JP2000281359A - Production of synthetic quartz glass and control of hydrogen molecule concentration in the synthetic quartz glass - Google Patents

Production of synthetic quartz glass and control of hydrogen molecule concentration in the synthetic quartz glass

Info

Publication number
JP2000281359A
JP2000281359A JP11086181A JP8618199A JP2000281359A JP 2000281359 A JP2000281359 A JP 2000281359A JP 11086181 A JP11086181 A JP 11086181A JP 8618199 A JP8618199 A JP 8618199A JP 2000281359 A JP2000281359 A JP 2000281359A
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
furnace
temp
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11086181A
Other languages
Japanese (ja)
Inventor
Aya Hirai
彩 平井
Masashi Fujiwara
誠志 藤原
Hiroki Jinbo
宏樹 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP11086181A priority Critical patent/JP2000281359A/en
Publication of JP2000281359A publication Critical patent/JP2000281359A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an optical member wherein the concentration of dissolved hydrogen molecules is in an appropriate range by forming silica fine particles in a flame by ejecting a silicon compound and a combustion gas while keeping the temp. of a furnace within a specific temp. range and depositing synthetic quartz glass on a base body. SOLUTION: The temp. in the furnace is kept within ±25 deg.C of a prescribed temp. The concentration of dissolved hydrogen molecules contained in the synthetic quartz glass is preferably set to be in an appropriate range, concretely, the range of >=1×1017 and <=5×1018 molecule/cm3 in order to suppress lowering of transmissivity and formation of compaction by irradiation of light. Such synthetic quartz glass ingot is obtained by always keeping the temp. of the furnace within the temp. deviation range of 50 deg.C from a prescribed temp. (the prescribed temp. ±25 deg.C). The temp. in the furnace is kept constant by feeding back the measured temp. in the furnace and controlling the flow rate of combustion gas according to the temp. in the synthetic furnace, measured with a thermocouple, or the like. The concentration of hydrogen molecules depends on the temp. in the furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エキシマレーザリ
ソグラフィ等の300nm以下の紫外線レーザの光学系に用
いるのに適した合成石英ガラスの製造方法、及び合成石
英ガラス中の溶存水素濃度の推定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing synthetic quartz glass suitable for use in an optical system of an ultraviolet laser having a wavelength of 300 nm or less such as excimer laser lithography, and a method for estimating the concentration of dissolved hydrogen in synthetic quartz glass. .

【0002】[0002]

【従来の技術】従来、シリコンウエハ上に集積回路パタ
ーンを露光・転写するための光リソグラフィ技術には、
ステッパと呼ばれる露光装置が用いられてきた。近年の
集積回路の微細化に伴って、ステッパの露光光源はi線
(365nm)から、KrFエキシマレーザ(248nm)、Ar
Fエキシマレーザ(193nm)へと短波長化が進められて
いる。ここで、i線より長い波長領域の光を光源とする
ステッパにおいて一般的に用いられてきた光学ガラス
は、i線より短い波長領域では光の透過率が著しく低下
し、250nmよりも短い波長領域ではほとんどの光学ガラ
スが光を透過しなくなる。このため、エキシマレーザを
光源に用いるステッパでは、従来の光学ガラスに替えて
石英ガラス或いは蛍石等のフッ化物単結晶から成る光学
部材を用いることが提案されている。石英ガラスや蛍石
は、紫外線及び真空紫外線領域の光学系に広く用いられ
ている材料である。
2. Description of the Related Art Conventionally, optical lithography techniques for exposing and transferring an integrated circuit pattern on a silicon wafer include:
An exposure apparatus called a stepper has been used. With the recent miniaturization of integrated circuits, exposure light sources for steppers have changed from i-line (365 nm) to KrF excimer laser (248 nm), Ar
Shortening of the wavelength to F excimer laser (193 nm) is being promoted. Here, the optical glass that has been generally used in a stepper using light in a wavelength region longer than the i-line as a light source has a significantly reduced light transmittance in a wavelength region shorter than the i-line, and a wavelength region shorter than 250 nm. In this case, most optical glasses do not transmit light. For this reason, in a stepper using an excimer laser as a light source, it has been proposed to use an optical member made of a single crystal of fluoride such as quartz glass or fluorite instead of conventional optical glass. Quartz glass and fluorite are widely used materials for optical systems in the ultraviolet and vacuum ultraviolet regions.

【0003】ステッパの光学系、特に投影光学系に用い
る光学材料は、光源の波長において非常に高い透過率を
有することが要求される。ステッパの投影光学系におい
てはその総長が1000mm程度になることもあり、このとき
投影光学系で80%以上のスループット(光学系全体での
透過率)を得ようとすれば、用いる光学材料の内部吸収
の吸収係数は0.002cm−1以下であることが要求され
る。
[0003] Optical materials used in stepper optical systems, particularly projection optical systems, are required to have very high transmittance at the wavelength of the light source. In the projection optical system of a stepper, the total length may be about 1000 mm. At this time, if an attempt is made to achieve a throughput of 80% or more (transmittance through the entire optical system) with the projection optical system, the inside of the optical material used will be reduced. The absorption coefficient of absorption is required to be 0.002 cm-1 or less.

