JP2000247677A - Corrosion resistant glass fiber composition - Google Patents

Corrosion resistant glass fiber composition

Info

Publication number
JP2000247677A
JP2000247677A JP11047082A JP4708299A JP2000247677A JP 2000247677 A JP2000247677 A JP 2000247677A JP 11047082 A JP11047082 A JP 11047082A JP 4708299 A JP4708299 A JP 4708299A JP 2000247677 A JP2000247677 A JP 2000247677A
Authority
JP
Japan
Prior art keywords
glass
glass fiber
temperature
zno
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11047082A
Other languages
Japanese (ja)
Inventor
Koji Sugano
浩司 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP11047082A priority Critical patent/JP2000247677A/en
Publication of JP2000247677A publication Critical patent/JP2000247677A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a corrosion resistant glass fiber which is free from B2O3 and F2 and easy to spin, has improved resistance to acids and is produced using inexpensive raw materials with good producibility. SOLUTION: The corrosion resistant glass fiber contains, by weight, 56-63% SiO2, 11-15% Al2O3, 15-25% CaO, 0.5-8% MgO, 0.5-8% ZnO, 1-12% MgO+ZnO, 0-0.5% TiO2, 0-1% Na2O, 0-1% K2O and 0.1-1.5% Na2O+K2O, and is substantially free from B2O3 and F2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Eガラス繊維と同
等の生産性があり、しかも同等の機械的特性や電気的特
性を持つ、耐酸性、耐水性に優れた耐食性ガラス繊維に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corrosion-resistant glass fiber having the same productivity as that of an E glass fiber and having the same mechanical and electrical properties and excellent in acid resistance and water resistance. .

【0002】[0002]

【従来の技術】現在FRPなどの繊維補強樹脂製品に使
用されているガラス繊維の大部分はEガラス繊維と呼ば
れるSiO52〜56重量%、Al2 3 12〜1
6重量%、B 5〜8重量%、CaO 15〜2
5重量%を主成分とするガラス繊維である。(以下本発
明において、%は断りのない限り重量%を意味する。) この組成のガラス繊維が製造されはじめて既に50年以
上経過したにもかかわらず、現在なお世界で生産される
ほとんどのガラス繊維がEガラス繊維である理由は、そ
の溶融状態のガラスの失透温度が紡糸に適した温度より
も約100℃低く、紡糸上のトラブルがなく非常に生産
性が良いためである。
2. Description of the Related Art Most of glass fibers currently used for fiber-reinforced resin products such as FRP are 52 to 56% by weight of SiO 2 called E glass fiber and 12 to 1 of Al 2 O 3 .
6 wt%, B 2 O 3 5~8 wt%, CaO 15 to 2
It is a glass fiber mainly containing 5% by weight. (Hereinafter, in the present invention,% means% by weight unless otherwise specified.) Most glass fibers which are currently produced worldwide even though glass fibers of this composition have already been manufactured for more than 50 years. Is made of E glass fiber because the devitrification temperature of the glass in its molten state is about 100 ° C. lower than the temperature suitable for spinning, and there is no trouble in spinning and the productivity is very good.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、Eガラ
ス繊維は耐酸性が悪く、用途が拡大しているFRP下水
道管の補強材、コンクリ〜ト下水道管どの内側のライニ
ングやバッテリーセパレーターなど耐酸性が要求される
分野には使用出来ない。このためECRという略称で呼
ばれる耐酸性ガラス繊維をはじめとして、多数の組成を
有するガラス繊維が開発されているが、Eガラスに較べ
て紡糸し難い、電気特性がわるいなど種々の問題があり
更なる改良が望まれている。本発明において耐食性は、
耐酸性と耐水性を含むより広い概念である。また、Eガ
ラス繊維は組成中に多量のB2 3 を含有し、ガラス原
料の溶融を容易にするためF2 成分が配合されている
が、B23 資源の生産量の減少、F 2 の環境汚染対策
費用の増加などにより製造価格の上昇が問題となってい
る。本発明の解決しようとする課題は、具体的には、B
23 、F2 を含まなくてもガラス繊維の紡糸温度が1
300℃以下で、液相温度が紡糸温度よりも60℃以上
低い紡糸し易いガラス組成を開発し、耐酸性、耐水性に
優れ、しかも機械的物性、電気的物性がEガラス繊維な
みであるガラス繊維を得ることである。
However, E gala
Fiber has poor acid resistance and its use is expanding in FRP sewage.
Reinforcement for ducts, concrete to sewer pipes
Acid resistance is required for packaging and battery separators
Cannot be used in the field. For this reason, it is referred to as ECR.
Many compositions including acid-resistant glass fiber
Glass fiber has been developed, but compared to E-glass.
Problems such as difficult spinning and poor electrical properties
Further improvements are desired. In the present invention, the corrosion resistance is
A broader concept that includes acid resistance and water resistance. In addition, E
Lath fiber contains a large amount of B in the compositionTwoOThree Containing glass
F to facilitate melting of the mixtureTwo Contains ingredients
But BTwo OThree Decrease in resource production, F Two Environmental pollution countermeasures
Rising production prices have become a problem due to increased costs, etc.
You. The problem to be solved by the present invention is, specifically,
Two OThree , FTwo The spinning temperature of glass fiber is 1
300 ° C or lower, liquidus temperature 60 ° C or higher than spinning temperature
Developed a glass composition that is easy to spin with low acid resistance and water resistance
Excellent and mechanical and electrical properties are E glass fiber
It is to obtain glass fiber which is only.

