JP2000056847A - Constant current driving circuit - Google Patents
Constant current driving circuitInfo
- Publication number
- JP2000056847A JP2000056847A JP10229650A JP22965098A JP2000056847A JP 2000056847 A JP2000056847 A JP 2000056847A JP 10229650 A JP10229650 A JP 10229650A JP 22965098 A JP22965098 A JP 22965098A JP 2000056847 A JP2000056847 A JP 2000056847A
- Authority
- JP
- Japan
- Prior art keywords
- transistor
- gate
- constant current
- switching
- drain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Control Of El Displays (AREA)
- Control Of Electrical Variables (AREA)
- Electronic Switches (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はアクティブマトリク
ス方式の有機エレクトロルミネセント素子等に好適な定
電流駆動回路に関し、特に、内蔵されるカレントミラー
回路の整合性の向上を図った定電流駆動回路に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a constant current driving circuit suitable for an active matrix type organic electroluminescent device and the like, and more particularly to a constant current driving circuit for improving the matching of a built-in current mirror circuit. .
【0002】[0002]
【従来の技術】従来、アクティブマトリックス方式の有
機エレクトロルミネセント(EL)素子等に定電流駆動
回路が使用されている。図7は従来の定電流駆動回路を
示す回路図である。2. Description of the Related Art Conventionally, a constant current drive circuit has been used for an active matrix type organic electroluminescent (EL) element or the like. FIG. 7 is a circuit diagram showing a conventional constant current drive circuit.
【0003】従来の定電流駆動回路においては、入力端
子101に抵抗103が接続されている。また、抵抗1
03にドレイン及びゲートが接続されたトランジスタ1
04が設けられている。トランジスタ104のソースに
は、スイッチ用トランジスタ106のドレインが接続さ
れている。そして、スイッチ用トランジスタ106のゲ
ートには、スイッチ用トランジスタ106の導通/遮断
の制御を行うためのアドレス信号が入力される制御端子
102が接続され、スイッチ用トランジスタ106のソ
ースには、接地端子111が接続されている。In a conventional constant current drive circuit, a resistor 103 is connected to an input terminal 101. The resistance 1
Transistor 1 whose drain and gate are connected to 03
04 is provided. The drain of the switching transistor 106 is connected to the source of the transistor 104. The gate of the switching transistor 106 is connected to a control terminal 102 to which an address signal for controlling ON / OFF of the switching transistor 106 is input. The source of the switching transistor 106 is connected to a ground terminal 111. Is connected.
【0004】また、トランジスタ104のドレイン及び
ゲートには、電荷保持容量素子107の一方の電極が接
続されている。電荷保持容量素子107の他方の電極
は、接地端子111に接続されている。更に、トランジ
スタ104のドレイン及びゲートにゲートが接続された
トランジスタ105が設けられている。トランジスタ1
05のソースは接地端子111に接続されている。ま
た、トランジスタ105のドレインには、負荷108が
接続されている。負荷108は、例えば定電流駆動を要
する有機EL素子である。そして、負荷108には、電
源端子110が接続されている。このようにして構成さ
れた従来の定電流駆動回路には、トランジスタ104及
び105からなるカレントミラー回路が含まれている。[0004] One electrode of a charge storage capacitor 107 is connected to the drain and gate of the transistor 104. The other electrode of the charge storage capacitor 107 is connected to the ground terminal 111. Further, a transistor 105 whose gate is connected to the drain and the gate of the transistor 104 is provided. Transistor 1
The source of 05 is connected to the ground terminal 111. The load 108 is connected to the drain of the transistor 105. The load 108 is, for example, an organic EL element requiring constant current driving. The power supply terminal 110 is connected to the load 108. The conventional constant current drive circuit configured as described above includes a current mirror circuit including transistors 104 and 105.
【0005】そして、入力端子101に入力された信号
の電圧に応じて抵抗103に電流が流れる。このとき、
スイッチ用トランジスタ106が導通状態であれば、ト
ランジスタ105に抵抗103に流れる電流に比例した
電流がドレイン電流として流れ、負荷108にも電流が
流れる。一方、スイッチ用トランジスタ106が遮断状
態であれば、トランジスタ105にはドレイン電流が流
れないので、負荷108にも電流は流れない。このよう
にして、負荷108に流れる定電流の導通/遮断が制御
される。Then, a current flows through the resistor 103 in accordance with the voltage of the signal input to the input terminal 101. At this time,
When the switching transistor 106 is on, a current proportional to the current flowing through the resistor 103 flows through the transistor 105 as a drain current, and the current also flows through the load 108. On the other hand, when the switching transistor 106 is in the cutoff state, no drain current flows through the transistor 105, and thus no current flows through the load 108. In this way, the conduction / interruption of the constant current flowing through the load 108 is controlled.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上述の
従来の定電流駆動回路においては、スイッチ用トランジ
スタ106のオン抵抗及びソース電流による電圧降下の
ためにカレントミラー回路の整合性が悪化し、負荷10
8に入力端子101の信号レベルに応じた定電流が供給
されないという問題点がある。However, in the above-described conventional constant current drive circuit, the matching of the current mirror circuit deteriorates due to the voltage drop due to the on-resistance and the source current of the switching transistor 106, and the load 10
8 has a problem that a constant current corresponding to the signal level of the input terminal 101 is not supplied.
【0007】また、これを防止するためにスイッチ用ト
ランジスタ106のサイズを大きくしてそのオン抵抗を
小さくすることが考えられるが、これを半導体集積回路
で構成しようとする場合、チップサイズが増大するた
め、コストの上昇につながる。また、例えば有機EL素
子の駆動回路として薄膜トランジスタ(TFT)を使用
する場合、スイッチ用トランジスタに大きなサイズが必
要となるため、画素の占有率が減って開口率が低下して
輝度が低下してしまう。この場合には、輝度を通常使用
レベルまで上昇させるために定電流値を上げる等の対策
が必要となり、近時の省電力化に逆行するものとなる。In order to prevent this, it is conceivable to increase the size of the switching transistor 106 to reduce its on-resistance. However, when this is to be implemented by a semiconductor integrated circuit, the chip size increases. This leads to an increase in cost. In addition, for example, when a thin film transistor (TFT) is used as a driving circuit of an organic EL element, a large size is required for a switching transistor, so that the pixel occupancy is reduced, the aperture ratio is reduced, and the luminance is reduced. . In this case, it is necessary to take measures such as increasing the constant current value in order to raise the luminance to the normal use level, which is against the recent power saving.
【0008】本発明はかかる問題点に鑑みてなされたも
のであって、コストを上昇させることなく入力された信
号に応じた定電流を供給することができる定電流駆動回
路を提供することを目的とする。The present invention has been made in view of the above problems, and has as its object to provide a constant current driving circuit capable of supplying a constant current corresponding to an input signal without increasing cost. And
【0009】[0009]
【課題を解決するための手段】本発明に係る定電流駆動
回路は、入力端子と、この入力端子にドレインが接続さ
れ接地にソースが接続された第1のトランジスタと、こ
の第1のトランジスタのゲート及びドレインに接続され
たスイッチ用トランジスタと、このスイッチ用トランジ
スタのゲートに接続されこのスイッチ用トランジスタの
導通と非導通とを切替える信号が入力される制御端子
と、前記スイッチ用トランジスタにゲートが接続され接
地にソースが接続され前記第1のトランジスタと共にカ
レントミラー回路を構成する第2のトランジスタと、こ
の第2のトランジスタのゲートに一方の電極が接続され
接地に他方の電極が接続された容量素子と、を有するこ
とを特徴とする。A constant current drive circuit according to the present invention comprises an input terminal, a first transistor having a drain connected to the input terminal and a source connected to the ground, A switching transistor connected to the gate and the drain, a control terminal connected to the gate of the switching transistor, to which a signal for switching between conduction and non-conduction of the switching transistor is input, and a gate connected to the switching transistor A second transistor having a source connected to ground and forming a current mirror circuit together with the first transistor, and a capacitive element having one electrode connected to the gate of the second transistor and the other electrode connected to ground. And the following.
【0010】なお、前記第1及び第2のトランジスタの
チャネルの導電型は、前記スイッチ用トランジスタのチ
ャネルの導電型と相違し、前記第1のトランジスタのソ
ースと接地との間に接続された第1のレベルシフト用ダ
イオードと、前記第2のトランジスタのソースと接地と
の間に接続された第2のレベルシフト用ダイオードと、
を有してもよい。The conductivity type of the channel of the first and second transistors is different from the conductivity type of the channel of the switching transistor, and the conductivity type of the channel connected between the source of the first transistor and ground is different. A first level shifting diode, a second level shifting diode connected between the source of the second transistor and ground,
May be provided.
【0011】また、前記第1及び第2のトランジスタの
チャネルの導電型は、前記スイッチ用トランジスタのチ
ャネルの導電型と同じであってもよい。[0011] The conductivity type of the channel of the first and second transistors may be the same as the conductivity type of the channel of the switching transistor.
【0012】本発明に係る他の定電流駆動回路は、入力
端子と、この入力端子にドレインが接続され接地にソー
スが接続された第1のトランジスタと、この第1のトラ
ンジスタのゲートとドレインとの間に接続されたスイッ
チ用トランジスタと、このスイッチ用トランジスタのゲ
ートに接続されこのスイッチ用トランジスタの導通と非
導通とを切替える信号が入力される制御端子と、前記第
1のトランジスタのゲートにゲートが接続され接地にソ
ースが接続され前記第1のトランジスタと共にカレント
ミラー回路を構成する第2のトランジスタと、この第2
のトランジスタのゲートに一方の電極が接続され接地に
他方の電極が接続された容量素子と、を有することを特
徴とする。Another constant current driving circuit according to the present invention comprises an input terminal, a first transistor having a drain connected to the input terminal and a source connected to ground, a gate and a drain of the first transistor. A control terminal connected to the gate of the switching transistor, to which a signal for switching between conduction and non-conduction of the switching transistor is input; and a gate connected to the gate of the first transistor. And a second transistor having a source connected to the ground and forming a current mirror circuit together with the first transistor;
And a capacitor in which one electrode is connected to the gate of the transistor and the other electrode is connected to the ground.
【0013】なお、前記入力端子と前記第1のトランジ
スタのドレインとの間に接続された抵抗を有することが
できる。[0013] A resistor may be connected between the input terminal and the drain of the first transistor.
【0014】また、前記入力端子と前記抵抗との間に接
続されたソースフォロワ用トランジスタを有することが
できる。[0014] The semiconductor device may further include a source follower transistor connected between the input terminal and the resistor.
【0015】更に、前記第2のトランジスタのドレイン
は有機エレクトロルミネセント素子に接続されることが
できる。Further, the drain of the second transistor can be connected to an organic electroluminescent device.
【0016】本発明においては、スイッチ用トランジス
タが非導通にされても、第2のトランジスタのゲートと
接地との間に設けられた容量素子に蓄積された電荷によ
って、定電流を供給し続けることができる。また、スイ
ッチ用トランジスタのオン抵抗による電圧降下は無視で
きるほど小さい。このため、カレントミラー回路の整合
性が著しく改善される。According to the present invention, even when the switching transistor is turned off, the constant current is continuously supplied by the electric charge accumulated in the capacitor provided between the gate of the second transistor and the ground. Can be. The voltage drop due to the on-resistance of the switching transistor is so small as to be negligible. Therefore, the matching of the current mirror circuit is significantly improved.
【0017】[0017]
【発明の実施の形態】以下、本発明の実施例に係る定電
流駆動回路について、添付の図面を参照して具体的に説
明する。図1は本発明の第1の実施例に係る定電流駆動
回路を示す回路図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a constant current drive circuit according to an embodiment of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a circuit diagram showing a constant current drive circuit according to a first embodiment of the present invention.
