JP2004221520A - Package for storing light-emitting element and light-emitting device - Google Patents

Package for storing light-emitting element and light-emitting device Download PDF

Info

Publication number
JP2004221520A
JP2004221520A JP2003143689A JP2003143689A JP2004221520A JP 2004221520 A JP2004221520 A JP 2004221520A JP 2003143689 A JP2003143689 A JP 2003143689A JP 2003143689 A JP2003143689 A JP 2003143689A JP 2004221520 A JP2004221520 A JP 2004221520A
Authority
JP
Japan
Prior art keywords
emitting element
light
package
light emitting
insulating base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003143689A
Other languages
Japanese (ja)
Inventor
Kazuhito Kanezashi
一仁 金指
Yosuke Moriyama
陽介 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003143689A priority Critical patent/JP2004221520A/en
Publication of JP2004221520A publication Critical patent/JP2004221520A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a package for storing a light-emitting element, having a small size and no deformation in shape thereof which enables manufacturing of a light-emitting device having very high emission efficiency by uniformly and well reflecting the light of a light-emitting device on a reflective layer inside a recess to efficiently emit it to the outside. <P>SOLUTION: The package for storing the light-emitting element includes a substrate 1 where the mounting part 2 of a light-emitting element 3 is mounted on the bottom of the recess 4 of the insulating substrate 10 of a rectangular solid on which the recess 4 is formed on an upper surface, and wiring conductors 5a, 5b formed from the mounting part 2 of the substrate 1 to the outside surface thereof. In the insulating substrate 10, the recess 4 is formed by individually bonding ceramic plates 10a, 10b with the same height as the main body 10b of the insulating substrate 10 so as to block both ends of a groove 10d on the whole surface of two side faces of the main body 10b of the insulating substrate 10, where a groove 10d is formed extending over a pair of opposite side faces on the center of an upper surface. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、発光ダイオード等の発光素子を収容するための発光素子収納用パッケージに関する。
【0002】
【従来の技術】
従来、発光ダイオード等の発光素子を収容するための発光素子収納用パッケージ(以下、パッケージともいう)として、セラミック製のパッケージが用いられており、その一例を図12に示す(例えば、下記の特許文献1参照)。同図に示すように、従来のパッケージは、複数のセラミック層が積層されているとともに上面に凹部24が形成されている直方体の絶縁基体の凹部24の底面に発光素子23を搭載するための導体層から成る搭載部22が設けられた基体21と、基体21の搭載部22およびその周辺から基体21の下面に導出された一対のメタライズ配線導体25とから構成されている。
【0003】
そして、一方のメタライズ配線導体25の一端が電気的に接続された搭載部22上に発光素子23を導電性接着剤、半田等を介して載置固定するとともに、発光素子23の電極と他方のメタライズ配線導体25とをボンディングワイヤ26を介して電気的に接続し、しかる後、基体21の凹部24内に図示しない透明な封止樹脂を充填して発光素子23を封止することによって、発光装置が作製される。
【0004】
なお、上記セラミック製のパッケージにおいては、凹部24に収容する発光素子23が発光する光を凹部24内で反射させて発光装置の発光効率を良好なものとするために、凹部24の内面にニッケル(Ni)めっき層や金(Au)めっき層を表面に有するメタライズ層を被着させていることもある。
【0005】
また、上記のパッケージはセラミックグリーンシート積層法により以下のようにして製作される。まず、基体21の搭載部22(搭載部22から下側)を形成するためのセラミックグリーンシート(以下、グリーンシートともいう)と、基体21の凹部24を形成するためのグリーンシートとを準備し、これらのグリーンシートにメタライズ配線導体25を導出させるための貫通孔や凹部24となる貫通穴を打ち抜き法で形成する。
【0006】
次に、搭載部22を形成するためのグリーンシートの積層体Aの貫通孔および所定の部位にメタライズ配線導体25形成用の導体ペーストをスクリーン印刷法等で印刷塗布し、また凹部24の内面にメタライズ層を被着する場合、凹部24を形成するためのグリーンシートの積層体Bの貫通穴内面にメタライズ層形成用の導体ペーストをスクリーン印刷法等で印刷塗布する。
【0007】
次に、積層体Aと積層体Bとを重ねて接着して基体21を形成するための積層体とし、これを所定寸法に切断して成形体となし、高温(1600℃程度)で焼成して焼結体となす。その後、メタライズ配線導体25およびメタライズ層の露出表面にニッケル,金,パラジウム,白金等の金属から成るめっき金属層を無電解めっき法や電解めっき法により被着させることによって、パッケージが製作される。
【0008】
このようなパッケージは、その製造工程において、パッケージ1個当たりの形状が非常に小型で取り扱いが困難であることから、取り扱いを容易とするために、また多数の小型のパッケージを同時に効率よく製造するために、グリーンシート上に複数のパッケージが縦横に配列するように貫通孔を形成して導体ペーストを印刷し、これらのグリーンシートを積層した積層体に分割溝を形成し、これを焼結体とする、いわゆる多数個取り用の基板を作製した後、分割溝にそって分割して個々のパッケージを得るという方法で作製されることが多い。
【0009】
そして、近年、プリント配線基板等の基体21に発光素子23を搭載したときの実装の高さを小さくするために、パッケージの厚みを小さくすることが要求されており、例えば発光装置を携帯電話のバックライト等として用いる場合、携帯電話の小型化のために発光装置の側面をプリント配線基板の主面に平行とし、その側面をプリント配線基板の主面に接合して実装する場合がある。この場合、発光装置の実装高さを小さくするには、パッケージの上記側面に直交する方向の幅を小さくする必要があり、従って基体21の凹部24と外側面との間の側壁の厚みを薄くする必要がある。
【0010】
【特許文献1】
特開2002−232017号公報
【0011】
【発明が解決しようとする課題】
しかしながら、上記従来のパッケージにおいては、小型化のために基体21の凹部24と外側面との間の側壁の厚みを薄くすると、基体21の製造工程でグリーンシートに打ち抜き加工等を施して凹部24となる貫通穴を形成する際や、グリーンシートの積層体に金型やカッター刃を押し当てる等の方法で分割溝を形成する際に、グリーンシートの凹部24となる貫通穴に変形が発生しやすい。このため、上記積層体を焼成して得られるパッケージの凹部24の側壁が変形し、パッケージの側面の形状が変形するという問題点を有していた。
【0012】
また、凹部24の側壁が変形していると、パッケージの外形寸法が大きくなり、実装高さを小さくできなかったり、また発光素子23が収容される凹部24の内部空間が狭くなり、発光素子23を収容して搭載することができないという問題点を有していた。
【0013】
さらに、凹部24の側壁が変形していると、凹部24に収容された発光素子23が発光する光を凹部24内で反射させて発光効率を良好なものとするために凹部24の内面にNiめっき層やAuめっき層を表面に有するメタライズ層(反射層)を被着させた場合、反射層で反射した光が外部に均一にかつ良好に放射されず、発光装置の発光効率が劣化するという問題点も有していた。
【0014】
従って、本発明は上記従来の問題点に鑑みて完成されたものであり、その目的は、小型で形状の変形がないとともに、発光素子の光を凹部の内面の反射層で均一かつ良好に反射させて外部に効率良く放射させることにより発光効率がきわめて高い発光装置を作製できるパッケージを提供することにある。
【0015】
【課題を解決するための手段】
本発明の発光素子収納用パッケージは、上面に凹部が形成された直方体の絶縁基体の前記凹部の底面に発光素子の搭載部が設けられた基体と、該基体の前記搭載部から外表面にかけて形成された配線導体とを具備した発光素子収納用パッケージにおいて、前記絶縁基体は、上面の中央部に一対の対向する二側面間にわたって溝が形成された絶縁基体本体部の前記二側面の全面に、前記溝の両端を塞ぐようにして前記絶縁基体本体部と同じ高さのセラミック板がそれぞれ接合されていることによって、前記凹部が形成されていることを特徴とする。
【0016】
本発明の発光素子収納用パッケージは、基体を成す絶縁基体は、上面の中央部に一対の対向する二側面間にわたって溝が形成された絶縁基体本体部の二側面の全面に、溝の両端を塞ぐようにして絶縁基体本体部と同じ高さのセラミック板がそれぞれ接合されていることによって、凹部が形成されていることから、従来のように絶縁基体の製作工程で凹部を形成するために薄いグリーンシートに貫通穴を形成して枠状のものを作製する必要がなくなり、絶縁基体本体部にセラミック板を接合することによって凹部を構成することができる。その結果、基体の凹部の側壁に変形が発生するのを防ぐことができるとともに、薄いセラミック板を用いることにより容易に凹部の側壁を薄くすることができる。従って、発光素子収納用パッケージのセラミック板の主面に直交する方向の幅を小さくすることができる。
【0017】
また、凹部の内面に反射層を形成した場合には反射層が平坦となるため、発光素子の光を均一かつ効率良くパッケージ外部へ放射させるとともにパッケージ外部で良好に収束させることができる。
【0018】
本発明の発光素子収納用パッケージにおいて、好ましくは、前記絶縁基体本体部と前記セラミック板とは、それらの接合面にそれぞれ被着されたメタライズ層が厚さ30乃至120μmのロウ材層を介して接合されていることを特徴とする。
