味する。]
An organic electroluminescent device having at least one organic layer including a light emitting layer between a pair of electrodes, wherein the organic layer contains at least one compound represented by the following general formula (I) in the organic layer Electroluminescent device.
Figure 2006257238
[Wherein, Q 1 represents an atomic group necessary for forming an unsaturated ring together with a carbon atom. Q 2 and Q 3 each independently represents an atomic group necessary for forming an unsaturated ring together with a nitrogen atom. X represents a partial structure containing an atom bonded to a platinum atom.
A 1 represents a linking group, and B 1 , B 2 and B 3 each independently represent a linking group or a single bond. However, when X represents a substituted or unsubstituted aryl group, both B 1 and B 3 are not a single bond. m and n each independently represents 0 or 1. However, m and n are not both 1. When m or n is 0, an unsaturated ring formed with Q 2 and a nitrogen atom, or an unsaturated ring formed with Q 3 and a nitrogen atom, and X means that they are not bonded. To do. ]
前記一般式(I)が下記一般式(II)で表されることを特徴とする請求項1に記載の有機電界発光素子。
Figure 2006257238
[式中、R1、R2およびR3はそれぞれ独立に置換基を表す。p1、p2およびp3は各々独立に0〜3の整数を表す。A1、B1、B2、B3、m、nおよびXは、前記一般式(I)におけるA1、B1、B2、B3、m、nおよびXと同じ意味を表す。]
The organic electroluminescent element according to claim 1, wherein the general formula (I) is represented by the following general formula (II).
Figure 2006257238
[Wherein, R 1 , R 2 and R 3 each independently represents a substituent. p 1, p 2 and p 3 each independently represent an integer of 0-3. A 1, B 1, B 2 , B 3, m, n and X have the same meanings as A 1, B 1, B 2 , B 3, m, n and X in the general formula (I). ]
前記一般式(I)が下記一般式(III)で表されることを特徴とする請求項1に記載の有機電界発光素子。
Figure 2006257238
[式中、R1、R2、R3、p1、p2およびp3は一般式(II)におけるR1、R2、R3、p1、p2およびp3は同じ意味を表す。A1、B2、B3、m、nおよびXは、一般式(I)におけるA1、B2、B3、m、nおよびXと同じ意味を表す。]
The organic electroluminescent element according to claim 1, wherein the general formula (I) is represented by the following general formula (III).
Figure 2006257238
[Wherein R 1 , R 2 , R 3 , p 1 , p 2 and p 3 represent the same meaning in R 1 , R 2 , R 3 , p 1 , p 2 and p 3 in the general formula (II) . A 1, B 2, B 3 , m, n and X have the same meanings as A 1, B 2, B 3 , m, n and X in the general formula (I). ]
前記一般式(I)が下記一般式(IV)で表されることを特徴とする請求項1に記載の有機電界発光素子。
Figure 2006257238
[式中、A1およびB1は、一般式(I)におけるA1およびB1と同じ意味を表す。R1、R2、R3、p1、p2およびp3は一般式(II)におけるR1、R2、R3、p1、p2およびp3と同じ意味を表す。]
The organic electroluminescent element according to claim 1, wherein the general formula (I) is represented by the following general formula (IV).
Figure 2006257238
[Wherein, A 1 and B 1 represent the same meaning as A 1 and B 1 in formula (I). R 1, R 2, R 3 , p 1, p 2 and p 3 are as defined R 1, R 2, R 3 , p 1, p 2 and p 3 in the general formula (II). ]
前記一般式(I)が下記一般式(V)で表されることを特徴とする請求項1に記載の有機電界発光素子。
Figure 2006257238
[式中、A1は、一般式(I)におけるA1と同じ意味を表す。R1、R2、R3、p1、p2およびp3は一般式(II)におけるR1、R2、R3、p1、p2およびp3と同じ意味を表す。]
The organic electroluminescent element according to claim 1, wherein the general formula (I) is represented by the following general formula (V).
Figure 2006257238
[Wherein, A 1 represents the same meaning as A 1 in formula (I). R 1, R 2, R 3 , p 1, p 2 and p 3 are as defined R 1, R 2, R 3 , p 1, p 2 and p 3 in the general formula (II). ]
前記一般式(I)が下記一般式(VI)で表されることを特徴とする請求項1に記載の有機電界発光素子。
Figure 2006257238
[式中、A1、B1、B2、B3、m、nおよびXは、一般式(I)におけるA1、B1、B2、B3、m、nおよびXと同じ意味を表す。R1、R2、R3、p1、p2およびp3は一般式(II)におけるR1、R2、R3、p1、p2およびp3と同じ意味を表す。]
The organic electroluminescent element according to claim 1, wherein the general formula (I) is represented by the following general formula (VI).
Figure 2006257238
[Wherein A 1 , B 1 , B 2 , B 3 , m, n and X have the same meaning as A 1 , B 1 , B 2 , B 3 , m, n and X in the general formula (I) To express. R 1, R 2, R 3 , p 1, p 2 and p 3 are as defined R 1, R 2, R 3 , p 1, p 2 and p 3 in the general formula (II). ]
JP2005075769A 2005-03-16 2005-03-16 Organic electroluminescence device Active JP4727262B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005075769A JP4727262B2 (en) 2005-03-16 2005-03-16 Organic electroluminescence device
US11/372,272 US7781074B2 (en) 2005-03-16 2006-03-10 Organic electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005075769A JP4727262B2 (en) 2005-03-16 2005-03-16 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JP2006257238A true JP2006257238A (en) 2006-09-28
JP4727262B2 JP4727262B2 (en) 2011-07-20