【0004】また、集積回路パターンを高解像度かつ広
範囲で露光するために非常に高い屈折率均質性が要求さ
れる。例えば、直径200mm程度の口径内で10-6オーダー
以下であることが要求される。以上のような条件を満た
す石英ガラスとして、合成石英ガラスが用いられる。特
に、気相合成法における直接法と呼ばれる製造方法によ
って製造される合成石英ガラスにあっては、高純度であ
り、大口径においても均質性が高いため、エキシマレー
ザを用いたステッパの光学系用部材として期待されてい
る。
Further, in order to expose an integrated circuit pattern with high resolution and in a wide range, very high refractive index homogeneity is required. For example, the diameter is required to be 10 -6 order or less within a diameter of about 200 mm. Synthetic quartz glass is used as the quartz glass satisfying the above conditions. In particular, synthetic quartz glass manufactured by a manufacturing method called a direct method in a gas phase synthesis method has high purity and high homogeneity even in a large diameter, so it is used for a stepper optical system using an excimer laser. It is expected as a member.

【0005】前述のように、ステッパの光学系用部材は
ステッパの稼働期間にわたって高い透過率および屈折率
均質性を有することが要求されている。しかしながら、
一般的に合成石英ガラスは、紫外光の照射によってE'セ
ンター(≡Si・の構造を持つ、ただし≡は3個の酸素
原子との3本の単結合を示し、・はラジカルであることを
示す)と呼ばれる構造欠陥に起因する215nmの吸収帯が
現れるため、紫外領域の光の照射により透過率が著しく
低下する。このE'センターの前駆体としては、基本構
造の欠陥である≡Si−Si≡結合、合成石英ガラス中
に取り込まれた不純物による≡Si−H結合や≡Si−
Cl結合などが考えられている。
As described above, the optical system member of the stepper is required to have high transmittance and high refractive index homogeneity over the operation period of the stepper. However,
In general, synthetic silica glass has a structure of E 'center (≡Si., Where ≡ indicates three single bonds with three oxygen atoms by irradiation of ultraviolet light, and indicates that it is a radical. 215 nm), which is caused by a structural defect called “shown”, the transmittance is significantly lowered by irradiation with light in the ultraviolet region. The precursor of the E ′ center includes a {Si—Si} bond, which is a defect in the basic structure, a ≡Si—H bond and a ≡Si—bond due to impurities taken into synthetic quartz glass.
Cl bonding and the like are considered.

【0006】さらに合成石英ガラスは、エキシマレーザ
を含む紫外領域の光の照射によって、コンパクションと
呼ばれる現象が起こり、屈折率の不均一領域が発生す
る。コンパクションとは、エネルギーの高い紫外光の照
射された部分で基本構造の結合の切断および再結合が起
こり、緻密化された密度の高い領域が局所的にできて屈
折率が上昇する現象である。
Further, a synthetic silica glass is irradiated with light in an ultraviolet region including an excimer laser to cause a phenomenon called compaction, which causes a region having a non-uniform refractive index. The compaction is a phenomenon in which a bond of a basic structure is cut and recombined in a portion irradiated with high-energy ultraviolet light, and a dense and high-density region is locally formed to increase a refractive index.

【0007】合成石英ガラスの透過率や屈折率均質性を
ステッパの稼働期間にわたって高い値に維持するための
指標の一つとして、ラマン分光法や赤外分光法等で測定
される合成石英ガラス中の溶存水素分子濃度が挙げられ
る。光学系用部材として用いる合成石英ガラス中の溶存
水素分子濃度は、一般に製造方法によって大きく異な
り、VAD法により製造された合成石英ガラスの溶存水
素分子濃度は1016molecules/cm3以下のオーダーである
のに対し、直接法により製造された合成石英ガラスの溶
存水素分子濃度はそれより高く1016molecules/cm3〜10
18molecules/cm3のオーダーであると言われている。
One of the indices for maintaining the transmittance and refractive index homogeneity of a synthetic quartz glass at a high value over the operation period of a stepper is a synthetic quartz glass measured by Raman spectroscopy or infrared spectroscopy. Dissolved hydrogen molecule concentration. The dissolved hydrogen molecule concentration in the synthetic quartz glass used as a member for the optical system generally differs greatly depending on the manufacturing method, and the dissolved hydrogen molecule concentration of the synthetic quartz glass manufactured by the VAD method is on the order of 10 16 molecules / cm 3 or less. In contrast, the concentration of dissolved hydrogen molecules in the synthetic quartz glass produced by the direct method is higher than 10 16 molecules / cm 3 -10
It is said to be on the order of 18 molecules / cm 3 .