【0004】[0004]

【課題を解決するための手段】本発明の耐食性ガラス繊
維は、以下の組成のものである。 成分 割合(重量%) SiO2 56〜63 Al23 11〜15 CaO 15〜25 MgO 0.5〜 8 ZnO 0.1〜 8 MgO+ZnO 1〜12 TiO2 0〜 0.5%未満 Na2 O 0〜 1 K2 O 0〜 1 Na2 O+K2 O 0.1〜 1.5 これら成分の合計が少なくとも99.0%であり、この
他に、原料に入っている微量の不純物を含めて組成は1
00%となる。この組成は、粘度が1000ポイズの温
度が1174〜1297℃の範囲であり、粘度が100
0ポイズの温度よりも少なくとも60℃低い液相温度を
持つ。そのため高温の操業条件にもかかわらず、失透す
ることなく紡糸が可能である。
The corrosion resistant glass fiber of the present invention has the following composition. Component ratio (wt%) SiO 2 56~63 Al 2 O 3 11~15 CaO 15~25 MgO 0.5~ 8 ZnO 0.1~ 8 MgO + ZnO less than 1~12 TiO 2 0~ 0.5% Na 2 O 0 to 1 K 2 O 0 to 1 Na 2 O + K 2 O 0.1 to 1.5 The total of these components is at least 99.0%. In addition, the composition including a trace amount of impurities contained in the raw material is included. Is 1
00%. This composition has a viscosity of 1000 poise, a temperature in the range of 1174-1297 ° C., and a viscosity of 100 poise.
It has a liquidus temperature at least 60 ° C. below the temperature of 0 poise. Thus, spinning is possible without devitrification despite high operating conditions.

【0005】このような組成にすることにより、紡糸温
度を1300℃以下、液相温度を紡糸温度よりも60℃
以上低くなるようにして、生産性に大きい影響を与える
紡糸性を向上させ、しかも耐酸性が優れた組成とするこ
とができた。SiOはガラスの耐酸性を向上させる成
分である。56%未満では耐酸性が十分でなく、63%
を越えると溶融温度が高くなると共に液相温度も高くな
り、紡糸性が悪化する。Alはガラスの耐水性を
向上させると共に、液相温度を下げる成分である。11
%未満では液相温度が高くなり紡糸性が悪くなる。15
%を越えると耐水性は良くなるが溶融温度が高くなりす
ぎる。CaOはガラスの耐水性を向上させるとともにガ
ラスの粘度を下げ溶融性を向上させる成分である。15
%未満では溶融温度が高くなりすぎ25%を越えると液
相温度が高くなり紡糸性が悪くなるとともに誘電率が悪
くなる。
[0005] With such a composition, the spinning temperature is 1300 ° C or less, and the liquidus temperature is 60 ° C lower than the spinning temperature.
By making the above lower, spinnability which greatly affects productivity was improved, and a composition having excellent acid resistance was able to be obtained. SiO 2 is a component that improves the acid resistance of glass. If it is less than 56%, the acid resistance is not sufficient, and 63%
When the temperature exceeds the above range, the melting temperature increases and the liquidus temperature also increases, resulting in poor spinnability. Al 2 O 3 is a component that improves the water resistance of the glass and lowers the liquidus temperature. 11
%, The liquidus temperature increases and spinnability deteriorates. Fifteen
%, The water resistance is improved, but the melting temperature is too high. CaO is a component that improves the water resistance of the glass, reduces the viscosity of the glass, and improves the meltability. Fifteen
If it is less than 25%, the melting temperature becomes too high, and if it exceeds 25%, the liquidus temperature becomes high, the spinnability deteriorates and the dielectric constant deteriorates.