Family

ID=37010721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005075769A Active JP4727262B2 (en) 2005-03-16 2005-03-16 Organic electroluminescence device

Country Status (2)

Country Link
US (1) US7781074B2 (en)
JP (1) JP4727262B2 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522843A (en) * 2009-04-06 2012-09-27 アリゾナ ボード オブ リージェンツ アクティング フォー アンド オン ビハーフ オブ アリゾナ ステイト ユニバーシティ Synthesis of four-coordinate platinum complexes and their application to light-emitting devices
US9224963B2 (en) 2013-12-09 2015-12-29 Arizona Board Of Regents On Behalf Of Arizona State University Stable emitters
US9238668B2 (en) 2011-05-26 2016-01-19 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
US9324957B2 (en) 2010-04-30 2016-04-26 Arizona Board Of Regents On Behalf Of Arizona State University Synthesis of four coordinated gold complexes and their applications in light emitting devices thereof
US9382273B2 (en) 2010-04-30 2016-07-05 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
US9385329B2 (en) 2013-10-14 2016-07-05 Arizona Board of Regents on behalf of Arizona State University and Universal Display Corporation Platinum complexes and devices
US9425415B2 (en) 2011-02-18 2016-08-23 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Four coordinated platinum and palladium complexes with geometrically distorted charge transfer state and their applications in light emitting devices
US9617291B2 (en) 2015-06-03 2017-04-11 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US9673409B2 (en) 2013-06-10 2017-06-06 Arizona Board Of Regents On Behalf Of Arizona State University Phosphorescent tetradentate metal complexes having modified emission spectra
US9711739B2 (en) 2015-06-02 2017-07-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes containing indoloacridine and its analogues
US9711741B2 (en) 2012-08-24 2017-07-18 Arizona Board Of Regents On Behalf Of Arizona State University Metal compounds and methods and uses thereof
US9818959B2 (en) 2014-07-29 2017-11-14 Arizona Board of Regents on behlaf of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
US9882150B2 (en) 2012-09-24 2018-01-30 Arizona Board Of Regents For And On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
US9920242B2 (en) 2014-08-22 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs
US9923155B2 (en) 2014-07-24 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues
US9941479B2 (en) 2014-06-02 2018-04-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US10020455B2 (en) 2014-01-07 2018-07-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US10033003B2 (en) 2014-11-10 2018-07-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US10056567B2 (en) 2014-02-28 2018-08-21 Arizona Board Of Regents On Behalf Of Arizona State University Chiral metal complexes as emitters for organic polarized electroluminescent devices
US10158091B2 (en) 2015-08-04 2018-12-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes, devices, and uses thereof
US10177323B2 (en) 2016-08-22 2019-01-08 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes and octahedral iridium complexes employing azepine functional groups and their analogues
US10411202B2 (en) 2014-07-28 2019-09-10 Arizon Board Of Regents On Behalf Of Arizona State University Tridentate cyclometalated metal complexes with six-membered coordination rings
US10516117B2 (en) 2017-05-19 2019-12-24 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emttters employing benzo-imidazo-phenanthridine and analogues
US10793546B2 (en) 2014-08-15 2020-10-06 Arizona Board Of Regents On Behalf Of Arizona State University Non-platinum metal complexes for excimer based single dopant white organic light emitting diodes
US10822363B2 (en) 2016-10-12 2020-11-03 Arizona Board Of Regents On Behalf Of Arizona State University Narrow band red phosphorescent tetradentate platinum (II) complexes
US10991897B2 (en) 2014-11-10 2021-04-27 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes
US10995108B2 (en) 2012-10-26 2021-05-04 Arizona Board Of Regents On Behalf Of Arizona State University Metal complexes, methods, and uses thereof
US11101435B2 (en) 2017-05-19 2021-08-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complexes based on biscarbazole and analogues
US11183670B2 (en) 2016-12-16 2021-11-23 Arizona Board Of Regents On Behalf Of Arizona State University Organic light emitting diode with split emissive layer
US11329244B2 (en) 2014-08-22 2022-05-10 Arizona Board Of Regents On Behalf Of Arizona State University Organic light-emitting diodes with fluorescent and phosphorescent emitters
US11335865B2 (en) 2016-04-15 2022-05-17 Arizona Board Of Regents On Behalf Of Arizona State University OLED with multi-emissive material layer
JP2023500384A (en) * 2020-06-10 2023-01-05 浙江工▲業▼大学 Tetradentate cyclic metal platinum(II) complex containing pyridyl acridine based on carboxyl group coordination and its use
US11594688B2 (en) 2017-10-17 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Display and lighting devices comprising phosphorescent excimers with preferred molecular orientation as monochromatic emitters
US11594691B2 (en) 2019-01-25 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters
US11647643B2 (en) 2017-10-17 2023-05-09 Arizona Board Of Regents On Behalf Of Arizona State University Hole-blocking materials for organic light emitting diodes
US11708385B2 (en) 2017-01-27 2023-07-25 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing pyrido-pyrrolo-acridine and analogues
US11785838B2 (en) 2019-10-02 2023-10-10 Arizona Board Of Regents On Behalf Of Arizona State University Green and red organic light-emitting diodes employing excimer emitters
US11878988B2 (en) 2019-01-24 2024-01-23 Arizona Board Of Regents On Behalf Of Arizona State University Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues
US11930662B2 (en) 2015-06-04 2024-03-12 Arizona Board Of Regents On Behalf Of Arizona State University Transparent electroluminescent devices with controlled one-side emissive displays
US11945985B2 (en) 2020-05-19 2024-04-02 Arizona Board Of Regents On Behalf Of Arizona State University Metal assisted delayed fluorescent emitters for organic light-emitting diodes
US12037348B2 (en) 2018-03-09 2024-07-16 Arizona Board Of Regents On Behalf Of Arizona State University Blue and narrow band green and red emitting metal complexes
US12091429B2 (en) 2018-07-16 2024-09-17 Arizona Board Of Regents On Behalf Of Arizona State University Fluorinated porphyrin derivatives for optoelectronic applications