【0019】
本発明の発光素子収納用パッケージは、絶縁基体本体部とセラミック板とは、それらの接合面にそれぞれ被着されたメタライズ層がロウ材を介して接合されていることから、絶縁基体本体部とセラミック板とを個別に作製することで、焼結一体化して作製する際の積層工程時の圧力や焼成工程時の収縮による変形への影響を低減することができるとともに、厚さ30乃至120μmのロウ材層を介して接合されていることから、薄いセラミック板を薄いロウ材層により接合することができるため、セラミック板とロウ材層との熱膨張係数差に起因する応力が小さくなり、セラミック板にクラック等が発生するのを防いで絶縁基体本体部とセラミック板とを接合強度を保持して接合することができる。
【0020】
また本発明の発光素子収納用パッケージは、上記本発明の発光素子収納用パッケージにおいて、前記セラミック板に代えて金属板が前記絶縁基体本体部の前記二側面の全面にそれぞれ接合されていることを特徴とする。
【0021】
本発明の発光素子収納用パッケージは、セラミック板に代えて金属板が絶縁基体本体部の二側面の全面にそれぞれ接合されていることから、絶縁基体の製作工程で凹部を形成するために薄いグリーンシートに貫通穴を形成して枠状のものを作製する必要がなくなり、絶縁基体本体部に金属板を接合することによって凹部を構成することができるとともに、絶縁基体本体部と金属板とを個別に作製できるので、グリーンシートを用いた場合に発生する積層工程での圧力や焼成工程での層間収縮ばらつき等の影響による変形をなくすことができる。その結果、基体の凹部の側壁に変形が発生するのを防ぐことができるとともに、薄くても剛性および靭性の高い金属板を用いることにより凹部の側壁を大幅に薄くすることができる。従って、発光素子収納用パッケージの金属板の主面に直交する方向の幅をより小さくすることができる。
【0022】
また、凹部の内面に反射層を形成した場合には反射層が平坦となるため、発光素子の光を均一かつ効率良く外部へ放射させるとともに良好に収束させることができる。
【0023】
本発明の発光装置は、上記本発明の発光素子収納用パッケージと、前記搭載部に搭載されるとともに前記配線導体に電気的に接続された発光素子と、該発光素子を覆う透明樹脂とを具備したことを特徴とする。
【0024】
本発明の発光装置は、上記の構成により、変形をなくして薄型化できるとともに、絶縁基体本体部とセラミック板または金属板との接合の信頼性の高いものとなる。
【0025】
【発明の実施の形態】
本発明の発光素子収納用パッケージについて以下に詳細に説明する。図1は、本発明のパッケージの実施の形態の一例を示す正面図であり、図2は図1のX−X線における断面図、図3は図1のY−Y線における断面図であり、これらの図において、1は基体、2は発光素子3の搭載部、3は発光素子、4は発光素子3を収容するための凹部である。
【0026】
本発明のパッケージは、上面に凹部4が形成された直方体の絶縁基体10の凹部4の底面に発光素子3の搭載部2が設けられた基体1と、基体1の搭載部2から外表面にかけて形成された配線導体5a,5bとを具備し、絶縁基体10は、上面の中央部に一対の対向する二側面間にわたって溝10dが形成された絶縁基体本体部10bの二側面の全面に、溝10dの両端を塞ぐようにして絶縁基体本体部10bと同じ高さのセラミック板10a,10cがそれぞれ接合されていることによって、凹部4が形成されている。
【0027】
本発明の基体1を成す絶縁基体10は、酸化アルミニウム質焼結体,窒化アルミニウム質焼結体,ムライト質焼結体,ガラスセラミック質焼結体等のセラミックスから成る直方体であり、発光素子3を支持するための支持体である。この絶縁基体10を用いた基体1は、絶縁基体10の上面に形成された凹部4の底面に導体層から成る発光素子3の搭載部2が設けられて構成されている。
【0028】
また基体1は、搭載部2から基体1の下面や外側面にかけて導出されたメタライズ層から成る配線導体5a、搭載部2の周辺から基体1の下面や外側面にかけて導出された配線導体5bが被着形成されている。配線導体5a,5bは、タングステン,モリブデン,銅,銀等の金属粉末を含む導体ペーストを塗布焼成して成るメタライズ層から成り、パッケージ内部に収容する発光素子3を外部電気回路に電気的に接続するための導電路として機能する。そして、配線導体5aの一端が電気的に接続された搭載部2には、発光ダイオード等の発光素子3が金−シリコン合金や銀−エポキシ樹脂等の導電性接着剤や半田により載置固定され、配線導体5bの一端が電気的に接続された搭載部2周辺の電極等には、発光素子3の電極がボンディングワイヤ6を介して電気的に接続される。
【0029】
なお、導体層から成る搭載部2は、配線導体5a,5bと同様にして形成される。また、配線導体5a,5bの露出する表面には、NiやAu等の耐蝕性に優れる金属を1〜20μm程度の厚みで被着させておくのがよく、配線導体5a,5bが酸化腐蝕するのを有効に防止することができるとともに、配線導体5aと発光素子3との接続および配線導体5bとボンディングワイヤ6との接続を強固なものとすることができる。したがって、配線導体5a,5bの露出する表面には、厚さ1〜10μm程度のNiめっき層と厚さ0.1〜3μm程度のAuメッキ層とが電解めっき法や無電解めっき法により順次被着されている。
【0030】
本発明において、絶縁基体10は、上面の中央部に一対の対向する二側面間にわたって溝10dが形成された絶縁基体本体部10bの二側面の全面に、溝10dの両端を塞ぐようにして絶縁基体本体部10bと同じ高さのセラミック板10a,10cがそれぞれ接合されていることによって、凹部4が形成されている。例えば絶縁基体10は、図2に示すように、絶縁基体本体部10bを成すセラミック層1bと、セラミック板10a,10cを成すセラミック層1a,1cとから成り、これらが搭載部2が形成された面(絶縁基体本体部10bの上面)の面方向に平行な方向、即ち絶縁基体10の幅方向に積層されている。
【0031】
そして、図4に示すように、これらのセラミック層1a,1b,1cを形成するためのグリーンシート11a,11b,11cは、例えば絶縁基体10が酸化アルミニウム質焼結体(アルミナセラミックス)から成る場合、酸化アルミニウム,酸化珪素,酸化カルシウム,酸化マグネシウム等のセラミック原料粉末に適当な有機バインダー,溶剤,可塑剤,分散剤等を添加混合して泥漿状となし、これを公知のドクターブレード法等のシート成形技術によって所定厚みのシート状とすることにより製作される。
【0032】
次に、グリーンシート11bに凹部4を形成するための溝10dとなる貫通孔12を金型等で打ち抜いて形成し、グリーンシート11cに配線導体5a,5bを基体1の搭載部2から下面に導出させるための貫通孔13を打ち抜き金型を用いて打ち抜いて形成する(図4(a))。
【0033】
次に、グリーンシート11cの上下面および貫通孔13内に、配線導体5a,5bを形成するための導体ペーストをスクリーン印刷法で所定パターンに印刷塗布するとともに、グリーンシート11bの貫通穴12の内面に、搭載部2および配線導体5bを形成するための導体ペーストをスクリーン印刷法で印刷塗布する。
【0034】
次に、グリーンシート11a〜11cを、グリーンシート11bに形成した搭載部2,配線導体5bの一端部となる導体ペースト層と、グリーンシート11cに形成した配線導体5a,5bとなる導体ペースト層とがそれぞれ接続されるようにして接着する。この接着は、グリーンシート11a,11c表面のグリーンシート11bに接着される部位に、有機バインダーおよび溶剤を含む接着剤を塗布するとともにグリーンシート11a〜11cを積層して、これらを約40〜60℃の温度で加熱しながら2〜6MPa(メガパスカル)の圧力で圧着する方法によって行なわれる(図4(b))。
【0035】
次に、グリーンシート11a〜11cの積層体に、一列に並んだ複数の貫通孔12を含む複数の基体1となる短冊状の領域を区切って形成するための分割溝14を形成した後、さらに分割溝15に直交する方向の切断線15に沿って貫通孔12が露出するように切断することにより(図4(c))、一列に並んだ複数の貫通孔12を含む短冊状の積層体16を得る(図4(d))。
【0036】
最後に、短冊状の積層体16およびこれに塗布された導体ペースト層を高温(1600℃程度)で焼成することによって、セラミック層1a〜1cから成る焼結体を得、この焼結体の導電層の露出表面に電解めっき法や無電解めっき法によりニッケル,金,白金,パラジウム等のめっき金属層を被着し、これを分割溝14に沿って個々に分割することにより、図1に示したパッケージが完成する。
【0037】
また、本発明において、図5〜図7に示すように、絶縁基体本体部10bとセラミック板10a,10cとは、それらの接合面にそれぞれ被着されたメタライズ層7a,7b,7cが厚さ30乃至120μmのロウ材層7dを介して接合されていることがよい。これにより、薄いセラミック板10a,10cを薄いロウ材層7dにより接合することができるため、絶縁基体本体部10bとセラミック板とを個別に作製することで、焼結一体化して作製する際の積層工程時の圧力や焼成工程時の収縮による変形への影響を低減することができるとともに、セラミック板10a,10cとロウ材層7dとの熱膨張係数差に起因する応力が小さくなり、薄いセラミック板10a,10cにクラック等の破損が生じるのを防ぐとともに、絶縁基体本体部10bとセラミック板10a,10cとを接合強度を保持して接合することができる。
【0038】
ロウ材層7dの厚さが30μm未満では、膨張係数差に起因する応力を緩和するのが困難となり、また接合強度が低下して絶縁基体本体部10bからセラミック板10a,10cが剥がれることがある。120μmを超えると、例えばロウ材層7dとしての半田の表面張力により半田が球体状に盛り上がり、その高さのばらつきによりセラミック板10a,10bを互いに平行かつ正確な位置に接合するのが困難になるとともに、半田がメタライズ層7a〜7cから剥がれ易くなるため接合強度が低下することとなる。
【0039】
ロウ材層7dは、銀(Ag)−銅(Cu)合金,Sn(錫)−銅(Cu)合金等から成る。また、銀−エポキシ樹脂等の導電性接着剤を用いてもかまわない。
【0040】
メタライズ層7a〜7cは、タングステン(W),モリブデン(Mo),銅(Cu),銀(Ag)等の金属粉末を含む導体ペーストを塗布焼成して成る。
【0041】
そして、図5〜図7のパッケージは、図8に示すようにして作製される。まず、セラミック層1a,1b,1cを形成するためのグリーンシート11a,11b,11cは、例えば絶縁基体10が酸化アルミニウム質焼結体(アルミナセラミックス)から成る場合、酸化アルミニウム,酸化珪素,酸化カルシウム,酸化マグネシウム等のセラミック原料粉末に適当な有機バインダー,溶剤,可塑剤,分散剤等を添加混合して泥漿状となし、これを公知のドクターブレード法等のシート成形技術によって所定厚みのシート状とすることにより製作される。
【0042】
次に、グリーンシート11bに凹部12を形成するための溝10dとなる貫通孔16を金型等で打ち抜いて形成し、グリーンシート11cに配線導体5a,5bを基体1の搭載部2から下面に導出させるための貫通孔13を打ち抜き金型を用いて打ち抜いて形成する(図8(a))。
【0043】
次に、グリーンシート11cの上下面および貫通孔13内に、配線導体5a,5bを形成するための導体ペーストをスクリーン印刷法で所定パターンに印刷塗布するとともに、グリーンシート11bの貫通穴16の内面に、搭載部2および配線導体5bを形成するための導体ペーストをスクリーン印刷法で印刷塗布する。また、同様にグリーンシート11a〜11cにメタライズ層7a〜7cを形成するための導体ペーストをスクリーン印刷法で所定パターンに印刷塗布する。
【0044】
次に、グリーンシート11a〜11cおよびこれに塗布された導体ペースト層を高温(1600℃程度)で焼成することによって、セラミック層1a〜1cから成るセラミック板17a〜17cを得る(図8(b))。
【0045】
次に、セラミック板17bのメタライズ層7bと、セラミック板17a,17cのメタライズ層7a,7cとを、ロウ材を介して接合して積層体を作製し(図8(c))、これをスライシング法等により、分割線18,19に沿って個々のパッケージに分割し(図8(d))、各導体層の露出表面に電解めっき法や無電解めっき法によりニッケル、金、白金、パラジウム等のめっき金属層を被着することにより、図5〜図7の凹部4を有するパッケージが完成する(図8(e))。
