JP2000316241A - Motor with embedded permanent magnet - Google Patents

Motor with embedded permanent magnet

Info

Publication number
JP2000316241A
JP2000316241A JP11120477A JP12047799A JP2000316241A JP 2000316241 A JP2000316241 A JP 2000316241A JP 11120477 A JP11120477 A JP 11120477A JP 12047799 A JP12047799 A JP 12047799A JP 2000316241 A JP2000316241 A JP 2000316241A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
flux
magnetic flux
weakening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11120477A
Other languages
Japanese (ja)
Inventor
Tetsuya Miura
徹也 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP11120477A priority Critical patent/JP2000316241A/en
Publication of JP2000316241A publication Critical patent/JP2000316241A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To make flux uniform when controlling weakening flux, to suppress generation of a high voltage, to decrease a terminal voltage according to the increase of the weakening flux, by providing two or four recessed parts per pole between one or both of permanent magnets where a rotor is divided into two layers and the outer-periphery part of the rotor. SOLUTION: Two recessed parts 7 per pole are provided between both edges 1a of a permanent magnet 1 at an outer-periphery side and an outer-periphery part 3b of a rotor. The recessed part 7 is positioned inside in a radial direction as compared with the outer-periphery part 3b, has an arcuate part 9 and an inclined part 8, and shows the section shape of a mortar as a whole. Since the recessed part 7 increases the substantial air gap being seen from a stator 5, steep gap flux is decreased, and the inclined part 8 especially contributes to smooth decrease, thus preventing flux from greatly fluctuating even a weakening flux current is increased, uniformly making the flux weak, suppressing generation of a high voltage, and decreasing a terminal voltage according to the increase of the weakening flux current.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、永久磁石をロータ
ー内部に埋め込んだローターと集中巻コイルを有するス
テータを備えた永久磁石埋め込み式モータの改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved permanent magnet embedded motor having a rotor having a permanent magnet embedded inside the rotor and a stator having a concentrated winding coil.

【0002】[0002]

【従来の技術】従来の永久磁石埋め込み式モータの技術
が特許2823817号公報に開示されている。図6に
示す従来技術は、マグネットトルクとリラクタンストル
クを有効利用し、より高いトルクを発生させるためのロ
ーター形状を開示したものである。図6により、この従
来の技術の構成を説明する。
2. Description of the Related Art The technology of a conventional permanent magnet embedded motor is disclosed in Japanese Patent No. 2823817. The prior art shown in FIG. 6 discloses a rotor shape for generating a higher torque by effectively utilizing a magnet torque and a reluctance torque. Referring to FIG. 6, the configuration of this conventional technique will be described.

【0003】ロータ3は、高透磁率材のロータコア3a
に、N極、S極が交互に配置された4極の永久磁石が埋
め込まれ、ロータ軸4に固着されることにより構成され
ている。1極当たりの永久磁石は、ロータ半径方向に2
分割され、外周側永久磁石1と内周側永久磁石2とで構
成されている。各永久磁石1,2は、ロータ中心側に凸
の円弧形状に形成され、それぞれの両端部1a,2a
は、ロータ外周に近接する位置まで延びている。外周側
永久磁石1と内周側永久磁石2との間隔は、ほぼ一定幅
となっている。この間隔部分にq軸方向の磁束が通る磁
束通路10が形成されている。
The rotor 3 has a rotor core 3a made of a high magnetic permeability material.
A permanent magnet of four poles, in which N poles and S poles are alternately arranged, is embedded and fixed to the rotor shaft 4. The number of permanent magnets per pole is 2 in the radial direction of the rotor.
It is divided into an outer peripheral side permanent magnet 1 and an inner peripheral side permanent magnet 2. Each of the permanent magnets 1 and 2 is formed in a circular arc shape protruding toward the center of the rotor, and has both end portions 1a and 2a.
Extend to a position close to the outer periphery of the rotor. The interval between the outer peripheral side permanent magnet 1 and the inner peripheral side permanent magnet 2 has a substantially constant width. A magnetic flux passage 10 through which the magnetic flux in the q-axis direction passes is formed in the space.

【0004】ステータ5は、所定本数のティース6を備
え、各ティース6間にはステータコイル(図示省略)が
配されて構成されている。前記ステータコイルに交流電
流が与えられることで回転磁束が発生し、この回転磁束
によりロータ3には、マグネットトルクとリラクタンス
トルクが作用しロータ3は回転駆動される。
[0004] The stator 5 includes a predetermined number of teeth 6, and a stator coil (not shown) is arranged between the teeth 6. When an alternating current is applied to the stator coil, a rotating magnetic flux is generated, and a magnet torque and a reluctance torque act on the rotor 3 by the rotating magnetic flux, so that the rotor 3 is driven to rotate.

