JP2005195354A - Instrument and method for measuring oxygen concentration - Google Patents

Instrument and method for measuring oxygen concentration Download PDF

Info

Publication number
JP2005195354A
JP2005195354A JP2003435210A JP2003435210A JP2005195354A JP 2005195354 A JP2005195354 A JP 2005195354A JP 2003435210 A JP2003435210 A JP 2003435210A JP 2003435210 A JP2003435210 A JP 2003435210A JP 2005195354 A JP2005195354 A JP 2005195354A
Authority
JP
Japan
Prior art keywords
oxygen
luminance
measurement
light
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003435210A
Other languages
Japanese (ja)
Inventor
Jiyouyuu Hakozaki
譲優 箱崎
Hiroshi Ueda
浩 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003435210A priority Critical patent/JP2005195354A/en
Publication of JP2005195354A publication Critical patent/JP2005195354A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein a fluorescent type oxygen densitometer generates an error in a calculated oxygen concentration in accompaniment to deterioration of an oxygen quenching substance. <P>SOLUTION: Light from a light source 20 is emitted from a tip part of an excitation light transmitting optical fiber 42. The irradiation light excites an oxygen quenching substance provided in a tip part of an optical fiber 44 for detection and an oxygen quenching substance provided in a tip part of a optical fiber 46 for calibration, to emit fluorescent lights. The oxygen quenching substance provided in the tip part of the optical fiber 46 for the calibration is coated with an oxygen shielding member to be kept in a condition of 0% of oxygen concentration. The emission lights from the oxygen quenching substances provided in the tip part of the optical fiber 44 for the detection and the tip part of the optical fiber 46 for the calibration are amplified and digitalized by an amplifying circuit 60 and an A/D circuit 70 to obtain respective brightness values. A calibration curve for calculating the oxygen concentration is corrected using the brightness value of the oxygen quenching substance provided in the tip part of the optical fiber 46 for the calibration. The oxygen concentration corresponding to the brightness value in the the tip part of the optical fiber 44 for the detection is calculated based on the corrected calibration curve. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、酸素濃度を測定する装置および方法に関する。特に、本発明は、酸素消光性物質の輝度に基づいて酸素濃度を測定する装置および方法に関する。   The present invention relates to an apparatus and method for measuring oxygen concentration. In particular, the present invention relates to an apparatus and method for measuring oxygen concentration based on the brightness of an oxygen quenching substance.

従来、蛍光発光の酸素による消光作用を利用した蛍光式酸素濃度計が知られている。多環芳香族や芳香族炭化水素を有する蛍光物質に光を照射すると蛍光を発する。この蛍光は酸素分子が存在すると、励起された蛍光分子が反応して一時的に複合体を形成し、酸素分子と蛍光分子の衝突確率に比例して消光現象が生じる。蛍光式酸素濃度計は、この消光現象を利用することで酸素濃度を求める。より具体的には、無酸素状態および有酸素状態での蛍光の輝度をI0およびIとすると、輝度比(I0/I)は酸素濃度(分圧)に対して直線的比例関係にある。したがって、この相対的輝度を測定することによって酸素濃度を求めることができる。   Conventionally, a fluorescent oxygen concentration meter using a quenching action of fluorescent light emission by oxygen is known. When a fluorescent material having polycyclic aromatics or aromatic hydrocarbons is irradiated with light, it emits fluorescence. In the presence of oxygen molecules, the excited fluorescent molecules react to form a complex temporarily, and a quenching phenomenon occurs in proportion to the collision probability between the oxygen molecules and the fluorescent molecules. The fluorescence oxygen concentration meter obtains the oxygen concentration by utilizing this quenching phenomenon. More specifically, the luminance ratio (I0 / I) is linearly proportional to the oxygen concentration (partial pressure), where I0 and I are the luminances of fluorescence in an oxygen-free state and an aerobic state. Therefore, the oxygen concentration can be obtained by measuring this relative luminance.

たとえば、特開2002−529682号公報は、光ファイバ先端に酸素消光性物質を塗布し、酸素濃度を計測する技術を開示する。   For example, Japanese Patent Application Laid-Open No. 2002-529682 discloses a technique for measuring an oxygen concentration by applying an oxygen quenching substance to the tip of an optical fiber.

特開2002−529682号公報JP 2002-529682 A

酸素消光性物質(多環芳香族や芳香族炭化水素を有する蛍光物質)は、時間の経過とともに劣化し蛍光輝度が減少するため、既定の輝度と酸素濃度との関係に基づいて酸素濃度を算出すると誤差が生じる。酸素消光性物質の劣化は、時間が長く経過する程進行するため、長時間に渡る酸素濃度測定は困難であった。   Oxygen-quenching substances (fluorescent substances containing polycyclic aromatics and aromatic hydrocarbons) degrade with the passage of time and the fluorescence brightness decreases, so the oxygen concentration is calculated based on the relationship between the default brightness and the oxygen concentration. Then an error occurs. Since the deterioration of the oxygen quenching substance progresses as time elapses, it is difficult to measure the oxygen concentration over a long period of time.

また、酸素消光性物質は、温度によって蛍光特性が変化するため、既定の輝度と酸素濃度との関係に基づいて酸素濃度を算出すると、温度差による誤差が生じる。   Moreover, since the fluorescence characteristics of the oxygen quenching substance change depending on the temperature, an error due to a temperature difference occurs when the oxygen concentration is calculated based on the relationship between a predetermined luminance and the oxygen concentration.

そこで、本発明は、酸素消光性物質の蛍光発光の輝度に基づいて酸素濃度が測定する上で、測定精度が向上させることを目的とする。また、本発明は、酸素消光性物質の蛍光発光の輝度に基づいて、長時間に渡りリアルタイムで酸素濃度を測定することを目的とする。   Therefore, an object of the present invention is to improve the measurement accuracy in measuring the oxygen concentration based on the luminance of the fluorescence emission of the oxygen quenching substance. Another object of the present invention is to measure the oxygen concentration in real time over a long period of time based on the luminance of fluorescence emission of the oxygen quenching substance.

本発明のある態様においては、酸素濃度に応じて発光強度が変化する酸素消光性物質からなる測定用発光部と、前記測定用発光部の近傍に設けられ、酸素が遮断された酸素消光性物質からなる較正用発光部と、前記測定用発光部および前記較正用発光部に対して酸素消光性物質の励起光を放射する光照射部と、前記測定用発光部の輝度を計測する測定用輝度計測部と、前記較正用発光部の輝度を計測する較正用輝度計測部と、前記較正用発光部の輝度に基づいて得られる酸素消光性物質の輝度と酸素濃度との関係を用いて、前記測定用発光部の輝度から酸素濃度を算出する演算部と、を備えることを特徴とする。   In one embodiment of the present invention, a measurement light-emitting part made of an oxygen-quenching substance whose emission intensity changes according to the oxygen concentration, and an oxygen-quenching substance provided in the vicinity of the measurement light-emitting part and from which oxygen is blocked A calibration light emitting unit, a light emitting unit for emitting excitation light of an oxygen quenching substance to the measurement light emitting unit and the calibration light emitting unit, and a measurement luminance for measuring the luminance of the measurement light emitting unit Using the relationship between the measurement unit, the calibration luminance measurement unit that measures the luminance of the calibration light-emitting unit, and the luminance and oxygen concentration of the oxygen quenching substance obtained based on the luminance of the calibration light-emitting unit, And an arithmetic unit that calculates the oxygen concentration from the luminance of the light emitting unit for measurement.

上記本発明のある態様においては、前記測定用発光部、前記較正用発光部および前記光照射部が光ファイバの先端に設けられ、前記測定用輝度計測部および前記較正用輝度計測部は、前記光ファイバによって伝送された前記測定用発光部および前記較正用発光部から光の輝度をそれぞれ計測してもよい。   In an aspect of the present invention, the measurement light-emitting unit, the calibration light-emitting unit, and the light irradiation unit are provided at the tip of an optical fiber, and the measurement luminance measurement unit and the calibration luminance measurement unit are You may measure the brightness | luminance of light from the said measurement light emission part and the said calibration light emission part transmitted with the optical fiber, respectively.

上記本発明のある態様においては、前記光照射部が光ファイバの先端に設けられ、前記測定用発光部および前記較正用発光部は、対象物体上に設けられ、前記測定用輝度計測部および前記較正用輝度計測部は、前記光ファイバによって伝送された前記測定用発光部および前記較正用発光部から光の輝度をそれぞれ計測してもよい。   In an aspect of the present invention, the light irradiation unit is provided at a tip of an optical fiber, the measurement light emitting unit and the calibration light emission unit are provided on a target object, and the measurement luminance measurement unit and the measurement light emitting unit are provided. The calibration luminance measuring unit may measure the luminance of light from the measurement light emitting unit and the calibration light emitting unit transmitted by the optical fiber.

また、本発明の他の態様においては、酸素濃度に応じて発光強度が変化する酸素消光性物質からなる測定用発光部と、前記測定用発光部の近傍に設けられた温度検出部と、前記測定用発光部に対して酸素消光性物質の励起光を放射する光照射部と、前記測定用発光部の輝度を計測する測定用輝度計測部と、前記温度検出部で得られた温度に基づいて得られる酸素消光性物質の輝度と酸素濃度との関係を用いて、前記測定用発光部の輝度から酸素濃度を算出する演算部と、を備えることを特徴とする。   Further, in another aspect of the present invention, a measurement light-emitting unit made of an oxygen quenching substance whose emission intensity changes according to the oxygen concentration, a temperature detection unit provided in the vicinity of the measurement light-emitting unit, Based on a temperature obtained by the light irradiation unit that emits the excitation light of the oxygen quenching substance to the measurement light-emitting unit, the measurement luminance measurement unit that measures the luminance of the measurement light-emitting unit, and the temperature detection unit And a calculation unit that calculates the oxygen concentration from the luminance of the measurement light-emitting unit using the relationship between the luminance and oxygen concentration of the oxygen quenching substance obtained in this manner.