【0006】MgOはガラスの粘度を下げ溶融性を向上
させる成分である。0.5%未満では効果が得られず8
%を越えると液相温度が高くなり紡糸性が悪くなる。Z
nOはガラスの粘度を下げ溶融性を向上させると共に耐
酸性を向上させる成分である。0.1%未満では耐酸性
が悪くなり、8%を越えると液相温度が高くなり紡糸性
が悪くなる。本発明では溶融性と耐酸性を考慮し、Mg
OとZnOの合量を1〜12%とする。1%未満では溶
融性が悪化し、溶融温度が高くなり、12%を越えると
液相温度が高くなり紡糸性が悪くなる。TiOは溶融
性を向上させる成分であるが、ガラスに好ましくない色
を与える。適正範囲は0〜0.5%未満である。Na
OとKOといったアルカリ金属酸化物は、ガラスの粘
度を下げ溶融性を向上させる成分である。NaO+K
Oが0.1%未満では溶融温度が高くなり、1.5%
を越えると耐水性や電気特性が悪くなる。また、原料の
不純物として通常必然的に含まれるTiO、Fe
、SrO等や、耐火物の浸食等からCrやZr
等がそれぞれ1%以下程度混入することがある。
[0006] MgO is a component that lowers the viscosity of glass and improves the meltability. If less than 0.5%, no effect is obtained and 8
%, The liquidus temperature increases and spinnability deteriorates. Z
nO is a component that lowers the viscosity of the glass, improves the meltability, and improves the acid resistance. If it is less than 0.1%, the acid resistance will be poor, and if it exceeds 8%, the liquidus temperature will be high and the spinnability will be poor. In the present invention, in consideration of meltability and acid resistance, Mg
The total amount of O and ZnO is set to 1 to 12%. If it is less than 1%, the meltability deteriorates and the melting temperature increases, and if it exceeds 12%, the liquidus temperature increases and spinnability deteriorates. TiO 2 is a component that improves the melting property, but gives an undesired color to the glass. An appropriate range is 0 to less than 0.5%. Na 2
Alkali metal oxides such as O and K 2 O are components that lower the viscosity of glass and improve the meltability. Na 2 O + K
If 2 O is less than 0.1%, the melting temperature becomes high, and 1.5%
If it exceeds 300, the water resistance and the electrical properties deteriorate. In addition, TiO 2 and Fe 2 O usually inevitably contained as impurities of the raw material
3 , SrO, etc. or Cr 2 O 3 or Zr
O 2 or the like may be mixed about 1% or less, respectively.

【0007】他の望ましい実施態様としては、Si
、CaO、Al、MgO、ZnO、MgO+
ZnO、TiO、NaO+KOの量は以下のよう
である。 成分 割合(重量%) SiO 57.0〜62.0 CaO 18.0〜24.0 Al 12.0〜14.0 MgO 1.5〜 6.0 ZnO 1.5〜 6.5 MgO+ZnO 3.0〜10.0 TiO 0 〜0.4 NaO+KO 0.1〜0.9 この組成は、粘度が1000ポイズの温度が1224〜
1290℃の範囲であり、粘度が1000ポイズの温度
より少なくとも70℃低い液相温度を持つ。
In another preferred embodiment, Si
O 2 , CaO, Al 2 O 3 , MgO, ZnO, MgO +
ZnO, the amount of TiO 2, Na 2 O + K 2 O is as follows. Component ratio (wt%) SiO 2 57.0~62.0 CaO 18.0~24.0 Al 2 O 3 12.0~14.0 MgO 1.5~ 6.0 ZnO 1.5~ 6.5 MgO + ZnO 3.0~10.0 TiO 2 0 ~0.4 Na 2 O + K 2 O 0.1~0.9 this composition, the temperature of the viscosity of 1000 poise 1224~
It has a liquidus temperature in the range of 1290 ° C and a viscosity at least 70 ° C below a temperature of 1000 poise.