【0046】
また、他の方法として、セラミック板17a〜17cを得た後、個々の絶縁基体本体部10bとセラミック板10a,10cに分割し、これらをロウ材で接合し、上記と同様にめっき金属層を被着する方法がある。
【0047】
また本発明の他の発明は、図9に示すように、上記本発明のパッケージにおいて、セラミック板10a,10cに代えて金属板30a,30cが絶縁基体本体部10bの二側面の全面にそれぞれ接合されている構成である。
【0048】
これにより、絶縁基体本体部10bと金属板30a,30cとを個別に作製して、薄い金属板30a,30cを薄いロウ材層により接合することができるため、セラミック板10a,10cを用いた場合のように焼結一体化して作製する際の積層工程の圧力や焼成工程の収縮による変形をなくすことができるとともに、金属板30a,30cとロウ材層との熱膨張係数差に起因する応力が小さくなり、薄い金属板30a,30cに変形が生じるのを防ぐことができる。従って、絶縁基体本体部10bと薄い金属板30a,30cとを、パッケージの変形を抑えながら接合強度を保持して接合することができる。また、金属板30a,30cは、セラミック板10a,10cに比較して剛性および靭性が高いため、より薄いものとすることができる。
【0049】
本発明の金属板30a,30cは、アルミナセラミックス(熱膨張係数:7.0×10−6〜8.0×10−6/℃程度)等のセラミックスに熱膨張係数が近似したFe−Ni合金(熱膨張係数:7.5×10−6〜8.5×10−6/℃程度),Fe−Ni−Co合金(熱膨張係数:5.7×10−6〜6.2×10−6/℃程度)、またはCu−W合金(熱膨張係数:6.0×10−6/℃程度)、Mo(熱膨張係数:5.7×10℃程度)等から成る。
【0050】
また、金属板30a,30cの厚さは0.02〜0.5mmがよく、0.02mm未満では、発光素子3が発生する熱により歪みや変形が起きやすくなり、0.5mmを超えると、パッケージが大型化することとなる。
【0051】
金属板30a,30cはロウ材層7dにより接合されるが、導電性のロウ材を用いる場合、凹部4の底面の搭載部2と配線導体5bとが金属板30a,30cを介して短絡しないようにする必要がある。
【0052】
そして、図9に示すように、セラミック層1bを形成するためのグリーンシート11bは、例えば絶縁基体本体部10bが酸化アルミニウム質焼結体から成る場合、酸化アルミニウム,酸化珪素,酸化カルシウム,酸化マグネシウム等のセラミック原料粉末に適当な有機バインダー,溶剤,可塑剤,分散剤等を添加混合して泥漿状となし、これを公知のドクターブレード法等のシート成形技術によって所定厚みのシート状とすることにより製作される。
【0053】
次に、グリーンシート11bに凹部4を形成するための溝10dとなる貫通孔12および、配線導体5a,5bを形成するための貫通孔13を金型等で打ち抜いて形成する(図4(a))。
【0054】
次に、グリーンシート11bの上下面および貫通孔13内に、配線導体5a,5bを形成するための導体ペーストをスクリーン印刷法で所定パターンに印刷塗布するとともに、グリーンシート11bの貫通穴12の内面に、搭載部2および配線導体5bを形成するための導体ペーストをスクリーン印刷法で印刷塗布する。
【0055】
次に、グリーンシート11bに、一列に並んだ複数の貫通孔12を含む複数の基体1となる短冊状の領域を区切って形成するための分割溝34を形成した後、さらに分割溝34に直交する方向の切断線35に沿って貫通孔12内面および貫通孔13に形成された配線導体5a,5bとが露出するように切断することにより(図4(b))、一列に並んだ複数の貫通孔12を含む短冊状のグリーンシート36を得る(図4(c))。
【0056】
最後に、短冊状のグリーンシート36およびこれに塗布された導体ペースト層を高温(1600℃程度)で焼成することによって、セラミック層1bの焼結体を得、この焼結体を分割溝34に沿って個々に分割(図4(d))した後、金属板30a,30cをロウ材を介して接合して基体1を形成し、基体1の導電層の露出表面や金属板30a,30cの表面に電解めっき法や無電解めっき法によりニッケル,金,白金,パラジウム等のめっき金属層を被着することにより、パッケージが完成する(図4(e))。
【0057】
また、他の方法として、分割していないセラミックグリーンシート11bや短冊状のグリーンシート36の焼結体を得た後、これに金属板30a,30cとなる金属板(金属母基板)をロウ材を介して接合した後、これをスライシング法等により個々のパッケージに分割し、上記と同様にめっき金属層を被着する方法等がある。
【0058】
かくして、本発明は、絶縁基体10の製作工程で凹部4を形成するために薄いグリーンシートに貫通穴を形成して枠状のものを作製する必要がなくなり、絶縁基体本体部10bにセラミック板10a,10cを接合することによって凹部4を構成することができる。その結果、基体1の凹部4の側壁に変形が発生するのを防ぐことができるとともに、薄いセラミック板10a,10cを用いることにより容易に凹部4の側壁を薄くすることができる。従って、パッケージのセラミック板10a,10cの主面に直交する方向の幅を小さくすることができる。
【0059】
また、発光素子3の光を凹部4の内面で反射させて外部に放射させるために、凹部4の内面にニッケルめっき層や金めっき層を表面に有するメタライズ層(反射層)を被着した場合、凹部4の側壁(セラミック板10a,10c)に変形が発生していないことから、反射層により光を良好に反射させて外部に向かって均一かつ効率良く放射させることができる。
【0060】
即ち、凹部4のセラミック板10a,10cから成る一対の側壁以外のもう一対の側壁は、図4に示すように、セラミック層1a,1cとなるグリーンシート11a,11cよりも厚いセラミック層1bとなるグリーンシート11bに貫通穴12を穿ち絶縁基体10上面に溝10dを形成することによって、構成される。従って、厚いグリーンシート11bの貫通穴12の部位に変形が生ずることはほとんどなく、その結果、凹部4のもう一対の側壁にも変形が発生しないこととなる。
【0061】
このように、セラミック層1a,1cよりも厚いセラミック層1bの厚さは1〜10mmが好ましく、1mm未満では、凹部4に発光素子3を搭載するのが難しくなり、10mmを超えると、パッケージが大型化することとなる。
【0062】
また、セラミック層1a,1cの厚さは0.05〜0.5mmが好ましく、0.05mm未満では、セラミック板10a,10cの強度が弱くなるとともに、光を反射させて外部に放射させるために凹部4の内面にメタライズ層を形成すると焼成時に変形が発生してしまい、効率よく光を良好に反射させて外部に向かって均一かつ効率良く放射させることが困難になる。0.5mmを超えると、パッケージが大型化することとなる。
【0063】
なお、図10は本発明のパッケージであってセラミック板10a,10cを有するタイプの斜視図、図11は本発明のパッケージであって金属板30a,30cを有するタイプの斜視図である。
【0064】
また、本発明の発光装置は、上記本発明の発光素子収納用パッケージと、搭載部2に搭載された発光素子3と、発光素子3を覆う透明樹脂とを具備したものである。発光素子3を覆う透明樹脂は、発光素子3の露出表面のみを覆うように設けられていてもよいし、凹部4の内側に発光素子3を覆って充填されていてもよい。さらに、基体1の上面にガラス,サファイア,石英,透光性樹脂から成る透光性蓋体を接着してもよい。また、本発明の発光装置は、発光ダイオード等の発光素子3を収納した小型のものであることから、個々に蓋をするよりも透明樹脂で発光素子3を覆った方が封止の作業性が良く、また内部のボンディングワイヤ6等の位置固定や各導体層の腐蝕防止等の点で有利なものである。
【0065】
【実施例】
本発明の発光素子収納用パッケージの実施例を以下に説明する。
【0066】
表面に2mm角のWからなる接合用のメタライズ層が形成された、10mm角で厚みが5mmのセラミック基板(絶縁基体本体部10bに相当)と、表面に2mm角のWからなる接合用のメタライズ層が形成された、4mm角で厚み0.3mmのセラミック板とを準備し、それぞれのメタライズ層を14種類の厚み(下記表1参照)のAg−Cu合金のロウ材で接合して、評価用試料を作製した(試料No.1〜14)。
【0067】
これらの試料について、セラミック板の側面よりロウ材による接合面に垂直な方向に、2.5kg(24.5N)の力を30秒間セラミック基板から引き剥がすように加える引き剥がし試験を行い、セラミック板のクラックや割れの発生の有無、およびセラミック板とセラミック基板との剥がれの発生の有無について評価を行った。
【0068】
【表1】

Figure 2004221520
【0069】
表1より、ロウ材の厚みが30乃至120μmの試料No.3〜12では、セラミック板のクラックや割れ、およびセラミック板とセラミック基板との剥がれは発生しなかった(表中に○で示す)。
【0070】
ロウ材の厚みが30μm未満の試料No.1〜2では、セラミック板がセラミック基板より剥がれてしまった(表中に×で示す)。
【0071】
ロウ材の厚みが120μmを超える試料No.13〜14では、セラミック板がセラミック基板より剥がれてしまった(表中に×で示す)。
【0072】
以上より、ロウ材の厚みを30乃至120μmとするのが良いことが判った。これにより、発光素子収納用パッケージを小型で形状の変形をなくすることができるとともに、薄いセラミック板10a,10cをクラック等の発生を防いで絶縁基体本体部10bにロウ付けすることができる。
【0073】
なお、本発明は上述の実施の形態および実施例に限定されず、本発明の要旨を逸脱しない範囲内で種々の変更を施すことは何等差し支えない。例えば、図13のパッケージの正面図、図13のパッケージのX−X線における断面図である図14、および図13のパッケージのY−Y線における断面図である図15に示すように、搭載部2を導体層として形成せずに、凹部4の底面を発光素子3を直接搭載する搭載領域とし、その周囲に発光素子3の電極と電気的に接続される配線導体5a,5bを形成してもよい。この場合、発光素子3が搭載部2に直接搭載されるとともに、発光素子3の電極と配線導体5a,5bとがボンディングワイヤ6a,6b等を介して電気的に接続されることとなる。
【0074】
【発明の効果】
本発明の発光素子収納用パッケージは、基体を成す絶縁基体は、上面の中央部に一対の対向する二側面間にわたって溝が形成された絶縁基体本体部の二側面の全面に、溝の両端を塞ぐようにして絶縁基体本体部と同じ高さのセラミック板がそれぞれ接合されていることによって、凹部が形成されていることにより、従来のように絶縁基体の製作工程で凹部を形成するために薄いグリーンシートに貫通穴を形成して枠状のものを作製する必要がなくなり、絶縁基体本体部にセラミック板を接合することによって凹部を構成することができる。その結果、基体の凹部の側壁に変形が発生するのを防ぐことができるとともに、薄いセラミック板を用いることにより容易に凹部の側壁を薄くすることができる。従って、発光素子収納用パッケージのセラミック板の主面に直交する方向の幅を小さくすることができる。
【0075】
また、凹部の内面に反射層を形成した場合には反射層が平坦となるため、発光素子の光を均一かつ効率良くパッケージ外部へ放射させるとともにパッケージ外部で良好に収束させることができる。
【0076】
本発明の発光素子収納用パッケージは、好ましくは、絶縁基体本体部とセラミック板とは、それらの接合面にそれぞれ被着されたメタライズ層が厚さ30乃至120μmのロウ材層を介して接合されていることにより、絶縁基体本体部とセラミック板とを個別に作製することで、焼結一体化して作製する際の積層工程時の圧力や焼成工程時の収縮による変形への影響を低減することができるとともに、厚さ30乃至120μmのロウ材層を介して接合されていることから、薄いセラミック板を薄いロウ材層により接合することができるため、セラミック板とロウ材層との熱膨張係数差に起因する応力が小さくなり、セラミック板にクラック等が発生するのを防いで絶縁基体本体部とセラミック板とを接合強度を保持して接合することができる。
【0077】