【0018】本実施例の定電流駆動回路においては、入
力端子1に抵抗3が接続されている。また、抵抗3にド
レイン及びゲートが接続されたNチャネルMOSトラン
ジスタ4が設けられている。トランジスタ4のソースに
は、接地端子11が接続されている。また、トランジス
タ4のドレイン及びゲートに一端が接続されPチャネル
MOSトランジスタであるスイッチ用トランジスタ6が
設けられている。そして、スイッチ用トランジスタ6の
ゲートには、スイッチ用トランジスタ6の導通/遮断
(非導通)の制御を行うためのアドレス信号が入力され
る制御端子2が接続されている。In the constant current drive circuit of the present embodiment, a resistor 3 is connected to the input terminal 1. Further, an N-channel MOS transistor 4 having a drain and a gate connected to the resistor 3 is provided. The ground terminal 11 is connected to the source of the transistor 4. Further, a switching transistor 6 which is a P-channel MOS transistor having one end connected to the drain and the gate of the transistor 4 is provided. The control terminal 2 to which an address signal for controlling conduction / interruption (non-conduction) of the switching transistor 6 is input is connected to the gate of the switching transistor 6.
【0019】また、スイッチ用トランジスタ6の他端に
は、電荷保持手段として電荷保持容量素子7の一方の電
極が接続されている。電荷保持容量素子7の他方の電極
は、接地端子11に接続されている。更に、スイッチ用
トランジスタ6の前記他端にゲートが接続されたNチャ
ネルMOSトランジスタ5が設けられている。トランジ
スタ5のソースは接地端子11に接続されている。ま
た、トランジスタ5のドレインには、負荷8が接続され
ている。負荷8は、例えば定電流駆動を要するアクティ
ブマトリクス方式の有機エレクトロルミネセント(E
L:Electro-Luminescent)素子である。そして、負荷
8には、電源端子10が接続されている。このようにし
て構成された本実施例の定電流駆動回路には、トランジ
スタ4及び5からなるカレントミラー回路が含まれてい
る。The other end of the switching transistor 6 is connected to one electrode of a charge holding capacitance element 7 as charge holding means. The other electrode of the charge storage capacitor 7 is connected to the ground terminal 11. Further, an N-channel MOS transistor 5 having a gate connected to the other end of the switching transistor 6 is provided. The source of the transistor 5 is connected to the ground terminal 11. A load 8 is connected to the drain of the transistor 5. The load 8 is, for example, an active matrix type organic electroluminescent (E) that requires constant current driving.
L: Electro-Luminescent element. The power supply terminal 10 is connected to the load 8. The constant current drive circuit according to the present embodiment thus configured includes a current mirror circuit including the transistors 4 and 5.
【0020】次に、上述のように構成された本実施例の
定電流駆動回路の動作について説明する。Next, the operation of the constant current driving circuit of the present embodiment configured as described above will be described.
【0021】入力端子1に画像信号等の入力信号が入力
されると、この信号の電圧に応じて抵抗3に電流が流れ
る。そして、抵抗3に流れる電流は、ドレイン及びソー
スが相互に接続されたトランジスタ4に流れ、トランジ
スタ4にゲート−ソース間電圧が発生する。When an input signal such as an image signal is input to the input terminal 1, a current flows through the resistor 3 according to the voltage of the signal. Then, the current flowing through the resistor 3 flows through the transistor 4 whose drain and source are connected to each other, and a gate-source voltage is generated in the transistor 4.
【0022】そして、制御端子2に入力されたアドレス
信号がロウレベルでスイッチ用トランジスタ6が導通状
態の場合には、トランジスタ4に発生したゲート−ソー
ス間電圧は、スイッチ用トランジスタ6を介して電荷保
持容量素子7及びトランジスタ5のゲートに印加され
る。このとき、トランジスタ4及び5はカレントミラー
回路を構成しているため、抵抗3に流れる電流に比例し
た電流がトランジスタ5のドレイン電流として流れる。
即ち、トランジスタ4とトランジスタ5とのパターンサ
イズの比によって決定される電流、例えばトランジスタ
4及び5が同一パターンサイズで構成されている場合に
は、抵抗3に流れる電流と等しい電流がトランジスタ5
のドレインとソースとの間を流れる。これにより、負荷
8が駆動される。When the address signal input to the control terminal 2 is at a low level and the switching transistor 6 is conductive, the gate-source voltage generated in the transistor 4 is charged through the switching transistor 6. The voltage is applied to the capacitor 7 and the gate of the transistor 5. At this time, since the transistors 4 and 5 form a current mirror circuit, a current proportional to the current flowing through the resistor 3 flows as the drain current of the transistor 5.
In other words, a current determined by the pattern size ratio between the transistor 4 and the transistor 5, for example, when the transistors 4 and 5 are configured with the same pattern size, a current equal to the current flowing through the resistor 3 is equal to the transistor 5
Flows between the drain and the source of the device. As a result, the load 8 is driven.
【0023】次に、制御端子2に入力されたアドレス信
号がハイレベルでスイッチ用トランジスタ6が遮断状態
となると、トランジスタ4及び5からなるカレントミラ
ー回路も遮断される。しかし、スイッチ用トランジスタ
6が導通状態の時に、入力端子1の信号電圧に応じた電
流がトランジスタ4に流れ、その電流に応じたトランジ
スタ4のゲート−ソース間電圧が電荷保持容量素子7に
印加されている。このため、スイッチ用トランジスタ6
が遮断された後にも、この電圧がトランジスタ5のゲー
トに印加されるので、このゲート電圧に応じた電流が負
荷8に供給される。即ち、スイッチ用トランジスタ6が
遮断状態でも、負荷8には入力端子1の信号電圧に応じ
た電流が供給され続ける。Next, when the address signal input to the control terminal 2 is at a high level and the switching transistor 6 is turned off, the current mirror circuit composed of the transistors 4 and 5 is also turned off. However, when the switching transistor 6 is conducting, a current corresponding to the signal voltage of the input terminal 1 flows through the transistor 4, and a gate-source voltage of the transistor 4 corresponding to the current is applied to the charge holding capacitor 7. ing. Therefore, the switching transistor 6
Since the voltage is applied to the gate of the transistor 5 even after the current is cut off, a current corresponding to the gate voltage is supplied to the load 8. That is, even when the switching transistor 6 is turned off, a current corresponding to the signal voltage of the input terminal 1 is continuously supplied to the load 8.
【0024】従って、本実施例をアクティブマトリクス
方式の有機EL素子の駆動回路に適用した場合、入力端
子1には入力画像信号が入力され、その階調データによ
って発光輝度が変化する。また、制御端子2にはアドレ
ス信号が入力され、入力端子1からの画像信号に対応す
る画素が電荷保持容量素子7に選択的に読み込まれ、次
の新しい画像信号が入力されるまで電荷が保持され、画
素は発光し続ける。Therefore, when the present embodiment is applied to a drive circuit of an active matrix type organic EL element, an input image signal is input to the input terminal 1 and the emission luminance changes according to the gradation data. Further, an address signal is input to the control terminal 2, a pixel corresponding to the image signal from the input terminal 1 is selectively read into the charge holding capacitor 7, and the charge is held until the next new image signal is input. The pixel continues to emit light.
【0025】このように、本実施例によれば、スイッチ
用トランジスタ6のオン抵抗による電圧降下を無視でき
るため、カレントミラー回路の整合性が改善される。As described above, according to the present embodiment, the voltage drop due to the on-resistance of the switching transistor 6 can be ignored, so that the matching of the current mirror circuit is improved.
【0026】また、従来技術のように大電流経路にスイ
ッチ素子を設ける場合には、オン抵抗を低減するために
素子サイズを大きくする必要があったが、本実施例にお
いてスイッチ用トランジスタ6を流れる電流は無視でき
るほど小さいので、最小寸法のトランジスタにて構成す
ることができる。従って、半導体集積回路に適用する場
合にも、安価なものとなる。When a switching element is provided in a large current path as in the prior art, it is necessary to increase the element size in order to reduce the on-resistance. However, in this embodiment, the element flows through the switching transistor 6. Since the current is so small as to be negligible, it can be constituted by a transistor having a minimum size. Therefore, even when it is applied to a semiconductor integrated circuit, it is inexpensive.
【0027】更に、有機ELの駆動回路として薄膜トラ
ンジスタ(TFT)を使用する場合にも、大きなスイッ
チ用トランジスタは不要であるため、画素の開口率の向
上をさせ有機ELの輝度を向上させることが可能であ
る。また、薄膜トランジスタによりカレントミラー回路
を構成するトランジスタ4及び5を作製する場合、トラ
ンジスタ4及び5を相互に隣接して配置することができ
るため、製造に起因するトランジスタのパラメータのバ
ラツキを低く抑制することができる。従って、トランジ
スタ4及び5からなるカレントミラー回路の整合性が向
上する。Further, even when a thin film transistor (TFT) is used as a driving circuit of the organic EL, a large switching transistor is not required, so that it is possible to improve the aperture ratio of the pixel and the luminance of the organic EL. It is. In the case where the transistors 4 and 5 forming a current mirror circuit are formed using thin film transistors, the transistors 4 and 5 can be arranged adjacent to each other, so that variations in transistor parameters due to manufacturing are suppressed to a low level. Can be. Therefore, the matching of the current mirror circuit including the transistors 4 and 5 is improved.
【0028】次に、本発明の第2の実施例について説明
する。本実施例には、レベルシフト用のダイオード構造
を有するトランジスタが配設されている。図2は本発明
の第2の実施例に係る定電流駆動回路を示す回路図であ
る。なお、図2に示す第2の実施例において図1に示す
第1の実施例と同一の構成要素には、同一の符号を付し
てその詳細な説明は省略する。Next, a second embodiment of the present invention will be described. In this embodiment, a transistor having a diode structure for level shifting is provided. FIG. 2 is a circuit diagram showing a constant current drive circuit according to a second embodiment of the present invention. In the second embodiment shown in FIG. 2, the same components as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
【0029】本実施例に係る定電流駆動回路には、トラ
ンジスタ4のソースにドレインが接続され接地端子11
にソースが接続されダイオード構造を有するNチャネル
MOSトランジスタ12が設けられている。また、トラ
ンジスタ5のソースにドレインが接続され接地端子11
にソースが接続されダイオード構造を有するNチャネル
MOSトランジスタ13が設けられている。In the constant current driving circuit according to the present embodiment, the drain is connected to the source of the transistor 4 and the ground terminal 11
An N-channel MOS transistor 12 having a diode structure with a source connected to the source is provided. Further, the drain is connected to the source of the transistor 5 and the ground terminal 11
Is provided with an N-channel MOS transistor 13 having a diode structure.
【0030】第1の実施例においては、カレントミラー
回路が2個のNチャネルMOSトランジスタから構成さ
れ、スイッチ用トランジスタにPチャネルMOSトラン
ジスタが使用されているが、このような構成のもとでP
チャネルMOSトランジスタのオン電圧がNチャネルM
OSトランジスタのオン電圧より大きい場合には、スイ
ッチ用トランジスタ6を導通させるためには、制御端子
2の電圧を接地端子11の電圧以下にする必要がある。In the first embodiment, the current mirror circuit is composed of two N-channel MOS transistors, and the P-channel MOS transistor is used as the switching transistor.
The ON voltage of the channel MOS transistor is N channel M
When the ON voltage of the OS transistor is higher than that of the OS transistor, the voltage of the control terminal 2 needs to be lower than the voltage of the ground terminal 11 in order to make the switching transistor 6 conductive.
【0031】第2の実施例においても、制御端子2の電
圧を接地端子11の電圧以下にする必要があるが、レベ
ルシフト用にトランジスタ12及び13が設けられてい
るので、容易に適応することが可能である。In the second embodiment as well, the voltage of the control terminal 2 needs to be lower than the voltage of the ground terminal 11, but since the transistors 12 and 13 are provided for level shifting, it can be easily adapted. Is possible.