【0008】更に好ましいSiO、CaO、Al
、MgO、ZnO、MgO+ZnO、TiO、Na
O+KOの量は以下である。 成分 割合(重量%) SiO 58.5〜61.0 CaO 19.5〜23.0 Al 12.5〜13.5 MgO 2.0〜4.0 ZnO 2.0〜5.5 MgO+ZnO 4.5〜8.0 TiO 0〜0.3 NaO+KO 0.1〜0.6 更に、特に好ましいのは、TiOが0.3重量%以
下、さらに好ましくは0.2重量%以下である。
More preferred SiO 2 , CaO, Al 2 O
3 , MgO, ZnO, MgO + ZnO, TiO 2 , Na
The amount of 2 O + K 2 O is as follows. Component ratio (wt%) SiO 2 58.5~61.0 CaO 19.5~23.0 Al 2 O 3 12.5~13.5 MgO 2.0~4.0 ZnO 2.0~5.5 MgO + ZnO 4.5-8.0 TiO 2 0-0.3 Na 2 O + K 2 O 0.1-0.6 More preferably, TiO 2 is 0.3% by weight or less, more preferably 0.2% by weight. % By weight or less.

【0009】特に好ましい態様の一例として、連続繊維
は次の組成をもっている。SiO 59.55%、C
aO 20.71%、Al 12.64%、Mg
O 2.53%、ZnO 3.77%、NaO 0.
33%、KO 0.16%、Fe 0.13
%、TiO 0.18%。このガラスは1000ポイ
ズの温度が1260℃、液相温度1155℃、両温度の
差、ΔTは105℃である。
In one particularly preferred embodiment, the continuous fiber has the following composition. 59.55% of SiO 2 , C
aO 20.71%, Al 2 O 3 12.64%, Mg
O 2.53%, ZnO 3.77%, Na 2 O 0.
33%, K 2 O 0.16% , Fe 2 O 3 0.13
%, TiO 2 0.18%. This glass has a temperature of 1000 poise at 1260 ° C., a liquidus temperature of 1155 ° C., a difference between the two temperatures, and ΔT of 105 ° C.

【0010】[0010]

【発明の実施の形態】このガラス繊維には実質的にB
、Fが含まれていない。実質的に含まれていない
とは、入っていても極少量で痕跡程度、たとえば原料か
らの不純物程度を意味する。本発明のガラス繊維は、従
来のガラス繊維と同じ公知の方法により製造される。ガ
ラス繊維原料はクレー、シリカサンド、アルミナ、ライ
ムストーン、消石灰、ドロマイトなど公知のEガラス繊
維に使用する原料の他に、粉末状のZnOを通常の操業
と同じに計量、混合する。混合した原料を溶解炉中に投
入し溶融、清澄し、フォアハースの下部に取りつけた繊
維を作るブッシングに導く。フォアハースとブッシング
の温度は、溶融ガラスが紡糸に適した粘度になるよう調
整される。溶融ガラスはブッシングに設けられた、多数
のノズルチップから引き出され高速で延伸され、集束剤
を付与されて、巻き取られる。
BEST MODE FOR CARRYING OUT THE INVENTION This glass fiber contains substantially B 2
O 3 and F 2 are not contained. The term "substantially not contained" means that a trace is present in a very small amount even if it is contained, for example, an impurity is present in the raw material. The glass fiber of the present invention is manufactured by the same known method as the conventional glass fiber. As the glass fiber raw material, in addition to the raw materials used for known E glass fibers such as clay, silica sand, alumina, limestone, slaked lime, and dolomite, powdered ZnO is measured and mixed in the same manner as in a normal operation. The mixed raw material is put into a melting furnace, melted and clarified, and led to a bushing for producing a fiber attached to a lower portion of the foreheart. The temperature of the forehearth and the bushing is adjusted so that the molten glass has a viscosity suitable for spinning. The molten glass is drawn from a number of nozzle tips provided in the bushing, stretched at a high speed, provided with a sizing agent, and wound up.