本発明の発光素子収納用パッケージは、好ましくはセラミック板に代えて金属板が絶縁基体本体部の二側面の全面にそれぞれ接合されていることから、絶縁基体の製作工程で凹部を形成するために薄いグリーンシートに貫通穴を形成して枠状のものを作製する必要がなくなり、絶縁基体本体部に金属板を接合することによって凹部を構成することができるとともに、絶縁基体本体部と金属板とを個別に作製できるので、グリーンシートを用いた場合に発生する積層工程での圧力や焼成工程での層間収縮ばらつき等の影響による変形をなくすことができる。その結果、基体の凹部の側壁に変形が発生するのを防ぐことができるとともに、薄くても剛性および靭性の高い金属板を用いることにより凹部の側壁を大幅に薄くすることができる。従って、発光素子収納用パッケージの金属板の主面に直交する方向の幅をより小さくすることができる。
【0078】
本発明の発光装置は、上記本発明の発光素子収納用パッケージと、搭載部に搭載されるとともに配線導体に電気的に接続された発光素子と、発光素子を覆う透明樹脂とを具備したことにより、変形をなくして薄型化できるとともに、絶縁基体本体部とセラミック板または金属板との接合の信頼性の高いものとなる。
【図面の簡単な説明】
【図1】本発明の発光素子収納用パッケージについて実施の形態の一例を示す正面図である。
【図2】図1の発光素子収納用パッケージのX−X線における断面図である。
【図3】図1の発光素子収納用パッケージのY−Y線における断面図である。
【図4】(a)〜(e)は図1の発光素子収納用パッケージの各製造工程を示すセラミックグリーンシートの斜視図である。
【図5】本発明の発光素子収納用パッケージについて実施の形態の他の例を示す正面図である。
【図6】図5の発光素子収納用パッケージのX−X線における断面図である。
【図7】図5の発光素子収納用パッケージのY−Y線における断面図である。
【図8】(a)〜(e)は図5の発光素子収納用パッケージの各製造工程を示すセラミックグリーンシートの斜視図である。
【図9】(a)〜(e)は本発明の他の発明による発光素子収納用パッケージの各製造工程を示すセラミックグリーンシートの斜視図である。
【図10】本発明の発光素子収納用パッケージについて実施の形態の例を示す斜視図である。
【図11】本発明の発光素子収納用パッケージについて実施の形態の他の例を示す斜視図である。
【図12】従来の発光素子収納用パッケージの断面図である。
【図13】本発明の発光素子収納用パッケージについて実施の形態の一例を示す正面図である。
【図14】図13の発光素子収納用パッケージのX−X線における断面図である。
【図15】図13の発光素子収納用パッケージのY−Y線における断面図である。
【符号の説明】
1:基体
2:搭載部
3:発光素子
4:凹部
5a,5b:配線導体
7a〜7c:メタライズ層
7d:ロウ材層
10:絶縁基体
10a,10c:セラミック板
10b:絶縁基体本体部
10d:溝
30a,30b:金属板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light emitting element housing package for housing a light emitting element such as a light emitting diode.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a ceramic package has been used as a light emitting element housing package (hereinafter, also referred to as a package) for housing a light emitting element such as a light emitting diode, and an example thereof is shown in FIG. Reference 1). As shown in FIG. 1, the conventional package has a plurality of ceramic layers stacked and has a recess 24 formed on the top surface. A conductor for mounting the light emitting element 23 on the bottom surface of the recess 24 of the rectangular parallelepiped insulating base. It comprises a base 21 provided with a mounting portion 22 composed of a layer, and a pair of metallized wiring conductors 25 led out to the lower surface of the base 21 from the mounting portion 22 of the base 21 and its periphery.
[0003]
Then, the light emitting element 23 is placed and fixed on the mounting portion 22 to which one end of one metallized wiring conductor 25 is electrically connected via a conductive adhesive, solder, or the like, and the electrode of the light emitting element 23 is connected to the other electrode. The metallized wiring conductor 25 is electrically connected to the metallized wiring conductor 25 via a bonding wire 26, and then the light-emitting element 23 is sealed by filling a transparent sealing resin (not shown) into the recess 24 of the base 21. The device is made.
[0004]
Note that, in the ceramic package, the inner surface of the concave portion 24 is made of nickel to reflect the light emitted by the light emitting element 23 accommodated in the concave portion 24 in the concave portion 24 and improve the luminous efficiency of the light emitting device. In some cases, a metallized layer having a (Ni) plating layer or a gold (Au) plating layer on its surface is applied.
[0005]
The above package is manufactured by the ceramic green sheet laminating method as follows. First, a ceramic green sheet (hereinafter, also referred to as a green sheet) for forming the mounting portion 22 (below the mounting portion 22) of the base 21 and a green sheet for forming the concave portion 24 of the base 21 are prepared. Through holes for forming the metallized wiring conductors 25 and the recesses 24 are formed in these green sheets by a punching method.
[0006]
Next, a conductor paste for forming the metallized wiring conductor 25 is printed and applied to the through-holes and predetermined portions of the green sheet laminate A for forming the mounting portion 22 by a screen printing method or the like. When the metallization layer is applied, a conductor paste for forming the metallization layer is printed and applied to the inner surface of the through hole of the laminate B of the green sheet for forming the recess 24 by a screen printing method or the like.
[0007]
Next, the laminate A and the laminate B are overlapped and bonded to form a laminate for forming the base 21, which is cut into a predetermined size to form a molded body, and fired at a high temperature (about 1600 ° C.). To form a sintered body. Thereafter, a package is manufactured by applying a plating metal layer made of a metal such as nickel, gold, palladium or platinum to the exposed surfaces of the metallized wiring conductor 25 and the metallized layer by an electroless plating method or an electrolytic plating method.
[0008]
Such a package has a very small shape per package and is difficult to handle in the manufacturing process, so that it is easy to handle and a large number of small packages are simultaneously and efficiently manufactured. For this purpose, through-holes are formed so that a plurality of packages are arranged vertically and horizontally on a green sheet, a conductive paste is printed, and a division groove is formed in a laminated body in which these green sheets are laminated, and this is sintered. In many cases, a so-called multi-piece substrate is manufactured, and then divided along the division grooves to obtain individual packages.