【0008】[0008]

【発明が解決しようとする課題】合成石英ガラスがステ
ッパの稼働期間にわたって高い透過率および屈折率均質
性を保つためには、紫外光の照射によって生じる構造欠
陥の緩和が必要である。合成石英ガラス中の溶存水素分
子濃度が低いと、紫外光の照射によって生じたE'センタ
ーによる吸収が緩和されないため、合成石英ガラス中に
溶存する水素分子濃度は、1×1017molecules/cm3
上が好ましいと考えられる。
In order for the synthetic quartz glass to maintain high transmittance and refractive index homogeneity over the operation period of the stepper, it is necessary to reduce structural defects caused by irradiation with ultraviolet light. If the concentration of dissolved hydrogen molecules in the synthetic quartz glass is low, the absorption at the E ′ center caused by the irradiation of ultraviolet light is not reduced, so that the concentration of hydrogen molecules dissolved in the synthetic quartz glass is 1 × 10 17 molecules / cm 3. The above is considered preferable.

【0009】合成石英ガラス中の溶存水素濃度を高くす
る方法としては、合成する段階で合成条件を適性化し、
水素分子濃度の高い合成石英ガラスを得る方法と、合成
後に水素雰囲気中での熱処理により水素分子を含有させ
る方法があるが、後者は熱処理時に不純物が取り込まれ
ることがあるため、合成段階で水素分子濃度を高くする
ことが望ましい。
As a method for increasing the concentration of dissolved hydrogen in synthetic quartz glass, the synthesis conditions are optimized at the stage of synthesis,
There are a method of obtaining synthetic quartz glass with a high hydrogen molecule concentration, and a method of containing hydrogen molecules by heat treatment in a hydrogen atmosphere after synthesis.The latter method may include impurities during the heat treatment. It is desirable to increase the concentration.

【0010】一方、合成段階で溶存水素分子濃度を高く
しすぎると、E'センターの前駆体と考えられる≡Si−
H結合の多い合成石英ガラスが得られる。このような合
成石英ガラスは、光照射により透過率低下やコンパクシ
ョンが発生するため、合成段階での合成石英ガラス中の
溶存水素分子は適切な濃度範囲にある必要がある。適切
な範囲とは、例えば1×1017molecules/cm3以上5×
1018molecules/cm3以下である。
[0010] On the other hand, if the concentration of dissolved hydrogen molecules is too high in the synthesis step, the ≡Si-
Synthetic quartz glass with many H bonds can be obtained. In such a synthetic quartz glass, the transmittance decreases and compaction occurs due to light irradiation. Therefore, the dissolved hydrogen molecules in the synthetic quartz glass in the synthesis stage need to be in an appropriate concentration range. An appropriate range is, for example, 1 × 10 17 molecules / cm 3 or more and 5 ×
It is 10 18 molecules / cm 3 or less.

【0011】直接法により製造された合成石英ガラスイ
ンゴットは、外的な要因により部分ごとに合成状況がゆ
らぎ、このため溶存水素分子濃度は合成石英ガラスイン
ゴット全体で一様ではなく合成状況によって変化して濃
度分布を生じる。したがって、同一の合成条件で製造し
た合成石英ガラスや同一の合成石英ガラスインゴット内
においても、適正な水素分子濃度の範囲にない部分が生
じることがある。
In the synthetic quartz glass ingot manufactured by the direct method, the synthesis situation fluctuates part by part due to external factors. Therefore, the concentration of dissolved hydrogen molecules is not uniform in the whole synthetic quartz glass ingot but varies depending on the synthesis situation. To produce a concentration distribution. Therefore, even in a synthetic quartz glass manufactured under the same synthesis conditions or in the same synthetic quartz glass ingot, there may be a portion where the hydrogen molecule concentration is not in the proper range.

【0012】合成石英ガラスインゴットの溶存水素分子
濃度は、出来上がった合成石英ガラスインゴットの各位
置からサンプルを切り出し測定することは可能である
が、経済的観点から合理的ではない。以上のように、従
来の合成後に直接溶存水素分子濃度を測定する方法以外
に合成石英ガラスインゴット全体の水素分子濃度の値を
得られず、インゴット全体にわたって溶存水素分子濃度
が適正な範囲内にある合成石英ガラスを得ることが難し
かった。
Although the concentration of dissolved hydrogen molecules in a synthetic quartz glass ingot can be measured by cutting out a sample from each position of the completed synthetic quartz glass ingot, it is not rational from an economic viewpoint. As described above, the value of the hydrogen molecule concentration of the entire synthetic quartz glass ingot cannot be obtained except for the method of directly measuring the dissolved hydrogen molecule concentration after the conventional synthesis, and the dissolved hydrogen molecule concentration is within an appropriate range over the entire ingot. It was difficult to obtain synthetic quartz glass.

【0013】そこで本発明では、合成石英ガラスインゴ
ットの溶存水素分子濃度を推定し見積もることにより、
適切な水素分子濃度範囲にある合成石英ガラスインゴッ
トを製造する方法を提供することを目的とする。
Therefore, in the present invention, by estimating and estimating the dissolved hydrogen molecule concentration of the synthetic quartz glass ingot,
It is an object of the present invention to provide a method for producing a synthetic quartz glass ingot having an appropriate hydrogen molecule concentration range.