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101426717B1 (en) * 2006-12-04 2014-08-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, light-emitting device, and electronic device
TW200845220A (en) * 2007-05-04 2008-11-16 Univ Nat Chiao Tung Microwave annealing for enhancing the efficiency of polymer photovoltaic device
KR102120606B1 (en) 2011-02-23 2020-06-09 유니버셜 디스플레이 코포레이션 Novel tetradentate platinum complexes
US9783564B2 (en) 2011-07-25 2017-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US9493698B2 (en) * 2011-08-31 2016-11-15 Universal Display Corporation Organic electroluminescent materials and devices
US9461254B2 (en) * 2012-01-03 2016-10-04 Universal Display Corporation Organic electroluminescent materials and devices
US10038153B2 (en) 2014-04-03 2018-07-31 Versitech Limited Platinum (II) emitters for OLED applications
US10147893B2 (en) 2015-04-10 2018-12-04 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039914A1 (en) * 2002-11-01 2004-05-13 Takasago International Corporation Luminescents
JP2006232784A (en) * 2005-02-28 2006-09-07 Takasago Internatl Corp Platinum complex and light-emitting element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303238B1 (en) * 1997-12-01 2001-10-16 The Trustees Of Princeton University OLEDs doped with phosphorescent compounds
US6653654B1 (en) * 2002-05-01 2003-11-25 The University Of Hong Kong Electroluminescent materials
US7579093B2 (en) * 2004-09-17 2009-08-25 Fujifilm Corporation Organic electroluminescent device
JP4531509B2 (en) * 2004-09-27 2010-08-25 富士フイルム株式会社 Light emitting element
US20060134461A1 (en) * 2004-12-17 2006-06-22 Shouquan Huo Organometallic materials and electroluminescent devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039914A1 (en) * 2002-11-01 2004-05-13 Takasago International Corporation Luminescents
JP2006232784A (en) * 2005-02-28 2006-09-07 Takasago Internatl Corp Platinum complex and light-emitting element