【0032】なお、この場合、カレントミラー回路の整
合性を確保するため、トランジスタ12及び13は相互
に同一導伝形式、つまりチャネルの導電型が同じである
必要がある。本実施例においては、NチャネルMOSト
ランジスタが使用されているが、PチャネルMOSトラ
ンジスタを使用されても同様の効果が得られる。In this case, in order to ensure the matching of the current mirror circuit, the transistors 12 and 13 need to have the same conductivity type, that is, the same channel conductivity type. In the present embodiment, an N-channel MOS transistor is used, but the same effect can be obtained by using a P-channel MOS transistor.
【0033】また、第1の実施例においても、Nチャネ
ルMOSトランジスタとPチャネルMOSトランジスタ
とのオン電圧が等しければ何ら問題はない。Also in the first embodiment, there is no problem if the ON voltages of the N-channel MOS transistor and the P-channel MOS transistor are equal.
【0034】次に、本発明の第3の実施例について説明
する。本実施例においては、スイッチ用トランジスタの
導伝形式がカレントミラー回路を構成するトランジスタ
のそれと同一のものとなっている。図3は本発明の第3
の実施例に係る定電流駆動回路を示す模式図である。な
お、図3に示す第3の実施例において図1に示す第1の
実施例と同一の構成要素には、同一の符号を付してその
詳細な説明は省略する。Next, a third embodiment of the present invention will be described. In the present embodiment, the conduction type of the switching transistor is the same as that of the transistor constituting the current mirror circuit. FIG. 3 shows a third embodiment of the present invention.
FIG. 4 is a schematic diagram showing a constant current drive circuit according to the example of FIG. In the third embodiment shown in FIG. 3, the same components as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and a detailed description thereof will be omitted.
【0035】本実施例に係る定電流駆動回路において
は、トランジスタ4のゲートとトランジスタ5のゲート
との間にNチャネルMOSトランジスタであるスイッチ
用トランジスタ16が接続されている。In the constant current driving circuit according to the present embodiment, a switching transistor 16 which is an N-channel MOS transistor is connected between the gate of the transistor 4 and the gate of the transistor 5.
【0036】このように構成された本実施例において
は、スイッチ用トランジスタ16とカレントミラー回路
を構成するトランジスタ4及び5とのオン電圧が相違し
ていても、制御端子2の電圧を接地端子11の電圧以下
にする必要が無くなる。In this embodiment thus constructed, even if the on-voltages of the switching transistor 16 and the transistors 4 and 5 constituting the current mirror circuit are different, the voltage of the control terminal 2 is changed to the ground terminal 11. It is no longer necessary to set the voltage to or below.
【0037】なお、第1の実施例においては、アドレス
信号がロウレベルのときにカレントミラー回路が動作状
態となるが、第3の実施例においては、アドレス信号が
ハイレベルのときにカレントミラー回路が動作状態とな
る。In the first embodiment, the current mirror circuit is activated when the address signal is at a low level. In the third embodiment, the current mirror circuit is activated when the address signal is at a high level. It is in the operating state.
【0038】次に、本発明の第4の実施例について説明
する。本実施例においては、スイッチ用トランジスタ
は、カレントミラー回路を構成するトランジスタのゲー
ト間ではなく、入力端子側に接続されたトランジスタの
ゲートとドレインとの間に接続される。図4は本発明の
第4の実施例に係る定電流駆動回路を示す回路図であ
る。なお、図4に示す第4の実施例において図1に示す
第1の実施例と同一の構成要素には、同一の符号を付し
てその詳細な説明は省略する。Next, a fourth embodiment of the present invention will be described. In the present embodiment, the switching transistor is connected not between the gates of the transistors constituting the current mirror circuit but between the gate and the drain of the transistor connected to the input terminal side. FIG. 4 is a circuit diagram showing a constant current driving circuit according to a fourth embodiment of the present invention. In the fourth embodiment shown in FIG. 4, the same components as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
【0039】本実施例においては、トランジスタ4のゲ
ートとトランジスタ5のゲートとが直接接続されてい
る。また、NチャネルMOSトランジスタであるスイッ
チ用トランジスタ26がトランジスタ4のゲートとドレ
インとの間に接続されている。In this embodiment, the gate of the transistor 4 and the gate of the transistor 5 are directly connected. A switching transistor 26, which is an N-channel MOS transistor, is connected between the gate and the drain of the transistor 4.
【0040】このように構成された本実施例において
は、スイッチ用トランジスタ26は、カレントミラー回
路を構成するトランジスタ4及び5のゲート間ではな
く、トランジスタ4のゲートとドレインとの間に接続さ
れているので、スイッチ用トランジスタ26のオン抵抗
による電圧降下のためにカレントミラー回路の整合性が
悪化するということは完全に防止される。In this embodiment, the switching transistor 26 is connected not between the gates of the transistors 4 and 5 constituting the current mirror circuit but between the gate and the drain of the transistor 4. Therefore, the deterioration of the matching of the current mirror circuit due to the voltage drop due to the on-resistance of the switching transistor 26 is completely prevented.
【0041】また、第4の実施例においては、制御端子
2がロウレベルでカレントミラー回路が遮断状態になっ
たとき、スイッチ用トランジスタ26は遮断される。従
って、入力端子1がハイレベルの状態でもトランジスタ
4は遮断されるため、抵抗3及びトランジスタ4の経路
には電流が流れなくなり、消費電力が低下する。従っ
て、本実施例を例えば有機EL素子等を使用した画像表
示装置の駆動回路に適用した場合、画像表示装置には複
数個の有機EL素子が縦横に配列されているので、著し
い省電力化が期待できる。In the fourth embodiment, when the control terminal 2 is at the low level and the current mirror circuit is turned off, the switching transistor 26 is turned off. Therefore, even when the input terminal 1 is at a high level, the transistor 4 is cut off, so that no current flows through the path between the resistor 3 and the transistor 4, and power consumption is reduced. Therefore, when the present embodiment is applied to, for example, a driving circuit of an image display device using an organic EL element or the like, since a plurality of organic EL elements are arranged vertically and horizontally in the image display device, remarkable power saving is achieved. Can be expected.
【0042】次に、本発明の第5の実施例について説明
する。本実施例においては、入力端子と抵抗との間にソ
ースフォロワ用トランジスタが接続される。図5は本発
明の第5の実施例に係る定電流駆動回路を示す回路図で
ある。なお、図5に示す第5の実施例において図1に示
す第1の実施例と同一の構成要素には、同一の符号を付
してその詳細な説明は省略する。Next, a fifth embodiment of the present invention will be described. In this embodiment, a source follower transistor is connected between the input terminal and the resistor. FIG. 5 is a circuit diagram showing a constant current drive circuit according to a fifth embodiment of the present invention. In the fifth embodiment shown in FIG. 5, the same components as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
【0043】本実施例には、入力端子1にゲートが接続
されNチャネルMOSトランジスタであるソースフォロ
ワ用トランジスタ9が設けられており、その一端は抵抗
3に、その他端は電源端子10に接続されている。ま
た、トランジスタ4及び5のゲート間には、スイッチ用
トランジスタ36が接続されている。このスイッチ用ト
ランジスタ36はNチャネルMOSトランジスタであっ
てもPチャネルMOSトランジスタであってもよい。In this embodiment, a source follower transistor 9 which is an N-channel MOS transistor whose gate is connected to the input terminal 1 is provided, one end of which is connected to the resistor 3 and the other end is connected to the power supply terminal 10. ing. A switching transistor 36 is connected between the gates of the transistors 4 and 5. The switching transistor 36 may be an N-channel MOS transistor or a P-channel MOS transistor.
【0044】このように構成された本実施例において
は、ソースフォロワ用トランジスタ9により、入力端子
1側のインピーダンスが高くてもカレントミラー回路を
構成するトランジスタ4を十分に駆動させることが可能
である。In the present embodiment configured as described above, the transistor 4 constituting the current mirror circuit can be sufficiently driven by the source follower transistor 9 even if the impedance on the input terminal 1 side is high. .
【0045】また、第1の実施例では、入力端子1がロ
ウレベルでありインピーダンスが低い場合には、電荷保
持容量素子7に蓄積されていた電荷がスイッチ用トラン
ジスタ6が遮断状態のときにスイッチ用トランジスタ6
のオフ抵抗と抵抗3との経路で放電することにより、電
荷保持の機能が十分ではなくなることがあるが、第5の
実施例にはトランジスタ9が設けられているので、電荷
の放電が防止される。In the first embodiment, when the input terminal 1 is at a low level and the impedance is low, the electric charge stored in the charge holding capacitor 7 is used when the switching transistor 6 is in the cut-off state. Transistor 6
In some cases, the function of retaining charges may not be sufficient due to the discharge through the path between the off-resistance and the resistance 3, but the fifth embodiment is provided with the transistor 9, so that the discharge of the charges is prevented. You.
【0046】次に、本発明の第6の実施例について説明
する。本実施例は、第4の実施例と第5の実施例とを組
み合わせたものである。図6は本発明の第6の実施例に
係る定電流駆動回路を示す回路図である。なお、図6に
示す第6の実施例において図4に示す第4の実施例又は
図5に示す第5の実施例と同一の構成要素には、同一の
符号を付してその詳細な説明は省略する。Next, a sixth embodiment of the present invention will be described. This embodiment is a combination of the fourth embodiment and the fifth embodiment. FIG. 6 is a circuit diagram showing a constant current drive circuit according to a sixth embodiment of the present invention. In the sixth embodiment shown in FIG. 6, the same components as those in the fourth embodiment shown in FIG. 4 or the fifth embodiment shown in FIG. Is omitted.
【0047】本実施例においては、トランジスタ4のゲ
ートとトランジスタ5のゲートとが直接接続されてい
る。また、NチャネルMOSトランジスタであるスイッ
チ用トランジスタ26がトランジスタ4のゲートとドレ
インとの間に接続されている。更に、本実施例には、入
力端子1にゲートが接続されNチャネルMOSトランジ
スタであるソースフォロワ用トランジスタ9が設けられ
ており、その一端は抵抗3に、その他端は電源端子10
に接続されている。In this embodiment, the gate of the transistor 4 and the gate of the transistor 5 are directly connected. A switching transistor 26, which is an N-channel MOS transistor, is connected between the gate and the drain of the transistor 4. Further, in this embodiment, a source follower transistor 9 which is an N-channel MOS transistor having a gate connected to the input terminal 1 is provided, one end of which is connected to the resistor 3 and the other end is connected to the power supply terminal 10.
It is connected to the.
【0048】このように構成された本実施例において
は、第4及び第5の実施例による双方の効果が得られ
る。即ち、レントミラー回路の整合性が改善される。ま
た、カレントミラー回路を構成するトランジスタ4の駆
動性及び電荷保持容量素子7の放電特性が改善される。
更に、入力端子1がハイレベル、制御端子2がロウレベ
ル、カレントミラー回路が遮断状態のときには、抵抗3
及びトランジスタ4の電流経路が遮断状態となるため、
省電力化の効果もある。In the present embodiment having such a configuration, both effects of the fourth and fifth embodiments can be obtained. That is, the consistency of the rent mirror circuit is improved. Further, the drivability of the transistor 4 constituting the current mirror circuit and the discharge characteristics of the charge storage capacitor 7 are improved.
Further, when the input terminal 1 is at the high level, the control terminal 2 is at the low level, and the current mirror circuit is in the cut-off state, the resistance 3
And the current path of the transistor 4 is cut off,
There is also a power saving effect.
【0049】なお、前述の種々の実施例の組み合わせは
第6の実施例に示すものに限定されるものではない。例
えば、第5の実施例と第2又は第3の実施例とを組み合
わせてもよい。The combination of the various embodiments described above is not limited to the combination shown in the sixth embodiment. For example, the fifth embodiment may be combined with the second or third embodiment.