[0009]
In recent years, in order to reduce the mounting height when the light emitting element 23 is mounted on the base 21 such as a printed wiring board, it is required to reduce the thickness of the package. When used as a backlight or the like, there is a case where the side surface of the light emitting device is parallel to the main surface of the printed wiring board and the side surface is joined to the main surface of the printed wiring board for mounting the mobile phone in a smaller size. In this case, in order to reduce the mounting height of the light emitting device, it is necessary to reduce the width of the package in a direction perpendicular to the side surface, and thus reduce the thickness of the side wall between the concave portion 24 of the base 21 and the outer surface. There is a need to.
[0010]
[Patent Document 1]
JP-A-2002-232017
[0011]
[Problems to be solved by the invention]
However, in the above-mentioned conventional package, when the thickness of the side wall between the concave portion 24 and the outer surface of the base 21 is reduced for miniaturization, the green sheet is subjected to a punching process or the like in the manufacturing process of the base 21 so that the concave portion 24 is formed. When the through-hole which becomes the concave part 24 of the green sheet is formed when forming the through-hole to be formed, or when forming the dividing groove by a method such as pressing a mold or a cutter blade against the green sheet laminate, deformation occurs. Cheap. For this reason, there has been a problem that the side wall of the concave portion 24 of the package obtained by firing the above-mentioned laminate is deformed, and the shape of the side surface of the package is deformed.
[0012]
Further, if the side wall of the concave portion 24 is deformed, the external dimensions of the package become large and the mounting height cannot be reduced, or the internal space of the concave portion 24 in which the light emitting element 23 is accommodated becomes narrow, and the light emitting element 23 However, there is a problem that it cannot be accommodated and mounted.
[0013]
Further, if the side wall of the concave portion 24 is deformed, the light emitted by the light emitting element 23 accommodated in the concave portion 24 is reflected in the concave portion 24 to improve the light emission efficiency. When a metallization layer (reflection layer) having a plating layer or an Au plating layer on its surface is applied, light reflected by the reflection layer is not uniformly and well radiated to the outside, and the luminous efficiency of the light emitting device is deteriorated. There were also problems.
[0014]
Accordingly, the present invention has been completed in view of the above-mentioned conventional problems, and has as its object to reduce the size and shape of the light-emitting element, and to uniformly and satisfactorily reflect the light of the light-emitting element by the reflection layer on the inner surface of the concave portion. Another object of the present invention is to provide a package capable of manufacturing a light emitting device having extremely high luminous efficiency by efficiently radiating the light to the outside.
[0015]
[Means for Solving the Problems]
The light-emitting element housing package of the present invention is a rectangular parallelepiped insulating base having a concave portion formed on the upper surface, a base having a light-emitting element mounting portion provided on the bottom surface of the concave portion, and formed from the mounting portion to the outer surface of the substrate. In the light-emitting element housing package including the wiring conductors, the insulating base is provided on the entire surface of the two side surfaces of the insulating base body portion in which a groove is formed between a pair of opposed two side surfaces in the center of the upper surface. The concave portion is formed by joining ceramic plates having the same height as the insulating base body so as to cover both ends of the groove.
[0016]
In the light-emitting element housing package of the present invention, the insulating base forming the base is formed on the entire surface of two sides of the insulating base main body in which a groove is formed in a central portion of the upper surface between a pair of opposing two sides. Since the ceramic plate having the same height as the insulating base body is joined so as to close, the concave portion is formed, so that the thin portion is formed in order to form the concave portion in the manufacturing process of the insulating base as in the related art. It is not necessary to form a through-hole in the green sheet to produce a frame-shaped one, and a concave portion can be formed by joining a ceramic plate to the insulating base body. As a result, it is possible to prevent the deformation of the side wall of the concave portion of the base, and to make the side wall of the concave portion easily thin by using a thin ceramic plate. Therefore, the width in the direction orthogonal to the main surface of the ceramic plate of the package for housing the light emitting element can be reduced.
[0017]
Further, when the reflection layer is formed on the inner surface of the concave portion, the reflection layer becomes flat, so that the light of the light emitting element can be uniformly and efficiently emitted to the outside of the package and can be well converged outside the package.
[0018]
In the light-emitting element housing package according to the present invention, preferably, the insulating base body portion and the ceramic plate are formed by a metallized layer attached to a joint surface thereof through a brazing material layer having a thickness of 30 to 120 μm. It is characterized by being joined.
[0019]
In the light-emitting element housing package of the present invention, the insulating base body and the ceramic plate are bonded with the metallized layers adhered to their joint surfaces via the brazing material. By separately manufacturing the ceramic plate, it is possible to reduce the influence on the deformation due to the pressure during the lamination step and the shrinkage during the firing step when manufacturing by sintering and unifying, and the thickness of 30 to 120 μm. Since the thin ceramic plate can be joined by the thin brazing material layer because it is joined via the brazing material layer, the stress due to the difference in thermal expansion coefficient between the ceramic plate and the brazing material layer is reduced, and the ceramic plate is bonded. The insulating base body and the ceramic plate can be joined while maintaining the joining strength while preventing cracks and the like from occurring in the plate.
[0020]
Further, in the light-emitting element housing package of the present invention, in the light-emitting element housing package of the present invention, a metal plate is bonded to an entire surface of the two side surfaces of the insulating base body, instead of the ceramic plate. Features.
[0021]
In the light-emitting element housing package of the present invention, since a metal plate is bonded to the entire surface of each of the two side surfaces of the insulating base body instead of the ceramic plate, a thin green is formed in order to form a concave portion in the process of manufacturing the insulating base. It is no longer necessary to form a frame by forming a through hole in the sheet, and a concave portion can be formed by joining a metal plate to the insulating base body, and the insulating base body and the metal plate can be separately formed. Therefore, it is possible to eliminate the deformation caused by the influence of the pressure in the laminating step and the interlayer shrinkage variation in the firing step, which occur when the green sheet is used. As a result, it is possible to prevent the deformation of the side wall of the concave portion of the base body, and it is possible to greatly reduce the side wall of the concave portion by using a metal plate having high rigidity and toughness even though it is thin. Therefore, the width of the light emitting element storage package in the direction perpendicular to the main surface of the metal plate can be further reduced.
[0022]
Further, when the reflective layer is formed on the inner surface of the concave portion, the reflective layer becomes flat, so that the light of the light emitting element can be uniformly and efficiently emitted to the outside and well converged.
[0023]
A light emitting device of the present invention includes the light emitting element housing package of the present invention, a light emitting element mounted on the mounting portion and electrically connected to the wiring conductor, and a transparent resin covering the light emitting element. It is characterized by having done.
[0024]
With the above configuration, the light emitting device of the present invention can be reduced in thickness without deformation, and has high reliability in joining the insulating base body to the ceramic plate or metal plate.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
The light emitting element housing package of the present invention will be described in detail below. 1 is a front view showing an example of an embodiment of a package according to the present invention, FIG. 2 is a cross-sectional view taken along line XX of FIG. 1, and FIG. 3 is a cross-sectional view taken along line YY of FIG. In these figures, reference numeral 1 denotes a base, 2 denotes a mounting portion of the light emitting element 3, 3 denotes a light emitting element, and 4 denotes a recess for accommodating the light emitting element 3.
[0026]
The package of the present invention includes a base 1 having a mounting portion 2 of a light emitting element 3 provided on a bottom surface of a concave portion 4 of a rectangular parallelepiped insulating base 10 having a concave portion 4 formed on an upper surface, and a portion extending from the mounting portion 2 of the base 1 to an outer surface. The insulating base 10 includes the formed wiring conductors 5a and 5b, and the insulating base 10 is provided with a groove on the entire surface of two sides of the insulating base body 10b in which a groove 10d is formed between a pair of opposed two sides at the center of the upper surface. The recesses 4 are formed by joining the ceramic plates 10a and 10c having the same height as the insulating base body 10b so as to cover both ends of 10d.
[0027]
The insulating substrate 10 constituting the substrate 1 of the present invention is a rectangular parallelepiped made of ceramics such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, and a glass ceramic sintered body. It is a support for supporting. The base 1 using the insulating base 10 is configured such that the mounting portion 2 of the light emitting element 3 made of a conductive layer is provided on the bottom surface of the concave portion 4 formed on the upper surface of the insulating base 10.
[0028]
The base 1 is covered with a wiring conductor 5a formed of a metallized layer extending from the mounting portion 2 to the lower surface and the outer surface of the substrate 1, and a wiring conductor 5b extending from the periphery of the mounting portion 2 to the lower surface and the outer surface of the base 1. It is formed. The wiring conductors 5a and 5b are formed of a metallized layer formed by applying and firing a conductive paste containing a metal powder of tungsten, molybdenum, copper, silver, etc., and electrically connect the light emitting element 3 housed in the package to an external electric circuit. Function as a conductive path for A light emitting element 3 such as a light emitting diode is mounted and fixed on the mounting portion 2 to which one end of the wiring conductor 5a is electrically connected by using a conductive adhesive such as a gold-silicon alloy or a silver-epoxy resin or solder. The electrodes of the light emitting element 3 are electrically connected via bonding wires 6 to the electrodes and the like around the mounting portion 2 to which one end of the wiring conductor 5b is electrically connected.
[0029]
The mounting portion 2 made of a conductor layer is formed in the same manner as the wiring conductors 5a and 5b. Further, a metal having excellent corrosion resistance, such as Ni or Au, is preferably applied to the exposed surfaces of the wiring conductors 5a and 5b in a thickness of about 1 to 20 μm, and the wiring conductors 5a and 5b are oxidized and corroded. Can be effectively prevented, and the connection between the wiring conductor 5a and the light emitting element 3 and the connection between the wiring conductor 5b and the bonding wire 6 can be strengthened. Therefore, the exposed surfaces of the wiring conductors 5a and 5b are successively coated with a Ni plating layer having a thickness of about 1 to 10 μm and an Au plating layer having a thickness of about 0.1 to 3 μm by an electrolytic plating method or an electroless plating method. Is being worn.