【0005】以上説明した従来の永久磁石埋め込み式モ
ータを小型、低コストで構成することをねらって、ステ
ータ5のステータコイル(図示省略)を集中巻コイルと
することがある。集中巻コイルとは、ステータ5のティ
ース6を挟んでU相のステータコイルを配置し、隣のテ
ィース6を挟んでV相のステータコイルを配置し、さら
に隣のティース6を挟んでW相のステータコイルを配置
するようにしたステータコイルの巻線の形式である。
In order to construct the conventional permanent magnet embedded motor described above at a small size and at low cost, the stator coil (not shown) of the stator 5 may be a concentrated winding coil. The concentrated winding coil means that a U-phase stator coil is arranged with the teeth 6 of the stator 5 interposed therebetween, a V-phase stator coil is arranged with the adjacent teeth 6 interposed therebetween, and a W-phase stator coil is arranged with the adjacent teeth 6 interposed therebetween. This is a type of winding of the stator coil in which the stator coil is arranged.

【0006】永久磁石埋め込み式モータを使用すると
き、一般に弱め磁束制御が用いられる。永久磁石埋め込
み式モータの端子電圧は、速度とともに上昇する。永久
磁石埋め込み式モータは、端子電圧が電源電圧以上の領
域では運転することはできなくなる。永久磁石埋め込み
式モータの速度制御範囲を拡大するために、一般に弱め
磁束制御が用いられる。弱め磁束制御とは、永久磁石埋
め込み式モータの主磁束を弱めて行う制御であり、具体
的にはd軸ステータ反作用による減磁作用を利用して、
ギャップ磁束を減少させる制御のことである。
When using a permanent magnet embedded motor, flux weakening control is generally used. The terminal voltage of a permanent magnet embedded motor increases with speed. The embedded permanent magnet motor cannot operate in a region where the terminal voltage is higher than the power supply voltage. Flux-weakening control is generally used to extend the speed control range of a permanent magnet embedded motor. The magnetic flux weakening control is a control in which the main magnetic flux of the permanent magnet embedded type motor is weakened. Specifically, utilizing the demagnetizing action due to the d-axis stator reaction,
This is control to reduce the gap magnetic flux.

【0007】[0007]

【発明が解決しようとする課題】ところが、前記の従来
の永久磁石埋め込み式モータのステータ5のステータコ
イル(図示省略)を集中巻コイルとし、弱め磁束制御を
用いようとすると以下の問題が発生する。
However, if the stator coil (not shown) of the stator 5 of the conventional permanent magnet embedded motor described above is a concentrated winding coil and the magnetic flux weakening control is used, the following problem occurs. .

【0008】図7は、横軸にロータ位置を縦軸に磁束の
大きさを取り、弱め磁束電流の大きさ毎(0A、40
A,80A,120A。以下同じ)のロータ位置に対す
る磁束の大きさを表した図である。図7から、弱め磁束
電流の大きさが大きくなっても、局所的に磁束が弱めら
れ、均一に弱められないことが分かる。図8は横軸にロ
ータ位置を縦軸に端子電圧を取り、弱め磁束電流の大き
さ毎のロータ位置に対する端子電圧の大きさを表した図
である。図8から、弱め磁束電流の大きさが大きくなる
につれ発生する急峻な磁束変動により局所的な高電圧が
発生することが分かる。電圧が磁束を微分した値に影響
を受けることから必然の結果である。図5は横軸に弱め
磁束電流を縦軸に端子電圧を取り、凹部なし(従来技
術)の場合と凹部あり(本発明の1実施形態)の場合の
弱め磁束電流に対する端子電圧の大きさを表した図であ
る。図5から、凹部なし(従来技術)の場合、弱め磁束
電流の大きさを大きくしても端子電圧は減少するという
よりむしろ上昇してしまうということが分かる。このよ
うに端子電圧が上昇すると、速度制御範囲を拡大するこ
とができないという問題を有する。
FIG. 7 shows the rotor position on the horizontal axis and the magnitude of the magnetic flux on the vertical axis, and for each magnitude of the weak magnetic flux current (0 A, 40 A).
A, 80A, 120A. FIG. 6 is a diagram showing the magnitude of magnetic flux with respect to the rotor position of the same). From FIG. 7, it can be seen that even if the magnitude of the weak magnetic flux current increases, the magnetic flux is locally weakened and cannot be uniformly weakened. FIG. 8 is a diagram showing the magnitude of the terminal voltage with respect to the rotor position for each magnitude of the magnetic flux weakening, with the horizontal axis representing the rotor position and the vertical axis representing the terminal voltage. From FIG. 8, it can be seen that a local high voltage is generated due to a steep magnetic flux variation that occurs as the magnitude of the flux-weakening current increases. This is an inevitable result because the voltage is affected by the value obtained by differentiating the magnetic flux. FIG. 5 shows the magnetic flux weakening current on the horizontal axis and the terminal voltage on the vertical axis, and shows the magnitude of the terminal voltage with respect to the magnetic flux weakening current when there is no recess (prior art) and when there is a recess (one embodiment of the present invention). FIG. From FIG. 5, it can be seen that in the case of no concave portion (prior art), even if the magnitude of the magnetic flux weakening current is increased, the terminal voltage increases rather than decreases. When the terminal voltage increases in this way, there is a problem that the speed control range cannot be expanded.