【0050】[0050]
【発明の効果】以上詳述したように、本発明によれば、
スイッチ用トランジスタのオン抵抗による電圧降下を無
視できるため、カレントミラー回路の整合性を改善する
ことができる。また、スイッチ用トランジスタを流れる
電流は無視できるほど小さいくなるで、スイッチ用トラ
ンジスタを小型化することができ、半導体集積回路で構
成する場合にも、コストの上昇を抑制することができ
る。更に、種々のトランジスタを薄膜トランジスタと
し、有機エレクトロルミネセント素子の駆動回路に適用
する場合、大きなスイッチ用トランジスタは必要ないの
で、画素の開口率を向上させ輝度を向上させることがで
きる。As described in detail above, according to the present invention,
Since the voltage drop due to the on-resistance of the switching transistor can be neglected, the matching of the current mirror circuit can be improved. Further, the current flowing through the switching transistor becomes so small as to be negligible. Therefore, the size of the switching transistor can be reduced, and even when a semiconductor integrated circuit is used, an increase in cost can be suppressed. Furthermore, in the case where various transistors are thin film transistors and applied to a driving circuit of an organic electroluminescent element, a large switching transistor is not required, so that an aperture ratio of a pixel can be improved and luminance can be improved.
【図1】本発明の第1の実施例に係る定電流駆動回路を
示す回路図である。FIG. 1 is a circuit diagram showing a constant current drive circuit according to a first example of the present invention.
【図2】本発明の第2の実施例に係る定電流駆動回路を
示す回路図である。FIG. 2 is a circuit diagram showing a constant current drive circuit according to a second embodiment of the present invention.
【図3】本発明の第3の実施例に係る定電流駆動回路を
示す模式図である。FIG. 3 is a schematic diagram showing a constant current drive circuit according to a third embodiment of the present invention.
【図4】本発明の第4の実施例に係る定電流駆動回路を
示す回路図である。FIG. 4 is a circuit diagram showing a constant current drive circuit according to a fourth embodiment of the present invention.
【図5】本発明の第5の実施例に係る定電流駆動回路を
示す回路図である。FIG. 5 is a circuit diagram showing a constant current drive circuit according to a fifth embodiment of the present invention.
【図6】本発明の第6の実施例に係る定電流駆動回路を
示す回路図である。FIG. 6 is a circuit diagram showing a constant current drive circuit according to a sixth embodiment of the present invention.
【図7】従来の定電流駆動回路を示す回路図である。FIG. 7 is a circuit diagram showing a conventional constant current drive circuit.
1、101;入力端子 2、102;制御端子 3、103;抵抗 4、5、6、9、12、13、16、26、36、10
4、105、106;トランジスタ 7、107;容量素子 8、108;負荷 10、110;電源端子 11、111;接地端子1, 101; input terminal 2, 102; control terminal 3, 103; resistor 4, 5, 6, 9, 12, 13, 16, 26, 36, 10
4, 105, 106; transistors 7, 107; capacitive elements 8, 108; loads 10, 110; power supply terminals 11, 111;
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H420 BB04 BB13 CC02 DD02 EA14 EA18 EA24 EA39 EB15 EB37 FF04 FF22 NA17 NA28 NB03 NB12 5J055 AX11 AX12 AX44 AX48 BX16 CX29 DX13 DX14 DX22 DX61 EX07 EY01 EY10 EY21 EZ04 EZ20 GX01 ──────────────────────────────────────────────────続 き Continued from the front page F term (reference)
Claims (7)
接続され接地にソースが接続された第1のトランジスタ
と、この第1のトランジスタのゲート及びドレインに接
続されたスイッチ用トランジスタと、このスイッチ用ト
ランジスタのゲートに接続されこのスイッチ用トランジ
スタの導通と非導通とを切替える信号が入力される制御
端子と、前記スイッチ用トランジスタにゲートが接続さ
れ接地にソースが接続され前記第1のトランジスタと共
にカレントミラー回路を構成する第2のトランジスタ
と、この第2のトランジスタのゲートに一方の電極が接
続され接地に他方の電極が接続された容量素子と、を有
することを特徴とする定電流駆動回路。1. An input terminal, a first transistor having a drain connected to the input terminal and a source connected to ground, a switching transistor connected to a gate and a drain of the first transistor, and a switch A control terminal connected to the gate of the switching transistor, to which a signal for switching between conduction and non-conduction of the switching transistor is inputted; and a gate connected to the switching transistor, a source connected to ground, and a current together with the first transistor. A constant current drive circuit, comprising: a second transistor forming a mirror circuit; and a capacitor having one electrode connected to the gate of the second transistor and the other electrode connected to the ground.
ネルの導電型は、前記スイッチ用トランジスタのチャネ
ルの導電型と相違し、前記第1のトランジスタのソース
と接地との間に接続された第1のレベルシフト用ダイオ
ードと、前記第2のトランジスタのソースと接地との間
に接続された第2のレベルシフト用ダイオードと、を有
することを特徴とする請求項1に記載の定電流駆動回
路。2. The channel of the first and second transistors has a conductivity type different from that of the channel of the switching transistor, and a channel connected between a source of the first transistor and ground. 2. The constant current drive circuit according to claim 1, further comprising: a first level shift diode; and a second level shift diode connected between a source of the second transistor and ground. .
ネルの導電型は、前記スイッチ用トランジスタのチャネ
ルの導電型と同じであることを特徴とする請求項1に記
載の定電流駆動回路。3. The constant current drive circuit according to claim 1, wherein the conductivity type of the channel of the first and second transistors is the same as the conductivity type of the channel of the switching transistor.
接続され接地にソースが接続された第1のトランジスタ
と、この第1のトランジスタのゲートとドレインとの間
に接続されたスイッチ用トランジスタと、このスイッチ
用トランジスタのゲートに接続されこのスイッチ用トラ
ンジスタの導通と非導通とを切替える信号が入力される
制御端子と、前記第1のトランジスタのゲートにゲート
が接続され接地にソースが接続され前記第1のトランジ
スタと共にカレントミラー回路を構成する第2のトラン
ジスタと、この第2のトランジスタのゲートに一方の電
極が接続され接地に他方の電極が接続された容量素子
と、を有することを特徴とする定電流駆動回路。4. An input terminal, a first transistor having a drain connected to the input terminal and a source connected to ground, and a switching transistor connected between a gate and a drain of the first transistor. A control terminal connected to the gate of the switching transistor, to which a signal for switching between conduction and non-conduction of the switching transistor is input; and a gate connected to the gate of the first transistor and a source connected to ground, A second transistor that forms a current mirror circuit together with the first transistor; and a capacitor having one electrode connected to the gate of the second transistor and the other electrode connected to ground. Constant current drive circuit.
のドレインとの間に接続された抵抗を有することを特徴
とする請求項1乃至4のいずれか1項に記載の定電流駆
動回路。5. The constant current drive circuit according to claim 1, further comprising a resistor connected between the input terminal and a drain of the first transistor.
れたソースフォロワ用トランジスタを有することを特徴
とする請求項5に記載の定電流駆動回路。6. The constant current drive circuit according to claim 5, further comprising a source follower transistor connected between said input terminal and said resistor.
機エレクトロルミネセント素子に接続されることを特徴
とする請求項1乃至6のいずれか1項に記載の定電流駆
動回路。7. The constant current drive circuit according to claim 1, wherein a drain of the second transistor is connected to an organic electroluminescent device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10229650A JP2953465B1 (en) | 1998-08-14 | 1998-08-14 | Constant current drive circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10229650A JP2953465B1 (en) | 1998-08-14 | 1998-08-14 | Constant current drive circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2953465B1 JP2953465B1 (en) | 1999-09-27 |
JP2000056847A true JP2000056847A (en) | 2000-02-25 |
Family
ID=16895531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10229650A Expired - Lifetime JP2953465B1 (en) | 1998-08-14 | 1998-08-14 | Constant current drive circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2953465B1 (en) |
Cited By (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002175029A (en) * | 2000-09-29 | 2002-06-21 | Sanyo Electric Co Ltd | Semiconductor device and display device |
JP2003005710A (en) * | 2001-06-25 | 2003-01-08 | Nec Corp | Current driving circuit and image display device |
JP2003316319A (en) * | 2002-04-23 | 2003-11-07 | Rohm Co Ltd | Organic el driving circuit and organic el display device |
US6661180B2 (en) | 2001-03-22 | 2003-12-09 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, driving method for the same and electronic apparatus |
JP2004046127A (en) * | 2002-05-17 | 2004-02-12 | Semiconductor Energy Lab Co Ltd | Display device |
US6693385B2 (en) | 2001-03-22 | 2004-02-17 | Semiconductor Energy Laboratory Co., Ltd. | Method of driving a display device |
JP2004109991A (en) * | 2002-08-30 | 2004-04-08 | Sanyo Electric Co Ltd | Display driving circuit |
US6753654B2 (en) | 2001-02-21 | 2004-06-22 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and electronic appliance |
JP2004523830A (en) * | 2001-01-31 | 2004-08-05 | クゥアルコム・インコーポレイテッド | Bias circuit for maintaining a constant value of transconductance divided by load capacitance |
US6777710B1 (en) | 2001-02-26 | 2004-08-17 | Semiconductor Energy Laboratory Co., Ltd. | Organic light emitting device with constant luminance |
JP2004531751A (en) * | 2001-02-16 | 2004-10-14 | イグニス イノベーション インコーポレーテッド | Pixel current driver for organic light emitting diode displays |
JP2005017977A (en) * | 2003-06-30 | 2005-01-20 | Casio Comput Co Ltd | Current generating and supplying circuit and display device equipped with same current generating and supplying circuit |
JP2005505802A (en) * | 2001-09-20 | 2005-02-24 | パイオニア株式会社 | Light emitting element drive circuit |
US6876350B2 (en) | 2001-08-10 | 2005-04-05 | Semiconductor Energy Laboratory Co., Ltd. | Display device and electronic equipment using the same |
US6879110B2 (en) | 2000-07-27 | 2005-04-12 | Semiconductor Energy Laboratory Co., Ltd. | Method of driving display device |
JP2005134435A (en) * | 2003-10-28 | 2005-05-26 | Hitachi Ltd | Image display apparatus |
JP2006011470A (en) * | 2001-09-10 | 2006-01-12 | Seiko Epson Corp | Electronic apparatus and electronic equipment |
JP2006039574A (en) * | 2001-09-10 | 2006-02-09 | Seiko Epson Corp | Electronic apparatus and electronic equipment |
US7005675B2 (en) | 2002-05-31 | 2006-02-28 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device, method for driving light-emitting device and element board |
US7046240B2 (en) | 2001-08-29 | 2006-05-16 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, method of driving a light emitting device, element substrate, and electronic equipment |
US7170094B2 (en) | 2001-09-21 | 2007-01-30 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, driving method of light emitting device and electronic device |
JP2007506144A (en) * | 2003-09-23 | 2007-03-15 | イグニス イノベーション インコーポレーテッド | Pixel driver circuit |
US7250928B2 (en) | 2001-09-17 | 2007-07-31 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, method of driving a light emitting device, and electronic equipment |
JP2007233399A (en) * | 2001-08-02 | 2007-09-13 | Seiko Epson Corp | Electronic device, electrooptical device, and electronic equipment |
US7277070B2 (en) | 2000-10-24 | 2007-10-02 | Semiconductor Energy Laboratory Co. Ltd. | Light emitting device and method of driving the same |
GB2453492B (en) * | 2007-05-31 | 2010-05-26 | Panasonic Corp | Organic el device and manufacturing method thereof |
JP2010122700A (en) * | 2001-09-10 | 2010-06-03 | Seiko Epson Corp | Electro-optical device and electronic equipment |
JP2013101346A (en) * | 2012-11-22 | 2013-05-23 | Semiconductor Energy Lab Co Ltd | Display device driving method |
US8659518B2 (en) | 2005-01-28 | 2014-02-25 | Ignis Innovation Inc. | Voltage programmed pixel circuit, display system and driving method thereof |
US8664644B2 (en) | 2001-02-16 | 2014-03-04 | Ignis Innovation Inc. | Pixel driver circuit and pixel circuit having the pixel driver circuit |
US8743096B2 (en) | 2006-04-19 | 2014-06-03 | Ignis Innovation, Inc. | Stable driving scheme for active matrix displays |