上記本発明の他の態様においては、前記測定用発光部および前記温度検出部が光ファイバの先端に設けられ、前記測定用輝度計測部は、前記光ファイバによって伝送された前記測定用発光部からの光の輝度の輝度を計測してもよい。   In another aspect of the present invention, the measurement light-emitting unit and the temperature detection unit are provided at the tip of an optical fiber, and the measurement luminance measurement unit is connected to the measurement light-emitting unit transmitted by the optical fiber. You may measure the brightness | luminance of the brightness of this light.

上記本発明の他の態様においては、前記光照射部が光ファイバの先端に設けられ、前記測定用発光部および前記温度検出部は、対象物体上に設けられ、前記測定用輝度計測部および前記温度検出部は、前記光ファイバによって伝送された前記測定用発光部から光の輝度を計測してもよい。   In another aspect of the present invention, the light irradiation unit is provided at a tip of an optical fiber, the measurement light emitting unit and the temperature detection unit are provided on a target object, and the measurement luminance measurement unit and the measurement The temperature detection unit may measure the luminance of light from the measurement light emitting unit transmitted by the optical fiber.

また、本発明の他の態様においては、酸素濃度に応じて発光強度が変化する酸素消光性物質からなる測定用発光部と、前記測定用発光部の近傍に設けられ、所定酸素濃度における輝度を示す酸素消光性物質からなる第1較正用発光部と、前記測定用発光部の近傍に設けられ、前記所定酸素濃度とは異なる所定酸素濃度における輝度を示す酸素消光性物質からなる第2較正用発光部と、前記測定用発光部、前記第1較正用発光部および前記第2較正用発光部に対して酸素消光性物質の励起光を放射する光照射部と、前記測定用発光部の輝度を計測する測定用輝度計測部と、前記第1較正用発光部の輝度を計測する第1較正用輝度計測部と、前記第1較正用発光部の輝度を計測する第2較正用輝度計測部と、前記第1較正用発光部および前記第2較正用発光部の輝度に基づいて得られる酸素消光性物質の輝度と酸素濃度との関係を用いて、前記測定用発光部の輝度から酸素濃度を算出する演算部と、を備えることを特徴とする。   In another aspect of the present invention, a measurement light-emitting part made of an oxygen quenching substance whose emission intensity changes according to the oxygen concentration, and a brightness at a predetermined oxygen concentration are provided in the vicinity of the measurement light-emitting part. A first calibration light-emitting portion made of an oxygen-quenching substance, and a second calibration light-emitting material made in the vicinity of the measurement light-emitting portion and made of an oxygen-quenching material that exhibits luminance at a predetermined oxygen concentration different from the predetermined oxygen concentration A light emitting unit, a light emitting unit that emits excitation light of an oxygen quenching substance to the measurement light emitting unit, the first calibration light emitting unit, and the second calibration light emitting unit, and the luminance of the measurement light emitting unit Brightness measuring unit for measuring, a first calibration brightness measuring unit for measuring the brightness of the first calibration light emitting unit, and a second calibration brightness measuring unit for measuring the brightness of the first calibration light emitting unit The first calibration light emitting unit and the second A calculation unit that calculates the oxygen concentration from the luminance of the light emitting unit for measurement using the relationship between the luminance of the oxygen quenching substance obtained based on the luminance of the main light emitting unit and the oxygen concentration. To do.

上記本発明の他の態様においては、前記測定用発光部、前記第1較正用発光部、前記第2較正用発光部および前記光照射部が光ファイバの先端に設けられ、前記測定用輝度計測部、前記第1較正用輝度計測部および前記第2較正用輝度計測部は、前記光ファイバによって伝送された前記測定用発光部、前記第1較正用発光部および前記第2較正用発光部から光の輝度をそれぞれ計測してもよい。   In another aspect of the present invention, the measurement light-emitting unit, the first calibration light-emitting unit, the second calibration light-emitting unit, and the light irradiation unit are provided at the tip of an optical fiber, and the measurement luminance measurement Unit, the first calibration luminance measurement unit, and the second calibration luminance measurement unit from the measurement light emission unit, the first calibration light emission unit, and the second calibration light emission unit transmitted by the optical fiber. You may measure the brightness | luminance of light, respectively.

上記本発明の他の態様においては、前記光照射部が光ファイバの先端に設けられ、前記測定用発光部、前記第1較正用発光部および前記第2較正用発光部は、対象物体上に設けられ、前記測定用輝度計測部、前記第1較正用輝度計測部および前記第2較正用輝度計測部は、前記光ファイバによって伝送された前記測定用発光部、前記第1較正用発光部および前記第2較正用発光部から光の輝度をそれぞれ計測してもよい。   In another aspect of the present invention, the light irradiation unit is provided at a tip of an optical fiber, and the measurement light-emitting unit, the first calibration light-emitting unit, and the second calibration light-emitting unit are on a target object. The measurement luminance measurement unit, the first calibration luminance measurement unit, and the second calibration luminance measurement unit, the measurement light emission unit transmitted by the optical fiber, the first calibration light emission unit, and You may measure the brightness | luminance of light from the said 2nd light emission part for a calibration, respectively.

また、本発明の他の態様においては、光ファイバ先端に設けられた酸素消光性物質に励起光を照射する工程と、酸素消光性物質のうち酸素含有気体に面する領域の輝度を光ファイバを用いて計測する工程と、酸素消光性物質のうち酸素が遮断された領域の輝度を光ファイバを用いて計測する工程と、酸素が遮断された領域の輝度に基づいて得られる酸素消光性物質の輝度と酸素濃度との関係を用いて、酸素が透過する領域の輝度から酸素濃度を算出する工程と、を備えることを特徴とする。   In another aspect of the present invention, the step of irradiating the oxygen quenching substance provided at the tip of the optical fiber with excitation light and the brightness of the region facing the oxygen-containing gas in the oxygen quenching substance And measuring the luminance of the oxygen-quenched substance in the region where oxygen is blocked using an optical fiber, and the oxygen quenching substance obtained based on the luminance of the region where oxygen is blocked And a step of calculating the oxygen concentration from the luminance of the region through which oxygen passes using the relationship between the luminance and the oxygen concentration.

また、本発明の他の態様においては、対象物体上に設けられた酸素消光性物質に励起光を照射する工程と、酸素消光性物質のうち酸素含有気体に面する領域の輝度光ファイバを用いてを計測する工程と、酸素消光性物質のうち酸素が遮断された領域の輝度を光ファイバを用いて計測する工程と、酸素が遮断された領域の輝度に基づいて得られる酸素消光性物質の輝度と酸素濃度との関係を用いて、酸素が透過する領域の輝度から酸素濃度を算出する工程と、を備えることを特徴とする。   In another aspect of the present invention, a step of irradiating an oxygen quenching substance provided on a target object with excitation light and a luminance optical fiber in a region facing the oxygen-containing gas in the oxygen quenching substance are used. Measuring the brightness of the oxygen-quenched substance in the area where oxygen is blocked using an optical fiber, and the oxygen quenching substance obtained based on the brightness of the area where oxygen is blocked. And a step of calculating the oxygen concentration from the luminance of the region through which oxygen passes using the relationship between the luminance and the oxygen concentration.

また、本発明の他の態様においては、酸素が透過する領域の輝度から酸素濃度を算出する工程と、を備えることを特徴とする。   According to another aspect of the present invention, the method includes a step of calculating an oxygen concentration from luminance of a region through which oxygen passes.

また、本発明の他の態様においては、光ファイバ先端に設けられた酸素消光性物質に励起光を照射する工程と、酸素消光性物質の輝度を光ファイバを用いて計測する工程と、酸素消光性物質近傍の温度を測定する工程と、測定された温度に基づいて得られる酸素消光性物質の輝度と酸素濃度との関係を用いて、酸素消光性物質の輝度から酸素濃度を算出する工程と、を備えることを特徴とする。   In another aspect of the present invention, a step of irradiating an oxygen quenching substance provided at the tip of the optical fiber with excitation light, a step of measuring the brightness of the oxygen quenching substance using an optical fiber, and an oxygen quenching Measuring the temperature in the vicinity of the active substance, calculating the oxygen concentration from the brightness of the oxygen quenching substance using the relationship between the brightness of the oxygen quenching substance obtained based on the measured temperature and the oxygen concentration, and It is characterized by providing.

また、本発明の他の態様においては、対象物体上に設けられた酸素消光性物質に励起光を照射する工程と、酸素消光性物質の輝度を光ファイバを用いて計測する工程と、酸素消光性物質近傍の温度を測定する工程と、測定された温度に基づいて得られる酸素消光性物質の輝度と酸素濃度との関係を用いて、酸素消光性物質の輝度から酸素濃度を算出する工程と、を備えることを特徴とする。   In another aspect of the present invention, the step of irradiating the oxygen quenching substance provided on the target object with excitation light, the step of measuring the brightness of the oxygen quenching substance using an optical fiber, and the oxygen quenching Measuring the temperature in the vicinity of the active substance, calculating the oxygen concentration from the brightness of the oxygen quenching substance using the relationship between the brightness of the oxygen quenching substance obtained based on the measured temperature and the oxygen concentration, and It is characterized by providing.