[0030]
In the present invention, the insulating substrate 10 is insulated so as to cover both ends of the groove 10d over the entire two side surfaces of the insulating substrate main body 10b in which a groove 10d is formed between a pair of opposed two side surfaces at the center of the upper surface. The recesses 4 are formed by joining the ceramic plates 10a and 10c having the same height as the base body 10b. For example, as shown in FIG. 2, the insulating base 10 is composed of a ceramic layer 1b forming an insulating base body 10b and ceramic layers 1a and 1c forming ceramic plates 10a and 10c. The layers are stacked in a direction parallel to the surface direction (the upper surface of the insulating base body 10b), that is, in the width direction of the insulating base 10.
[0031]
As shown in FIG. 4, the green sheets 11a, 11b, 11c for forming these ceramic layers 1a, 1b, 1c are formed, for example, when the insulating substrate 10 is made of an aluminum oxide sintered body (alumina ceramic). A suitable organic binder, a solvent, a plasticizer, a dispersant, and the like are added to a ceramic raw material powder such as aluminum oxide, silicon oxide, calcium oxide, and magnesium oxide to form a slurry. It is manufactured by forming a sheet having a predetermined thickness by a sheet forming technique.
[0032]
Next, a through hole 12 serving as a groove 10d for forming the concave portion 4 is formed in the green sheet 11b by punching with a mold or the like, and the wiring conductors 5a and 5b are formed on the green sheet 11c from the mounting portion 2 of the base 1 to the lower surface. The through hole 13 for leading out is formed by punching using a punching die (FIG. 4A).
[0033]
Next, a conductor paste for forming the wiring conductors 5a and 5b is printed and applied in a predetermined pattern on the upper and lower surfaces of the green sheet 11c and in the through holes 13 by a screen printing method, and the inner surface of the through holes 12 of the green sheet 11b. Then, a conductor paste for forming the mounting portion 2 and the wiring conductor 5b is printed and applied by a screen printing method.
[0034]
Next, the green sheets 11a to 11c are divided into a mounting portion 2 formed on the green sheet 11b, a conductive paste layer serving as one end of the wiring conductor 5b, and a conductive paste layer serving as the wiring conductors 5a and 5b formed on the green sheet 11c. Are bonded to each other. This bonding is performed by applying an adhesive containing an organic binder and a solvent to a portion of the surface of the green sheets 11a and 11c that is to be bonded to the green sheet 11b, and laminating the green sheets 11a to 11c. At a pressure of 2 to 6 MPa (megapascal) while heating at a temperature of (FIG. 4B).
[0035]
Next, in the laminate of the green sheets 11a to 11c, after forming a division groove 14 for dividing and forming a strip-shaped region serving as a plurality of bases 1 including a plurality of through holes 12 arranged in a line, By cutting so that the through-holes 12 are exposed along the cutting line 15 in the direction orthogonal to the division grooves 15 (FIG. 4C), a strip-shaped laminate including a plurality of through-holes 12 arranged in a line 16 is obtained (FIG. 4D).
[0036]
Finally, the strip-shaped laminate 16 and the conductive paste layer applied thereto are fired at a high temperature (about 1600 ° C.) to obtain a sintered body composed of the ceramic layers 1a to 1c. A plating metal layer of nickel, gold, platinum, palladium, or the like is applied to the exposed surface of the layer by electrolytic plating or electroless plating, and is divided along the dividing grooves 14 as shown in FIG. The completed package is completed.
[0037]
Further, in the present invention, as shown in FIGS. 5 to 7, the insulating base body 10b and the ceramic plates 10a, 10c have metallized layers 7a, 7b, 7c attached to their joint surfaces, respectively. It is preferable that they are joined via a brazing material layer 7d of 30 to 120 μm. Accordingly, the thin ceramic plates 10a and 10c can be joined by the thin brazing material layer 7d, so that the insulating base body portion 10b and the ceramic plate are separately manufactured, so that the lamination for sintering and integration is performed. In addition to reducing the influence on the deformation due to the pressure during the process and the shrinkage during the firing process, the stress due to the difference in thermal expansion coefficient between the ceramic plates 10a and 10c and the brazing material layer 7d is reduced, and the thin ceramic plate is reduced. It is possible to prevent damage such as cracks from occurring in 10a, 10c, and to join the insulating base body 10b and the ceramic plates 10a, 10c while maintaining the joining strength.
[0038]
If the thickness of the brazing material layer 7d is less than 30 μm, it is difficult to alleviate the stress caused by the difference in expansion coefficient, and the bonding strength is reduced, and the ceramic plates 10a and 10c may peel off from the insulating base body 10b. . If it exceeds 120 μm, for example, the solder rises in a spherical shape due to the surface tension of the solder as the brazing material layer 7d, and it becomes difficult to join the ceramic plates 10a and 10b to each other in parallel and at an accurate position due to variations in the height. At the same time, the solder is easily peeled off from the metallized layers 7a to 7c, so that the bonding strength is reduced.
[0039]
The brazing material layer 7d is made of a silver (Ag) -copper (Cu) alloy, a Sn (tin) -copper (Cu) alloy, or the like. Further, a conductive adhesive such as a silver-epoxy resin may be used.
[0040]
The metallized layers 7a to 7c are formed by applying and firing a conductive paste containing a metal powder such as tungsten (W), molybdenum (Mo), copper (Cu), silver (Ag) and the like.
[0041]
The packages shown in FIGS. 5 to 7 are manufactured as shown in FIG. First, the green sheets 11a, 11b, 11c for forming the ceramic layers 1a, 1b, 1c are made of aluminum oxide, silicon oxide, calcium oxide when the insulating substrate 10 is made of an aluminum oxide sintered body (alumina ceramic). An appropriate organic binder, a solvent, a plasticizer, a dispersant, etc. are added to a ceramic raw material powder such as magnesium oxide and magnesium oxide to form a slurry, which is formed into a sheet having a predetermined thickness by a known sheet forming technique such as a doctor blade method. It is produced by doing.
[0042]
Next, a through hole 16 serving as a groove 10d for forming the recess 12 in the green sheet 11b is formed by punching with a mold or the like, and the wiring conductors 5a and 5b are formed in the green sheet 11c from the mounting portion 2 of the base 1 to the lower surface. The through-hole 13 for leading out is formed by punching using a punching die (FIG. 8A).
[0043]
Next, a conductor paste for forming the wiring conductors 5a and 5b is printed and applied in a predetermined pattern on the upper and lower surfaces of the green sheet 11c and in the through holes 13 by a screen printing method, and the inner surface of the through holes 16 of the green sheet 11b. Then, a conductor paste for forming the mounting portion 2 and the wiring conductor 5b is printed and applied by a screen printing method. Similarly, a conductor paste for forming the metallized layers 7a to 7c on the green sheets 11a to 11c is printed and applied in a predetermined pattern by a screen printing method.
[0044]
Next, the green sheets 11a to 11c and the conductor paste layer applied thereto are fired at a high temperature (about 1600 ° C.) to obtain ceramic plates 17a to 17c composed of the ceramic layers 1a to 1c (FIG. 8B). ).
[0045]
Next, the metallized layer 7b of the ceramic plate 17b and the metallized layers 7a, 7c of the ceramic plates 17a, 17c are joined via a brazing material to produce a laminate (FIG. 8C), and this is sliced. The package is divided into individual packages along the dividing lines 18 and 19 by a method or the like (FIG. 8D), and nickel, gold, platinum, palladium, or the like is formed on the exposed surface of each conductor layer by an electrolytic plating method or an electroless plating method. The package having the concave portion 4 shown in FIGS. 5 to 7 is completed by applying the plating metal layer (FIG. 8E).
[0046]
As another method, after obtaining the ceramic plates 17a to 17c, each of the insulating base body 10b and the ceramic plates 10a and 10c is divided, and these are joined with a brazing material. There is a method of deposition.
[0047]
As shown in FIG. 9, in the package of the present invention, instead of the ceramic plates 10a and 10c, metal plates 30a and 30c are joined to the entire surfaces of the two sides of the insulating base body 10b, respectively, as shown in FIG. Configuration.
[0048]
Thereby, the insulating base body 10b and the metal plates 30a, 30c can be separately manufactured, and the thin metal plates 30a, 30c can be joined by a thin brazing material layer, so that when the ceramic plates 10a, 10c are used. As described above, it is possible to eliminate the deformation due to the pressure in the laminating step and the shrinkage in the firing step when manufacturing by integrating sintering, and to reduce the stress due to the difference in the thermal expansion coefficient between the metal plates 30a, 30c and the brazing material layer. This makes it possible to prevent the thin metal plates 30a, 30c from being deformed. Therefore, the insulating base body 10b and the thin metal plates 30a and 30c can be joined while suppressing the deformation of the package while maintaining the joining strength. Further, the metal plates 30a and 30c have higher rigidity and toughness than the ceramic plates 10a and 10c, and thus can be made thinner.
[0049]
The metal plates 30a and 30c of the present invention are made of alumina ceramics (thermal expansion coefficient: 7.0 × 10 -6 ~ 8.0 × 10 -6 / ° C) or other Fe-Ni alloy (coefficient of thermal expansion: 7.5 x 10) whose thermal expansion coefficient is similar to that of ceramics -6 ~ 8.5 × 10 -6 / ° C), Fe-Ni-Co alloy (thermal expansion coefficient: 5.7 x 10 -6 ~ 6.2 × 10 -6 / ° C) or Cu-W alloy (thermal expansion coefficient: 6.0 × 10 -6 / ° C.), Mo (coefficient of thermal expansion: about 5.7 × 10 ° C.) and the like.
[0050]
The thickness of the metal plates 30a and 30c is preferably 0.02 to 0.5 mm. If the thickness is less than 0.02 mm, distortion or deformation is likely to occur due to the heat generated by the light emitting element 3. The package becomes larger.