【0014】[0014]

【課題を解決するための手段】上述のように合成石英ガ
ラスインゴットの溶存水素分子濃度の値を適正化するた
めには、直接バッチ測定によって合成後に水素分子濃度
の値を得る方法でなく、合成中の溶存水素分子濃度と合
成状況の両方に相関のある物理量を連続的に監視する方
法が必要である。
As described above, in order to optimize the value of the dissolved hydrogen molecule concentration of the synthetic quartz glass ingot, it is not a method of obtaining the value of the hydrogen molecule concentration after the synthesis by direct batch measurement but a synthesis method. There is a need for a method for continuously monitoring physical quantities that correlate with both the concentration of dissolved hydrogen molecules and the state of synthesis.

【0015】合成状況を監視する方法として従来から、
加水分解及びその後の石英ガラス微粒子の堆積、ガラス
化に必要な熱量の供給量の目安となる合成石英ガラスイ
ンゴットの形状を監視することが行われている。インゴ
ットが低温にあって粘性が高い場合には酸水素ガス(燃
焼ガス)の供給量を増加させる方向で、高温にあって粘
性が低い場合には減少させる方向で調整することにより
合成状況を均一化する。
Conventionally, as a method of monitoring the synthesis status,
2. Description of the Related Art The shape of a synthetic quartz glass ingot, which is a measure of the supply of heat required for hydrolysis and subsequent deposition of quartz glass fine particles and vitrification, has been monitored. If the ingot is low in temperature and high in viscosity, the amount of oxyhydrogen gas (combustion gas) is increased, and if the ingot is high in temperature and low in viscosity, it is decreased. Become

【0016】本発明においては、特に合成石英ガラス中
の溶存水素濃度と高い相関を示す物性について検討を進
めた結果、炉内の温度が低い場合に溶存水素分子濃度が
非常に小さくなるという現象を見い出し、炉内温度のモ
ニターが溶存水素分子濃度の推定に有効な手段になるこ
とを導いた。以上から、炉内で炉内温度の測定を行うこ
とにより、インゴットの粘性や温度及びそれらの分布を
推測して溶存水素分子の生成量や拡散速度等と関連づ
け、溶存水素分子濃度の推定が可能であるという結論に
至った。炉内温度は、炉内の位置によって分布があるた
め、炉内の複数箇所において炉内温度の測定を行うこと
が好ましい。この炉内温度測定はインゴットの合成期間
中連続的に行うため、インゴットの溶存水素分子濃度の
推定も連続的に行える。さらに、溶存水素分子濃度の推
定は合成期間中に行えるため、インゴットの粘性や温度
及びそれらの分布が適当になるように酸水素ガス量等の
合成諸条件を調整し、合成石英ガラスインゴットの溶存
水素分子濃度を適当な範囲に制御することが可能であ
る。
In the present invention, in particular, as a result of studying physical properties showing a high correlation with the dissolved hydrogen concentration in the synthetic quartz glass, the phenomenon that the dissolved hydrogen molecule concentration becomes extremely small when the furnace temperature is low is considered. They found that monitoring the furnace temperature was an effective tool for estimating the concentration of dissolved hydrogen molecules. From the above, by measuring the furnace temperature in the furnace, it is possible to estimate the viscosity and temperature of the ingot and their distribution and correlate them with the production amount and diffusion rate of dissolved hydrogen molecules, and to estimate the concentration of dissolved hydrogen molecules Was reached. Since the furnace temperature varies depending on the position in the furnace, it is preferable to measure the furnace temperature at a plurality of locations in the furnace. Since the in-furnace temperature measurement is continuously performed during the synthesis period of the ingot, the concentration of dissolved hydrogen molecules in the ingot can be continuously estimated. Furthermore, since the concentration of dissolved hydrogen molecules can be estimated during the synthesis period, the synthesis conditions such as the amount of oxyhydrogen gas are adjusted so that the viscosity and temperature of the ingot and their distribution are appropriate, and the dissolved quartz glass ingot is dissolved. It is possible to control the hydrogen molecule concentration in an appropriate range.

【0017】[0017]