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9550801B2 (en) 2009-04-06 2017-01-24 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated platinum complexes and their applications in light emitting devices thereof
US8946417B2 (en) 2009-04-06 2015-02-03 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated platinum complexes and their applications in light emitting devices thereof
JP2012522843A (en) * 2009-04-06 2012-09-27 アリゾナ ボード オブ リージェンツ アクティング フォー アンド オン ビハーフ オブ アリゾナ ステイト ユニバーシティ Synthesis of four-coordinate platinum complexes and their application to light-emitting devices
US10727422B2 (en) 2010-04-30 2020-07-28 Arizona Board Of Regents On Behalf Of Arizona State University Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
US9324957B2 (en) 2010-04-30 2016-04-26 Arizona Board Of Regents On Behalf Of Arizona State University Synthesis of four coordinated gold complexes and their applications in light emitting devices thereof
US9382273B2 (en) 2010-04-30 2016-07-05 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
US9755163B2 (en) 2010-04-30 2017-09-05 Arizona Board Of Regents Acting For Or On Behalf Of Arizona State University Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
US10263197B2 (en) 2010-04-30 2019-04-16 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
US9711742B2 (en) 2011-02-18 2017-07-18 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Four coordinated platinum and palladium complexes with geometrically distorted charge transfer state and their applications in light emitting devices
US9425415B2 (en) 2011-02-18 2016-08-23 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Four coordinated platinum and palladium complexes with geometrically distorted charge transfer state and their applications in light emitting devices
US9238668B2 (en) 2011-05-26 2016-01-19 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
US9698359B2 (en) 2011-05-26 2017-07-04 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
US10804476B2 (en) 2011-05-26 2020-10-13 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
US11121328B2 (en) 2011-05-26 2021-09-14 Arizona Board Of Regents On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
US9711741B2 (en) 2012-08-24 2017-07-18 Arizona Board Of Regents On Behalf Of Arizona State University Metal compounds and methods and uses thereof
US11114626B2 (en) 2012-09-24 2021-09-07 Arizona Board Of Regents On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
US10622571B2 (en) 2012-09-24 2020-04-14 Arizona Board Of Regents For And On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
US9882150B2 (en) 2012-09-24 2018-01-30 Arizona Board Of Regents For And On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
US12043633B2 (en) 2012-10-26 2024-07-23 Arizona Board Of Regents On Behalf Of Arizona State University Metal complexes, methods, and uses thereof
US10995108B2 (en) 2012-10-26 2021-05-04 Arizona Board Of Regents On Behalf Of Arizona State University Metal complexes, methods, and uses thereof
US9899614B2 (en) 2013-06-10 2018-02-20 Arizona Board Of Regents On Behalf Of Arizona State University Phosphorescent tetradentate metal complexes having modified emission spectra
US9673409B2 (en) 2013-06-10 2017-06-06 Arizona Board Of Regents On Behalf Of Arizona State University Phosphorescent tetradentate metal complexes having modified emission spectra
US10211414B2 (en) 2013-06-10 2019-02-19 Arizona Board Of Regents On Behalf Of Arizona State University Phosphorescent tetradentate metal complexes having modified emission spectra
US9947881B2 (en) 2013-10-14 2018-04-17 Arizona Board Of Regents On Behalf Of Arizona State University Platinum complexes and devices
US9385329B2 (en) 2013-10-14 2016-07-05 Arizona Board of Regents on behalf of Arizona State University and Universal Display Corporation Platinum complexes and devices
US10566553B2 (en) 2013-10-14 2020-02-18 Arizona Board Of Regents On Behalf Of Arizona State University Platinum complexes and devices
US11189808B2 (en) 2013-10-14 2021-11-30 Arizona Board Of Regents On Behalf Of Arizona State University Platinum complexes and devices
US9224963B2 (en) 2013-12-09 2015-12-29 Arizona Board Of Regents On Behalf Of Arizona State University Stable emitters
US10937976B2 (en) 2014-01-07 2021-03-02 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US10020455B2 (en) 2014-01-07 2018-07-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US11930698B2 (en) 2014-01-07 2024-03-12 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US10056567B2 (en) 2014-02-28 2018-08-21 Arizona Board Of Regents On Behalf Of Arizona State University Chiral metal complexes as emitters for organic polarized electroluminescent devices
US11011712B2 (en) 2014-06-02 2021-05-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US9941479B2 (en) 2014-06-02 2018-04-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US11839144B2 (en) 2014-06-02 2023-12-05 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US9923155B2 (en) 2014-07-24 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues
US10886478B2 (en) 2014-07-24 2021-01-05 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues
US12082486B2 (en) 2014-07-24 2024-09-03 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues
US10411202B2 (en) 2014-07-28 2019-09-10 Arizon Board Of Regents On Behalf Of Arizona State University Tridentate cyclometalated metal complexes with six-membered coordination rings
US10964897B2 (en) 2014-07-28 2021-03-30 Arizona Board Of Regents On Behalf Of Arizona State University Tridentate cyclometalated metal complexes with six-membered coordination rings
US11145830B2 (en) 2014-07-29 2021-10-12 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
US10790457B2 (en) 2014-07-29 2020-09-29 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
US9818959B2 (en) 2014-07-29 2017-11-14 Arizona Board of Regents on behlaf of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
US12082488B2 (en) 2014-07-29 2024-09-03 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
US10793546B2 (en) 2014-08-15 2020-10-06 Arizona Board Of Regents On Behalf Of Arizona State University Non-platinum metal complexes for excimer based single dopant white organic light emitting diodes