また、本発明の他の態様においては、光ファイバ先端に設けられた酸素消光性物質に励起光を照射する工程と、酸素消光性物質のうち酸素含有気体に面する領域の輝度を光ファイバを用いて計測する工程と、酸素消光性物質のうち第1の所定濃度の酸素に面した域の輝度を光ファイバを用いて計測する工程と、酸素消光性物質のうち第1の所定濃度とは異なる第2の所定濃度の酸素に面した領域の輝度を光ファイバを用いて計測する工程と、第1の所定濃度の酸素に面した領域の輝度および第2の所定濃度の酸素に面した領域の輝度に基づいて得られる酸素消光性物質の輝度と酸素濃度との関係を用いて、酸素が透過する領域の輝度から酸素濃度を算出する工程と、を備えることを特徴とする。   In another aspect of the present invention, the step of irradiating the oxygen quenching substance provided at the tip of the optical fiber with excitation light and the brightness of the region facing the oxygen-containing gas in the oxygen quenching substance The step of measuring using, the step of measuring the luminance of the region facing the first predetermined concentration of oxygen in the oxygen quenching substance using an optical fiber, and the first predetermined concentration of the oxygen quenching substance A step of measuring, using an optical fiber, a luminance of a region facing a different second predetermined concentration of oxygen, a luminance of a region facing the first predetermined concentration of oxygen, and a region facing the second predetermined concentration of oxygen; And a step of calculating the oxygen concentration from the luminance of the region through which oxygen permeates using the relationship between the luminance of the oxygen quenching substance obtained based on the luminance and the oxygen concentration.

また、本発明の他の態様においては、対象物上に設けられた酸素消光性物質に励起光を照射する工程と、酸素消光性物質のうち酸素含有気体に面する領域の輝度を光ファイバを用いて計測する工程と、酸素消光性物質のうち第1の所定濃度の酸素に面した領域の輝度を光ファイバを用いて計測する工程と、酸素消光性物質のうち第1の所定濃度とは異なる第2の所定濃度の酸素に面した領域の輝度を光ファイバを用いて計測する工程と、第1の所定濃度の酸素に面した領域の輝度および第2の所定濃度の酸素に面した領域の輝度に基づいて得られる酸素消光性物質の輝度と酸素濃度との関係を用いて、酸素が透過する領域の輝度から酸素濃度を算出する工程と、を備えることを特徴とする。   In another aspect of the present invention, the step of irradiating the oxygen quenching substance provided on the object with excitation light, and the brightness of the region facing the oxygen-containing gas in the oxygen quenching substance are controlled by an optical fiber. The step of measuring using, the step of measuring the brightness of the region facing the first predetermined concentration of oxygen in the oxygen quenching substance using an optical fiber, and the first predetermined concentration of the oxygen quenching substance. A step of measuring, using an optical fiber, a luminance of a region facing a different second predetermined concentration of oxygen, a luminance of a region facing the first predetermined concentration of oxygen, and a region facing the second predetermined concentration of oxygen; And a step of calculating the oxygen concentration from the luminance of the region through which oxygen permeates using the relationship between the luminance of the oxygen quenching substance obtained based on the luminance and the oxygen concentration.

本発明によれば、酸素消光性物質の劣化特性を考慮に入れた上で、酸素消光性物質の蛍光発光の輝度に基づいて酸素濃度が測定されるため、測定精度が向上する。   According to the present invention, the oxygen concentration is measured based on the fluorescence emission luminance of the oxygen quenching substance in consideration of the deterioration characteristics of the oxygen quenching substance, so that the measurement accuracy is improved.

また、本発明によれば、酸素消光性物質の温度依存性を考慮に入れた上で、酸素消光性物質の蛍光発光の輝度に基づいて酸素濃度が測定されるため、測定精度が向上する。   In addition, according to the present invention, the oxygen concentration is measured based on the fluorescence emission luminance of the oxygen quenching substance in consideration of the temperature dependence of the oxygen quenching substance, so that the measurement accuracy is improved.

また、本発明によれば、2点補正により酸素消光性物質の蛍光発光の輝度と酸素濃度との関係が逐次求められるため、測定環境に測定精度が向上する。   Further, according to the present invention, since the relationship between the luminance of the fluorescence emission of the oxygen quenching substance and the oxygen concentration is sequentially obtained by two-point correction, the measurement accuracy is improved in the measurement environment.

この他、本発明によれば、酸素濃度の測定をリアルタイムで長時間に渡り測定できる。   In addition, according to the present invention, the oxygen concentration can be measured over a long time in real time.

以下、発明の実施の形態を通じて本発明を説明する。   Hereinafter, the present invention will be described through embodiments of the invention.

図1は、実施形態に係る酸素濃度計測装置10の構成を示す。酸素濃度計測装置10は、光源20、制御部30、光ファイバ束40、光センサ50、増幅回路60、A/D変換回路70、データ記憶部72および演算部80を備える。   FIG. 1 shows a configuration of an oxygen concentration measuring apparatus 10 according to the embodiment. The oxygen concentration measuring apparatus 10 includes a light source 20, a control unit 30, an optical fiber bundle 40, an optical sensor 50, an amplification circuit 60, an A / D conversion circuit 70, a data storage unit 72, and a calculation unit 80.

光源20は、後述する測定用発光部100および較正用発光部102に用いられる酸素消光性物質の励起波長の光を放射する。光源20の典型例は、波長460nmの青色LED、460nmの光学フィルターを備えたキセノンランプまたはメタルハライドランプである。光源20は、制御部30によって発光タイミングが制御される。   The light source 20 emits light having an excitation wavelength of an oxygen quenching substance used in the measurement light emitting unit 100 and the calibration light emitting unit 102 described later. A typical example of the light source 20 is a xenon lamp or a metal halide lamp provided with a blue LED having a wavelength of 460 nm and an optical filter having a wavelength of 460 nm. The light emission timing of the light source 20 is controlled by the control unit 30.

光ファイバ束40は、励起光伝送用光ファイバ42、発光検出用光ファイバ44および較正用光ファイバ46を含む。図2は、光ファイバ束40先端部の斜視図である。また、図3は、光ファイバ束40先端部の断面図である。励起光伝送用光ファイバ42は、被覆41の内側に同心円上に配置されている。発光検出用光ファイバ44および較正用光ファイバ46は、励起光伝送用光ファイバ42の内側の領域を2分する形で配設されている。   The optical fiber bundle 40 includes an excitation light transmission optical fiber 42, a light emission detection optical fiber 44, and a calibration optical fiber 46. FIG. 2 is a perspective view of the tip portion of the optical fiber bundle 40. FIG. 3 is a cross-sectional view of the distal end portion of the optical fiber bundle 40. The pumping light transmission optical fiber 42 is disposed concentrically inside the coating 41. The light emission detection optical fiber 44 and the calibration optical fiber 46 are arranged so as to bisect the region inside the pumping light transmission optical fiber 42.

励起光伝送用光ファイバ42は、光源20に接続された複数の光ファイバからなり、光源20から放射された光を伝送する。励起光伝送用光ファイバ42によって伝送された光は、光ファイバ束40の先端部から投光される。   The pumping light transmission optical fiber 42 includes a plurality of optical fibers connected to the light source 20, and transmits light emitted from the light source 20. The light transmitted by the pumping light transmission optical fiber 42 is projected from the tip of the optical fiber bundle 40.

発光検出用光ファイバ44は、光センサ50に接続された複数の光ファイバからなり、先端部に測定用発光部100が塗布されている。測定用発光部100は、膜厚1μm〜数十μmのルテニウムポルフィリン錯体などの酸素消光性物質からなる。測定用発光部100の酸素消光性物質は、光ファイバ束40の先端部から投光された光により励起され、蛍光発光を発する。測定用発光部100から放射された光は、発光検出用光ファイバ44を通って、光センサ50に到達する。   The light emission detecting optical fiber 44 is composed of a plurality of optical fibers connected to the optical sensor 50, and the measurement light emitting unit 100 is applied to the tip portion. The measurement light emitting unit 100 is made of an oxygen quenching substance such as a ruthenium porphyrin complex having a film thickness of 1 μm to several tens of μm. The oxygen quenching substance in the measurement light emitting unit 100 is excited by light projected from the tip of the optical fiber bundle 40 and emits fluorescent light. The light emitted from the measurement light emitting unit 100 passes through the light emission detection optical fiber 44 and reaches the optical sensor 50.

較正用光ファイバ46は、光センサ50に接続された複数の光ファイバからなり、先端部に較正用発光部102が塗布され、較正用発光部102の表面上には酸素遮断部材104が貼り付けられている。酸素遮断部材104は、酸素不透過性の材料であり、たとえば、ガラス平板、アクリル板等を用いることができる。較正用発光部102は、測定用発光部100と同じ膜厚1μm〜数十μmの酸素消光性物質からなる。較正用発光部102の酸素消光性物質は、光ファイバ束40の先端部から投光された光により励起され、蛍光を発する。較正用発光部102から放射された光は、較正用光ファイバ46を通って、光センサ50に到達する。   The calibration optical fiber 46 is composed of a plurality of optical fibers connected to the optical sensor 50, the calibration light emitting unit 102 is applied to the tip, and the oxygen blocking member 104 is attached on the surface of the calibration light emitting unit 102. It has been. The oxygen blocking member 104 is an oxygen-impermeable material, and for example, a glass flat plate or an acrylic plate can be used. The calibration light emitting unit 102 is made of an oxygen quenching substance having a film thickness of 1 μm to several tens of μm, which is the same as the measurement light emitting unit 100. The oxygen quenching substance in the calibration light emitting unit 102 is excited by light projected from the tip of the optical fiber bundle 40 and emits fluorescence. The light emitted from the calibration light emitting unit 102 reaches the optical sensor 50 through the calibration optical fiber 46.

上記構成により較正用発光部102は、酸素遮断部材104により外気中の酸素が遮断されるため、酸素濃度がゼロの状態に保たれる。したがって、較正用発光部102の酸素消光性物質は、酸素濃度ゼロの状態の蛍光特性を示す。   With the above configuration, the calibration light-emitting unit 102 is kept in a state where the oxygen concentration is zero because oxygen in the outside air is blocked by the oxygen blocking member 104. Therefore, the oxygen quenching substance of the calibration light emitting unit 102 exhibits fluorescence characteristics in a state where the oxygen concentration is zero.