【発明の実施の形態】本発明は、気相合成法の一つであ
る直接法により合成される合成石英ガラスにおいて、合
成石英ガラス中に溶存する水素分子濃度の直接測定に依
らずに水素分子濃度を推定する方法であり、合成期間中
の炉内温度をモニターしてインゴットの粘性や温度及び
それらの分布を推測し、合成石英ガラス中の溶存水素分
子の生成量や拡散速度等と関連づけることにより溶存水
素分子濃度を推定する方法である。また、炉内温度のモ
ニターをインゴットの合成期間中連続的に行ってインゴ
ットの粘性や温度及びそれらの分布が適当になるように
合成諸条件を調整して炉内温度を制御し、合成石英ガラ
スインゴットの溶存水素分子濃度を適当な範囲に制御す
る合成石英ガラスの製造方法である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a synthetic quartz glass synthesized by a direct method which is one of the gas phase synthesizing methods, without relying on the direct measurement of the concentration of hydrogen molecules dissolved in the synthetic quartz glass. A method for estimating the concentration, in which the temperature in the furnace during the synthesis period is monitored to estimate the viscosity and temperature of the ingot and their distribution, and to correlate them with the amount of hydrogen molecules produced in the synthetic quartz glass, the diffusion rate, etc. Is a method for estimating the concentration of dissolved hydrogen molecules by In addition, the furnace temperature is continuously monitored during the synthesis period of the ingot, and the synthesis conditions are adjusted so that the viscosity and temperature of the ingot and the distribution thereof become appropriate. This is a method for producing synthetic quartz glass in which the concentration of dissolved hydrogen molecules in an ingot is controlled within an appropriate range.

【0018】上述したように、合成石英ガラス製造中の
合成炉内の温度が合成石英ガラス中の溶存水素分子濃度
と高い相関を示すことから、この合成炉内の温度を所定
温度±10℃以内に保つことにより、得られる合成石英
ガラス中の溶存水素濃度のばらつきを抑えることが可能
となる。特に、エキシマレーザーを光源とする光学装置
の光学系用部材として用いられる合成石英ガラスの場合
は、光照射による透過率低下やコンパクションの発生を
抑制するため、合成石英ガラス中の溶存水素分子濃度を
適切な範囲、具体的には1×1017molecules/cm3以上
5×1018molecules/cm3以下とすることが好ましい
が、このような水素分子濃度範囲の合成石英ガラスイン
ゴットは、炉内温度を常に50℃以内の所定温度範囲内
(所定温度±25℃)に保つことにより得られる。この
温度範囲は、炉内温度の測定位置によっても異なるが、
例えば石英ガラスインゴットの合成面と側面との間付近
の温度であれば、炉内温度が常に1200〜1250℃
の範囲内となるように保つ。炉内温度が1200℃以下
となると、溶存される水素分子濃度が低くなる。
As described above, since the temperature in the synthesis furnace during the production of the synthetic quartz glass has a high correlation with the concentration of dissolved hydrogen molecules in the synthetic quartz glass, the temperature in the synthesis furnace is set within a predetermined temperature ± 10 ° C. , It is possible to suppress variations in the concentration of dissolved hydrogen in the obtained synthetic quartz glass. In particular, in the case of synthetic quartz glass used as an optical system member of an optical device using an excimer laser as a light source, the concentration of dissolved hydrogen molecules in the synthetic quartz glass is reduced in order to suppress the decrease in transmittance and the occurrence of compaction due to light irradiation. It is preferable to set it to an appropriate range, specifically 1 × 10 17 molecules / cm 3 or more and 5 × 10 18 molecules / cm 3 or less. Is always kept within a predetermined temperature range within 50 ° C. (predetermined temperature ± 25 ° C.). This temperature range varies depending on the measurement position of the furnace temperature,
For example, if the temperature is between the synthetic surface and the side surface of the quartz glass ingot, the furnace temperature is always 1200 to 1250 ° C.
Keep within the range. When the temperature in the furnace becomes 1200 ° C. or lower, the concentration of dissolved hydrogen molecules decreases.

【0019】炉内温度を一定温度範囲内に保つために
は、測定した炉内温度を合成条件にフィードバックする
必要があるが、例えば熱電対で測定された合成炉内の温
度に応じて燃焼ガスの流量を制御することにより、炉内
温度を一定温度範囲内に保つことが可能となる。図1
に、本発明の方法を用いて推定したインゴットの水素分
子濃度分布、従来の方法(合成後にインゴットの複数箇
所からサンプルを切り出し、直接バッチ測定を行う方
法)で測定したインゴットの水素分子濃度を示す。これ
によると、合成炉内温度と直接バッチ測定を行って得た
水素分子濃度には相関があり、すなわち炉内温度の測定
結果から溶存される水素分子濃度を推定することが可能
であることがわかる(推定した水素分子濃度を破線で示
した)。
In order to maintain the furnace temperature within a certain temperature range, it is necessary to feed back the measured furnace temperature to the synthesis conditions. For example, the combustion gas is changed according to the temperature in the synthesis furnace measured by a thermocouple. By controlling the flow rate, the temperature in the furnace can be kept within a certain temperature range. FIG.
Shows the hydrogen molecule concentration distribution of the ingot estimated using the method of the present invention, and the hydrogen molecule concentration of the ingot measured by a conventional method (a method in which a sample is cut out from a plurality of portions of the ingot after synthesis and subjected to direct batch measurement). . According to this, there is a correlation between the temperature inside the synthesis furnace and the hydrogen molecule concentration obtained by performing direct batch measurement, that is, it is possible to estimate the dissolved hydrogen molecule concentration from the measurement result of the furnace temperature. It can be seen (the estimated hydrogen molecule concentration is indicated by a broken line).