【0011】[0011]

【実施例】以下実施例により本発明の特徴を説明する。
本実施例においては、紡糸性の難易度はこの明細書中で
も記載したように紡糸温度と液相温度から容易に推定出
来るので、実施例では紡糸することなく紡糸温度と液相
温度の測定からその差(ΔT)を算出し、難易度の判定
資料として表1、表2に示した。 <実施例>実施例1,2,3,4は本発明のガラス繊維
組成であり、表1に示すガラス繊維の組成となるように
原料を調合した。その混合した原料を白金るつぼに入れ
て、1500℃で8時間溶融し均一な溶融ガラスとした
後、カーボン板の上に流し出し、冷却して試料とするガ
ラスを得た。紡糸温度(溶融ガラスの粘度が1000ポ
イズになる温度)の測定は用意したガラスを白金るつぼ
中で再溶融し、高温回転粘度計を用いて測定した。液相
温度(その温度以上ではガラスの中に結晶が存在しない
温度)の測定は用意したガラスを直径約500〜100
0μmの粉末に砕き、白金ボートに入れ、温度勾配があ
る炉内に静置し12時間保持し、取り出した試料の結晶
発生位置を顕微鏡で観察する方法で測定した。
The features of the present invention will be described below with reference to examples.
In the present embodiment, the spinnability is easily estimated from the spinning temperature and the liquidus temperature as described in this specification. The difference (ΔT) was calculated and is shown in Tables 1 and 2 as data for determining the degree of difficulty. <Examples> Examples 1, 2, 3, and 4 are glass fiber compositions of the present invention, and raw materials were prepared so as to have the glass fiber compositions shown in Table 1. The mixed raw material was put in a platinum crucible and melted at 1500 ° C. for 8 hours to form a uniform molten glass, which was then poured onto a carbon plate and cooled to obtain a glass as a sample. The spinning temperature (the temperature at which the viscosity of the molten glass becomes 1000 poise) was measured by remelting the prepared glass in a platinum crucible and using a high-temperature rotational viscometer. The liquidus temperature (the temperature above which the crystal does not exist in the glass) is measured using a prepared glass having a diameter of about 500 to 100.
The powder was crushed into a powder of 0 μm, put into a platinum boat, left still in a furnace having a temperature gradient, kept for 12 hours, and the crystal generation position of the sample taken out was measured by a microscope.

【0012】耐酸性は、各実施例のガラスを白金るつぼ
中で再溶融し、直径13μmのガラス繊維を紡糸したも
のを使用し、そのガラス繊維2gを200mlの80℃
に加熱した10重量%の硫酸溶液中に5時間浸漬したと
きの重量減少を測定し元の繊維重量に対する割合を算出
した。
The acid resistance is as follows. The glass of each Example is melted again in a platinum crucible, and a glass fiber having a diameter of 13 μm is spun.
The weight loss when immersed in a 10% by weight sulfuric acid solution heated for 5 hours was measured, and the ratio to the original fiber weight was calculated.

【0013】耐水性は耐酸性の試験に使用したものと同
じ直径13μmのガラス繊維を使用して、ガラス繊維2
gを96℃に加熱した蒸留水中に100時間浸漬したと
きの重量減少を測定し元の繊維重量に対する割合を算出
した。
Water resistance was measured using the same glass fiber having a diameter of 13 μm as used in the acid resistance test.
g was immersed in distilled water heated to 96 ° C. for 100 hours, and the weight loss was measured to calculate the ratio to the original fiber weight.

【0014】<比較例>比較例1は従来のEガラス、比
較例2〜4は本発明の範囲外の組成であり、比較例5は
耐酸性ガラスのECRガラスの組成である。実施例と同
様な試験を行い表2に結果を示した。耐酸性を各実施例
と比較例1のEガラス繊維、比較例5のECR耐酸ガラ
ス繊維を比較すると耐酸性がEガラスよりも大幅に向上
し、ECR耐酸ガラス繊維と同等の耐酸性を有すること
がわかる。そしてECRガラスは高価なTiO2原料を
大量に使用するが、本発明の組成はTiOは極めて少
量であるため、原料価格の点で大幅な性能の違いがあ
る。比較例2〜4は何れも、本発明の組成と近似してい
るが、特許請求の範囲に含まれない組成で、比較例2は
紡糸温度が高くブッシング面の温度コントロールが難し
くなり、ブッシングの白金合金の消耗が大きく、溶解エ
ネルギーも多く必要で経済的でない。比較例3は紡糸性
はよいが耐酸性が悪く TiOを多く含むためガラス
が黄色く着色した。比較例4は耐酸性には優れるが、紡
糸温度と液相温度の差が少なく紡糸し難い。
<Comparative Example> Comparative Example 1 is a composition of a conventional E glass, Comparative Examples 2 to 4 are compositions outside the scope of the present invention, and Comparative Example 5 is a composition of an acid-resistant glass ECR glass. The same test as in the example was conducted, and the results are shown in Table 2. Compared with the E glass fiber of each example and the comparative example 1 and the ECR acid resistant glass fiber of the comparative example 5, the acid resistance is much higher than that of the E glass and has the same acid resistance as the ECR acid resistant glass fiber. I understand. The ECR glass is heavy use of expensive TiO2 raw materials, the composition of the present invention, since TiO 2 is extremely small, there is a difference in significant performance in terms of raw material costs. Comparative Examples 2 to 4 are all similar to the composition of the present invention, but are not included in the scope of the claims. Comparative Example 2 has a high spinning temperature, and it is difficult to control the temperature of the bushing surface. The consumption of platinum alloy is large, the melting energy is also large and it is not economical. Comparative Example 3 had good spinnability but had poor acid resistance and contained a large amount of TiO 2 , so that the glass was colored yellow. Comparative Example 4 is excellent in acid resistance, but has a small difference between the spinning temperature and the liquidus temperature and is difficult to spin.

【0015】[0015]

【表1】 [Table 1]

【表2】 ΔT(℃)=紡糸温度(℃)―液相温度(℃) 耐酸性(%)、及び耐水性(%)={(試験前繊維重量
―試験後繊維重量)/試験前繊維重量}×100
[Table 2] ΔT (° C) = spinning temperature (° C)-liquidus temperature (° C) Acid resistance (%) and water resistance (%) = {(weight of fiber before test-weight of fiber after test) / weight of fiber before test} x 100

【0016】[0016]

【発明の効果】本発明は、請求項1に記載した組成のガ
ラス繊維を製造することにより、実質的にB及び
を含まないガラス繊維を、生産性を下げることなく
製造し、しかも耐酸性などの耐食性を向上させるとい
う、困難な課題を解決することが出来た。また高価なT
iOを原料に極少量使用するかあるいは原料として配
合することなく製造が可能なので経済的にも有効であ
る。
According to the present invention, a glass fiber substantially free of B 2 O 3 and F 2 can be produced without lowering the productivity by producing a glass fiber having the composition described in claim 1. In addition, it was possible to solve a difficult problem of improving corrosion resistance such as acid resistance. Also expensive T
It is economically effective because iO 2 can be produced without using a very small amount as a raw material or blending it as a raw material.

フロントページの続き Fターム(参考) 4G062 AA05 BB01 DA06 DB04 DC01 DD01 DE02 DE03 DF01 EA01 EB01 EB02 EC01 EC02 ED02 ED03 EE04 EF01 EG01 FA01 FA10 FB01 FB02 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM15 NN29 NN33 NN34 4L037 CS16 PA31 UA12 Continued on the front page F-term (reference) 4G062 AA05 BB01 DA06 DB04 DC01 DD01 DE02 DE03 DF01 EA01 EB01 EB02 EC01 EC02 ED02 ED03 EE04 EF01 EG01 FA01 FA10 FB01 FB02 FC01 FD01 FE01 FF01 FG01 F01G01 F0101 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM15 NN29 NN33 NN34 4L037 CS16 PA31 UA12

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%でSiO2 56〜63%、Al2
3 11〜15%、CaO 15〜25%、MgO
0.5〜8%、ZnO 0.1〜8%、MgO+ZnO
1〜12%、TiO2 0〜0.5%未満、Na2
O 0〜1%、K2 O 0〜1%、Na2 O+K2
0.1〜1.5%を含み、かつ実質的にB及びF
を含まないことを特徴とする耐食性ガラス繊維。
(1) 56-63% of SiO 2 by weight%, Al 2
O 3 11-15%, CaO 15-25%, MgO
0.5-8%, ZnO 0.1-8%, MgO + ZnO
1 to 12%, TiO 2 less than 0 to 0.5%, Na 2
O 0-1%, K 2 O 0-1%, Na 2 O + K 2 O
0.1 to 1.5% and substantially B 2 O 3 and F
2. Corrosion-resistant glass fiber containing no 2 .
【請求項2】 紡糸温度と液相温度の差が少なくとも6
0℃以上であることを特徴とする請求項1記載のガラス
繊維組成物。
2. The difference between the spinning temperature and the liquidus temperature is at least 6
The glass fiber composition according to claim 1, wherein the temperature is 0 ° C or higher.
JP11047082A 1999-02-24 1999-02-24 Corrosion resistant glass fiber composition Pending JP2000247677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11047082A JP2000247677A (en) 1999-02-24 1999-02-24 Corrosion resistant glass fiber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11047082A JP2000247677A (en) 1999-02-24 1999-02-24 Corrosion resistant glass fiber composition