【0009】本発明は、上記の問題を解決するため、弱
め磁束制御時に磁束を均一にし、高電圧の発生を抑え、
弱め磁束電流の増大に応じて端子電圧を減少させること
を可能にした永久磁石埋め込み式モータを提供すること
を目的にしたものである。
In order to solve the above-mentioned problems, the present invention makes the magnetic flux uniform at the time of the magnetic flux weakening control, suppresses the generation of high voltage,
It is an object of the present invention to provide a permanent magnet embedded motor that can reduce a terminal voltage according to an increase in a magnetic flux weakening current.

【0010】[0010]

【課題を解決するための手段】前述の目的を達成するた
めに、請求項1の発明は、2層に分割されかつU字型に
配置された永久磁石が埋め込まれたロータと集中巻コイ
ルを有するステータを備えた永久磁石埋め込み式モータ
において、前記ロータが2層に分割された前記永久磁石
の一方または両方とロータ外周部との間に1極当たり2
個所または4個所の凹部を備えていることを特徴とする
永久磁石埋め込み式モータである。
In order to achieve the above object, the invention of claim 1 comprises a rotor and a concentrated winding coil in which permanent magnets divided into two layers and arranged in a U-shape are embedded. In the motor with embedded permanent magnets having a stator having the same, the rotor has two poles per pole between one or both of the permanent magnets divided into two layers and the outer periphery of the rotor.
A permanent magnet embedded motor characterized by having four or four recesses.

【0011】前述の目的を達成するために、請求項2の
発明は、2層に分割されかつU字型に配置された永久磁
石が埋め込まれたロータと集中巻コイルを有するステー
タを備えた永久磁石埋め込み式モータにおいて、前記ロ
ータがロータ外周部に近い層の前記永久磁石とロータ外
周部との間に1極当たり2個所の凹部を備えていること
を特徴とする永久磁石埋め込み式モータである。
According to another aspect of the present invention, there is provided a permanent magnet including a rotor having a permanent magnet embedded therein and divided into two layers and arranged in a U-shape, and a stator having a concentrated winding coil. In the motor with embedded magnets, the rotor is provided with two concave portions per pole between the permanent magnet and the outer peripheral portion of the layer near the outer peripheral portion of the rotor. .

【0012】前述の目的を達成するために、請求項3の
発明は、請求項1または2の永久磁石埋め込み式モータ
において、前記凹部がロータ外周部より半径方向内方に
位置して円周方向に沿って延びた円弧部と該円弧部から
ロータ外周部に延びた傾斜部を有することを特徴とする
永久磁石埋め込み式モータである。
According to a third aspect of the present invention, there is provided a permanent magnet embedded motor according to the first or second aspect, wherein the concave portion is located radially inward of an outer peripheral portion of the rotor in a circumferential direction. A permanent magnet embedded motor having an arc portion extending along the arc and an inclined portion extending from the arc portion to the outer peripheral portion of the rotor.

【0013】前述の目的を達成するために、請求項4の
発明は、請求項1または2の永久磁石埋め込み式モータ
において、前記永久磁石が円周方向に沿って延びた円周
方向永久磁石と該円周方向永久磁石の両端近傍からロー
タ外周部に延びた半径方向永久磁石から構成されている
ことを特徴とする永久磁石埋め込み式モータである。
According to a fourth aspect of the present invention, there is provided a permanent-magnet embedded motor according to the first or second aspect, wherein the permanent magnets extend in a circumferential direction. An embedded permanent magnet motor comprising a radial permanent magnet extending from the vicinity of both ends of the circumferential permanent magnet to the outer periphery of the rotor.

【0014】[0014]

【発明の実施の形態】本発明の実施形態を図1に基づき
説明する。ロータ3は、高透磁率材のロータコア3a
に、N極、S極が交互に配置された8組の永久磁石1,
2が埋め込まれ、ロータ軸4に固着されている。1極当
たりの永久磁石は、ロータ半径方向に2層に分割され、
外周側永久磁石1と内周側永久磁石2とで構成されてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. The rotor 3 has a rotor core 3a made of a high magnetic permeability material.
8 permanent magnets 1, in which N poles and S poles are alternately arranged,
2 are embedded and fixed to the rotor shaft 4. The permanent magnet per pole is divided into two layers in the radial direction of the rotor,
An outer peripheral permanent magnet 1 and an inner peripheral permanent magnet 2 are provided.