光センサ50は、発光検出用光ファイバ44および較正用光ファイバ46によって伝送された光を検出する。光センサ50の具体例は、フォトダイオード、CCDなどの光電変換素子である。   The optical sensor 50 detects light transmitted by the light emission detection optical fiber 44 and the calibration optical fiber 46. A specific example of the optical sensor 50 is a photoelectric conversion element such as a photodiode or a CCD.

光センサ50は検出した光を電気信号に変換して出力する。出力された電気信号は増幅回路60により増幅される。増幅回路60で増幅された電気信号は、A/D変換回路70によりデジタルデータに変換され、測定用発光部100または較正用発光部102の輝度値として演算部80に送られる。   The optical sensor 50 converts the detected light into an electrical signal and outputs it. The output electric signal is amplified by the amplifier circuit 60. The electric signal amplified by the amplification circuit 60 is converted into digital data by the A / D conversion circuit 70 and sent to the calculation unit 80 as the luminance value of the measurement light emitting unit 100 or the calibration light emitting unit 102.

光センサ50は、発光検出用光ファイバ44および較正用光ファイバ46からの光を別個のフォトダイオード等により同時に検出してもよく、検出タイミングを切り替えることにより1つのフォトダイオード等を用いて検出してもよい。なお、光センサ50としてCCDを用いる場合には、測定用発光部100および較正用発光部102の発光の様子を画像化することができる。   The optical sensor 50 may simultaneously detect light from the light emission detection optical fiber 44 and the calibration optical fiber 46 by separate photodiodes or the like, and detect by using one photodiode or the like by switching the detection timing. May be. When a CCD is used as the optical sensor 50, the light emission states of the measurement light emitting unit 100 and the calibration light emitting unit 102 can be imaged.

データ記憶部72は、酸素濃度算出に用いられる酸素濃度と輝度値との関係に関するデータを予め記憶する。酸素濃度と輝度値との関係に関するデータとは、たとえば、輝度値の酸素濃度依存性を示す検定線である。   The data storage unit 72 stores in advance data relating to the relationship between the oxygen concentration and the luminance value used for oxygen concentration calculation. The data relating to the relationship between the oxygen concentration and the luminance value is, for example, a calibration line indicating the oxygen concentration dependency of the luminance value.

図4は、酸素濃度算出用の検定線200を示すグラフである。この検定線200を用いると、輝度値に対応する酸素濃度を求めることができる。ただし、検定線200を用いて酸素濃度を算出した場合には、酸素消光性物質の劣化特性が考慮されない。図4の検定線200は、たとえば、酸素濃度計測装置10の組立時や出荷前の検査時に、大気中(酸素濃度20.8%)において、測定用発光部100の輝度値(座標A)および較正用発光部102の輝度値(座標B)を取得することにより得られる。   FIG. 4 is a graph showing a calibration line 200 for calculating the oxygen concentration. Using this calibration line 200, the oxygen concentration corresponding to the luminance value can be obtained. However, when the oxygen concentration is calculated using the calibration line 200, the deterioration characteristics of the oxygen quenching substance are not taken into consideration. The calibration line 200 in FIG. 4 indicates, for example, the luminance value (coordinate A) of the measurement light emitting unit 100 in the atmosphere (oxygen concentration 20.8%) and the oxygen concentration measuring device 10 during assembly or inspection before shipment. It is obtained by acquiring the luminance value (coordinate B) of the calibration light emitting unit 102.

演算部80は、入力された測定用発光部100および較正用発光部102の輝度値、ならびにデータ記憶部72に格納された検定線を使って、酸素濃度を算出する。以下に、図6のフローチャートを用いて、酸素濃度算出の手順について述べる。   The computing unit 80 calculates the oxygen concentration using the input luminance values of the measurement light emitting unit 100 and the calibration light emitting unit 102 and the calibration line stored in the data storage unit 72. Below, the procedure of oxygen concentration calculation is described using the flowchart of FIG.

まず、測定用発光部100の輝度値Iaが取得される(S10)。輝度値Iaの取得と同時または相前後して較正用発光部102の輝度値Ibが取得される(S20)。   First, the luminance value Ia of the measurement light emitting unit 100 is acquired (S10). The luminance value Ib of the calibration light emitting unit 102 is acquired simultaneously with or before the acquisition of the luminance value Ia (S20).

輝度値Ibを使って、検定線が修正される(S30)。図6は、検定線の修正方法を示す図である。修正後の検定線210は、修正前の検定線200と同じ傾きであり、座標C(酸素濃度ゼロ、輝度値Ib)を通る。検定線210は、輝度値Ia取得時の輝度値の酸素濃度依存性を現す。   The verification line is corrected using the luminance value Ib (S30). FIG. 6 is a diagram illustrating a method for correcting the verification line. The corrected calibration line 210 has the same slope as that of the calibration line 200 before correction, and passes the coordinates C (oxygen concentration zero, luminance value Ib). The calibration line 210 shows the oxygen concentration dependence of the luminance value when the luminance value Ia is acquired.

検定線210に基づいて、輝度値Iaに対応する酸素濃度が算出される(S40)。検定線210を用いて酸素濃度を算出することにより、酸素消光性物質の劣化特性(経時変化)を考慮することができ、より正確な酸素濃度の算出が可能となる。また、酸素消光性物質の劣化特性を考慮に入れた酸素濃度を時系列にリアルタイムで長時間に渡り計測することができる。酸素濃度計測装置10の応用例としては、燃料電池内、ターボ内、エンジン筒内などの酸素濃度測定が考えられる。   Based on the calibration line 210, the oxygen concentration corresponding to the luminance value Ia is calculated (S40). By calculating the oxygen concentration using the calibration line 210, it is possible to take into account the deterioration characteristics (change over time) of the oxygen quenching substance, and to calculate the oxygen concentration more accurately. In addition, it is possible to measure the oxygen concentration taking into account the deterioration characteristics of the oxygen quenching substance over a long period of time in real time. As an application example of the oxygen concentration measuring apparatus 10, oxygen concentration measurement in a fuel cell, a turbo, an engine cylinder, or the like is conceivable.

なお、本実施形態の光ファイバ束20の先端部は、図3の構成に限られない。たとえば、図7に示すように、コの字型(凹型)の酸素遮断部材104を較正用発光部102の上に貼り付け、酸素遮断部材104と較正用発光部102との間の空間に、酸素を吸収する脱酸素剤112を設けてもよい。脱酸素剤112としては、たとえば、鉄の酸化反応を利用して酸素を吸収する鉄粉を用いることができる。これによれば、較正用発光部102への酸素の侵入をより効果的に防ぐことができ、さらに正確な酸素濃度の算出が可能となる。   In addition, the front-end | tip part of the optical fiber bundle 20 of this embodiment is not restricted to the structure of FIG. For example, as shown in FIG. 7, a U-shaped (concave) oxygen blocking member 104 is pasted on the calibration light emitting unit 102, and the space between the oxygen blocking member 104 and the calibration light emitting unit 102 is attached. An oxygen scavenger 112 that absorbs oxygen may be provided. As the oxygen scavenger 112, for example, iron powder that absorbs oxygen using an oxidation reaction of iron can be used. According to this, it is possible to more effectively prevent oxygen from entering the calibration light-emitting unit 102 and to calculate the oxygen concentration more accurately.

図8は、他の実施形態に係る酸素濃度計測装置12の構成を示す。酸素濃度計測装置12の説明では、酸素濃度計測装置10と同様な構成については適宜省略する。   FIG. 8 shows a configuration of an oxygen concentration measuring device 12 according to another embodiment. In the description of the oxygen concentration measuring device 12, the same configuration as that of the oxygen concentration measuring device 10 is omitted as appropriate.

酸素濃度計測装置12の光ファイバ束300は、図1に記載の較正用光ファイバ46に代えて温度取得用光ファイバ310を備える。温度取得用光ファイバ310の先端部には、図9に示すように、温度を表示する温度表示部312が設けられている。温度表示部312は、たとえば、コレステリック効果により反射光のスペクトルが変わる感温液晶を用いることができる。温度表示部312の光は、温度取得用光ファイバ310によって光センサ50に伝送される。光センサ50としてCCDが用いられ、温度表示部312の色が画像化される。   The optical fiber bundle 300 of the oxygen concentration measuring apparatus 12 includes a temperature acquisition optical fiber 310 instead of the calibration optical fiber 46 shown in FIG. As shown in FIG. 9, a temperature display unit 312 that displays the temperature is provided at the tip of the temperature acquisition optical fiber 310. As the temperature display unit 312, for example, a temperature-sensitive liquid crystal whose reflected light spectrum is changed by a cholesteric effect can be used. The light of the temperature display unit 312 is transmitted to the optical sensor 50 through the temperature acquisition optical fiber 310. A CCD is used as the optical sensor 50, and the color of the temperature display unit 312 is imaged.

データ記憶部72は、温度依存性が加味された酸素濃度算出に用いられる酸素濃度と輝度値との関係に関するデータを予め記憶する。温度依存性が加味された酸素濃度と輝度値との関係に関するデータとは、たとえば、0〜300℃までの1℃きざみの各温度において、輝度値の酸素濃度依存性を示す検定線である。各温度に対応する検定線を用いることにより、光ファイバ束300先端部の温度に応じた酸素濃度を求めることができる。   The data storage unit 72 stores in advance data related to the relationship between the oxygen concentration and the luminance value used for calculating the oxygen concentration taking temperature dependence into consideration. The data relating to the relationship between the oxygen concentration and the luminance value in consideration of the temperature dependency is, for example, a calibration line indicating the oxygen concentration dependency of the luminance value at each temperature of 1 ° C. from 0 to 300 ° C. By using the calibration line corresponding to each temperature, the oxygen concentration according to the temperature of the tip portion of the optical fiber bundle 300 can be obtained.