[0051]
Although the metal plates 30a and 30c are joined by the brazing material layer 7d, when a conductive brazing material is used, the mounting portion 2 on the bottom surface of the recess 4 and the wiring conductor 5b are not short-circuited via the metal plates 30a and 30c. Need to be
[0052]
As shown in FIG. 9, the green sheet 11b for forming the ceramic layer 1b is made of aluminum oxide, silicon oxide, calcium oxide, magnesium oxide when the insulating base body 10b is made of an aluminum oxide sintered body. Add a suitable organic binder, solvent, plasticizer, dispersant, etc. to ceramic raw material powder such as ceramic powder to form a slurry, and form this into a sheet of a predetermined thickness by a known sheet forming technique such as doctor blade method. Produced by
[0053]
Next, a through-hole 12 serving as a groove 10d for forming the concave portion 4 and a through-hole 13 for forming the wiring conductors 5a and 5b are formed by punching out the green sheet 11b with a mold or the like (FIG. 4A )).
[0054]
Next, a conductor paste for forming the wiring conductors 5a, 5b is printed and applied in a predetermined pattern on the upper and lower surfaces of the green sheet 11b and in the through holes 13 by a screen printing method, and the inner surface of the through holes 12 of the green sheet 11b. Then, a conductor paste for forming the mounting portion 2 and the wiring conductor 5b is printed and applied by a screen printing method.
[0055]
Next, a division groove 34 is formed in the green sheet 11b so as to divide a strip-shaped region serving as a plurality of bases 1 including a plurality of through holes 12 arranged in a line, and is further orthogonal to the division groove 34. By cutting so that the inner surface of the through-hole 12 and the wiring conductors 5a and 5b formed in the through-hole 13 are exposed along the cutting line 35 in the direction (FIG. 4B), a plurality of lines arranged in a line are formed. A strip-shaped green sheet 36 including the through holes 12 is obtained (FIG. 4C).
[0056]
Finally, the strip-shaped green sheet 36 and the conductive paste layer applied thereto are fired at a high temperature (about 1600 ° C.) to obtain a sintered body of the ceramic layer 1 b. After being divided into individual pieces (FIG. 4D), the metal plates 30a and 30c are joined to each other via a brazing material to form the base 1, and the exposed surfaces of the conductive layers of the base 1 and the metal plates 30a and 30c are formed. A package is completed by applying a plating metal layer of nickel, gold, platinum, palladium or the like on the surface by an electrolytic plating method or an electroless plating method (FIG. 4E).
[0057]
As another method, after obtaining a sintered body of the undivided ceramic green sheet 11b or the strip-shaped green sheet 36, a metal plate (metal mother substrate) to be the metal plates 30a and 30c is added to the brazing material. After that, the package is divided into individual packages by a slicing method or the like, and a plating metal layer is applied in the same manner as described above.
[0058]
Thus, according to the present invention, it is not necessary to form a through hole in a thin green sheet to form a frame in order to form the concave portion 4 in the process of manufacturing the insulating substrate 10, and the ceramic plate 10a is formed on the insulating substrate main body 10b. , 10c to form the recess 4. As a result, it is possible to prevent the deformation of the side wall of the concave portion 4 of the base 1 and to make the side wall of the concave portion 4 easily thin by using the thin ceramic plates 10a and 10c. Accordingly, the width of the package in the direction perpendicular to the main surfaces of the ceramic plates 10a and 10c can be reduced.
[0059]
Further, when a metallized layer (reflection layer) having a nickel plating layer or a gold plating layer on the inner surface of the concave portion 4 is applied to reflect the light of the light emitting element 3 on the inner surface of the concave portion 4 and emit the light to the outside. Since the side walls (ceramic plates 10a and 10c) of the concave portion 4 are not deformed, light can be favorably reflected by the reflective layer and emitted uniformly and efficiently to the outside.
[0060]
That is, as shown in FIG. 4, the other pair of side walls other than the pair of side walls formed of the ceramic plates 10a and 10c of the concave portion 4 become the ceramic layers 1b thicker than the green sheets 11a and 11c to be the ceramic layers 1a and 1c. It is formed by forming a through hole 12 in the green sheet 11b and forming a groove 10d in the upper surface of the insulating base 10. Therefore, there is almost no deformation at the portion of the through hole 12 of the thick green sheet 11b, and as a result, no deformation occurs at the other pair of side walls of the concave portion 4.
[0061]
As described above, the thickness of the ceramic layer 1b thicker than the ceramic layers 1a and 1c is preferably 1 to 10 mm, and if it is less than 1 mm, it is difficult to mount the light emitting element 3 in the concave portion 4. It will be upsized.
[0062]
Further, the thickness of the ceramic layers 1a and 1c is preferably 0.05 to 0.5 mm. If the thickness is less than 0.05 mm, the strength of the ceramic plates 10a and 10c becomes weak, and in order to reflect light and radiate it to the outside. If a metallized layer is formed on the inner surface of the concave portion 4, deformation occurs during firing, making it difficult to efficiently reflect light well and radiate the light uniformly and efficiently to the outside. If it exceeds 0.5 mm, the package will be large.
[0063]
FIG. 10 is a perspective view of a package of the present invention having ceramic plates 10a and 10c, and FIG. 11 is a perspective view of a package of the present invention having metal plates 30a and 30c.
[0064]
Further, the light emitting device of the present invention includes the above light emitting element housing package of the present invention, the light emitting element 3 mounted on the mounting portion 2, and a transparent resin covering the light emitting element 3. The transparent resin covering the light emitting element 3 may be provided so as to cover only the exposed surface of the light emitting element 3 or may be filled inside the recess 4 so as to cover the light emitting element 3. Furthermore, a light-transmitting lid made of glass, sapphire, quartz, or a light-transmitting resin may be bonded to the upper surface of the base 1. In addition, since the light emitting device of the present invention is a small device that accommodates the light emitting elements 3 such as light emitting diodes, it is more efficient to cover the light emitting elements 3 with a transparent resin than to individually cover them. This is advantageous in terms of fixing the position of the internal bonding wires 6 and the like and preventing corrosion of each conductor layer.
[0065]
【Example】
An embodiment of the light emitting element storage package of the present invention will be described below.
[0066]
A 10 mm square and 5 mm thick ceramic substrate (corresponding to the insulating base body 10 b) having a 2 mm square W metallizing layer formed on the surface and a 2 mm square W metallizing layer on the surface A 4 mm square ceramic plate having a thickness of 0.3 mm having the layers formed thereon was prepared, and each metallized layer was joined with a brazing material of an Ag-Cu alloy having 14 types of thicknesses (see Table 1 below). Samples were prepared (Sample Nos. 1 to 14).
[0067]
These samples were subjected to a peeling test in which a force of 2.5 kg (24.5 N) was applied from the side surface of the ceramic plate in a direction perpendicular to the joining surface of the brazing material so as to peel off the ceramic substrate for 30 seconds. Were evaluated for the occurrence of cracks and cracks, and for the occurrence of peeling between the ceramic plate and the ceramic substrate.
[0068]
[Table 1]
Figure 2004221520
[0069]
From Table 1, it can be seen that Sample No. having a brazing material thickness of 30 to 120 μm was used. In Nos. 3 to 12, cracks and cracks in the ceramic plate and peeling between the ceramic plate and the ceramic substrate did not occur (indicated by a circle in the table).
[0070]
Sample No. having a brazing material thickness of less than 30 μm. In Nos. 1 and 2, the ceramic plate was peeled off from the ceramic substrate (indicated by x in the table).
[0071]
Sample No. 1 in which the thickness of the brazing material exceeds 120 μm. In Nos. 13 and 14, the ceramic plate was peeled off from the ceramic substrate (indicated by X in the table).
[0072]
From the above, it was found that the thickness of the brazing material was preferably set to 30 to 120 μm. This makes it possible to reduce the size of the light emitting element housing package and prevent deformation of the shape, and to braze the thin ceramic plates 10a and 10c to the insulating base body 10b while preventing the occurrence of cracks and the like.
[0073]
The present invention is not limited to the above-described embodiments and examples, and various changes may be made without departing from the gist of the present invention. For example, as shown in the front view of the package of FIG. 13, the cross-sectional view of the package of FIG. 13 taken along line XX, and the cross-sectional view of the package of FIG. 13 taken along line YY of FIG. Instead of forming the portion 2 as a conductor layer, the bottom surface of the concave portion 4 is used as a mounting region for directly mounting the light emitting element 3, and wiring conductors 5 a and 5 b electrically connected to the electrodes of the light emitting element 3 are formed around the bottom. You may. In this case, the light emitting element 3 is directly mounted on the mounting section 2, and the electrodes of the light emitting element 3 and the wiring conductors 5a, 5b are electrically connected via the bonding wires 6a, 6b and the like.
[0074]
【The invention's effect】
In the light-emitting element housing package of the present invention, the insulating base forming the base is formed on the entire surface of two sides of the insulating base main body in which a groove is formed in a central portion of the upper surface between a pair of opposing two sides. Since the ceramic plate having the same height as the insulating base body is joined so as to close the opening, the recess is formed. It is not necessary to form a frame by forming a through hole in the green sheet, and a concave portion can be formed by joining a ceramic plate to the insulating base body. As a result, it is possible to prevent the deformation of the side wall of the concave portion of the base, and to make the side wall of the concave portion easily thin by using a thin ceramic plate. Therefore, the width in the direction orthogonal to the main surface of the ceramic plate of the package for housing the light emitting element can be reduced.
[0075]
Further, when the reflection layer is formed on the inner surface of the concave portion, the reflection layer becomes flat, so that the light of the light emitting element can be uniformly and efficiently emitted to the outside of the package and can be well converged outside the package.
[0076]
In the package for housing a light-emitting element of the present invention, preferably, the metallized layer applied to the joint surface between the insulating base body and the ceramic plate is joined via a brazing material layer having a thickness of 30 to 120 μm. By separately manufacturing the insulating base body and the ceramic plate, it is possible to reduce the influence on the deformation due to the pressure during the laminating step and the shrinkage during the firing step when manufacturing by sintering and integrating. And a thin ceramic plate can be joined by a thin brazing material layer because the brazing material layer is joined through a brazing material layer having a thickness of 30 to 120 μm. The stress resulting from the difference is reduced, and the occurrence of cracks or the like in the ceramic plate can be prevented, so that the insulating base body and the ceramic plate can be joined while maintaining the joining strength.