US8816946B2 (en) | 2004-12-15 | 2014-08-26 | Ignis Innovation Inc. | Method and system for programming, calibrating and driving a light emitting device display |
US8901579B2 (en) | 2011-08-03 | 2014-12-02 | Ignis Innovation Inc. | Organic light emitting diode and method of manufacturing |
US8907991B2 (en) | 2010-12-02 | 2014-12-09 | Ignis Innovation Inc. | System and methods for thermal compensation in AMOLED displays |
USRE45291E1 (en) | 2004-06-29 | 2014-12-16 | Ignis Innovation Inc. | Voltage-programming scheme for current-driven AMOLED displays |
US8922544B2 (en) | 2012-05-23 | 2014-12-30 | Ignis Innovation Inc. | Display systems with compensation for line propagation delay |
US8994617B2 (en) | 2010-03-17 | 2015-03-31 | Ignis Innovation Inc. | Lifetime uniformity parameter extraction methods |
US9059117B2 (en) | 2009-12-01 | 2015-06-16 | Ignis Innovation Inc. | High resolution pixel architecture |
US9070775B2 (en) | 2011-08-03 | 2015-06-30 | Ignis Innovations Inc. | Thin film transistor |
US9093029B2 (en) | 2011-05-20 | 2015-07-28 | Ignis Innovation Inc. | System and methods for extraction of threshold and mobility parameters in AMOLED displays |
US9093028B2 (en) | 2009-12-06 | 2015-07-28 | Ignis Innovation Inc. | System and methods for power conservation for AMOLED pixel drivers |
US9111485B2 (en) | 2009-06-16 | 2015-08-18 | Ignis Innovation Inc. | Compensation technique for color shift in displays |
US9125278B2 (en) | 2006-08-15 | 2015-09-01 | Ignis Innovation Inc. | OLED luminance degradation compensation |
US9134825B2 (en) | 2011-05-17 | 2015-09-15 | Ignis Innovation Inc. | Systems and methods for display systems with dynamic power control |
US9153172B2 (en) | 2004-12-07 | 2015-10-06 | Ignis Innovation Inc. | Method and system for programming and driving active matrix light emitting device pixel having a controllable supply voltage |
US9171500B2 (en) | 2011-05-20 | 2015-10-27 | Ignis Innovation Inc. | System and methods for extraction of parasitic parameters in AMOLED displays |
US9171504B2 (en) | 2013-01-14 | 2015-10-27 | Ignis Innovation Inc. | Driving scheme for emissive displays providing compensation for driving transistor variations |
US9275579B2 (en) | 2004-12-15 | 2016-03-01 | Ignis Innovation Inc. | System and methods for extraction of threshold and mobility parameters in AMOLED displays |
US9280933B2 (en) | 2004-12-15 | 2016-03-08 | Ignis Innovation Inc. | System and methods for extraction of threshold and mobility parameters in AMOLED displays |
US9305488B2 (en) | 2013-03-14 | 2016-04-05 | Ignis Innovation Inc. | Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays |
US9311859B2 (en) | 2009-11-30 | 2016-04-12 | Ignis Innovation Inc. | Resetting cycle for aging compensation in AMOLED displays |
US9324268B2 (en) | 2013-03-15 | 2016-04-26 | Ignis Innovation Inc. | Amoled displays with multiple readout circuits |
US9336717B2 (en) | 2012-12-11 | 2016-05-10 | Ignis Innovation Inc. | Pixel circuits for AMOLED displays |
US9343006B2 (en) | 2012-02-03 | 2016-05-17 | Ignis Innovation Inc. | Driving system for active-matrix displays |
US9385169B2 (en) | 2011-11-29 | 2016-07-05 | Ignis Innovation Inc. | Multi-functional active matrix organic light-emitting diode display |
US9384698B2 (en) | 2009-11-30 | 2016-07-05 | Ignis Innovation Inc. | System and methods for aging compensation in AMOLED displays |
US9430958B2 (en) | 2010-02-04 | 2016-08-30 | Ignis Innovation Inc. | System and methods for extracting correlation curves for an organic light emitting device |
US9437137B2 (en) | 2013-08-12 | 2016-09-06 | Ignis Innovation Inc. | Compensation accuracy |
US9466240B2 (en) | 2011-05-26 | 2016-10-11 | Ignis Innovation Inc. | Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed |
US9502653B2 (en) | 2013-12-25 | 2016-11-22 | Ignis Innovation Inc. | Electrode contacts |
US9530349B2 (en) | 2011-05-20 | 2016-12-27 | Ignis Innovations Inc. | Charged-based compensation and parameter extraction in AMOLED displays |
US9606607B2 (en) | 2011-05-17 | 2017-03-28 | Ignis Innovation Inc. | Systems and methods for display systems with dynamic power control |
US9741282B2 (en) | 2013-12-06 | 2017-08-22 | Ignis Innovation Inc. | OLED display system and method |
US9747834B2 (en) | 2012-05-11 | 2017-08-29 | Ignis Innovation Inc. | Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore |
US9761170B2 (en) | 2013-12-06 | 2017-09-12 | Ignis Innovation Inc. | Correction for localized phenomena in an image array |
US9773439B2 (en) | 2011-05-27 | 2017-09-26 | Ignis Innovation Inc. | Systems and methods for aging compensation in AMOLED displays |
US9786209B2 (en) | 2009-11-30 | 2017-10-10 | Ignis Innovation Inc. | System and methods for aging compensation in AMOLED displays |
US9786223B2 (en) | 2012-12-11 | 2017-10-10 | Ignis Innovation Inc. | Pixel circuits for AMOLED displays |
US9799246B2 (en) | 2011-05-20 | 2017-10-24 | Ignis Innovation Inc. | System and methods for extraction of threshold and mobility parameters in AMOLED displays |
US9818376B2 (en) | 2009-11-12 | 2017-11-14 | Ignis Innovation Inc. | Stable fast programming scheme for displays |
US9830857B2 (en) | 2013-01-14 | 2017-11-28 | Ignis Innovation Inc. | Cleaning common unwanted signals from pixel measurements in emissive displays |
US9842889B2 (en) | 2014-11-28 | 2017-12-12 | Ignis Innovation Inc. | High pixel density array architecture |
US9881532B2 (en) | 2010-02-04 | 2018-01-30 | Ignis Innovation Inc. | System and method for extracting correlation curves for an organic light emitting device |
US9934725B2 (en) | 2013-03-08 | 2018-04-03 | Ignis Innovation Inc. | Pixel circuits for AMOLED displays |
US9947293B2 (en) | 2015-05-27 | 2018-04-17 | Ignis Innovation Inc. | Systems and methods of reduced memory bandwidth compensation |
US9952698B2 (en) | 2013-03-15 | 2018-04-24 | Ignis Innovation Inc. | Dynamic adjustment of touch resolutions on an AMOLED display |
US10013907B2 (en) | 2004-12-15 | 2018-07-03 | Ignis Innovation Inc. | Method and system for programming, calibrating and/or compensating, and driving an LED display |
US10012678B2 (en) | 2004-12-15 | 2018-07-03 | Ignis Innovation Inc. | Method and system for programming, calibrating and/or compensating, and driving an LED display |
US10019941B2 (en) | 2005-09-13 | 2018-07-10 | Ignis Innovation Inc. | Compensation technique for luminance degradation in electro-luminance devices |
US10078984B2 (en) | 2005-02-10 | 2018-09-18 | Ignis Innovation Inc. | Driving circuit for current programmed organic light-emitting diode displays |
US10089924B2 (en) | 2011-11-29 | 2018-10-02 | Ignis Innovation Inc. | Structural and low-frequency non-uniformity compensation |
US10089921B2 (en) | 2010-02-04 | 2018-10-02 | Ignis Innovation Inc. | System and methods for extracting correlation curves for an organic light emitting device |
US10163996B2 (en) | 2003-02-24 | 2018-12-25 | Ignis Innovation Inc. | Pixel having an organic light emitting diode and method of fabricating the pixel |
US10163401B2 (en) | 2010-02-04 | 2018-12-25 | Ignis Innovation Inc. | System and methods for extracting correlation curves for an organic light emitting device |
US10176752B2 (en) | 2014-03-24 | 2019-01-08 | Ignis Innovation Inc. | Integrated gate driver |
US10176736B2 (en) | 2010-02-04 | 2019-01-08 | Ignis Innovation Inc. | System and methods for extracting correlation curves for an organic light emitting device |
US10181282B2 (en) | 2015-01-23 | 2019-01-15 | Ignis Innovation Inc. | Compensation for color variations in emissive devices |
US10192479B2 (en) | 2014-04-08 | 2019-01-29 | Ignis Innovation Inc. | Display system using system level resources to calculate compensation parameters for a display module in a portable device |
US10204540B2 (en) | 2015-10-26 | 2019-02-12 | Ignis Innovation Inc. | High density pixel pattern |
US10235933B2 (en) | 2005-04-12 | 2019-03-19 | Ignis Innovation Inc. | System and method for compensation of non-uniformities in light emitting device displays |
US10311780B2 (en) | 2015-05-04 | 2019-06-04 | Ignis Innovation Inc. | Systems and methods of optical feedback |
US10319307B2 (en) | 2009-06-16 | 2019-06-11 | Ignis Innovation Inc. | Display system with compensation techniques and/or shared level resources |
US10339860B2 (en) | 2015-08-07 | 2019-07-02 | Ignis Innovation, Inc. | Systems and methods of pixel calibration based on improved reference values |
US10373554B2 (en) | 2015-07-24 | 2019-08-06 | Ignis Innovation Inc. | Pixels and reference circuits and timing techniques |
US10388221B2 (en) | 2005-06-08 | 2019-08-20 | Ignis Innovation Inc. | Method and system for driving a light emitting device display |
US10410579B2 (en) | 2015-07-24 | 2019-09-10 | Ignis Innovation Inc. | Systems and methods of hybrid calibration of bias current |
US10573231B2 (en) | 2010-02-04 | 2020-02-25 | Ignis Innovation Inc. | System and methods for extracting correlation curves for an organic light emitting device |
US10586491B2 (en) | 2016-12-06 | 2020-03-10 | Ignis Innovation Inc. | Pixel circuits for mitigation of hysteresis |
US10657895B2 (en) | 2015-07-24 | 2020-05-19 | Ignis Innovation Inc. | Pixels and reference circuits and timing techniques |
US10714018B2 (en) | 2017-05-17 | 2020-07-14 | Ignis Innovation Inc. | System and method for loading image correction data for displays |
US10867536B2 (en) | 2013-04-22 | 2020-12-15 | Ignis Innovation Inc. | Inspection system for OLED display panels |
US10971078B2 (en) | 2018-02-12 | 2021-04-06 | Ignis Innovation Inc. | Pixel measurement through data line |
US10996258B2 (en) | 2009-11-30 | 2021-05-04 | Ignis Innovation Inc. | Defect detection and correction of pixel circuits for AMOLED displays |
US10997901B2 (en) | 2014-02-28 | 2021-05-04 | Ignis Innovation Inc. | Display system |
US11025899B2 (en) | 2017-08-11 | 2021-06-01 | Ignis Innovation Inc. | Optical correction systems and methods for correcting non-uniformity of emissive display devices |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3594126B2 (en) | 2000-10-13 | 2004-11-24 | 日本電気株式会社 | Current drive circuit |
CN113168199B (en) * | 2018-11-26 | 2023-02-03 | 株式会社村田制作所 | Current output circuit |
-
1998
- 1998-08-14 JP JP10229650A patent/JP2953465B1/en not_active Expired - Lifetime
Cited By (234)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9489884B2 (en) | 2000-07-27 | 2016-11-08 | Semiconductor Energy Laboratory Co., Ltd. | Method of driving display device |
US7158104B2 (en) | 2000-07-27 | 2007-01-02 | Semiconductor Energy Laboratory Co., Ltd. | Method of driving display device |
US8035583B2 (en) | 2000-07-27 | 2011-10-11 | Semiconductor Energy Laboratory Co., Ltd. | Method of driving display device |
US8508439B2 (en) | 2000-07-27 | 2013-08-13 | Semiconductor Energy Laboratory Co., Ltd. | Method of driving display device |
US6879110B2 (en) | 2000-07-27 | 2005-04-12 | Semiconductor Energy Laboratory Co., Ltd. | Method of driving display device |
JP2002175029A (en) * | 2000-09-29 | 2002-06-21 | Sanyo Electric Co Ltd | Semiconductor device and display device |