演算部80は、測定用発光部100の輝度値、温度表示部312の画像、およびデータ記憶部72に格納された検定線を使って、酸素濃度を算出する。以下に、図10のフローチャートを用いて、酸素濃度算出の手順について述べる。   The calculation unit 80 calculates the oxygen concentration using the luminance value of the measurement light emitting unit 100, the image of the temperature display unit 312, and the calibration line stored in the data storage unit 72. The procedure for calculating the oxygen concentration will be described below using the flowchart of FIG.

まず、測定用発光部100の輝度値Iaが取得される(S100)。さらに、温度表示部312の画像に基づいて、温度表示部312の温度が算出される(S110)。   First, the luminance value Ia of the measurement light emitting unit 100 is acquired (S100). Further, the temperature of the temperature display unit 312 is calculated based on the image of the temperature display unit 312 (S110).

算出された温度に対応する検定線がデータ記憶部72から読み込まれる(S120)。   A calibration line corresponding to the calculated temperature is read from the data storage unit 72 (S120).

読み込まれた検定線に基づいて、輝度値Iaに対応する酸素濃度が算出される(S130)。このように温度ごとに設定された検定線を用いて酸素濃度を算出することにより、酸素消光性物質の温度特性を考慮することができ、より正確な酸素濃度の算出が可能となる。   Based on the read calibration line, the oxygen concentration corresponding to the luminance value Ia is calculated (S130). Thus, by calculating the oxygen concentration using the calibration line set for each temperature, the temperature characteristics of the oxygen quenching substance can be taken into account, and the oxygen concentration can be calculated more accurately.

なお、光ファイバ束300先端部の温度の測定方法は、上記構成に限られない。たとえば、光ファイバ束300先端部に熱電対を設けることによっても光ファイバ束300先端部の温度を測定することができる。   Note that the method of measuring the temperature at the tip of the optical fiber bundle 300 is not limited to the above configuration. For example, the temperature of the front end portion of the optical fiber bundle 300 can also be measured by providing a thermocouple at the front end portion of the optical fiber bundle 300.

図11は、さらに他の実施形態に係る酸素濃度計測装置14の構成を示す。   FIG. 11 shows a configuration of an oxygen concentration measurement device 14 according to still another embodiment.

酸素濃度計測装置14の光ファイバ束400は、図1に記載の較正用光ファイバ46に代えて第1較正用光ファイバ410および第2較正用光ファイバ420を備える。   The optical fiber bundle 400 of the oxygen concentration measuring device 14 includes a first calibration optical fiber 410 and a second calibration optical fiber 420 instead of the calibration optical fiber 46 illustrated in FIG.

図12は、光ファイバ束400先端の斜視図を示し、図13は、図12におけるA−A断面の第1較正用光ファイバ410および第2較正用光ファイバ420側の構成を示す。第1較正用光ファイバ410の先端部には、第1較正用発光部430が設けられ、第1較正用発光部430の上に、酸素遮断部材440が設けられている。また、第2較正用光ファイバ420の先端部には、第2較正用発光部450が設けられ、第2較正用発光部450の上に、コの字型(凹型)の酸素遮断部材460が設けられている。酸素遮断部材460と第2較正用発光部450との間の空間470には、大気圧、濃度20.8%の酸素が密封状態で保持されている。   12 shows a perspective view of the tip end of the optical fiber bundle 400, and FIG. 13 shows a configuration of the first calibration optical fiber 410 and the second calibration optical fiber 420 side in the AA cross section in FIG. A first calibration light emitting unit 430 is provided at the distal end of the first calibration optical fiber 410, and an oxygen blocking member 440 is provided on the first calibration light emitting unit 430. In addition, a second calibration light emitting unit 450 is provided at the tip of the second calibration optical fiber 420, and a U-shaped (concave) oxygen blocking member 460 is disposed on the second calibration light emitting unit 450. Is provided. In the space 470 between the oxygen blocking member 460 and the second calibration light emitting unit 450, atmospheric pressure and oxygen having a concentration of 20.8% are held in a sealed state.

演算部80は、測定用発光部100の輝度値、第1較正用発光部430の輝度値および第2較正用発光部450の輝度値に基づいて酸素濃度を算出する。以下に、図14のフローチャートを用いて、酸素濃度算出の手順について述べる。   The computing unit 80 calculates the oxygen concentration based on the luminance value of the measurement light emitting unit 100, the luminance value of the first calibration light emitting unit 430, and the luminance value of the second calibration light emitting unit 450. Below, the procedure of oxygen concentration calculation is described using the flowchart of FIG.

まず、測定用発光部100の輝度値が取得される(S200)。輝度値の取得と同時または相前後して、第1較正用発光部430および第2較正用発光部450の輝度値が取得される(S210)。   First, the luminance value of the measurement light emitting unit 100 is acquired (S200). The brightness values of the first calibration light-emitting unit 430 and the second calibration light-emitting unit 450 are acquired at the same time as or after the acquisition of the brightness value (S210).

第1較正用発光部430(酸素濃度0%)および第2較正用発光部450(酸素濃度20.8%)の輝度値を使って、検定線が作成される(S220)。   A calibration line is created using the luminance values of the first calibration light emission unit 430 (oxygen concentration 0%) and the second calibration light emission unit 450 (oxygen concentration 20.8%) (S220).

図15は、2点補正によって得られる検定線を示す図である。検定線500は、ある時刻において得られた、酸素濃度0%の輝度値(座標E)と、酸素濃度20.8%の輝度値(座標D)とを結ぶことにより得られる。所定時間経過後の検定線510は、改めて取得された酸素濃度0%の輝度値(座標G)と、酸素濃度20.8%の輝度値(座標F)とを結ぶことにより得られる。このように、任意の時間において、酸素濃度20.8%と酸素濃度0%の輝度値が得られるため、劣化した酸素消光性物質に適応する酸素濃度算出用の検定線が逐次求められる。   FIG. 15 is a diagram showing a test line obtained by two-point correction. The calibration line 500 is obtained by connecting a luminance value (coordinate E) with an oxygen concentration of 0% and a luminance value (coordinate D) with an oxygen concentration of 20.8% obtained at a certain time. The calibration line 510 after a predetermined time has elapsed is obtained by connecting the newly acquired luminance value (coordinate G) with an oxygen concentration of 0% and the luminance value (coordinate F) with an oxygen concentration of 20.8%. As described above, since luminance values with an oxygen concentration of 20.8% and an oxygen concentration of 0% are obtained at an arbitrary time, a calibration line for calculating an oxygen concentration adapted to a deteriorated oxygen quenching substance is sequentially obtained.

作成された検定線に基づいて、測定用発光部100の輝度値に対応する酸素濃度が算出される(S230)。   Based on the created calibration line, the oxygen concentration corresponding to the luminance value of the measurement light emitting unit 100 is calculated (S230).

このように、劣化した酸素消光性物質に適応する酸素濃度算出用の検定線が逐次作成されるため、検定線を予め用意することなく、より正確な酸素濃度の算出が可能となる。   As described above, since the calibration line for calculating the oxygen concentration adapted to the deteriorated oxygen quenching substance is sequentially created, it is possible to calculate the oxygen concentration more accurately without preparing the calibration line in advance.

なお、第1較正用発光部430および第2較正用発光部450は、互いに異なる既知濃度の酸素に面していればよく、空間470の酸素濃度は20.8%に限られず、任意の濃度に設定することができる。また、第1較正用発光部430も第2較正用発光部450と同様に密閉空間内の所定濃度の酸素に面していてもよい。   Note that the first calibration light-emitting unit 430 and the second calibration light-emitting unit 450 only have to face different known concentrations of oxygen, and the oxygen concentration in the space 470 is not limited to 20.8%, but any concentration. Can be set to The first calibration light emitting unit 430 may also face a predetermined concentration of oxygen in the sealed space, like the second calibration light emitting unit 450.

以上説明した実施形態においては、いずれも光ファイバ束の先端部に、測定用発光部、較正用発光部、温度表示部等が設けられているが、このような構成に代えて、たとえば、MEA(膜電極接合体)等の対象物上に測定用発光部、較正用発光部、温度表示部等を設けてることができる。   In the embodiments described above, a measurement light-emitting unit, a calibration light-emitting unit, a temperature display unit, and the like are provided at the tip of the optical fiber bundle, but instead of such a configuration, for example, MEA A light-emitting unit for measurement, a light-emitting unit for calibration, a temperature display unit, and the like can be provided on an object such as (membrane electrode assembly).

図16は、酸素濃度計測装置14の測定用発光部等をMEA600上に設けた場合の構成(酸素濃度計測装置16)を示す図である。   FIG. 16 is a diagram showing a configuration (oxygen concentration measuring device 16) in the case where the measurement light emitting unit and the like of the oxygen concentration measuring device 14 are provided on the MEA 600.

MEA600上には、測定用発光部610、第1較正用発光部620および第2較正用発光部630が設けられている。第1較正用発光部620は、図13の第1較正用発光部430と同様に図示しない酸素遮断部材により被覆されている。また、第2較正用発光部630上には、図13の第2較正用発光部450と同様に、図示しないコの字型(凹型)の酸素遮断部材が設けられ、第2較正用発光部630と酸素遮断部材との間に、大気圧、濃度は20.8%の酸素が密閉されている。   On the MEA 600, a measurement light emitting unit 610, a first calibration light emitting unit 620, and a second calibration light emitting unit 630 are provided. The first calibration light emitting unit 620 is covered with an oxygen blocking member (not shown) as in the first calibration light emitting unit 430 of FIG. In addition, a U-shaped (concave) oxygen blocking member (not shown) is provided on the second calibration light-emitting unit 630, similarly to the second calibration light-emitting unit 450 of FIG. Between the 630 and the oxygen blocking member, atmospheric pressure and oxygen with a concentration of 20.8% are sealed.

光ファイバ束400の先端部は、測定用発光部610、第1較正用発光部620および第2較正用発光部630上に位置し、励起光伝送用光ファイバ42は、測定用発光部610、第1較正用発光部620および第2較正用発光部630に励起光を照射する。   The tip of the optical fiber bundle 400 is positioned on the measurement light emitting unit 610, the first calibration light emitting unit 620, and the second calibration light emitting unit 630, and the excitation light transmitting optical fiber 42 includes the measurement light emitting unit 610, The first calibration light emitting unit 620 and the second calibration light emitting unit 630 are irradiated with excitation light.