[0077]
In the light-emitting element housing package of the present invention, since the metal plate is preferably bonded to the entire two side surfaces of the insulating base body portion instead of the ceramic plate, the concave portion is formed in the process of manufacturing the insulating base. It is not necessary to form a through hole in a thin green sheet to produce a frame-shaped one, and a concave portion can be formed by joining a metal plate to the insulating base body, and the insulating base body and the metal plate Can be individually manufactured, so that deformation due to the influence of pressure in the laminating step and variation in interlayer shrinkage in the firing step, which occurs when a green sheet is used, can be eliminated. As a result, it is possible to prevent the deformation of the side wall of the concave portion of the base body, and it is possible to greatly reduce the side wall of the concave portion by using a metal plate having high rigidity and toughness even though it is thin. Therefore, the width of the light emitting element storage package in the direction perpendicular to the main surface of the metal plate can be further reduced.
[0078]
The light-emitting device of the present invention includes the light-emitting element housing package of the present invention, a light-emitting element mounted on the mounting portion and electrically connected to the wiring conductor, and a transparent resin covering the light-emitting element. In addition, the thickness can be reduced without deformation, and the reliability of bonding between the insulating base body and the ceramic plate or metal plate can be improved.
[Brief description of the drawings]
FIG. 1 is a front view showing an example of an embodiment of a light emitting element housing package of the present invention.
FIG. 2 is a cross-sectional view of the light emitting element housing package of FIG. 1 taken along line XX.
FIG. 3 is a cross-sectional view of the light emitting element housing package of FIG. 1 taken along line YY.
4 (a) to 4 (e) are perspective views of ceramic green sheets showing respective manufacturing steps of the light emitting element housing package of FIG.
FIG. 5 is a front view showing another example of the embodiment of the light emitting element housing package of the present invention.
6 is a cross-sectional view of the light emitting element housing package of FIG. 5 taken along line XX.
FIG. 7 is a cross-sectional view of the light emitting element housing package of FIG. 5 taken along line YY.
8 (a) to 8 (e) are perspective views of ceramic green sheets showing respective manufacturing steps of the light emitting element housing package of FIG.
9 (a) to 9 (e) are perspective views of a ceramic green sheet showing respective manufacturing steps of a light emitting element housing package according to another invention of the present invention.
FIG. 10 is a perspective view showing an example of an embodiment of a light emitting element housing package of the present invention.
FIG. 11 is a perspective view showing another example of the embodiment of the light emitting element housing package of the present invention.
FIG. 12 is a cross-sectional view of a conventional light emitting element storage package.
FIG. 13 is a front view showing an example of an embodiment of a light emitting element housing package of the present invention.
14 is a cross-sectional view of the light emitting element housing package of FIG. 13 taken along line XX.
15 is a cross-sectional view of the light emitting element housing package of FIG. 13 taken along line YY.
[Explanation of symbols]
1: Substrate
2: Mounting part
3: Light emitting element
4: recess
5a, 5b: wiring conductor
7a to 7c: metallized layer
7d: brazing material layer
10: insulating substrate
10a, 10c: ceramic plate
10b: insulating base body
10d: groove
30a, 30b: metal plate

Claims (4)

上面に凹部が形成された直方体の絶縁基体の前記凹部の底面に発光素子の搭載部が設けられた基体と、該基体の前記搭載部から外表面にかけて形成された配線導体とを具備した発光素子収納用パッケージにおいて、前記絶縁基体は、上面の中央部に一対の対向する二側面間にわたって溝が形成された絶縁基体本体部の前記二側面の全面に、前記溝の両端を塞ぐようにして前記絶縁基体本体部と同じ高さのセラミック板がそれぞれ接合されていることによって、前記凹部が形成されていることを特徴とする発光素子収納用パッケージ。A light emitting element comprising: a rectangular parallelepiped insulating base having a concave portion formed on the upper surface; a base having a light emitting element mounting portion provided on the bottom surface of the concave portion; and a wiring conductor formed from the mounting portion to the outer surface of the substrate. In the storage package, the insulating base may be formed so as to cover both ends of the groove on an entire surface of the two sides of the insulating base main body in which a groove is formed in a central portion of an upper surface between a pair of opposed two sides. A light-emitting element storage package, wherein the concave portion is formed by joining ceramic plates having the same height as the insulating base body. 前記絶縁基体本体部と前記セラミック板とは、それらの接合面にそれぞれ被着されたメタライズ層が厚さ30乃至120μmのロウ材層を介して接合されていることを特徴とする請求項1記載の発光素子収納用パッケージ。2. The insulating base body and the ceramic plate, wherein a metallized layer respectively attached to a joint surface thereof is joined via a brazing material layer having a thickness of 30 to 120 μm. 3. Package for storing light emitting elements. 請求項1または請求項2記載の発光素子収納用パッケージにおいて、前記セラミック板に代えて金属板が前記絶縁基体本体部の前記二側面の全面にそれぞれ接合されていることを特徴とする発光素子収納用パッケージ。3. The light-emitting element storage package according to claim 1, wherein a metal plate is bonded to the entire surface of the two side surfaces of the insulating base body in place of the ceramic plate. For package. 請求項1乃至請求項3記載のいずれかに記載の発光素子収納用パッケージと、前記搭載部に搭載されるとともに前記配線導体に電気的に接続された発光素子と、該発光素子を覆う透明樹脂とを具備していることを特徴とする発光装置。The light-emitting element storage package according to any one of claims 1 to 3, a light-emitting element mounted on the mounting portion and electrically connected to the wiring conductor, and a transparent resin covering the light-emitting element. A light-emitting device comprising:
JP2003143689A 2002-10-03 2003-05-21 Package for storing light-emitting element and light-emitting device Pending JP2004221520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143689A JP2004221520A (en) 2002-10-03 2003-05-21 Package for storing light-emitting element and light-emitting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002291376 2002-10-03
JP2002315754 2002-10-30
JP2002337173 2002-11-20
JP2003143689A JP2004221520A (en) 2002-10-03 2003-05-21 Package for storing light-emitting element and light-emitting device

Publications (1)

Publication Number Publication Date
JP2004221520A true JP2004221520A (en) 2004-08-05

Family

ID=32913141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143689A Pending JP2004221520A (en) 2002-10-03 2003-05-21 Package for storing light-emitting element and light-emitting device

Country Status (1)

Country Link
JP (1) JP2004221520A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005159311A (en) * 2003-10-30 2005-06-16 Nichia Chem Ind Ltd Support for semiconductor element, method of manufacturing the same, and semiconductor device
JP2006066519A (en) * 2004-08-25 2006-03-09 Kyocera Corp Wiring circuit board for light-emitting element and the light-emitting device
JP2006179520A (en) * 2004-12-20 2006-07-06 Nichia Chem Ind Ltd Semiconductor device
JP2008535237A (en) * 2005-11-09 2008-08-28 アルティ エレクトロニクス カンパニー リミテッド Side light emitting diode and manufacturing method thereof
JP2009038184A (en) * 2007-08-01 2009-02-19 Harison Toshiba Lighting Corp Semiconductor light emitting device, light source device, and surface light emitting device
JP2010258478A (en) * 2003-10-30 2010-11-11 Nichia Corp Support body for semiconductor element, method for manufacturing the same and semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005159311A (en) * 2003-10-30 2005-06-16 Nichia Chem Ind Ltd Support for semiconductor element, method of manufacturing the same, and semiconductor device
JP2010258478A (en) * 2003-10-30 2010-11-11 Nichia Corp Support body for semiconductor element, method for manufacturing the same and semiconductor device
JP2006066519A (en) * 2004-08-25 2006-03-09 Kyocera Corp Wiring circuit board for light-emitting element and the light-emitting device
JP2006179520A (en) * 2004-12-20 2006-07-06 Nichia Chem Ind Ltd Semiconductor device
JP4591071B2 (en) * 2004-12-20 2010-12-01 日亜化学工業株式会社 Semiconductor device
JP2008535237A (en) * 2005-11-09 2008-08-28 アルティ エレクトロニクス カンパニー リミテッド Side light emitting diode and manufacturing method thereof
JP2009038184A (en) * 2007-08-01 2009-02-19 Harison Toshiba Lighting Corp Semiconductor light emitting device, light source device, and surface light emitting device

Similar Documents

Publication Publication Date Title
JP6483800B2 (en) Light emitting element mounting package, light emitting device, and light emitting module
WO2012057286A1 (en) Wiring board
JP6194104B2 (en) Wiring board, electronic device and electronic module
JP4072084B2 (en) Light emitting element storage package and light emitting device
JP2004319939A (en) Package for housing light emitting element and light emitting device
JP2004281994A (en) Package for storing light emitting element and light emitting device
JP4164006B2 (en) Light emitting element storage package and light emitting device
JP2004235204A (en) Package for storing light emitting element and light emitting device
JP2005019688A (en) Package for accommodating light emitting element and light emitting device
JP2004221520A (en) Package for storing light-emitting element and light-emitting device
JP4129169B2 (en) Light emitting element storage package and light emitting device
JP5173903B2 (en) Light emitting element storage package and light emitting device
JP4336136B2 (en) Light emitting element storage package and light emitting device
JP4336153B2 (en) Light emitting element storage package and light emitting device
JP4091876B2 (en) Light emitting element storage package and light emitting device
JP2005159082A (en) Package for light emitting element housing, method for manufacturing the same, and light emitting device
JP4129173B2 (en) Light emitting element storage package and light emitting device
JP4336137B2 (en) Light emitting element storage package and light emitting device
JP4183175B2 (en) Light emitting element storage package and light emitting device
JP4070195B2 (en) Light emitting element storage package
JP4177679B2 (en) Light emitting element storage package and light emitting device
JP4081394B2 (en) Light emitting element storage package and light emitting device
JP2004228100A (en) Members for light emitting device and light emitting device
JP2005159081A (en) Package for light emitting element housing, and light emitting device
JP2002231845A (en) Electronic part storing package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602