【0020】また、図2には、本発明の製造方法を用い
て合成した石英ガラスの水素分子濃度分布を示した。こ
れによれば、炉内温度の測定結果から水素分子濃度を予
測し、これに応じて合成条件を調整することにより水素
分子濃度分布を適正化することが可能である。なお、図
1及び図2において、水素分子濃度の測定値はラマン分
光光度法により得た。水素分子濃度は、4315cm-1に現れ
るH−H結合によるピークの強度と、800cm-1に現れる石
英ガラスの基本構造によるピークの強度との比から求め
た。
FIG. 2 shows a hydrogen molecule concentration distribution of quartz glass synthesized by using the manufacturing method of the present invention. According to this, it is possible to optimize the hydrogen molecule concentration distribution by predicting the hydrogen molecule concentration from the measurement result of the furnace temperature and adjusting the synthesis conditions accordingly. 1 and 2, the measured value of the hydrogen molecule concentration was obtained by Raman spectrophotometry. Hydrogen molecule concentration was determined from the ratio of the intensities of the peaks due to H-H bonds appears at 4315cm -1, and the intensity of the peak due to the basic structure of the quartz glass appear on the 800 cm -1.

【0021】[0021]

【実施例】<実施例1>原料として四塩化ケイ素を用
い、図3に示す装置で合成石英ガラスを合成した。酸素
をキャリアガスとして四塩化ケイ素供給装置から四塩化
ケイ素を供給し、ベーキングで気化させた。流量制御に
はマスフローコントローラを用いた。原料気体を五重管
構造の石英ガラス製バーナ中心管から噴出させ、これを
バーナの外側の管から供給した酸素及び水素による火炎
中で加水分解させて、一定周期で回転及び揺動している
ターゲット上に石英ガラス微粒子を堆積し、ガラス化し
て石英ガラスインゴットを形成させた。このとき降下を
同時に行なうことにより、インゴットの上部面をバーナ
から一定の位置に保った。また、合成期間中は熱電対を
用いて炉内8箇所において温度を測定し、コンピュータ
でその経時変化を視覚化及び記録した。
<Example 1> Synthetic quartz glass was synthesized using silicon tetrachloride as a raw material using an apparatus shown in FIG. Silicon tetrachloride was supplied from a silicon tetrachloride supply device using oxygen as a carrier gas, and was vaporized by baking. A mass flow controller was used for flow control. The raw material gas is ejected from a quartz glass burner central tube with a quintuple structure, and this is hydrolyzed in a flame by oxygen and hydrogen supplied from the tube outside the burner, and rotates and swings at a constant cycle Fine quartz glass particles were deposited on the target and vitrified to form a quartz glass ingot. At this time, simultaneous lowering kept the upper surface of the ingot at a fixed position from the burner. During the synthesis period, the temperature was measured at eight locations in the furnace using a thermocouple, and the change over time was visualized and recorded by a computer.

【0022】このようにして合成した石英ガラスインゴ
ットの炉内温度の経時変化の記録から、インゴットの溶
存水素分子濃度分布を推定した。また、このインゴット
の回転中心成長方向数箇所からテストピースを切り出し
て研磨することにより、溶存水素分子濃度を測定するた
めのサンプルとした。 <実施例2>実施例1と同様の合成法によって、原料に
四塩化ケイ素を用いて、高純度石英ガラスインゴットを
合成した。合成期間中は炉内8箇所でモニターしている
炉内温度を基にインゴットの溶存水素分子濃度を推定
し、溶存水素分子濃度が適切な範囲になるように、酸水
素ガス量を増減させて炉内温度を目標温度±10℃に制御
した。このインゴットの回転中心成長方向数箇所からテ
ストピースを切り出して研磨することにより、溶存水素
分子濃度を測定するためのサンプルとした。
The concentration distribution of dissolved hydrogen molecules in the ingot was estimated from the time-dependent changes in the furnace temperature of the quartz glass ingot thus synthesized. In addition, test pieces were cut out from several places in the direction of growth of the center of rotation of the ingot and polished to obtain samples for measuring the concentration of dissolved hydrogen molecules. <Example 2> A high-purity quartz glass ingot was synthesized by the same synthesis method as in Example 1, using silicon tetrachloride as a raw material. During the synthesis period, the concentration of dissolved hydrogen molecules in the ingot is estimated based on the furnace temperatures monitored at eight locations inside the furnace, and the amount of oxyhydrogen gas is increased or decreased so that the dissolved hydrogen molecule concentration is in an appropriate range. The furnace temperature was controlled to the target temperature ± 10 ° C. A test piece was cut out from several places in the direction of growth of the ingot in the direction of the rotation center and polished to obtain a sample for measuring the concentration of dissolved hydrogen molecules.