測定用発光部610、第1較正用発光部620および第2較正用発光部630は、発光検出用光ファイバ44、第1較正用光ファイバ410および第2較正用光ファイバ420を経由して画像化され、それぞれの輝度値が求められる。   The measurement light emitting unit 610, the first calibration light emitting unit 620, and the second calibration light emitting unit 630 pass through the light emission detecting optical fiber 44, the first calibration optical fiber 410, and the second calibration optical fiber 420 to obtain an image. And the respective luminance values are obtained.

測定用発光部610、第1較正用発光部620および第2較正用発光部630の輝度値を用いて、図14のフローチャートと同様な手順により酸素濃度が算出される。   Using the luminance values of the measurement light-emitting unit 610, the first calibration light-emitting unit 620, and the second calibration light-emitting unit 630, the oxygen concentration is calculated in the same procedure as the flowchart of FIG.

これによれば、MEA表面等の対象物体の酸素濃度を直接精度良く測定することができる。また、MEA表面の酸素濃度をリアルタイムで精度良く測定することにより、燃料ガス(酸素・エアー)の投入圧力や投入流量へのフィードバック制御ができる。   This makes it possible to directly and accurately measure the oxygen concentration of the target object such as the MEA surface. Further, by accurately measuring the oxygen concentration on the surface of the MEA in real time, it is possible to perform feedback control on the input pressure and input flow rate of the fuel gas (oxygen / air).

なお、図16の酸素濃度計測装置16においては、発光検出用の光ファイバとして、発光部ごとに発光検出用光ファイバ44、第1較正用光ファイバ410および第2較正用光ファイバ420を用いているが、共通の光ファイバにより測定用発光部610、第1較正用発光部620および第2較正用発光部630を全体画像として画像化し、各領域に相当する画像から輝度値を求めてもよい。   In the oxygen concentration measuring device 16 of FIG. 16, the light emission detecting optical fiber 44, the first calibration optical fiber 410, and the second calibration optical fiber 420 are used for each light emitting portion as the light emission detecting optical fiber. However, the measurement light emitting unit 610, the first calibration light emitting unit 620, and the second calibration light emitting unit 630 may be imaged as a whole image using a common optical fiber, and the luminance value may be obtained from the image corresponding to each region. .

実施形態に係る酸素濃度計測装置10の構成を示す図である。It is a figure showing composition of oxygen concentration measuring device 10 concerning an embodiment. 光ファイバ束40先端部の斜視図である。It is a perspective view of the optical fiber bundle 40 front-end | tip part. 光ファイバ束40先端部の断面図である。It is sectional drawing of the optical fiber bundle 40 front-end | tip part. 酸素濃度算出用の検定線200を示すグラフである。It is a graph which shows the calibration line 200 for oxygen concentration calculation. 酸素濃度計測装置10における酸素濃度算出の手順を示すフローチャートである。3 is a flowchart showing a procedure for calculating an oxygen concentration in the oxygen concentration measuring apparatus 10. 検定線の修正方法を示す図である。It is a figure which shows the correction method of a test line. 光ファイバ束40の先端部の他の構成を示す図である。It is a figure which shows the other structure of the front-end | tip part of the optical fiber bundle 40. FIG. 他の実施形態に係る酸素濃度計測装置12の構成を示す図である。It is a figure which shows the structure of the oxygen concentration measuring device 12 which concerns on other embodiment. 酸素濃度計測装置12の光ファイバ束300先端部の断面図である。FIG. 4 is a cross-sectional view of the distal end portion of an optical fiber bundle 300 of the oxygen concentration measuring device 12. 酸素濃度計測装置12における酸素濃度算出の手順を示すフローチャートである。4 is a flowchart showing a procedure for calculating an oxygen concentration in the oxygen concentration measuring device 12. 他の実施形態に係る酸素濃度計測装置14の構成を示す図である。It is a figure which shows the structure of the oxygen concentration measuring apparatus 14 which concerns on other embodiment. 光ファイバ束400先端の斜視図である。It is a perspective view of the optical fiber bundle 400 tip. 図12におけるA−A断面の第1較正用光ファイバ410および第2較正用光ファイバ420側の構成を示す図である。It is a figure which shows the structure by the side of the 1st calibration optical fiber 410 and the 2nd calibration optical fiber 420 of the AA cross section in FIG. 酸素濃度計測装置14における酸素濃度算出の手順を示すフローチャートである。3 is a flowchart showing a procedure for calculating oxygen concentration in an oxygen concentration measuring device 14; 2点補正によって得られる検定線を示す図である。It is a figure which shows the verification line obtained by 2 point | piece correction. 酸素濃度計測装置14の測定用発光部等をMEA600上に設けた場合の構成(酸素濃度計測装置16)を示す。The structure (oxygen concentration measuring device 16) when the light emission part for measurement of the oxygen concentration measuring device 14 etc. are provided on MEA600 is shown.

符号の説明Explanation of symbols

10 酸素濃度計測装置、20 光源、30 制御部、40 光ファイバ束、50 光センサ、60 増幅回路、70 A/D変換回路、80 演算部。   DESCRIPTION OF SYMBOLS 10 Oxygen concentration measuring device, 20 Light source, 30 Control part, 40 Optical fiber bundle, 50 Optical sensor, 60 Amplification circuit, 70 A / D conversion circuit, 80 calculating part.

Claims (15)