US12043611B2 (en) 2014-08-15 2024-07-23 Arizona Board Of Regents On Behalf Of Arizona State University Non-platinum metal complexes for excimer based single dopant white organic light emitting diodes
US9920242B2 (en) 2014-08-22 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs
US11795387B2 (en) 2014-08-22 2023-10-24 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs
US10294417B2 (en) 2014-08-22 2019-05-21 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDS
US10745615B2 (en) 2014-08-22 2020-08-18 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs
US11339324B2 (en) 2014-08-22 2022-05-24 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs
US11329244B2 (en) 2014-08-22 2022-05-10 Arizona Board Of Regents On Behalf Of Arizona State University Organic light-emitting diodes with fluorescent and phosphorescent emitters
US10944064B2 (en) 2014-11-10 2021-03-09 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US10991897B2 (en) 2014-11-10 2021-04-27 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes
US10033003B2 (en) 2014-11-10 2018-07-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US11653560B2 (en) 2014-11-10 2023-05-16 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US11856840B2 (en) 2014-11-10 2023-12-26 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes
US9711739B2 (en) 2015-06-02 2017-07-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes containing indoloacridine and its analogues
US10056564B2 (en) 2015-06-02 2018-08-21 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes containing indoloacridine and its analogues
US10836785B2 (en) 2015-06-03 2020-11-17 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US9879039B2 (en) 2015-06-03 2018-01-30 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US11472827B2 (en) 2015-06-03 2022-10-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US9617291B2 (en) 2015-06-03 2017-04-11 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US11930662B2 (en) 2015-06-04 2024-03-12 Arizona Board Of Regents On Behalf Of Arizona State University Transparent electroluminescent devices with controlled one-side emissive displays
US10158091B2 (en) 2015-08-04 2018-12-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes, devices, and uses thereof
US10930865B2 (en) 2015-08-04 2021-02-23 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes, devices, and uses thereof
US11335865B2 (en) 2016-04-15 2022-05-17 Arizona Board Of Regents On Behalf Of Arizona State University OLED with multi-emissive material layer
US10177323B2 (en) 2016-08-22 2019-01-08 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes and octahedral iridium complexes employing azepine functional groups and their analogues
US10566554B2 (en) 2016-08-22 2020-02-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes and octahedral iridium complexes employing azepine functional groups and their analogues
US10822363B2 (en) 2016-10-12 2020-11-03 Arizona Board Of Regents On Behalf Of Arizona State University Narrow band red phosphorescent tetradentate platinum (II) complexes
US11183670B2 (en) 2016-12-16 2021-11-23 Arizona Board Of Regents On Behalf Of Arizona State University Organic light emitting diode with split emissive layer
US11708385B2 (en) 2017-01-27 2023-07-25 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing pyrido-pyrrolo-acridine and analogues
US11063228B2 (en) 2017-05-19 2021-07-13 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing benzo-imidazo-phenanthridine and analogues
US12010908B2 (en) 2017-05-19 2024-06-11 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing benzo-imidazo-phenanthridine and analogues
US11101435B2 (en) 2017-05-19 2021-08-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complexes based on biscarbazole and analogues
US10516117B2 (en) 2017-05-19 2019-12-24 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emttters employing benzo-imidazo-phenanthridine and analogues
US11974495B2 (en) 2017-05-19 2024-04-30 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complexes based on biscarbazole and analogues
US11647643B2 (en) 2017-10-17 2023-05-09 Arizona Board Of Regents On Behalf Of Arizona State University Hole-blocking materials for organic light emitting diodes
US11594688B2 (en) 2017-10-17 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Display and lighting devices comprising phosphorescent excimers with preferred molecular orientation as monochromatic emitters
US12120945B2 (en) 2017-10-17 2024-10-15 Arizona Board Of Regents On Behalf Of Arizona State University Display and lighting devices comprising phosphorescent excimers with preferred molecular orientation as monochromatic emitters
US12037348B2 (en) 2018-03-09 2024-07-16 Arizona Board Of Regents On Behalf Of Arizona State University Blue and narrow band green and red emitting metal complexes
US12091429B2 (en) 2018-07-16 2024-09-17 Arizona Board Of Regents On Behalf Of Arizona State University Fluorinated porphyrin derivatives for optoelectronic applications
US11878988B2 (en) 2019-01-24 2024-01-23 Arizona Board Of Regents On Behalf Of Arizona State University Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues
US12082490B2 (en) 2019-01-25 2024-09-03 Arizona Board Of Regents On Behalf Of Arizona State University Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters
US11594691B2 (en) 2019-01-25 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters
US11785838B2 (en) 2019-10-02 2023-10-10 Arizona Board Of Regents On Behalf Of Arizona State University Green and red organic light-emitting diodes employing excimer emitters
US12120946B2 (en) 2019-10-02 2024-10-15 Arizona Board Of Regents On Behalf Of Arizona State University Green and red organic light-emitting diodes employing excimer emitters
US11945985B2 (en) 2020-05-19 2024-04-02 Arizona Board Of Regents On Behalf Of Arizona State University Metal assisted delayed fluorescent emitters for organic light-emitting diodes
JP7412669B2 (en) 2020-06-10 2024-01-15 浙江工▲業▼大学 Tetradentate ring metal platinum(II) complexes containing pyridyl acridine based on carboxyl group coordination and uses thereof
JP2023500384A (en) * 2020-06-10 2023-01-05 浙江工▲業▼大学 Tetradentate cyclic metal platinum(II) complex containing pyridyl acridine based on carboxyl group coordination and its use