【0023】本実施例において溶存水素分子濃度の値
は、炉内に複数設けた熱電対からの値と溶存水素分子濃
度との相関を調べた結果、一番相関の高かった部分、具
体的にはインゴットの合成面と側面との間の高さの熱電
対により得られた炉内温度を代表値として用いた。図1
の実施例1の溶存水素分子濃度推定値と溶存水素分子濃
度測定値(実測値)との比較から明らかなように、本発
明による溶存水素分子濃度の推定値は実際の水素分子濃
度とよく対応しており、本発明の合成石英ガラス中溶存
水素分子濃度の推定方法は適当であった。
In this embodiment, the value of the dissolved hydrogen molecule concentration was determined by examining the correlation between the values from a plurality of thermocouples provided in the furnace and the dissolved hydrogen molecule concentration. The temperature in the furnace obtained by the thermocouple at the height between the composite surface and the side surface of the ingot was used as a representative value. FIG.
As is clear from the comparison between the estimated value of the dissolved hydrogen molecule concentration in Example 1 and the measured value of the dissolved hydrogen molecule concentration (actually measured value), the estimated value of the dissolved hydrogen molecule concentration according to the present invention well corresponds to the actual hydrogen molecule concentration. Thus, the method of the present invention for estimating the concentration of dissolved hydrogen molecules in synthetic quartz glass was appropriate.

【0024】また、実施例2により炉内温度の測定結果
を燃焼ガスの流量にフィードバックして合成を行ったと
きのインゴット中の溶存水素分子濃度は、インゴット全
体にわたって適当な範囲にあり、本発明により製造され
た合成石英ガラスは紫外光用光学部材として充分な品質
が得られた。
The concentration of dissolved hydrogen molecules in the ingot when synthesis is performed by feeding back the measurement result of the furnace temperature to the flow rate of the combustion gas according to the second embodiment is within an appropriate range over the entire ingot. The synthetic quartz glass produced by the above-mentioned method had sufficient quality as an optical member for ultraviolet light.

【0025】[0025]

【発明の効果】本発明により、合成石英ガラスの任意の
位置における溶存水素分子濃度の推定が容易に行え、溶
存水素分子濃度の直接測定が不要で適切な水素分子濃度
範囲にある合成石英ガラス光学部材を提供することが可
能である。
According to the present invention, it is possible to easily estimate the concentration of dissolved hydrogen molecules at an arbitrary position on a synthetic quartz glass, and it is not necessary to directly measure the concentration of dissolved hydrogen molecules, and the synthetic quartz glass optics having an appropriate hydrogen molecule concentration range is unnecessary. A member can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1で合成した石英ガラスの合成期間中
の炉内温度経時変化とインゴット中の溶存水素分子濃度
分布の測定値と推定値を示したグラフである。
FIG. 1 is a graph showing a measured value and an estimated value of a temporal change in a furnace temperature during a synthesis period of a quartz glass synthesized in Example 1, and a distribution of a dissolved hydrogen molecule concentration in an ingot.

【図2】 実施例2で合成した石英ガラスの合成期間中
の炉内温度経時変化とインゴット中の溶存水素分子濃度
分布の測定値と推定値を示したグラフである。
FIG. 2 is a graph showing a measured value and an estimated value of a temporal change in a furnace temperature during a synthesis period of a quartz glass synthesized in Example 2 and a concentration distribution of dissolved hydrogen molecules in an ingot.

【図3】 本発明の実施例で用いた石英ガラス合成装置
の概略図である。 1. 石英ガラス製五重管バーナ 2. 石英ガラスインゴット 3. 石英ガラスターゲット 4. 耐火物 5. 炉枠 6. 炉床板 7. 熱電対
FIG. 3 is a schematic diagram of a quartz glass synthesizing apparatus used in an example of the present invention. 1. Quartz tube burner made of quartz glass 2. Quartz glass ingot 3. Quartz glass target 4. Refractory 5. Furnace frame 6. Hearth plate 7. Thermocouple