酸素濃度に応じて発光強度が変化する酸素消光性物質からなる測定用発光部と、
前記測定用発光部の近傍に設けられ、酸素が遮断された酸素消光性物質からなる較正用発光部と、
前記測定用発光部および前記較正用発光部に対して酸素消光性物質の励起光を放射する光照射部と、
前記測定用発光部の輝度を計測する測定用輝度計測部と、
前記較正用発光部の輝度を計測する較正用輝度計測部と、
前記較正用発光部の輝度に基づいて得られる酸素消光性物質の輝度と酸素濃度との関係を用いて、前記測定用発光部の輝度から酸素濃度を算出する演算部と、
を備えることを特徴とする酸素濃度計測装置。
A light-emitting portion for measurement made of an oxygen-quenching substance whose emission intensity changes according to the oxygen concentration;
A calibration light-emitting part that is provided in the vicinity of the measurement light-emitting part and is made of an oxygen quenching substance in which oxygen is blocked;
A light irradiation unit that emits excitation light of an oxygen quenching substance to the measurement light-emitting unit and the calibration light-emitting unit;
A measurement luminance measurement unit for measuring the luminance of the measurement light emitting unit;
A calibration luminance measuring unit for measuring the luminance of the calibration light emitting unit;
A calculation unit that calculates the oxygen concentration from the luminance of the light emitting unit for measurement, using the relationship between the luminance of the oxygen quenching substance obtained based on the luminance of the light emitting unit for calibration and the oxygen concentration,
An oxygen concentration measuring device comprising:
前記測定用発光部、前記較正用発光部および前記光照射部が光ファイバの先端に設けられ、
前記測定用輝度計測部および前記較正用輝度計測部は、前記光ファイバによって伝送された前記測定用発光部および前記較正用発光部から光の輝度をそれぞれ計測することを特徴とする請求項1に記載の酸素濃度計測装置。
The measurement light emitting unit, the calibration light emitting unit and the light irradiation unit are provided at the tip of an optical fiber,
The measurement luminance measurement unit and the calibration luminance measurement unit respectively measure the luminance of light from the measurement light emission unit and the calibration light emission unit transmitted by the optical fiber. The oxygen concentration measuring device described.
前記光照射部が光ファイバの先端に設けられ、
前記測定用発光部および前記較正用発光部は、対象物体上に設けられ、
前記測定用輝度計測部および前記較正用輝度計測部は、前記光ファイバによって伝送された前記測定用発光部および前記較正用発光部から光の輝度をそれぞれ計測することを特徴とする請求項1に記載の酸素濃度計測装置。
The light irradiation unit is provided at the tip of an optical fiber;
The measurement light emitting unit and the calibration light emitting unit are provided on a target object,
The measurement luminance measurement unit and the calibration luminance measurement unit respectively measure the luminance of light from the measurement light emission unit and the calibration light emission unit transmitted by the optical fiber. The oxygen concentration measuring device described.
酸素濃度に応じて発光強度が変化する酸素消光性物質からなる測定用発光部と、
前記測定用発光部の近傍に設けられた温度検出部と、
前記測定用発光部に対して酸素消光性物質の励起光を放射する光照射部と、
前記測定用発光部の輝度を計測する測定用輝度計測部と、
前記温度検出部で得られた温度に基づいて得られる酸素消光性物質の輝度と酸素濃度との関係を用いて、前記測定用発光部の輝度から酸素濃度を算出する演算部と、
を備えることを特徴とする酸素濃度計測装置。
A light-emitting portion for measurement made of an oxygen-quenching substance whose emission intensity changes according to the oxygen concentration;
A temperature detection unit provided in the vicinity of the measurement light-emitting unit;
A light irradiation unit that emits excitation light of an oxygen quenching substance to the measurement light-emitting unit;
A measurement luminance measurement unit for measuring the luminance of the measurement light emitting unit;
A calculation unit that calculates the oxygen concentration from the luminance of the light emitting unit for measurement, using the relationship between the luminance of the oxygen quenching substance obtained based on the temperature obtained by the temperature detection unit and the oxygen concentration,
An oxygen concentration measuring device comprising:
前記測定用発光部および前記温度検出部が光ファイバの先端に設けられ、
前記測定用輝度計測部は、前記光ファイバによって伝送された前記測定用発光部からの光の輝度を計測することを特徴とする請求項4に記載の酸素濃度計測装置。
The measurement light emitting part and the temperature detection part are provided at the tip of an optical fiber,
The oxygen concentration measuring device according to claim 4, wherein the measurement luminance measurement unit measures the luminance of light from the measurement light emitting unit transmitted by the optical fiber.
前記光照射部が光ファイバの先端に設けられ、
前記測定用発光部および前記温度検出部は、対象物体上に設けられ、
前記測定用輝度計測部および前記温度検出部は、前記光ファイバによって伝送された前記測定用発光部から光の輝度を計測することを特徴とする請求項1に記載の酸素濃度計測装置。
The light irradiation part is provided at the tip of an optical fiber,
The measurement light emitting unit and the temperature detection unit are provided on a target object,
The oxygen concentration measurement apparatus according to claim 1, wherein the measurement luminance measurement unit and the temperature detection unit measure light luminance from the measurement light-emitting unit transmitted by the optical fiber.
酸素濃度に応じて発光強度が変化する酸素消光性物質からなる測定用発光部と、
前記測定用発光部の近傍に設けられ、所定酸素濃度における輝度を示す酸素消光性物質からなる第1較正用発光部と、
前記測定用発光部の近傍に設けられ、前記所定酸素濃度とは異なる所定酸素濃度における輝度を示す酸素消光性物質からなる第2較正用発光部と、
前記測定用発光部、前記第1較正用発光部および前記第2較正用発光部に対して酸素消光性物質の励起光を放射する光照射部と、
前記測定用発光部の輝度を計測する測定用輝度計測部と、
前記第1較正用発光部の輝度を計測する第1較正用輝度計測部と、
前記第1較正用発光部の輝度を計測する第2較正用輝度計測部と、
前記第1較正用発光部および前記第2較正用発光部の輝度に基づいて得られる酸素消光性物質の輝度と酸素濃度との関係を用いて、前記測定用発光部の輝度から酸素濃度を算出する演算部と、
を備えることを特徴とする酸素濃度計測装置。
A light-emitting portion for measurement made of an oxygen-quenching substance whose emission intensity changes according to the oxygen concentration;
A first calibration light-emitting part that is provided in the vicinity of the measurement light-emitting part and is made of an oxygen quenching substance that exhibits luminance at a predetermined oxygen concentration;
A second calibration light-emitting part made of an oxygen quenching substance provided in the vicinity of the measurement light-emitting part and having a luminance at a predetermined oxygen concentration different from the predetermined oxygen concentration;
A light irradiation unit that emits excitation light of an oxygen quenching substance to the measurement light-emitting unit, the first calibration light-emitting unit, and the second calibration light-emitting unit;
A measurement luminance measurement unit for measuring the luminance of the measurement light emitting unit;
A first calibration luminance measuring unit for measuring the luminance of the first calibration light emitting unit;
A second calibration luminance measuring unit for measuring the luminance of the first calibration light emitting unit;
The oxygen concentration is calculated from the luminance of the measurement light emitting unit using the relationship between the luminance and the oxygen concentration of the oxygen quenching substance obtained based on the luminance of the first calibration light emitting unit and the second calibration light emitting unit. An arithmetic unit to perform,
An oxygen concentration measuring device comprising:
前記測定用発光部、前記第1較正用発光部、前記第2較正用発光部および前記光照射部が光ファイバの先端に設けられ、
前記測定用輝度計測部、前記第1較正用輝度計測部および前記第2較正用輝度計測部は、前記光ファイバによって伝送された前記測定用発光部、前記第1較正用発光部および前記第2較正用発光部から光の輝度をそれぞれ計測することを特徴とする請求項7に記載の酸素濃度計測装置。
The measurement light emitting unit, the first calibration light emitting unit, the second calibration light emitting unit, and the light irradiation unit are provided at the tip of an optical fiber,
The measurement luminance measurement unit, the first calibration luminance measurement unit, and the second calibration luminance measurement unit are configured to transmit the measurement light emission unit, the first calibration light emission unit, and the second calibration light transmitted by the optical fiber, respectively. The oxygen concentration measuring apparatus according to claim 7, wherein the brightness of light is measured from each of the calibration light emitting units.
前記光照射部が光ファイバの先端に設けられ、
前記測定用発光部、前記第1較正用発光部および前記第2較正用発光部は、対象物体上に設けられ、
前記測定用輝度計測部、前記第1較正用輝度計測部および前記第2較正用輝度計測部は、前記光ファイバによって伝送された前記測定用発光部、前記第1較正用発光部および前記第2較正用発光部から光の輝度をそれぞれ計測することを特徴とする請求項7に記載の酸素濃度計測装置。
The light irradiation unit is provided at the tip of an optical fiber;
The measurement light-emitting unit, the first calibration light-emitting unit, and the second calibration light-emitting unit are provided on a target object,
The measurement luminance measurement unit, the first calibration luminance measurement unit, and the second calibration luminance measurement unit are configured to transmit the measurement light emission unit, the first calibration light emission unit, and the second calibration light transmitted by the optical fiber, respectively. The oxygen concentration measuring apparatus according to claim 7, wherein the brightness of light is measured from each of the calibration light emitting units.
光ファイバ先端に設けられた酸素消光性物質に励起光を照射する工程と、
酸素消光性物質のうち酸素含有気体に面する領域の輝度を光ファイバを用いて計測する工程と、
酸素消光性物質のうち酸素が遮断された領域の輝度を光ファイバを用いて計測する工程と、
酸素が遮断された領域の輝度に基づいて得られる酸素消光性物質の輝度と酸素濃度との関係を用いて、酸素が透過する領域の輝度から酸素濃度を算出する工程と、
を備えることを特徴とする酸素濃度計測方法。
Irradiating an oxygen quenching substance provided at the tip of the optical fiber with excitation light;
A step of measuring the brightness of the region facing the oxygen-containing gas in the oxygen quenching substance using an optical fiber;
A step of measuring the brightness of the oxygen-quenched substance in a region where oxygen is blocked using an optical fiber;
Calculating the oxygen concentration from the luminance of the region through which oxygen passes, using the relationship between the luminance of the oxygen quenching substance obtained based on the luminance of the region where oxygen is blocked and the oxygen concentration; and
An oxygen concentration measurement method comprising:
対象物体上に設けられた酸素消光性物質に励起光を照射する工程と、
酸素消光性物質のうち酸素含有気体に面する領域の輝度光ファイバを用いてを計測する工程と、
酸素消光性物質のうち酸素が遮断された領域の輝度を光ファイバを用いて計測する工程と、
酸素が遮断された領域の輝度に基づいて得られる酸素消光性物質の輝度と酸素濃度との関係を用いて、酸素が透過する領域の輝度から酸素濃度を算出する工程と、
を備えることを特徴とする酸素濃度計測方法。
Irradiating an oxygen quenching substance provided on a target object with excitation light;
A step of measuring the oxygen quenching substance using a luminance optical fiber in a region facing the oxygen-containing gas;
A step of measuring the brightness of the oxygen-quenched substance in a region where oxygen is blocked using an optical fiber;
Calculating the oxygen concentration from the luminance of the region through which oxygen passes, using the relationship between the luminance of the oxygen quenching substance obtained based on the luminance of the region where oxygen is blocked and the oxygen concentration; and
An oxygen concentration measurement method comprising:
光ファイバ先端に設けられた酸素消光性物質に励起光を照射する工程と、
酸素消光性物質の輝度を光ファイバを用いて計測する工程と、
酸素消光性物質近傍の温度を測定する工程と、
測定された温度に基づいて得られる酸素消光性物質の輝度と酸素濃度との関係を用いて、酸素消光性物質の輝度から酸素濃度を算出する工程と、
を備えることを特徴とする酸素濃度計測方法。
Irradiating an oxygen quenching substance provided at the tip of the optical fiber with excitation light;
Measuring the brightness of the oxygen quenching substance using an optical fiber;
Measuring the temperature in the vicinity of the oxygen quenching substance;
Calculating the oxygen concentration from the brightness of the oxygen quenching substance using the relationship between the brightness of the oxygen quenching substance obtained based on the measured temperature and the oxygen concentration;
An oxygen concentration measurement method comprising:
対象物体上に設けられた酸素消光性物質に励起光を照射する工程と、
酸素消光性物質の輝度を光ファイバを用いて計測する工程と、
酸素消光性物質近傍の温度を測定する工程と、
測定された温度に基づいて得られる酸素消光性物質の輝度と酸素濃度との関係を用いて、酸素消光性物質の輝度から酸素濃度を算出する工程と、
を備えることを特徴とする酸素濃度計測方法。
Irradiating an oxygen quenching substance provided on a target object with excitation light;
Measuring the brightness of the oxygen quenching substance using an optical fiber;
Measuring the temperature in the vicinity of the oxygen quenching substance;
Calculating the oxygen concentration from the brightness of the oxygen quenching substance using the relationship between the brightness of the oxygen quenching substance obtained based on the measured temperature and the oxygen concentration;
An oxygen concentration measurement method comprising:
光ファイバ先端に設けられた酸素消光性物質に励起光を照射する工程と、
酸素消光性物質のうち酸素含有気体に面する領域の輝度を光ファイバを用いて計測する工程と、
酸素消光性物質のうち第1の所定濃度の酸素に面した領域の輝度を光ファイバを用いて計測する工程と、
酸素消光性物質のうち第1の所定濃度とは異なる第2の所定濃度の酸素に面した領域の輝度を光ファイバを用いて計測する工程と、
第1の所定濃度の酸素に面した領域の輝度および第2の所定濃度の酸素に面した領域の輝度に基づいて得られる酸素消光性物質の輝度と酸素濃度との関係を用いて、酸素が透過する領域の輝度から酸素濃度を算出する工程と、
を備えることを特徴とする酸素濃度計測方法。
Irradiating an oxygen quenching substance provided at the tip of the optical fiber with excitation light;
A step of measuring the brightness of the region facing the oxygen-containing gas in the oxygen quenching substance using an optical fiber;
Measuring the brightness of a region facing oxygen at a first predetermined concentration of the oxygen quenching substance using an optical fiber;
Measuring the brightness of a region facing oxygen at a second predetermined concentration different from the first predetermined concentration of the oxygen quenching substance using an optical fiber;
Using the relationship between the luminance of the oxygen quenching substance obtained based on the luminance of the region facing the first predetermined concentration of oxygen and the luminance of the region facing the second predetermined concentration of oxygen, the oxygen concentration Calculating the oxygen concentration from the brightness of the transmitting region;
An oxygen concentration measurement method comprising:
対象物上に設けられた酸素消光性物質に励起光を照射する工程と、
酸素消光性物質のうち酸素含有気体に面する領域の輝度を光ファイバを用いて計測する工程と、
酸素消光性物質のうち第1の所定濃度の酸素に面した領域の輝度を光ファイバを用いて計測する工程と、
酸素消光性物質のうち第1の所定濃度とは異なる第2の所定濃度の酸素に面した領域の輝度を光ファイバを用いて計測する工程と、
第1の所定濃度の酸素に面した領域の輝度および第2の所定濃度の酸素に面した領域の輝度に基づいて得られる酸素消光性物質の輝度と酸素濃度との関係を用いて、酸素が透過する領域の輝度から酸素濃度を算出する工程と、
を備えることを特徴とする酸素濃度計測方法。
Irradiating an oxygen quenching substance provided on an object with excitation light;
A step of measuring the brightness of the region facing the oxygen-containing gas in the oxygen quenching substance using an optical fiber;
Measuring the brightness of a region facing oxygen at a first predetermined concentration of the oxygen quenching substance using an optical fiber;
Measuring the brightness of a region facing oxygen at a second predetermined concentration different from the first predetermined concentration of the oxygen quenching substance using an optical fiber;
Using the relationship between the luminance of the oxygen quenching substance obtained based on the luminance of the region facing the first predetermined concentration of oxygen and the luminance of the region facing the second predetermined concentration of oxygen, the oxygen concentration Calculating the oxygen concentration from the brightness of the transmitting region;
An oxygen concentration measurement method comprising:
JP2003435210A 2003-12-26 2003-12-26 Instrument and method for measuring oxygen concentration Pending JP2005195354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003435210A JP2005195354A (en) 2003-12-26 2003-12-26 Instrument and method for measuring oxygen concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003435210A JP2005195354A (en) 2003-12-26 2003-12-26 Instrument and method for measuring oxygen concentration