Also Published As

Publication number Publication date
JP4727262B2 (en) 2011-07-20
US20060210831A1 (en) 2006-09-21
US7781074B2 (en) 2010-08-24

Similar Documents

Publication Publication Date Title
JP4727262B2 (en) Organic electroluminescence device
JP4945156B2 (en) Organic electroluminescence device
JP5438941B2 (en) Organic electroluminescence device
JP4789556B2 (en) Organic electroluminescence device
JP4399382B2 (en) Organic electroluminescence device
JP4399429B2 (en) Organic electroluminescence device
JP5144034B2 (en) Organic electroluminescence device
JP5438955B2 (en) Platinum complex compound and organic electroluminescence device using the same
JP5484690B2 (en) Organic electroluminescence device
JP4484833B2 (en) Organic electroluminescence device
JP4365196B2 (en) Organic electroluminescence device
JP2010118670A (en) Organic electroluminescent device and complex compound
JP2006303394A (en) Organic electroluminescent element
JP4642016B2 (en) Organic electroluminescent device and platinum compound
JP2008244012A (en) Organic electroluminescent element
JP2007266598A (en) Organic electroluminescence element
JP4848198B2 (en) Organic electroluminescence device
JP5080774B2 (en) Organic electroluminescence device
JP4796808B2 (en) Organic electroluminescence device
JP2006086482A (en) Organic electroluminescence element
JP2007081388A (en) Organic electroluminescence device
JP2008244013A (en) Organic electroluminescent element
JP2006148012A (en) Organic electric field light emitting element
JP5484542B2 (en) Organic electroluminescent device and compound
JP2006344891A (en) Organic electroluminescence element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110413

R150 Certificate of patent or registration of utility model

Ref document number: 4727262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250