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】合成炉内にケイ素化合物と燃焼ガスとを噴
出して火炎中でシリカ微粒子を発生させ、基体上に堆積
させる合成石英ガラスの製造方法において、合成石英ガ
ラス製造中の合成炉内の温度を所定温度±25℃以内に
保つことにより、得られる合成石英ガラス中の溶存水素
濃度のばらつきを抑えることを特徴とする合成石英ガラ
スの製造方法。
1. A method for producing a synthetic quartz glass in which a silicon compound and a combustion gas are jetted into a synthesis furnace to generate silica fine particles in a flame and deposited on a substrate. A method for producing synthetic quartz glass, characterized in that the temperature of the synthetic quartz glass is kept within a predetermined temperature ± 25 ° C. to thereby suppress the variation in the concentration of dissolved hydrogen in the synthetic quartz glass obtained.
【請求項2】請求項1に記載の合成石英ガラスの製造方
法において、前記合成炉内の温度を測定する方法とし
て、熱電対を用いたことを特徴とする合成石英ガラスの
製造方法。
2. The method for producing synthetic quartz glass according to claim 1, wherein a thermocouple is used as a method for measuring the temperature in the synthesis furnace.
【請求項3】請求項2に記載の合成石英ガラスの製造方
法において、前記熱電対で測定された合成炉内の温度に
応じて燃焼ガスの流量を制御することにより、前記合成
石英ガラス製造中の合成炉内の温度を所定温度±25℃
以内に保つことを特徴とする合成石英ガラスの製造方
法。
3. The method for producing synthetic quartz glass according to claim 2, wherein the flow rate of the combustion gas is controlled in accordance with the temperature in the synthesis furnace measured by the thermocouple. The temperature inside the synthesis furnace is set to a predetermined temperature ± 25 ° C.
A method for producing synthetic quartz glass, characterized in that the temperature is kept within the range.
【請求項4】合成炉内にケイ素化合物と燃焼ガスとを噴
出して火炎中でシリカ微粒子を発生させ、基体上に堆積
させて得られる合成石英ガラス中の溶存水素濃度の推定
方法であって、合成石英ガラス製造中の合成炉内の温度
をモニターし、該モニターした温度によって得られた合
成石英ガラス中の溶存水素濃度を推定することを特徴と
する合成石英ガラス中の溶存水素濃度の推定方法。
4. A method for estimating a dissolved hydrogen concentration in a synthetic quartz glass obtained by ejecting a silicon compound and a combustion gas into a synthesis furnace to generate silica fine particles in a flame and depositing the fine particles on a substrate. Estimating the dissolved hydrogen concentration in the synthetic quartz glass by monitoring the temperature in the synthetic furnace during the production of the synthetic quartz glass and estimating the dissolved hydrogen concentration in the synthetic quartz glass obtained by the monitored temperature. Method.
JP11086181A 1999-03-29 1999-03-29 Production of synthetic quartz glass and control of hydrogen molecule concentration in the synthetic quartz glass Pending JP2000281359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11086181A JP2000281359A (en) 1999-03-29 1999-03-29 Production of synthetic quartz glass and control of hydrogen molecule concentration in the synthetic quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11086181A JP2000281359A (en) 1999-03-29 1999-03-29 Production of synthetic quartz glass and control of hydrogen molecule concentration in the synthetic quartz glass

Publications (1)

Publication Number Publication Date
JP2000281359A true JP2000281359A (en) 2000-10-10

Family

ID=13879607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11086181A Pending JP2000281359A (en) 1999-03-29 1999-03-29 Production of synthetic quartz glass and control of hydrogen molecule concentration in the synthetic quartz glass

Country Status (1)

Country Link
JP (1) JP2000281359A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113683291A (en) * 2021-07-30 2021-11-23 江苏亨通智能科技有限公司 Method for producing large-size and high-uniformity synthetic quartz glass weight

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113683291A (en) * 2021-07-30 2021-11-23 江苏亨通智能科技有限公司 Method for producing large-size and high-uniformity synthetic quartz glass weight

Similar Documents

Publication Publication Date Title
JP3064857B2 (en) Optical member for optical lithography and method for producing synthetic quartz glass
JP5035516B2 (en) Method for producing titania-doped quartz glass for photomask
JP3965734B2 (en) Quartz glass and method for producing the same
EP1900694B1 (en) Method for making a synthetic quartz glass substrate for excimer lasers
JP4158009B2 (en) Synthetic quartz glass ingot and method for producing synthetic quartz glass
JP5471478B2 (en) Method for producing synthetic quartz glass for excimer laser
JP4569779B2 (en) Synthetic quartz glass ingot and method for producing synthetic quartz glass member
JP2814867B2 (en) Manufacturing method of quartz glass
JP2001010833A (en) Quartz glass member
US6094941A (en) Process for manufacturing optical member for excimer laser
EP1207141A1 (en) Synthetic quartz glass member, photolithography apparatus, and method for producing photolithography apparatus
JP2003183037A (en) Quartz glass blank for optical part and use thereof
JP5287574B2 (en) Heat treatment method for synthetic quartz glass
JPH1053432A (en) Quartz glass optical member, its production, and projection exposure device
JP4831328B2 (en) Method for manufacturing synthetic quartz glass substrate for excimer laser
JP2000281359A (en) Production of synthetic quartz glass and control of hydrogen molecule concentration in the synthetic quartz glass
JPH092828A (en) Quartz glass, optical member containing the same and production of the same
JP2010229029A (en) Method of manufacturing synthetic quartz glass ingot and method of manufacturing synthetic quartz glass member
JP4114039B2 (en) Synthetic quartz glass
JP3944759B2 (en) Synthetic quartz glass for optics, manufacturing method thereof, and optical member for excimer laser
JP2814866B2 (en) Manufacturing method of quartz glass
JPWO2002085808A1 (en) Quartz glass member and projection exposure apparatus
JP3897188B2 (en) Method and apparatus for producing synthetic quartz glass
JP4114027B2 (en) Method for predicting occurrence of shape distortion in synthetic quartz glass production and method for producing synthetic quartz glass
JP3427136B2 (en) Synthetic quartz glass manufacturing apparatus and manufacturing method using the same