Publications (1)

Publication Number Publication Date
JP2000247677A true JP2000247677A (en) 2000-09-12

Family

ID=12765262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11047082A Pending JP2000247677A (en) 1999-02-24 1999-02-24 Corrosion resistant glass fiber composition

Country Status (1)

Country Link
JP (1) JP2000247677A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010017846A1 (en) 2008-08-14 2010-02-18 Buerger Gerhard Highly temperature-resistant and chemically resistant glass and glass fiber having improved uc light transmission and the use thereof
US8252707B2 (en) 2008-12-24 2012-08-28 Ocv Intellectual Capital, Llc Composition for high performance glass fibers and fibers formed therewith
CN102730976A (en) * 2011-04-11 2012-10-17 重庆国际复合材料有限公司 Organic or inorganic fiberglass for enhancement, and composition thereof
US8338319B2 (en) 2008-12-22 2012-12-25 Ocv Intellectual Capital, Llc Composition for high performance glass fibers and fibers formed therewith
US8341978B2 (en) 2005-11-04 2013-01-01 Ocv Intellectual Capital, Llc Method of manufacturing high performance glass fibers in a refractory lined melter and fiber formed thereby
US8563450B2 (en) * 2005-11-04 2013-10-22 Ocv Intellectual Capital, Llc Composition for high performance glass high performance glass fibers and articles therefrom
US8586491B2 (en) 2005-11-04 2013-11-19 Ocv Intellectual Capital, Llc Composition for high performance glass, high performance glass fibers and articles therefrom
US9051207B2 (en) * 2011-02-14 2015-06-09 Chongqing Polycomp International Corporation Boron and fluorine-free glass fiber composites
CN104772950A (en) * 2015-03-27 2015-07-15 安徽丹凤电子材料股份有限公司 Glass fiber cloth
US9187361B2 (en) 2005-11-04 2015-11-17 Ocv Intellectual Capital, Llc Method of manufacturing S-glass fibers in a direct melt operation and products formed there from
US9206068B2 (en) 2005-11-04 2015-12-08 Ocv Intellectual Capital, Llc Method of manufacturing S-glass fibers in a direct melt operation and products formed therefrom
CN105603577A (en) * 2015-12-31 2016-05-25 东华大学 Method for preparing continuous SiO2/nanocrystalline metal aerogel fiber with catalytic performance by adding nanocrystalline metal in situ
CN105603578A (en) * 2015-12-31 2016-05-25 东华大学 Method for preparing high-specific-surface-area continuous SiO2 porous fiber through natural drying method
JP2020522602A (en) * 2017-06-08 2020-07-30 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー Polyphenylene sulfide polymer composition and corresponding articles

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8586491B2 (en) 2005-11-04 2013-11-19 Ocv Intellectual Capital, Llc Composition for high performance glass, high performance glass fibers and articles therefrom
US10407342B2 (en) 2005-11-04 2019-09-10 Ocv Intellectual Capital, Llc Method of manufacturing S-glass fibers in a direct melt operation and products formed therefrom
US9695083B2 (en) 2005-11-04 2017-07-04 Ocv Intellectual Capital, Llc Method of manufacturing S-glass fibers in a direct melt operation and products formed therefrom
US9656903B2 (en) 2005-11-04 2017-05-23 Ocv Intellectual Capital, Llc Method of manufacturing high strength glass fibers in a direct melt operation and products formed there from
US9206068B2 (en) 2005-11-04 2015-12-08 Ocv Intellectual Capital, Llc Method of manufacturing S-glass fibers in a direct melt operation and products formed therefrom
US8341978B2 (en) 2005-11-04 2013-01-01 Ocv Intellectual Capital, Llc Method of manufacturing high performance glass fibers in a refractory lined melter and fiber formed thereby
US9187361B2 (en) 2005-11-04 2015-11-17 Ocv Intellectual Capital, Llc Method of manufacturing S-glass fibers in a direct melt operation and products formed there from
US8563450B2 (en) * 2005-11-04 2013-10-22 Ocv Intellectual Capital, Llc Composition for high performance glass high performance glass fibers and articles therefrom
EA021394B1 (en) * 2008-08-14 2015-06-30 П-Д Глассайден Гмбх Ошац Glass
WO2010017846A1 (en) 2008-08-14 2010-02-18 Buerger Gerhard Highly temperature-resistant and chemically resistant glass and glass fiber having improved uc light transmission and the use thereof
US8497219B2 (en) 2008-08-14 2013-07-30 Gerhard Bürger Highly temperature-resistant and chemically resistant glass and glass fiber having improved UV light transmission and the use thereof
JP2011530475A (en) * 2008-08-14 2011-12-22 ビュルガー,ゲルハルト Heat and chemical resistant glass and glass fiber with improved UV transmittance and use thereof
US8338319B2 (en) 2008-12-22 2012-12-25 Ocv Intellectual Capital, Llc Composition for high performance glass fibers and fibers formed therewith
US8252707B2 (en) 2008-12-24 2012-08-28 Ocv Intellectual Capital, Llc Composition for high performance glass fibers and fibers formed therewith
US9051207B2 (en) * 2011-02-14 2015-06-09 Chongqing Polycomp International Corporation Boron and fluorine-free glass fiber composites
CN102730976A (en) * 2011-04-11 2012-10-17 重庆国际复合材料有限公司 Organic or inorganic fiberglass for enhancement, and composition thereof
CN104772950A (en) * 2015-03-27 2015-07-15 安徽丹凤电子材料股份有限公司 Glass fiber cloth
CN105603577A (en) * 2015-12-31 2016-05-25 东华大学 Method for preparing continuous SiO2/nanocrystalline metal aerogel fiber with catalytic performance by adding nanocrystalline metal in situ
CN105603578A (en) * 2015-12-31 2016-05-25 东华大学 Method for preparing high-specific-surface-area continuous SiO2 porous fiber through natural drying method
JP2020522602A (en) * 2017-06-08 2020-07-30 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー Polyphenylene sulfide polymer composition and corresponding articles
JP7317720B2 (en) 2017-06-08 2023-07-31 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー Polyphenylene sulfide polymer compositions and corresponding articles

Similar Documents

Publication Publication Date Title
JP2000247683A (en) Corrosion resistant glass fiber
US5789329A (en) Boron-free glass fibers
CN102482142B (en) What improve modulus does not contain lithium glass
JP7480142B2 (en) High performance glass fiber composition having improved specific modulus
US8912107B2 (en) Composition for preparing high-performance glass fiber by tank furnace production
EP2450321B1 (en) High-intensity and high-modulus glass fiber
JP7488260B2 (en) High performance glass fiber composition having improved elastic modulus - Patents.com
JP2000247677A (en) Corrosion resistant glass fiber composition
JP2004508265A (en) Glass fiber forming composition
KR20070089228A (en) Glass yarns for reinforcing organic and/or inorganic materials
TW201031613A (en) Composition for high performance glass fibers and fibers formed therewith
WO2010099670A1 (en) Glass fibre composition
EP1189846A1 (en) Glass fiber composition
CA1106413A (en) Glass composition for fiberization
WO2019100782A1 (en) Glass fiber composition, and glass fiber and composite material thereof
CN104445966A (en) Novel glass fiber
US3973974A (en) Alkali resistant glass compositions and alkali resistant glass fibers prepared therefrom
JP2023510200A (en) Fiberglass composition for higher modulus
CA1074341A (en) Alkali-resistant glass composition and glass fibers made therefrom
CN108545949B (en) Can fibrosis glass composition and preparation method
JP3584586B2 (en) Corrosion resistant glass fiber
JPH10231143A (en) Corrosion-resistant glass fiber
JP3801293B2 (en) Corrosion resistant glass fiber
JP2000247684A (en) Glass fiber
CA2223603C (en) Boron-free glass fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310