【0015】前記各永久磁石1,2は、円周方向に沿っ
て延びた板状の円周方向永久磁石1c、2cと該円周方
向永久磁石1c、2cの両端近傍からロータ外周部に延
びた板状の半径方向永久磁石1b、2bから構成されて
いる。円周方向永久磁石1c、2cおよび半径方向永久
磁石1b、2bとも板状に形成したので、従来技術のよ
うに円弧状に形成した場合に比べ、曲面加工がないた
め、製造容易で低コストが実現できる。また、半径方向
永久磁石1b、2bおよび円周方向永久磁石1c、2c
の合計占有面積を従来技術の円弧状の永久磁石の占有面
積より、より広く設定することができるので、磁束を増
大させ、より大きなマグネットトルクを発生させること
ができ、マグネットトルクとリラクタンストルクを合わ
せた合成トルクをより大きくすることができるという優
れた効果を奏する。
Each of the permanent magnets 1 and 2 extends in the form of a plate-shaped circumferential permanent magnet 1c, 2c extending in the circumferential direction, and from the vicinity of both ends of the circumferential permanent magnets 1c, 2c to the outer periphery of the rotor. It is composed of plate-shaped radial permanent magnets 1b and 2b. Since both the circumferential permanent magnets 1c and 2c and the radial permanent magnets 1b and 2b are formed in a plate shape, there is no curved surface processing as compared with the case where the permanent magnets are formed in an arc shape as in the prior art. realizable. Further, the radial permanent magnets 1b, 2b and the circumferential permanent magnets 1c, 2c
The total occupation area can be set wider than the occupation area of the conventional arc-shaped permanent magnet, so that the magnetic flux can be increased, a larger magnet torque can be generated, and the magnet torque and the reluctance torque can be combined. Thus, an excellent effect that the combined torque can be further increased is exhibited.

【0016】永久磁石1,2は、半径方向永久磁石1
b、2bと円周方向永久磁石1c、2cとから構成され
ているので、ロータ中心側に対してU字型に形成されて
いる。
The permanent magnets 1 and 2 are radial permanent magnets 1.
b, 2b and the circumferential permanent magnets 1c, 2c, they are U-shaped with respect to the rotor center side.

【0017】半径方向永久磁石1b、2bのそれぞれの
両端部1a,2aは、ロータ外周部3bに近接する位置
まで延びている。外周側永久磁石1の両端部1aとロー
タ外周部3bとの間には、1極当たり2個所の凹部7が
備えられている。凹部7は、ステータ5からみた実質的
なエアギャップを増加させるものであり、ギャップ磁束
を減少させるものである。図示されていないが、凹部
は、内周側永久磁石2の両端部2aとロータ外周部3b
との間に、1極当たり2個所の凹部を備えてもよい。同
じく図示されていないが、凹部は、外周側永久磁石1の
両端部1aとロータ外周部3bとの間に1極当たり2個
所の凹部を備えさらに内周側永久磁石2の両端部2aと
ロータ外周部3bとの間に1極当たり2個所の凹部を備
えてもよい。凹部の設置個所は、磁束の変動の程度、端
子電圧の高電圧化の様子などにより適宜選択して設計で
きるものである。
Both ends 1a, 2a of the radial permanent magnets 1b, 2b extend to positions near the rotor outer peripheral portion 3b. Two concave portions 7 are provided per pole between both end portions 1a of the outer peripheral side permanent magnet 1 and the rotor outer peripheral portion 3b. The concave portion 7 increases the substantial air gap as viewed from the stator 5 and reduces the gap magnetic flux. Although not shown, the concave portions are formed at both ends 2a of the inner peripheral side permanent magnet 2 and the outer peripheral portion 3b of the rotor.
May be provided with two concave portions per pole. Although not shown, the recess has two recesses per pole between both ends 1a of the outer peripheral permanent magnet 1 and the outer periphery 3b of the rotor, and further has both ends 2a of the inner permanent magnet 2 and the rotor. Two concave portions may be provided for one pole between the outer peripheral portion 3b. The location of the concave portion can be appropriately selected and designed depending on the degree of fluctuation of the magnetic flux, the state of increasing the terminal voltage, and the like.

【0018】外周側永久磁石1と内周側永久磁石2との
間には、ほぼ一定幅の磁束通路10が設けられている。
この磁束通路10にq軸方向の磁束が通るよう形成され
ている。
A magnetic flux path 10 having a substantially constant width is provided between the outer peripheral permanent magnet 1 and the inner peripheral permanent magnet 2.
The magnetic flux passage 10 is formed so that a magnetic flux in the q-axis direction passes through the magnetic flux passage 10.

【0019】ステータ5は、ステータコア5aと12本
のティース6を備えている。各ティース6間のスロット
5cにはU相の巻線、V相の巻線、W相の巻線からなる
ステータコイル5bが集中巻コイルの形式で配置されて
いる。前記ステータコイル5bに交流電流が与えられる
ことで回転磁束が発生し、この回転磁束によりロータ3
には、マグネットトルクとリラクタンストルクが作用し
ロータ3は回転駆動される。
The stator 5 includes a stator core 5a and twelve teeth 6. A stator coil 5b composed of a U-phase winding, a V-phase winding, and a W-phase winding is arranged in a slot 5c between the teeth 6 in the form of a concentrated winding coil. When an alternating current is applied to the stator coil 5b, a rotating magnetic flux is generated.
, A magnet torque and a reluctance torque act to rotate the rotor 3.