US7277070B2 (en) | 2000-10-24 | 2007-10-02 | Semiconductor Energy Laboratory Co. Ltd. | Light emitting device and method of driving the same |
KR100829905B1 (en) * | 2000-10-24 | 2008-05-19 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Light emitting device |
KR100859570B1 (en) * | 2000-10-24 | 2008-09-23 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Method of driving a light emitting device |
US8558764B2 (en) | 2000-10-24 | 2013-10-15 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and method of driving the same |
JP2004523830A (en) * | 2001-01-31 | 2004-08-05 | クゥアルコム・インコーポレイテッド | Bias circuit for maintaining a constant value of transconductance divided by load capacitance |
US8664644B2 (en) | 2001-02-16 | 2014-03-04 | Ignis Innovation Inc. | Pixel driver circuit and pixel circuit having the pixel driver circuit |
JP2004531751A (en) * | 2001-02-16 | 2004-10-14 | イグニス イノベーション インコーポレーテッド | Pixel current driver for organic light emitting diode displays |
US8890220B2 (en) | 2001-02-16 | 2014-11-18 | Ignis Innovation, Inc. | Pixel driver circuit and pixel circuit having control circuit coupled to supply voltage |
US7719498B2 (en) | 2001-02-21 | 2010-05-18 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and electronic appliance |
US7336035B2 (en) | 2001-02-21 | 2008-02-26 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and electronic appliance |
US8780018B2 (en) | 2001-02-21 | 2014-07-15 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and electronic appliance |
US6753654B2 (en) | 2001-02-21 | 2004-06-22 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and electronic appliance |
US9431466B2 (en) | 2001-02-21 | 2016-08-30 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and electronic appliance |
US8120557B2 (en) | 2001-02-21 | 2012-02-21 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and electronic appliance |
US9886895B2 (en) | 2001-02-21 | 2018-02-06 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and electronic appliance |
US9040996B2 (en) | 2001-02-21 | 2015-05-26 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and electronic appliance |
US6777710B1 (en) | 2001-02-26 | 2004-08-17 | Semiconductor Energy Laboratory Co., Ltd. | Organic light emitting device with constant luminance |
US7851796B2 (en) | 2001-02-26 | 2010-12-14 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and electronic equipment |
US8071982B2 (en) | 2001-02-26 | 2011-12-06 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and electronic equipment |
US8314427B2 (en) | 2001-02-26 | 2012-11-20 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and electronic equipment |
US8610117B2 (en) | 2001-02-26 | 2013-12-17 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and electronic equipment |
US8593066B2 (en) | 2001-03-22 | 2013-11-26 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, driving method for same and electronic apparatus |
US6914390B2 (en) | 2001-03-22 | 2005-07-05 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, driving method for the same and electronic apparatus |
US7283109B2 (en) | 2001-03-22 | 2007-10-16 | Semiconductor Energy Laboratory Co., Ltd. | Method of driving a display device |
US7990350B2 (en) | 2001-03-22 | 2011-08-02 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, driving method for the same and electronic apparatus |
US7952541B2 (en) | 2001-03-22 | 2011-05-31 | Semiconductor Energy Laboratory Co., Ltd. | Method of driving a display device |
US6661180B2 (en) | 2001-03-22 | 2003-12-09 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, driving method for the same and electronic apparatus |
US7545353B2 (en) | 2001-03-22 | 2009-06-09 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, driving method for the same and electronic apparatus |
US7106006B2 (en) | 2001-03-22 | 2006-09-12 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, driving method for the same and electronic apparatus |
US6693385B2 (en) | 2001-03-22 | 2004-02-17 | Semiconductor Energy Laboratory Co., Ltd. | Method of driving a display device |
JP2003005710A (en) * | 2001-06-25 | 2003-01-08 | Nec Corp | Current driving circuit and image display device |
JP2007233399A (en) * | 2001-08-02 | 2007-09-13 | Seiko Epson Corp | Electronic device, electrooptical device, and electronic equipment |
US7804467B2 (en) | 2001-08-10 | 2010-09-28 | Semiconductor Energy Laboratory Co., Ltd. | Display device and electronic equipment using the same |
US6876350B2 (en) | 2001-08-10 | 2005-04-05 | Semiconductor Energy Laboratory Co., Ltd. | Display device and electronic equipment using the same |
US8232937B2 (en) | 2001-08-10 | 2012-07-31 | Semiconductor Energy Laboratory Co., Ltd. | Display device and electronic equipment using the same |
US8749455B2 (en) | 2001-08-10 | 2014-06-10 | Semiconductor Energy Laboratory Co., Ltd. | Display device and electronic equipment using the same |
US7176859B2 (en) | 2001-08-10 | 2007-02-13 | Semiconductor Energy Laboratory Co., Ltd. | Display device and electronic equipment using the same |
US8482491B2 (en) | 2001-08-29 | 2013-07-09 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, method of driving a light emitting device, element substrate, and electronic equipment |
US8982021B2 (en) | 2001-08-29 | 2015-03-17 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, method of driving a light emitting device, element substrate, and electronic equipment |
US7046240B2 (en) | 2001-08-29 | 2006-05-16 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, method of driving a light emitting device, element substrate, and electronic equipment |
US7411586B2 (en) | 2001-08-29 | 2008-08-12 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, method of driving a light emitting device, element substrate, and electronic equipment |
US8704736B2 (en) | 2001-08-29 | 2014-04-22 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, method of driving a light emitting device, element substrate, and electronic equipment |
JP4581893B2 (en) * | 2001-09-10 | 2010-11-17 | セイコーエプソン株式会社 | Electronic device and electronic device |
JP2006039574A (en) * | 2001-09-10 | 2006-02-09 | Seiko Epson Corp | Electronic apparatus and electronic equipment |
JP2010122700A (en) * | 2001-09-10 | 2010-06-03 | Seiko Epson Corp | Electro-optical device and electronic equipment |
JP2006011470A (en) * | 2001-09-10 | 2006-01-12 | Seiko Epson Corp | Electronic apparatus and electronic equipment |
US7250928B2 (en) | 2001-09-17 | 2007-07-31 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, method of driving a light emitting device, and electronic equipment |
JP2005505802A (en) * | 2001-09-20 | 2005-02-24 | パイオニア株式会社 | Light emitting element drive circuit |
US9876062B2 (en) | 2001-09-21 | 2018-01-23 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, driving method of light emitting device and electronic device |
US7795618B2 (en) | 2001-09-21 | 2010-09-14 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, driving method of light emitting device and electronic device |
US8227807B2 (en) | 2001-09-21 | 2012-07-24 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, driving method of light emitting device and electronic device |
US8519392B2 (en) | 2001-09-21 | 2013-08-27 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, driving method of light emitting device and electronic device |
US9368527B2 (en) | 2001-09-21 | 2016-06-14 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, driving method of light emitting device and electronic device |
US10068953B2 (en) | 2001-09-21 | 2018-09-04 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, driving method of light emitting device and electronic device |
US8895983B2 (en) | 2001-09-21 | 2014-11-25 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, driving method of light emitting device and electronic device |
US9165952B2 (en) | 2001-09-21 | 2015-10-20 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, driving method of light emitting device and electronic device |
US9876063B2 (en) | 2001-09-21 | 2018-01-23 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, driving method of light emitting device and electronic device |
US9847381B2 (en) | 2001-09-21 | 2017-12-19 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, driving method of light emitting device and electronic device |
US7170094B2 (en) | 2001-09-21 | 2007-01-30 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, driving method of light emitting device and electronic device |
JP2003316319A (en) * | 2002-04-23 | 2003-11-07 | Rohm Co Ltd | Organic el driving circuit and organic el display device |
JP4693338B2 (en) * | 2002-05-17 | 2011-06-01 | 株式会社半導体エネルギー研究所 | Display device |
JP2004046127A (en) * | 2002-05-17 | 2004-02-12 | Semiconductor Energy Lab Co Ltd | Display device |
US7005675B2 (en) | 2002-05-31 | 2006-02-28 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device, method for driving light-emitting device and element board |
JP2004109991A (en) * | 2002-08-30 | 2004-04-08 | Sanyo Electric Co Ltd | Display driving circuit |
US10163996B2 (en) | 2003-02-24 | 2018-12-25 | Ignis Innovation Inc. | Pixel having an organic light emitting diode and method of fabricating the pixel |
JP2005017977A (en) * | 2003-06-30 | 2005-01-20 | Casio Comput Co Ltd | Current generating and supplying circuit and display device equipped with same current generating and supplying circuit |
US9472138B2 (en) | 2003-09-23 | 2016-10-18 | Ignis Innovation Inc. | Pixel driver circuit with load-balance in current mirror circuit |
US8941697B2 (en) | 2003-09-23 | 2015-01-27 | Ignis Innovation Inc. | Circuit and method for driving an array of light emitting pixels |
US10089929B2 (en) | 2003-09-23 | 2018-10-02 | Ignis Innovation Inc. | Pixel driver circuit with load-balance in current mirror circuit |
US9472139B2 (en) | 2003-09-23 | 2016-10-18 | Ignis Innovation Inc. | Circuit and method for driving an array of light emitting pixels |
US9852689B2 (en) | 2003-09-23 | 2017-12-26 | Ignis Innovation Inc. | Circuit and method for driving an array of light emitting pixels |
JP2007506144A (en) * | 2003-09-23 | 2007-03-15 | イグニス イノベーション インコーポレーテッド | Pixel driver circuit |
JP4589614B2 (en) * | 2003-10-28 | 2010-12-01 | 株式会社 日立ディスプレイズ | Image display device |
JP2005134435A (en) * | 2003-10-28 | 2005-05-26 | Hitachi Ltd | Image display apparatus |
US7012586B2 (en) * | 2003-10-28 | 2006-03-14 | Hitachi, Ltd. | Image display device |
USRE47257E1 (en) | 2004-06-29 | 2019-02-26 | Ignis Innovation Inc. | Voltage-programming scheme for current-driven AMOLED displays |
USRE45291E1 (en) | 2004-06-29 | 2014-12-16 | Ignis Innovation Inc. | Voltage-programming scheme for current-driven AMOLED displays |
US9153172B2 (en) | 2004-12-07 | 2015-10-06 | Ignis Innovation Inc. | Method and system for programming and driving active matrix light emitting device pixel having a controllable supply voltage |
US9280933B2 (en) | 2004-12-15 | 2016-03-08 | Ignis Innovation Inc. | System and methods for extraction of threshold and mobility parameters in AMOLED displays |
US9275579B2 (en) | 2004-12-15 | 2016-03-01 | Ignis Innovation Inc. | System and methods for extraction of threshold and mobility parameters in AMOLED displays |