Publications (1)

Publication Number Publication Date
JP2005195354A true JP2005195354A (en) 2005-07-21

Family

ID=34815401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003435210A Pending JP2005195354A (en) 2003-12-26 2003-12-26 Instrument and method for measuring oxygen concentration

Country Status (1)

Country Link
JP (1) JP2005195354A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087691A (en) * 2005-09-21 2007-04-05 Univ Of Yamanashi Fuel battery cell and fuel cell reaction measuring device
WO2008045743A2 (en) 2006-10-06 2008-04-17 Ric Investments, Llc Sensor that compensates for deterioration of a luminescable medium
JP2011089944A (en) * 2009-10-26 2011-05-06 Shimadzu Corp Fuel cell reaction measuring device
JP2012508378A (en) * 2008-11-07 2012-04-05 モコン・インコーポレーテッド Calibration card for optical oxygen sensor
JP2012242391A (en) * 2011-05-20 2012-12-10 Mocon Inc Calibration system and technique for photoluminescent oxygen sensors with zero point maintained with metal-air battery
JP2013217737A (en) * 2012-04-06 2013-10-24 Honda Motor Co Ltd Oxygen concentration measurement apparatus in fuel cell
JP2014013150A (en) * 2012-07-03 2014-01-23 Shimadzu Corp Light irradiation device
WO2016058107A1 (en) * 2014-10-14 2016-04-21 Santamarina Cuneo Juan Pablo Calibration-free portable optical device for the continuous recording of saturation and dissolved oxygen in a body of water
JP2016211867A (en) * 2015-04-30 2016-12-15 学校法人 創価大学 Optical oxygen sensor and method of manufacturing the same
JP2017508974A (en) * 2014-03-20 2017-03-30 インテグリス−ジェタロン・ソリューションズ・インコーポレイテッド System and method for end-of-life detection and signal generation of dissolved oxygen sensor components
US9915602B2 (en) 2012-04-20 2018-03-13 Mocon, Inc. Calibration vial and technique for calibrating a fiber optic oxygen sensing needle
JP2020514748A (en) * 2017-03-13 2020-05-21 ハミルトン・ボナドゥーツ・アーゲー Temperature-compensated optical detector for oxygen content of fluids

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677604B2 (en) * 2005-09-21 2011-04-27 国立大学法人山梨大学 Fuel cell and fuel cell reaction measuring device
JP2007087691A (en) * 2005-09-21 2007-04-05 Univ Of Yamanashi Fuel battery cell and fuel cell reaction measuring device
WO2008045743A2 (en) 2006-10-06 2008-04-17 Ric Investments, Llc Sensor that compensates for deterioration of a luminescable medium
EP2074403A2 (en) * 2006-10-06 2009-07-01 RIC Investments, LLC. Sensor that compensates for deterioration of a luminescable medium
JP2010506173A (en) * 2006-10-06 2010-02-25 アールアイシー・インベストメンツ・エルエルシー Sensor that compensates for degradation of luminescent media
EP2074403A4 (en) * 2006-10-06 2012-08-01 Ric Investments Llc Sensor that compensates for deterioration of a luminescable medium
EP2350614A4 (en) * 2008-11-07 2017-01-11 Mocon, Inc. Calibration card for oxygen optical sensors
JP2012508378A (en) * 2008-11-07 2012-04-05 モコン・インコーポレーテッド Calibration card for optical oxygen sensor
US8429949B2 (en) 2008-11-07 2013-04-30 Mocon, Inc. Calibration card for oxygen optical sensors
JP2011089944A (en) * 2009-10-26 2011-05-06 Shimadzu Corp Fuel cell reaction measuring device
JP2012242391A (en) * 2011-05-20 2012-12-10 Mocon Inc Calibration system and technique for photoluminescent oxygen sensors with zero point maintained with metal-air battery
JP2013217737A (en) * 2012-04-06 2013-10-24 Honda Motor Co Ltd Oxygen concentration measurement apparatus in fuel cell
US9915602B2 (en) 2012-04-20 2018-03-13 Mocon, Inc. Calibration vial and technique for calibrating a fiber optic oxygen sensing needle
JP2014013150A (en) * 2012-07-03 2014-01-23 Shimadzu Corp Light irradiation device
JP2017508974A (en) * 2014-03-20 2017-03-30 インテグリス−ジェタロン・ソリューションズ・インコーポレイテッド System and method for end-of-life detection and signal generation of dissolved oxygen sensor components
WO2016058107A1 (en) * 2014-10-14 2016-04-21 Santamarina Cuneo Juan Pablo Calibration-free portable optical device for the continuous recording of saturation and dissolved oxygen in a body of water
JP2016211867A (en) * 2015-04-30 2016-12-15 学校法人 創価大学 Optical oxygen sensor and method of manufacturing the same
JP2020514748A (en) * 2017-03-13 2020-05-21 ハミルトン・ボナドゥーツ・アーゲー Temperature-compensated optical detector for oxygen content of fluids
JP7100055B2 (en) 2017-03-13 2022-07-12 ハミルトン・ボナドゥーツ・アーゲー Temperature-compensated optical detector for oxygen content of fluid
US11668649B2 (en) 2017-03-13 2023-06-06 Hamilton Bonaduz Ag Device for the temperature-compensated optical detection of an oxygen content of a fluid

Similar Documents

Publication Publication Date Title
US8525989B2 (en) Spectrometer, spectrometry, and spectrometry program
JP2005195354A (en) Instrument and method for measuring oxygen concentration
WO1989002072A1 (en) Method and apparatus for optically measuring concentration of material
US6696690B2 (en) Method and apparatus to correct for the temperature sensitivity of pressure sensitive paint
US20100240141A1 (en) Apparatus and method for measuring concentration of carbon dioxide in water
ATE476650T1 (en) SAMPLE CONCENTRATION DETECTOR WITH TEMPERATURE COMPENSATION
US10520435B2 (en) Optical sensor and sensing system for oxygen monitoring in fluids using molybdenum cluster phosphorescence
US20130005047A1 (en) Luminescence lifetime based analyte sensing instruments and calibration technique
JP2013130509A (en) Calibration method and calibration device for moisture concentration measurement device
US8580199B2 (en) Oxygen sensor and measuring method
EP1923691A3 (en) Long-term stable optical sensor arrangement, especially a hydrogen sensor, and combined gas sensor arrangement
RU2445608C2 (en) System and method of compensating for system delay during analyte analysis
WO2010050454A1 (en) Detecting element, detector, and oxygen concentration analyzer
JP5249777B2 (en) Method and apparatus for measuring fluorescence of a sample and use thereof
JP2008523359A (en) Gas detection method and system
US11525781B2 (en) Method for measuring oxygen and apparatus for measuring oxygen
US20120283532A1 (en) Biological optical measurement instrument and method for displaying information relating to necessity/unnecessity of replacement of light-emitting unit
US20080166819A1 (en) Gas detection apparatus and method utilizing an integral temperature correction device
RU2689286C2 (en) Oxygen sensor comprising a large diameter optical fiber with a coated tip
CN113933268B (en) Optical detection device and optical detection method
US20120261591A1 (en) Device and method for determining the concentration of fluorophores in a sample
TW201416659A (en) Biochip detecting device and light source detection method thereof
WO2013061681A1 (en) Component measurement device and component measurement method
KR20240097319A (en) optical type oxygen measurement apparatus
US9874520B1 (en) Epi-fluoresence confocal optical analyte sensor