【0020】図2により、凹部7について詳しく説明す
る。凹部7は、ロータ外周部3bより半径方向内方に位
置して円周方向に沿って延びた円弧部9と該円弧部9か
らロータ外周部3bに延びた傾斜部8を有し、全体とし
て摺り鉢の断面形状を呈する。円弧部9は、円弧状のも
のも直線状のものも含む。
The recess 7 will be described in detail with reference to FIG. The concave portion 7 has an arc portion 9 located radially inward from the rotor outer peripheral portion 3b and extending along the circumferential direction, and an inclined portion 8 extending from the arc portion 9 to the rotor outer peripheral portion 3b. It has the cross-sectional shape of a mortar. The arc portion 9 includes an arc shape and a straight shape.

【0021】傾斜部8の傾斜の大きさは、磁束の変動の
程度、端子電圧の高電圧化の様子などにより適宜選択し
て設計できるものである。
The magnitude of the inclination of the inclined portion 8 can be appropriately selected and designed depending on the degree of fluctuation of the magnetic flux, the state of increasing the terminal voltage, and the like.

【0022】このような形状の凹部7は、ステータ5か
らみた実質的なエアギャップを増加させるので、急峻な
ギャップ磁束を減少させる。特に、傾斜部8はギャップ
磁束の滑らかな減少に寄与する。図1および図2で説明
した外周側永久磁石1の両端部1aとロータ外周部3b
との間に設けられた凹部7を備えた本発明の実施形態の
作用、効果を以下に説明する。(図示されていないが)
内周側永久磁石2の両端部2aとロータ外周部3bとの
間に設けられた凹部や、(図示されていないが)外周側
永久磁石1の両端部1aおよび内周側永久磁石2の両端
部2aとロータ外周部3bとの間にそれぞれ設けられた
凹部の場合も同様な作用、効果を有するが説明は省略す
る。
The concave portion 7 having such a shape increases the substantial air gap as viewed from the stator 5, and therefore reduces the steep gap magnetic flux. In particular, the inclined portion 8 contributes to a smooth reduction of the gap magnetic flux. Both end portions 1a of the outer peripheral permanent magnet 1 and the outer peripheral portion 3b of the rotor described with reference to FIGS.
The operation and effect of the embodiment of the present invention including the concave portion 7 provided between the first and second embodiments will be described below. (Not shown)
A concave portion provided between both ends 2a of the inner peripheral permanent magnet 2 and the rotor outer peripheral portion 3b, both ends 1a of the outer peripheral permanent magnet 1 (not shown) and both ends of the inner peripheral permanent magnet 2 In the case of the concave portions provided between the portion 2a and the rotor outer peripheral portion 3b, the same operation and effect are obtained, but the description is omitted.

【0023】図3は、図7と同様、横軸にロータ位置を
縦軸に磁束の大きさを取り、弱め磁束電流の大きさ毎の
ロータ位置に対する磁束の大きさを表した図である。図
3から明らかなように、弱め磁束電流の大きさが大きく
なっても磁束に大きな変動が生じなく、磁束を均一に弱
めることができる。図4は図8と同様、横軸にロータ位
置を縦軸に端子電圧を取り、弱め磁束電流の大きさ毎の
ロータ位置に対する端子電圧の大きさを表した図であ
る。図4から、弱め磁束電流の大きさが大きくなっても
急峻な磁束変動が起きないため局所的な高電圧が発生し
ないことが分かる。図5は前記したように横軸に弱め磁
束電流を縦軸に端子電圧を取り、凹部なし(従来技術)
の場合と凹部7あり(本発明の1実施形態)の場合の弱
め磁束電流に対する端子電圧の大きさを表した図であ
る。図5から、凹部7あり(本発明の1実施形態)の場
合、弱め磁束電流の大きさを大きくすると端子電圧が減
少することが分かる。このように端子電圧が減少する
と、速度制御範囲を拡大することができるという優れた
効果を奏する。
FIG. 3 is a diagram showing the magnitude of the magnetic flux with respect to the rotor position for each magnitude of the flux-weakening current, taking the rotor position on the horizontal axis and the magnitude of the magnetic flux on the vertical axis, as in FIG. As is clear from FIG. 3, even when the magnitude of the weak magnetic flux current increases, the magnetic flux does not fluctuate greatly, and the magnetic flux can be weakened uniformly. FIG. 4 is a diagram showing the magnitude of the terminal voltage with respect to the rotor position for each magnitude of the flux-weakening current, with the horizontal axis representing the rotor position and the vertical axis representing the terminal voltage, as in FIG. From FIG. 4, it can be seen that even if the magnitude of the flux-weakening current becomes large, no steep magnetic flux fluctuation occurs, and no local high voltage is generated. FIG. 5 shows the magnetic flux weakening current on the horizontal axis and the terminal voltage on the vertical axis as described above, and no concave portion (prior art).
FIG. 8 is a diagram showing the magnitude of the terminal voltage with respect to the flux-weakening current in the case of (1) and in the case of the presence of the concave portion (one embodiment of the present invention). From FIG. 5, it can be seen that in the case where the concave portion 7 is provided (one embodiment of the present invention), the terminal voltage decreases when the magnitude of the magnetic flux weakening current is increased. When the terminal voltage is reduced in this manner, an excellent effect that the speed control range can be expanded is achieved.