US10012678B2 (en) | 2004-12-15 | 2018-07-03 | Ignis Innovation Inc. | Method and system for programming, calibrating and/or compensating, and driving an LED display |
US9970964B2 (en) | 2004-12-15 | 2018-05-15 | Ignis Innovation Inc. | Method and system for programming, calibrating and driving a light emitting device display |
US10699624B2 (en) | 2004-12-15 | 2020-06-30 | Ignis Innovation Inc. | Method and system for programming, calibrating and/or compensating, and driving an LED display |
US8816946B2 (en) | 2004-12-15 | 2014-08-26 | Ignis Innovation Inc. | Method and system for programming, calibrating and driving a light emitting device display |
US8994625B2 (en) | 2004-12-15 | 2015-03-31 | Ignis Innovation Inc. | Method and system for programming, calibrating and driving a light emitting device display |
US10013907B2 (en) | 2004-12-15 | 2018-07-03 | Ignis Innovation Inc. | Method and system for programming, calibrating and/or compensating, and driving an LED display |
US8659518B2 (en) | 2005-01-28 | 2014-02-25 | Ignis Innovation Inc. | Voltage programmed pixel circuit, display system and driving method thereof |
US9728135B2 (en) | 2005-01-28 | 2017-08-08 | Ignis Innovation Inc. | Voltage programmed pixel circuit, display system and driving method thereof |
US9373645B2 (en) | 2005-01-28 | 2016-06-21 | Ignis Innovation Inc. | Voltage programmed pixel circuit, display system and driving method thereof |
US10078984B2 (en) | 2005-02-10 | 2018-09-18 | Ignis Innovation Inc. | Driving circuit for current programmed organic light-emitting diode displays |
US10235933B2 (en) | 2005-04-12 | 2019-03-19 | Ignis Innovation Inc. | System and method for compensation of non-uniformities in light emitting device displays |
US10388221B2 (en) | 2005-06-08 | 2019-08-20 | Ignis Innovation Inc. | Method and system for driving a light emitting device display |
US10019941B2 (en) | 2005-09-13 | 2018-07-10 | Ignis Innovation Inc. | Compensation technique for luminance degradation in electro-luminance devices |
US10127860B2 (en) | 2006-04-19 | 2018-11-13 | Ignis Innovation Inc. | Stable driving scheme for active matrix displays |
US9633597B2 (en) | 2006-04-19 | 2017-04-25 | Ignis Innovation Inc. | Stable driving scheme for active matrix displays |
US8743096B2 (en) | 2006-04-19 | 2014-06-03 | Ignis Innovation, Inc. | Stable driving scheme for active matrix displays |
US9842544B2 (en) | 2006-04-19 | 2017-12-12 | Ignis Innovation Inc. | Stable driving scheme for active matrix displays |
US10453397B2 (en) | 2006-04-19 | 2019-10-22 | Ignis Innovation Inc. | Stable driving scheme for active matrix displays |
US10325554B2 (en) | 2006-08-15 | 2019-06-18 | Ignis Innovation Inc. | OLED luminance degradation compensation |
US9530352B2 (en) | 2006-08-15 | 2016-12-27 | Ignis Innovations Inc. | OLED luminance degradation compensation |
US9125278B2 (en) | 2006-08-15 | 2015-09-01 | Ignis Innovation Inc. | OLED luminance degradation compensation |
US7825406B2 (en) | 2007-05-31 | 2010-11-02 | Panasonic Corporation | Organic EL device |
GB2453492B (en) * | 2007-05-31 | 2010-05-26 | Panasonic Corp | Organic el device and manufacturing method thereof |
US9117400B2 (en) | 2009-06-16 | 2015-08-25 | Ignis Innovation Inc. | Compensation technique for color shift in displays |
US9111485B2 (en) | 2009-06-16 | 2015-08-18 | Ignis Innovation Inc. | Compensation technique for color shift in displays |
US9418587B2 (en) | 2009-06-16 | 2016-08-16 | Ignis Innovation Inc. | Compensation technique for color shift in displays |
US10319307B2 (en) | 2009-06-16 | 2019-06-11 | Ignis Innovation Inc. | Display system with compensation techniques and/or shared level resources |
US10553141B2 (en) | 2009-06-16 | 2020-02-04 | Ignis Innovation Inc. | Compensation technique for color shift in displays |
US9818376B2 (en) | 2009-11-12 | 2017-11-14 | Ignis Innovation Inc. | Stable fast programming scheme for displays |
US10685627B2 (en) | 2009-11-12 | 2020-06-16 | Ignis Innovation Inc. | Stable fast programming scheme for displays |
US10304390B2 (en) | 2009-11-30 | 2019-05-28 | Ignis Innovation Inc. | System and methods for aging compensation in AMOLED displays |
US9384698B2 (en) | 2009-11-30 | 2016-07-05 | Ignis Innovation Inc. | System and methods for aging compensation in AMOLED displays |
US10996258B2 (en) | 2009-11-30 | 2021-05-04 | Ignis Innovation Inc. | Defect detection and correction of pixel circuits for AMOLED displays |
US10699613B2 (en) | 2009-11-30 | 2020-06-30 | Ignis Innovation Inc. | Resetting cycle for aging compensation in AMOLED displays |
US9786209B2 (en) | 2009-11-30 | 2017-10-10 | Ignis Innovation Inc. | System and methods for aging compensation in AMOLED displays |
US10679533B2 (en) | 2009-11-30 | 2020-06-09 | Ignis Innovation Inc. | System and methods for aging compensation in AMOLED displays |
US9311859B2 (en) | 2009-11-30 | 2016-04-12 | Ignis Innovation Inc. | Resetting cycle for aging compensation in AMOLED displays |
US9059117B2 (en) | 2009-12-01 | 2015-06-16 | Ignis Innovation Inc. | High resolution pixel architecture |
US9262965B2 (en) | 2009-12-06 | 2016-02-16 | Ignis Innovation Inc. | System and methods for power conservation for AMOLED pixel drivers |
US9093028B2 (en) | 2009-12-06 | 2015-07-28 | Ignis Innovation Inc. | System and methods for power conservation for AMOLED pixel drivers |
US10032399B2 (en) | 2010-02-04 | 2018-07-24 | Ignis Innovation Inc. | System and methods for extracting correlation curves for an organic light emitting device |
US10089921B2 (en) | 2010-02-04 | 2018-10-02 | Ignis Innovation Inc. | System and methods for extracting correlation curves for an organic light emitting device |
US9430958B2 (en) | 2010-02-04 | 2016-08-30 | Ignis Innovation Inc. | System and methods for extracting correlation curves for an organic light emitting device |
US10573231B2 (en) | 2010-02-04 | 2020-02-25 | Ignis Innovation Inc. | System and methods for extracting correlation curves for an organic light emitting device |
US10176736B2 (en) | 2010-02-04 | 2019-01-08 | Ignis Innovation Inc. | System and methods for extracting correlation curves for an organic light emitting device |
US10971043B2 (en) | 2010-02-04 | 2021-04-06 | Ignis Innovation Inc. | System and method for extracting correlation curves for an organic light emitting device |
US9773441B2 (en) | 2010-02-04 | 2017-09-26 | Ignis Innovation Inc. | System and methods for extracting correlation curves for an organic light emitting device |
US10163401B2 (en) | 2010-02-04 | 2018-12-25 | Ignis Innovation Inc. | System and methods for extracting correlation curves for an organic light emitting device |
US9881532B2 (en) | 2010-02-04 | 2018-01-30 | Ignis Innovation Inc. | System and method for extracting correlation curves for an organic light emitting device |
US11200839B2 (en) | 2010-02-04 | 2021-12-14 | Ignis Innovation Inc. | System and methods for extracting correlation curves for an organic light emitting device |
US10395574B2 (en) | 2010-02-04 | 2019-08-27 | Ignis Innovation Inc. | System and methods for extracting correlation curves for an organic light emitting device |
US8994617B2 (en) | 2010-03-17 | 2015-03-31 | Ignis Innovation Inc. | Lifetime uniformity parameter extraction methods |
US9489897B2 (en) | 2010-12-02 | 2016-11-08 | Ignis Innovation Inc. | System and methods for thermal compensation in AMOLED displays |
US9997110B2 (en) | 2010-12-02 | 2018-06-12 | Ignis Innovation Inc. | System and methods for thermal compensation in AMOLED displays |
US8907991B2 (en) | 2010-12-02 | 2014-12-09 | Ignis Innovation Inc. | System and methods for thermal compensation in AMOLED displays |
US10460669B2 (en) | 2010-12-02 | 2019-10-29 | Ignis Innovation Inc. | System and methods for thermal compensation in AMOLED displays |
US9134825B2 (en) | 2011-05-17 | 2015-09-15 | Ignis Innovation Inc. | Systems and methods for display systems with dynamic power control |
US9606607B2 (en) | 2011-05-17 | 2017-03-28 | Ignis Innovation Inc. | Systems and methods for display systems with dynamic power control |
US10249237B2 (en) | 2011-05-17 | 2019-04-02 | Ignis Innovation Inc. | Systems and methods for display systems with dynamic power control |
US9530349B2 (en) | 2011-05-20 | 2016-12-27 | Ignis Innovations Inc. | Charged-based compensation and parameter extraction in AMOLED displays |
US9799246B2 (en) | 2011-05-20 | 2017-10-24 | Ignis Innovation Inc. | System and methods for extraction of threshold and mobility parameters in AMOLED displays |
US9589490B2 (en) | 2011-05-20 | 2017-03-07 | Ignis Innovation Inc. | System and methods for extraction of threshold and mobility parameters in AMOLED displays |
US10032400B2 (en) | 2011-05-20 | 2018-07-24 | Ignis Innovation Inc. | System and methods for extraction of threshold and mobility parameters in AMOLED displays |
US10325537B2 (en) | 2011-05-20 | 2019-06-18 | Ignis Innovation Inc. | System and methods for extraction of threshold and mobility parameters in AMOLED displays |
US9093029B2 (en) | 2011-05-20 | 2015-07-28 | Ignis Innovation Inc. | System and methods for extraction of threshold and mobility parameters in AMOLED displays |
US9171500B2 (en) | 2011-05-20 | 2015-10-27 | Ignis Innovation Inc. | System and methods for extraction of parasitic parameters in AMOLED displays |
US10580337B2 (en) | 2011-05-20 | 2020-03-03 | Ignis Innovation Inc. | System and methods for extraction of threshold and mobility parameters in AMOLED displays |
US9355584B2 (en) | 2011-05-20 | 2016-05-31 | Ignis Innovation Inc. | System and methods for extraction of threshold and mobility parameters in AMOLED displays |
US10475379B2 (en) | 2011-05-20 | 2019-11-12 | Ignis Innovation Inc. | Charged-based compensation and parameter extraction in AMOLED displays |
US9799248B2 (en) | 2011-05-20 | 2017-10-24 | Ignis Innovation Inc. | System and methods for extraction of threshold and mobility parameters in AMOLED displays |
US10127846B2 (en) | 2011-05-20 | 2018-11-13 | Ignis Innovation Inc. | System and methods for extraction of threshold and mobility parameters in AMOLED displays |
US9978297B2 (en) | 2011-05-26 | 2018-05-22 | Ignis Innovation Inc. | Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed |
US9466240B2 (en) | 2011-05-26 | 2016-10-11 | Ignis Innovation Inc. | Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed |
US10706754B2 (en) | 2011-05-26 | 2020-07-07 | Ignis Innovation Inc. | Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed |
US9640112B2 (en) | 2011-05-26 | 2017-05-02 | Ignis Innovation Inc. | Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed |
US10417945B2 (en) | 2011-05-27 | 2019-09-17 | Ignis Innovation Inc. | Systems and methods for aging compensation in AMOLED displays |
US9773439B2 (en) | 2011-05-27 | 2017-09-26 | Ignis Innovation Inc. | Systems and methods for aging compensation in AMOLED displays |
US9224954B2 (en) | 2011-08-03 | 2015-12-29 | Ignis Innovation Inc. | Organic light emitting diode and method of manufacturing |
US9070775B2 (en) | 2011-08-03 | 2015-06-30 | Ignis Innovations Inc. | Thin film transistor |