【0024】[0024]

【発明の効果】本発明は、2層に分割されかつU字型に
配置された永久磁石が埋め込まれたロータと集中巻コイ
ルを有するステータを備えた永久磁石埋め込み式モータ
において、前記ロータが2層に分割された前記永久磁石
の一方または両方とロータ外周部との間に1極当たり2
個所または4個所の凹部を備えていることを特徴とする
永久磁石埋め込み式モータであるので、弱め磁束制御時
に磁束を均一にし、高電圧の発生を抑え、弱め磁束電流
の増大に応じて端子電圧を減少させることを可能にし、
速度制御範囲を拡大することができるという優れた効果
を奏する。
According to the present invention, there is provided a permanent-magnet embedded motor including a rotor having two layers and embedded with a permanent magnet embedded in a U-shape, and a stator having a concentrated winding coil. Between one or both of the permanent magnets divided into layers and the outer periphery of the rotor;
Since it is a permanent magnet embedded motor characterized by having four or four recesses, the magnetic flux is made uniform at the time of weak magnetic flux control, the generation of high voltage is suppressed, and the terminal voltage is increased according to the increase of the weak magnetic flux current. To reduce
An excellent effect that the speed control range can be expanded is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の平面図を示す。FIG. 1 shows a plan view of an embodiment of the present invention.

【図2】本発明の実施形態の要部の概略図を示す。FIG. 2 shows a schematic view of a main part of an embodiment of the present invention.

【図3】本発明の実施形態について横軸にロータ位置を
縦軸に磁束の大きさを取り、弱め磁束電流の大きさ毎の
ロータ位置に対する磁束の大きさを表した図を示す。
FIG. 3 is a diagram showing the magnitude of magnetic flux with respect to the rotor position for each magnitude of the flux-weakening current, with the horizontal axis representing the rotor position and the vertical axis representing the magnitude of the magnetic flux in the embodiment of the present invention.

【図4】本発明の実施形態について横軸にロータ位置を
縦軸に端子電圧を取り、弱め磁束電流の大きさ毎のロー
タ位置に対する端子電圧の大きさを表した図を示す。
FIG. 4 is a diagram showing the magnitude of the terminal voltage with respect to the rotor position for each magnitude of the magnetic flux weakening, with the horizontal axis representing the rotor position and the vertical axis representing the terminal voltage in the embodiment of the present invention.

【図5】横軸に弱め磁束電流を縦軸に端子電圧を取り、
凹部なし(従来技術)の場合と凹部あり(本発明の1実
施形態)の場合の弱め磁束電流に対する端子電圧の大き
さを表した図を示す。
FIG. 5 shows the magnetic flux weakening current on the horizontal axis and the terminal voltage on the vertical axis,
The figure which showed the magnitude | size of the terminal voltage with respect to the magnetic flux weakening current in the case without a recessed part (prior art) and the case with a recessed part (1 embodiment of this invention) is shown.

【図6】従来技術の実施形態の平面図を示す。FIG. 6 shows a plan view of an embodiment of the prior art.

【図7】従来技術について横軸にロータ位置を縦軸に磁
束の大きさを取り、弱め磁束電流の大きさ毎のロータ位
置に対する磁束の大きさを表した図を示す。
FIG. 7 is a diagram showing the magnitude of magnetic flux with respect to the rotor position for each magnitude of weakening magnetic flux current, with the horizontal axis representing the rotor position and the vertical axis representing the magnitude of the magnetic flux in the prior art.

【図8】従来技術について横軸にロータ位置を縦軸に端
子電圧を取り、弱め磁束電流の大きさ毎のロータ位置に
対する端子電圧の大きさを表した図を示す。
FIG. 8 is a diagram showing the magnitude of the terminal voltage with respect to the rotor position for each magnitude of the flux-weakening current, with the horizontal axis representing the rotor position and the vertical axis representing the terminal voltage for the prior art.

【符号の説明】[Explanation of symbols]

1……外周側永久磁石、 1a……両端部、 1b……半径方向永久磁石、 1c……円周方向永久磁石、 2……内周側永久磁石、 3……ロータ、 3a……ロータコア、 3b……ロータ外周部、 4……ロータ軸、 5……ステータ、 5a……ステータコア、 5b……ステータコイル、 5c……スロット、 6……ティース、 7……凹部、 8……傾斜部、 9……円弧部、 1 ... outer peripheral side permanent magnet, 1a ... both ends, 1b ... radial direction permanent magnet, 1c ... circumferential direction permanent magnet, 2 ... inner side permanent magnet, 3 ... rotor, 3a ... rotor core, 3b: rotor outer periphery, 4: rotor shaft, 5: stator, 5a: stator core, 5b: stator coil, 5c: slot, 6: teeth, 7: concave portion, 8: inclined portion, 9 ... arc part,

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 2層に分割されかつU字型に配置された
永久磁石が埋め込まれたロータと集中巻コイルを有する
ステータを備えた永久磁石埋め込み式モータにおいて、
前記ロータが2層に分割された前記永久磁石の一方また
は両方とロータ外周部との間に1極当たり2個所または
4個所の凹部を備えていることを特徴とする永久磁石埋
め込み式モータ。
1. A permanent magnet embedded motor comprising a rotor having two layers and embedded with permanent magnets arranged in a U-shape and a stator having concentrated winding coils.
A permanent magnet embedded motor, wherein the rotor is provided with two or four concave portions per pole between one or both of the permanent magnets divided into two layers and the outer periphery of the rotor.
【請求項2】 2層に分割されかつU字型に配置された
永久磁石が埋め込まれたロータと集中巻コイルを有する
ステータを備えた永久磁石埋め込み式モータにおいて、
前記ロータが外周側永久磁石と前記ロータ外周部との間
に1極当たり2個所の凹部を備えていることを特徴とす
る永久磁石埋め込み式モータ。
2. A permanent magnet embedded motor having a rotor in which permanent magnets divided into two layers and arranged in a U shape are embedded and a stator having concentrated winding coils.
The permanent magnet embedded motor, wherein the rotor has two concave portions per pole between an outer peripheral side permanent magnet and the outer peripheral portion of the rotor.
【請求項3】 請求項1または2の永久磁石埋め込み式
モータにおいて、前記凹部が前記ロータ外周部より半径
方向内方に位置して円周方向に沿って延びた円弧部と該
円弧部から前記ロータ外周部に延びた傾斜部を有するこ
とを特徴とする永久磁石埋め込み式モータ。
3. The permanent magnet embedded motor according to claim 1, wherein the concave portion is located radially inward from the outer periphery of the rotor and extends along the circumferential direction. A permanent magnet embedded motor having an inclined portion extending around the outer periphery of the rotor.
【請求項4】 請求項1または2の永久磁石埋め込み式
モータにおいて、前記永久磁石が円周方向に沿って延び
た円周方向永久磁石と該円周方向永久磁石の両端近傍か
ら前記ロータ外周部に延びた半径方向永久磁石から構成
されていることを特徴とする永久磁石埋め込み式モー
タ。
4. The permanent magnet embedded motor according to claim 1, wherein the permanent magnet extends in a circumferential direction, and a circumferential permanent magnet extends from near both ends of the circumferential permanent magnet. A permanent magnet embedded motor comprising a radially extending permanent magnet.
JP11120477A 1999-04-27 1999-04-27 Motor with embedded permanent magnet Pending JP2000316241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11120477A JP2000316241A (en) 1999-04-27 1999-04-27 Motor with embedded permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11120477A JP2000316241A (en) 1999-04-27 1999-04-27 Motor with embedded permanent magnet

Publications (1)

Publication Number Publication Date
JP2000316241A true JP2000316241A (en) 2000-11-14

Family

ID=14787154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11120477A Pending JP2000316241A (en) 1999-04-27 1999-04-27 Motor with embedded permanent magnet

Country Status (1)

Country Link
JP (1) JP2000316241A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088019A (en) * 2001-09-10 2003-03-20 Fujitsu General Ltd Permanent-magnet motor
WO2007055775A2 (en) * 2005-10-31 2007-05-18 Caterpillar Inc. Rotary electric machine
KR101221251B1 (en) * 2012-03-30 2013-01-11 하이젠모터 주식회사 Rotor of interior permanent magnet motor
CN104600890A (en) * 2014-11-25 2015-05-06 珠海格力节能环保制冷技术研究中心有限公司 Motor rotor and electric motor having it
CN104979981A (en) * 2014-04-12 2015-10-14 通用汽车环球科技运作有限责任公司 Electric machine for vehicle powertrain
JP2015186383A (en) * 2014-03-25 2015-10-22 アイシン・エィ・ダブリュ株式会社 Rotor of rotary electric machine
DE10253950B4 (en) * 2001-11-20 2018-02-15 Aisin Seiki K.K. Synchronous machine of permanent magnet type
US9925889B2 (en) 2015-08-24 2018-03-27 GM Global Technology Operations LLC Electric machine for hybrid powertrain with dual voltage power system
US10284036B2 (en) 2015-08-24 2019-05-07 GM Global Technology Operations LLC Electric machine for hybrid powertrain with engine belt drive
CN110729868A (en) * 2019-09-24 2020-01-24 江苏迈吉易威电动科技有限公司 Magnetic steel built-in type double-U-shaped fractional slot concentrated winding permanent magnet motor
EP3758194A1 (en) * 2019-06-27 2020-12-30 Valeo Siemens eAutomotive Germany GmbH Motor vehicle; electric machine for a motor vehicle and rotor for an electric machine
WO2022128541A1 (en) 2020-12-17 2022-06-23 IFP Energies Nouvelles Electric-machine rotor with two flux barriers per magnetic pole
US20230198324A1 (en) * 2020-06-08 2023-06-22 Aisin Corporation Rotor for rotary electric machine
FR3140717A1 (en) 2023-10-11 2024-04-12 IFP Energies Nouvelles Electric machine rotor with two flux barriers per magnetic pole

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088019A (en) * 2001-09-10 2003-03-20 Fujitsu General Ltd Permanent-magnet motor
DE10253950B4 (en) * 2001-11-20 2018-02-15 Aisin Seiki K.K. Synchronous machine of permanent magnet type
WO2007055775A2 (en) * 2005-10-31 2007-05-18 Caterpillar Inc. Rotary electric machine
WO2007055775A3 (en) * 2005-10-31 2007-07-05 Caterpillar Inc Rotary electric machine
KR101221251B1 (en) * 2012-03-30 2013-01-11 하이젠모터 주식회사 Rotor of interior permanent magnet motor
JP2015186383A (en) * 2014-03-25 2015-10-22 アイシン・エィ・ダブリュ株式会社 Rotor of rotary electric machine
US10205358B2 (en) 2014-04-12 2019-02-12 GM Global Technology Operations LLC Electric machine for a vehicle powertrain and the electric machine includes a permanent magnet
CN104979981A (en) * 2014-04-12 2015-10-14 通用汽车环球科技运作有限责任公司 Electric machine for vehicle powertrain
CN104600890A (en) * 2014-11-25 2015-05-06 珠海格力节能环保制冷技术研究中心有限公司 Motor rotor and electric motor having it
US9925889B2 (en) 2015-08-24 2018-03-27 GM Global Technology Operations LLC Electric machine for hybrid powertrain with dual voltage power system
US10284036B2 (en) 2015-08-24 2019-05-07 GM Global Technology Operations LLC Electric machine for hybrid powertrain with engine belt drive
EP3758194A1 (en) * 2019-06-27 2020-12-30 Valeo Siemens eAutomotive Germany GmbH Motor vehicle; electric machine for a motor vehicle and rotor for an electric machine
CN110729868A (en) * 2019-09-24 2020-01-24 江苏迈吉易威电动科技有限公司 Magnetic steel built-in type double-U-shaped fractional slot concentrated winding permanent magnet motor
US20230198324A1 (en) * 2020-06-08 2023-06-22 Aisin Corporation Rotor for rotary electric machine
EP4102686A4 (en) * 2020-06-08 2023-08-09 Aisin Corporation Rotor for dynamo-electric machine
WO2022128541A1 (en) 2020-12-17 2022-06-23 IFP Energies Nouvelles Electric-machine rotor with two flux barriers per magnetic pole
FR3118347A1 (en) 2020-12-17 2022-06-24 IFP Energies Nouvelles Electrical machine rotor with two flux barriers per magnetic pole
FR3140717A1 (en) 2023-10-11 2024-04-12 IFP Energies Nouvelles Electric machine rotor with two flux barriers per magnetic pole

Similar Documents

Publication Publication Date Title
JP3787756B2 (en) Permanent magnet rotating electric machine
US7417346B2 (en) Permanent magnet rotating electric machine
JP4900132B2 (en) Rotor and rotating electric machine
JP5259927B2 (en) Permanent magnet rotating electric machine
JP2008206308A (en) Permanent-magnet rotating electric machine
JP2008211934A (en) Rotating electrical machine and rotator therefor
JP2002281722A (en) Outer rotor motor and electric bicycle
JP2008148391A (en) Rotor for rotary electric machine, and the rotary electric machine
JP2000316241A (en) Motor with embedded permanent magnet
JP2008029078A (en) Permanent magnet type synchronous motor
JP2000333389A (en) Permanent magnet motor
JP2009050148A (en) Permanent-magnet electric motor with constant output in wide range
JP2001095182A (en) Permanent magent electric motor
JP2003092863A (en) Permanent magnet embedded synchronous motor
WO2001097363A1 (en) Permanent magnet synchronous motor
JPH11206046A (en) Permanent magnet motor and magnetizing method
JPH1189133A (en) Permanent magnet type motor
JP2001333553A (en) Permanent magnet motor
JP3601322B2 (en) Permanent magnet embedded motor
JP2001057753A (en) Axial gap motor
JP2006304546A (en) Permanent magnet reluctance type rotary electric machine
JP4080273B2 (en) Permanent magnet embedded motor
JPH11136892A (en) Permanent magnet motor
JP2000166135A (en) Brushless motor
JPH11285186A (en) Permanent-magnet motor