US8901579B2 (en) | 2011-08-03 | 2014-12-02 | Ignis Innovation Inc. | Organic light emitting diode and method of manufacturing |
US10089924B2 (en) | 2011-11-29 | 2018-10-02 | Ignis Innovation Inc. | Structural and low-frequency non-uniformity compensation |
US10453904B2 (en) | 2011-11-29 | 2019-10-22 | Ignis Innovation Inc. | Multi-functional active matrix organic light-emitting diode display |
US10079269B2 (en) | 2011-11-29 | 2018-09-18 | Ignis Innovation Inc. | Multi-functional active matrix organic light-emitting diode display |
US9385169B2 (en) | 2011-11-29 | 2016-07-05 | Ignis Innovation Inc. | Multi-functional active matrix organic light-emitting diode display |
US9818806B2 (en) | 2011-11-29 | 2017-11-14 | Ignis Innovation Inc. | Multi-functional active matrix organic light-emitting diode display |
US10380944B2 (en) | 2011-11-29 | 2019-08-13 | Ignis Innovation Inc. | Structural and low-frequency non-uniformity compensation |
US10453394B2 (en) | 2012-02-03 | 2019-10-22 | Ignis Innovation Inc. | Driving system for active-matrix displays |
US9792857B2 (en) | 2012-02-03 | 2017-10-17 | Ignis Innovation Inc. | Driving system for active-matrix displays |
US10043448B2 (en) | 2012-02-03 | 2018-08-07 | Ignis Innovation Inc. | Driving system for active-matrix displays |
US9343006B2 (en) | 2012-02-03 | 2016-05-17 | Ignis Innovation Inc. | Driving system for active-matrix displays |
US9747834B2 (en) | 2012-05-11 | 2017-08-29 | Ignis Innovation Inc. | Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore |
US9940861B2 (en) | 2012-05-23 | 2018-04-10 | Ignis Innovation Inc. | Display systems with compensation for line propagation delay |
US8922544B2 (en) | 2012-05-23 | 2014-12-30 | Ignis Innovation Inc. | Display systems with compensation for line propagation delay |
US10176738B2 (en) | 2012-05-23 | 2019-01-08 | Ignis Innovation Inc. | Display systems with compensation for line propagation delay |
US9368063B2 (en) | 2012-05-23 | 2016-06-14 | Ignis Innovation Inc. | Display systems with compensation for line propagation delay |
US9536460B2 (en) | 2012-05-23 | 2017-01-03 | Ignis Innovation Inc. | Display systems with compensation for line propagation delay |
US9741279B2 (en) | 2012-05-23 | 2017-08-22 | Ignis Innovation Inc. | Display systems with compensation for line propagation delay |
JP2013101346A (en) * | 2012-11-22 | 2013-05-23 | Semiconductor Energy Lab Co Ltd | Display device driving method |
US10140925B2 (en) | 2012-12-11 | 2018-11-27 | Ignis Innovation Inc. | Pixel circuits for AMOLED displays |
US10311790B2 (en) | 2012-12-11 | 2019-06-04 | Ignis Innovation Inc. | Pixel circuits for amoled displays |
US9685114B2 (en) | 2012-12-11 | 2017-06-20 | Ignis Innovation Inc. | Pixel circuits for AMOLED displays |
US9336717B2 (en) | 2012-12-11 | 2016-05-10 | Ignis Innovation Inc. | Pixel circuits for AMOLED displays |
US9786223B2 (en) | 2012-12-11 | 2017-10-10 | Ignis Innovation Inc. | Pixel circuits for AMOLED displays |
US9830857B2 (en) | 2013-01-14 | 2017-11-28 | Ignis Innovation Inc. | Cleaning common unwanted signals from pixel measurements in emissive displays |
US9171504B2 (en) | 2013-01-14 | 2015-10-27 | Ignis Innovation Inc. | Driving scheme for emissive displays providing compensation for driving transistor variations |
US11875744B2 (en) | 2013-01-14 | 2024-01-16 | Ignis Innovation Inc. | Cleaning common unwanted signals from pixel measurements in emissive displays |
US10847087B2 (en) | 2013-01-14 | 2020-11-24 | Ignis Innovation Inc. | Cleaning common unwanted signals from pixel measurements in emissive displays |
US9934725B2 (en) | 2013-03-08 | 2018-04-03 | Ignis Innovation Inc. | Pixel circuits for AMOLED displays |
US10198979B2 (en) | 2013-03-14 | 2019-02-05 | Ignis Innovation Inc. | Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays |
US9818323B2 (en) | 2013-03-14 | 2017-11-14 | Ignis Innovation Inc. | Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays |
US9305488B2 (en) | 2013-03-14 | 2016-04-05 | Ignis Innovation Inc. | Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays |
US9536465B2 (en) | 2013-03-14 | 2017-01-03 | Ignis Innovation Inc. | Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays |
US9997107B2 (en) | 2013-03-15 | 2018-06-12 | Ignis Innovation Inc. | AMOLED displays with multiple readout circuits |
US9952698B2 (en) | 2013-03-15 | 2018-04-24 | Ignis Innovation Inc. | Dynamic adjustment of touch resolutions on an AMOLED display |
US10460660B2 (en) | 2013-03-15 | 2019-10-29 | Ingis Innovation Inc. | AMOLED displays with multiple readout circuits |
US9324268B2 (en) | 2013-03-15 | 2016-04-26 | Ignis Innovation Inc. | Amoled displays with multiple readout circuits |
US9721512B2 (en) | 2013-03-15 | 2017-08-01 | Ignis Innovation Inc. | AMOLED displays with multiple readout circuits |
US10867536B2 (en) | 2013-04-22 | 2020-12-15 | Ignis Innovation Inc. | Inspection system for OLED display panels |
US10600362B2 (en) | 2013-08-12 | 2020-03-24 | Ignis Innovation Inc. | Compensation accuracy |
US9990882B2 (en) | 2013-08-12 | 2018-06-05 | Ignis Innovation Inc. | Compensation accuracy |
US9437137B2 (en) | 2013-08-12 | 2016-09-06 | Ignis Innovation Inc. | Compensation accuracy |
US10186190B2 (en) | 2013-12-06 | 2019-01-22 | Ignis Innovation Inc. | Correction for localized phenomena in an image array |
US10395585B2 (en) | 2013-12-06 | 2019-08-27 | Ignis Innovation Inc. | OLED display system and method |
US9761170B2 (en) | 2013-12-06 | 2017-09-12 | Ignis Innovation Inc. | Correction for localized phenomena in an image array |
US9741282B2 (en) | 2013-12-06 | 2017-08-22 | Ignis Innovation Inc. | OLED display system and method |
US9502653B2 (en) | 2013-12-25 | 2016-11-22 | Ignis Innovation Inc. | Electrode contacts |
US10439159B2 (en) | 2013-12-25 | 2019-10-08 | Ignis Innovation Inc. | Electrode contacts |
US9831462B2 (en) | 2013-12-25 | 2017-11-28 | Ignis Innovation Inc. | Electrode contacts |
US10997901B2 (en) | 2014-02-28 | 2021-05-04 | Ignis Innovation Inc. | Display system |
US10176752B2 (en) | 2014-03-24 | 2019-01-08 | Ignis Innovation Inc. | Integrated gate driver |
US10192479B2 (en) | 2014-04-08 | 2019-01-29 | Ignis Innovation Inc. | Display system using system level resources to calculate compensation parameters for a display module in a portable device |
US10170522B2 (en) | 2014-11-28 | 2019-01-01 | Ignis Innovations Inc. | High pixel density array architecture |
US9842889B2 (en) | 2014-11-28 | 2017-12-12 | Ignis Innovation Inc. | High pixel density array architecture |
US10181282B2 (en) | 2015-01-23 | 2019-01-15 | Ignis Innovation Inc. | Compensation for color variations in emissive devices |
US10311780B2 (en) | 2015-05-04 | 2019-06-04 | Ignis Innovation Inc. | Systems and methods of optical feedback |
US10403230B2 (en) | 2015-05-27 | 2019-09-03 | Ignis Innovation Inc. | Systems and methods of reduced memory bandwidth compensation |
US9947293B2 (en) | 2015-05-27 | 2018-04-17 | Ignis Innovation Inc. | Systems and methods of reduced memory bandwidth compensation |
US10657895B2 (en) | 2015-07-24 | 2020-05-19 | Ignis Innovation Inc. | Pixels and reference circuits and timing techniques |
US10410579B2 (en) | 2015-07-24 | 2019-09-10 | Ignis Innovation Inc. | Systems and methods of hybrid calibration of bias current |
US10373554B2 (en) | 2015-07-24 | 2019-08-06 | Ignis Innovation Inc. | Pixels and reference circuits and timing techniques |
US10339860B2 (en) | 2015-08-07 | 2019-07-02 | Ignis Innovation, Inc. | Systems and methods of pixel calibration based on improved reference values |
US10204540B2 (en) | 2015-10-26 | 2019-02-12 | Ignis Innovation Inc. | High density pixel pattern |
US10586491B2 (en) | 2016-12-06 | 2020-03-10 | Ignis Innovation Inc. | Pixel circuits for mitigation of hysteresis |
US10714018B2 (en) | 2017-05-17 | 2020-07-14 | Ignis Innovation Inc. | System and method for loading image correction data for displays |
US11025899B2 (en) | 2017-08-11 | 2021-06-01 | Ignis Innovation Inc. | Optical correction systems and methods for correcting non-uniformity of emissive display devices |
US11792387B2 (en) | 2017-08-11 | 2023-10-17 | Ignis Innovation Inc. | Optical correction systems and methods for correcting non-uniformity of emissive display devices |
US10971078B2 (en) | 2018-02-12 | 2021-04-06 | Ignis Innovation Inc. | Pixel measurement through data line |
US11847976B2 (en) | 2018-02-12 | 2023-12-19 | Ignis Innovation Inc. | Pixel measurement through data line |
Also Published As
Publication number | Publication date |
---|---|
JP2953465B1 (en) | 1999-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2953465B1 (en) | Constant current drive circuit | |
KR100443238B1 (en) | Current driver circuit and image display device | |
US7365719B2 (en) | Display device | |
JP4650601B2 (en) | Current drive element drive circuit, drive method, and image display apparatus | |
KR101794856B1 (en) | Displays with silicon and semiconducting oxide thin-film transistors | |
EP1398836B1 (en) | Differential amplifier comprising thin film transistors with different threshold voltages | |
TWI467542B (en) | Pixel driver circuits | |
JP3594126B2 (en) | Current drive circuit | |
US6847340B2 (en) | Active organic light emitting diode drive circuit | |
JP2000040924A (en) | Constant current drive circuit | |
JP2004222256A (en) | Semiconductor device, and display device and electronic apparatus using the same | |
JP2003150116A (en) | Active matrix type display device and its driving method | |
JP2005316380A (en) | Active matrix type organic electro-luminescence display device | |
KR20040035810A (en) | Driving circuit for light emitting elements | |
US20060066254A1 (en) | Organic EL pixel circuit | |
JP2000356973A (en) | Driving circuit for display device | |
US20060007070A1 (en) | Driving circuit and driving method for electroluminescent display | |
US6904115B2 (en) | Current register unit and circuit and image display device using the current register unit | |
JP2005134838A (en) | Pixel circuit | |
US7863970B2 (en) | Current source device | |
JP2004247130A (en) | Device for improving yield and uniformity of active matrix organic light-emitting diode panel | |
KR100745414B1 (en) | Driving circuit for organic electroluminescent devices | |
JP2003330412A (en) | Active matrix type display and switching circuit | |
JP2004145279A (en) | Electronic circuit, method for driving electronic circuit, electrooptical device, method for driving electrooptical device, and electronic apparatus | |
JP2003059650A (en) | Drive circuit of organic electroluminescence element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070716 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 10 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 10 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120716 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120716 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130716 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130716 Year of fee payment: 14 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130716 Year of fee payment: 14 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |