FR2601443A1 - Position sensor and its application in telemetry, in particular space robotics - Google Patents
Position sensor and its application in telemetry, in particular space robotics Download PDFInfo
- Publication number
- FR2601443A1 FR2601443A1 FR8610085A FR8610085A FR2601443A1 FR 2601443 A1 FR2601443 A1 FR 2601443A1 FR 8610085 A FR8610085 A FR 8610085A FR 8610085 A FR8610085 A FR 8610085A FR 2601443 A1 FR2601443 A1 FR 2601443A1
- Authority
- FR
- France
- Prior art keywords
- slot
- sensor according
- detector
- slit
- detectors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/02—Sensing devices
- B25J19/021—Optical sensing devices
- B25J19/022—Optical sensing devices using lasers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/16—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
- G01S5/163—Determination of attitude
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Optics & Photonics (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
La présente invention concerne un capteur de position et son application à la télémétrie, notamment pour la robotique spatiale et, en particulier, pour équiper un bras télémanipulateur. The present invention relates to a position sensor and its application to telemetry, in particular for space robotics and, in particular, for equipping a manipulator arm.
Un but de la présente invention est de fournir un capteur ne comportant que des éléments statiques. An object of the present invention is to provide a sensor comprising only static elements.
Un autre but de l'invention est de fournir un capteur essentiellement constitué de moyens optiques et de moyens électroniques simples. Another object of the invention is to provide a sensor essentially consisting of optical means and simple electronic means.
Encore un but de l'invention est de fournir un capteur d'encombrement et de poids réduits. Another object of the invention is to provide a sensor for space and reduced weight.
D'autres buts de l'invention apparaîtront dans la suite de la description. Other objects of the invention will appear in the following description.
Le capteur de l'invention comprend essentiellement trois couples constitués chacun d'un détecteur photoélectrique rectiligne et d'une fente rectiligne associée, les détecteurs et les fentes étant situés dans des positions relatives définies, chaque fente et le détecteur associé étant placés dans des plans parallèles mais en sorte que la direction de la fente soit orthogonale à celle du détecteur, et des sources de lumière étant associées aux fentes pour l'objet dont on veut connaître la position en sorte que la lumière réfléchie par l'objet atteigne la fente associée à la source de lumière et forme sur le détecteur placé derrière la fente une tâche de diffraction dont l'emplacement sur la barrette correspond à l'angle d'incidence sur la fente, ledit détecteur étant apte à produire un signal électrique correspondant à la position de la tâche sur le détecteur. The sensor of the invention essentially comprises three pairs each consisting of a rectilinear photoelectric detector and an associated rectilinear slot, the detectors and the slots being located in defined relative positions, each slot and the associated detector being placed in planes parallel but so that the direction of the slit is orthogonal to that of the detector, and light sources being associated with the slits for the object whose position is to be known so that the light reflected by the object reaches the associated slit to the light source and forms on the detector placed behind the slot a diffraction spot whose location on the bar corresponds to the angle of incidence on the slot, said detector being capable of producing an electrical signal corresponding to the position of the task on the detector.
Un tel capteur fournit trois informations d'angle de visée de l'objet indépendantes à partir desquelles, connaissant les positions relatives des barrettes et des fentes, il est possible de calculer les coordonnées de l'objet, ce calcul consistant en la résolution d'un système de trois équations à trois inconnues. Such a sensor provides three independent object viewing angle information from which, knowing the relative positions of the bars and slots, it is possible to calculate the coordinates of the object, this calculation consisting of the resolution of a system of three equations with three unknowns.
Les calculs des coordonnées de l'objet à partir des informations fournies par le capteur sont de préférence réalisés au moyen d'un calculateur mais la présente invention porte sur le capteur et non sur le
calculateur qui ne sera pas décrit en détails.The calculations of the coordinates of the object from the information provided by the sensor are preferably carried out using a computer, but the present invention relates to the sensor and not to the
calculator which will not be described in detail.
On décrira ci-après une réalisation d'un
dispositif de télémanipulation équipé d'un capteur
conformément à la présente invention sans, bien entendu,
que l'invention soit limitée à cet exemple de réalisation.An embodiment of a
remote handling device equipped with a sensor
in accordance with the present invention without, of course,
that the invention be limited to this exemplary embodiment.
Cette description et les figures auxquelles
elle fait référence montreront d'autres particularités
avantageuses de la présente invention.This description and the figures in which
she references will show other peculiarities
advantageous of the present invention.
Sur les figures
La figure 1 est un schéma d'un dispositif de télémanipulation équipé d'un capteur conformément à la présente invention
La figure 2 est un schéma en plan des dispositions respectives des photodétecteurs et des fentes associées
La figure 3 est un schéma en perspective d'un photodétecteur et de la fente associée
La figure 4 est un schéma en plan d'un photodétecteur, de la fente et de la source de lumière associés
La figure 5 est une variante du schéma de la figure 4
La figure 6 est un schéma d'une autre réalisation d'une fente ét de la source de lumière associée
La figure 7 est une coupe d'une réalisation de capteur par un plan perpendiculaire au plan des détecteurs
La figure 8 est une vue de la face avant du capteur de la figure 7, et
Les figures 9 et 10 sont des schémas optiques, respectivement, de deux détecteurs et du troisième détecteur lorsque le capteur est en service. In the figures
Figure 1 is a diagram of a remote handling device equipped with a sensor according to the present invention
FIG. 2 is a plan diagram of the respective arrangements of the photodetectors and of the associated slots
Figure 3 is a perspective diagram of a photodetector and the associated slot
FIG. 4 is a plan diagram of a photodetector, of the slit and of the associated light source
Figure 5 is a variant of the diagram of Figure 4
FIG. 6 is a diagram of another embodiment of a slit and of the associated light source
Figure 7 is a section of a sensor embodiment by a plane perpendicular to the plane of the detectors
FIG. 8 is a view of the front face of the sensor of FIG. 7, and
Figures 9 and 10 are optical diagrams, respectively, of two detectors and the third detector when the sensor is in use.
Dans la réalisation décrite à titre d'exemple, le capteur C est destiné. à équiper une pince de télémanipulation P et doit servir à déterminer, à tout instant, les positions relatives de la pince et d'un objet S que la pince doit saisir, pour guider la pince vers l'objet (figure 1). Selon l'invention, le capteur C est monté sur la pince P tandis que l'objet à saisir S est associé à un rétroréflecteur R constitué par un coin de cube à faces réfléchissantes. Le dispositif comprend des moyens électromécaniques M pour commander le déplacement et le fonctionnement de la pince à partir notamment des signaux délivrés par le capteur. In the embodiment described by way of example, the sensor C is intended. to equip a telemanipulation clamp P and must be used to determine, at any time, the relative positions of the clamp and of an object S that the clamp must grasp, to guide the clamp towards the object (Figure 1). According to the invention, the sensor C is mounted on the clamp P while the object to be grasped S is associated with a retroreflector R constituted by a cube corner with reflecting faces. The device comprises electromechanical means M for controlling the movement and the operation of the clamp from notably the signals delivered by the sensor.
L'invention ne concerne que le capteur et ce dernier, dont seule la position est représentée schématiquement par un petit cercle sur la figure 1, sera décrit en détails ci-après. The invention relates only to the sensor and the latter, the position of which is only shown diagrammatically by a small circle in FIG. 1, will be described in detail below.
Le capteur C comprend essentiellement trois détecteurs rectilignes photo-sensibles B1, B2, B3, auxquels sont associées respectivement trois fentes rectilignes
F1, F2, F3 et trois sources de lumière L1, L2, L3, respectivement conjuguées optiques ou très proches des fentes F1, F2 et F3.The sensor C essentially comprises three rectilinear photo-sensitive detectors B1, B2, B3, to which are associated respectively three rectilinear slots
F1, F2, F3 and three light sources L1, L2, L3, respectively optical conjugates or very close to the slots F1, F2 and F3.
Chaque détecteur photo-sensible B est constitué, de façon en soi connue, par une barrette de semiconducteurs, par exemple des capacités MOS, où l'information est présente sous forme de charges électriques dans des puits de potentiel ("Dispositif à transfert de charges" ou CCD). L'injection de charges électriques sera réalisée par effet photoélectrique. L'électron crée demeurera piégé dans le puits de potentiel. il sera rejoint par de nouveaux électrons à mesure que l'exposition à la lumière se poursuit et la quantité de charges créées est proportionnelle au nombre de photons piégés par le semi-conducteur. Ces charges seront déplacées vers un circuit de sortie où elles seront converties en tension. Each photo-sensitive detector B is constituted, in a manner known per se, by a semiconductor strip, for example MOS capacitors, where the information is present in the form of electrical charges in potential wells ("Charge transfer device "or CCD). The injection of electrical charges will be carried out by photoelectric effect. The electron created will remain trapped in the potential well. it will be joined by new electrons as exposure to light continues and the amount of charges created is proportional to the number of photons trapped by the semiconductor. These charges will be moved to an output circuit where they will be converted into voltage.
A titre d'exemple, on utilise une barrette dont une longueur photosensible est de 22 mm environ et qui comporte 1728 pixels jointifs ayant une longueur unitaire de 13 m. By way of example, a strip is used, the photosensitive length of which is approximately 22 mm and which comprises 1,728 contiguous pixels having a unit length of 13 m.
Les barrettes B1, B2 sont coplanaires et alignées. On suppose que leur axe commun est l'axe y'y d'un système de coordonnées trirectangulaires. Elles sont distantes de d le long de cet axe. The bars B1, B2 are coplanar and aligned. It is assumed that their common axis is the y'y axis of a system of trirectangular coordinates. They are distant from d along this axis.
La barrette B3 est dirigée perpendiculairement aux barrettes B1 et B2 et se trouve à distance égale de ces deux barrettes, passant au milieu de l'intervalle entre les barrettes B1 et B2. On la suppose dirigée selon l'axe x'x. The bar B3 is directed perpendicular to the bars B1 and B2 and is at an equal distance from these two bars, passing in the middle of the interval between the bars B1 and B2. It is supposed to be directed along the axis x'x.
Ces trois barrettes sont coplanaires et l'on a représenté sur la figure 2 le plan crrdes barrettes. These three bars are coplanar and there is shown in Figure 2 the plan crrdes bars.
La fente F associée à une barrette B est située en avant de la barrette à une distance f de la barrette elle est parallèle au plan < des barrettes mais orthogo nase à la barrette. à laquelle el i est asspciée (fiqure 3). The slot F associated with a bar B is located in front of the bar at a distance f from the bar; it is parallel to the plane <of the bars but orthogonal to the bar. to which el i is associated (figure 3).
Les trois rertes sont ans un meme plan '. The three rows are in the same plan.
La source de lumière L, conjuguée optique de la fente F, est de préférence une diode laser placée près de la fente (figure 4) ou mieux, un couple de diodes laser (figure 5) placées de part et d'autre de la fente, ce qui permet d'augmenter la puissance lumineuse et d'élargir le champ de vue de l'instrument. Pour éviter que la lumière produite par la ou les diodes passe directement dans la fente, il est judicieux de placer un cache E entre la fente et la diode (figure 4). The light source L, the optical conjugate of the slot F, is preferably a laser diode placed near the slot (FIG. 4) or better, a pair of laser diodes (FIG. 5) placed on either side of the slot. , which increases the light output and widens the field of view of the instrument. To prevent the light produced by the diode (s) from passing directly into the slit, it is a good idea to place a cover E between the slit and the diode (Figure 4).
En variante, on utilise une source de lumière placée à distance de la fente et conjuguée de la fente par un miroir semi-réfléchissant M (figure 6). As a variant, a light source is used placed at a distance from the slit and conjugated with the slit by a semi-reflecting mirror M (FIG. 6).
L'invention n'est pas limitée à l'utilisation d'une source de lumière particulière ni à l'utilisation d'un moyen particulier' pour conjuguer la source et la fente. The invention is not limited to the use of a particular light source nor to the use of a particular means for conjugating the source and the slit.
Si l'on désire pallier les inconvénients dus à des lumières parasites, on peut utiliser des moyens optiques, comme cela est représenté à titre d'exemple sur la figure 6
- Filtre passe-bande étroit 4 placé devant chaque barrette B, accordé à la diode laser, prenant en compte les dérives thermiques de cette dernière et la divergence du faisceau lumineux. Le rôle de ce filtre est de minimiser la lumière parasite externe (Soleil, albedo terrestre).If it is desired to overcome the drawbacks due to stray lights, optical means can be used, as shown by way of example in FIG. 6
- Narrow bandpass filter 4 placed in front of each strip B, tuned to the laser diode, taking into account the thermal drifts of the latter and the divergence of the light beam. The role of this filter is to minimize external stray light (Sun, terrestrial albedo).
- Ensemble de lames > /4 d'ordre faible (fortes inclinaisons des rayons), d'analyseur A et polariseur, placées devant les sources de lumière L, le coin rétroréflecteur R et derrière les fentes F, pour discriminer la lumière parasite emise par la diode laser et réfléchie par les revetements thermiques de l'objet à saisir. - Set of blades> / 4 of low order (strong inclinations of the rays), analyzer A and polarizer, placed in front of the light sources L, the retroreflective corner R and behind the slits F, to discriminate the stray light emitted by the laser diode and reflected by the thermal coatings of the object to be grasped.
Les figures 7 et 8 sont relatives à une réalisation typique de capteur conforme à l'invention. Figures 7 and 8 relate to a typical embodiment of a sensor according to the invention.
Ce capteur comprend sur une platine 1, un boîtier qui supporte trois barrettes B1, B2, B3 sur un circuit imprimé commun 2 qui supporte, au-dessus et à distance des barrettes, des couples de plaquettes 3, 3', 3" qui constituent les fentes F1, F2 et F3. This sensor comprises on a plate 1, a housing which supports three bars B1, B2, B3 on a common printed circuit 2 which supports, above and at a distance from the bars, pairs of plates 3, 3 ′, 3 "which constitute the slots F1, F2 and F3.
Par exemple, les lèvres de chaque fente sont fabriquées à partir de plaques d'aluminium de 2 mm d'épaisseur biseautées puis dressées sur une fine pierre à meuler. Les deux lèvres de chaque fente sont guidées par des rainures. L'écartement des fentes est réglé par interposition d'une cale entre les lèvres (figure 4). For example, the lips of each slit are made from beveled 2 mm thick aluminum plates then erected on a fine grinding stone. The two lips of each slot are guided by grooves. The spacing of the slots is adjusted by interposing a wedge between the lips (Figure 4).
L'ensemble est protégé par un couvercle à fenêtres 5. The assembly is protected by a window cover 5.
Le capteur a une dimension de 130 x 50 x 50 mm et un poids de-500 g. Le boîtier est réalisé par usinage dans la masse d'un bloc d'aluminium. The sensor has a dimension of 130 x 50 x 50 mm and a weight of -500 g. The housing is produced by mass machining from an aluminum block.
La tâche lumineuse obtenue sur la barrette associée à une fente est fonction de la largeur de la fente. The light spot obtained on the strip associated with a slit depends on the width of the slit.
il est important que la fente ne soit pas trop fine pour éviter que la tâche soit étalée par un effet de diffraction. On a déterminé qu'une largeur de fente comprise dans la gamme O,1-C,14 FM, de préférence voisine de 0,12 mm, constitue un bon compromis pour une distance barrette-fente de l'ordre de 20 mm. it is important that the slit is not too thin to prevent the stain from being spread by a diffraction effect. It has been determined that a slit width in the range O, 1-C, 14 FM, preferably close to 0.12 mm, constitutes a good compromise for a strip-slit distance of the order of 20 mm.
Fonctionnement.
Le principe de la mesure utilise les propriétés de la triangulation. On observe le coin rétroréflecteur R dans des directions angulaires différentes que l'on repère sur des règles graduées constituéespar les barrettes B1, B2, B3.Operation.
The principle of measurement uses the properties of triangulation. One observes the retroreflective corner R in different angular directions which one locates on graduated rules constituted by the bars B1, B2, B3.
Le dispositif d'éclairage du coin rétroréflecteur, et permettant d'obtenir un signal lumineux sur chaque barrette B, est constitué par la diode laser L conjuguée optiquement de la fente. The device for lighting the retroreflective corner, and making it possible to obtain a light signal on each strip B, is constituted by the laser diode L optically conjugated with the slot.
Le schéma de la marche des rayons lumineux issus d'une diode laser, réfléchis par le coin R et traversant la fente d'analyse F de chaque détecteur, est représenté sur la figure 6. On a choisit cette figure parce qu'il est plus facile due représenter les rayons lumineux dans le cas où la source de lumière est éloignée de la fente. The diagram of the path of the light rays coming from a laser diode, reflected by the corner R and passing through the analysis slot F of each detector, is represented in FIG. 6. This figure has been chosen because it is more easy to represent the light rays in case the light source is far from the slit.
La lumière réfléchie par le coin et traversant la fente éclaire un pixel de la barrette placée derrière la fente. The light reflected from the corner and passing through the slit illuminates a pixel of the bar placed behind the slit.
Si l'on désigne par j le numéro du pixel éclairé par le barycentre
de la tâche image sur la barrette Bi k le numéro du pixel éclairé par le barycentre
de la tâche image sur la barrette B2 1 le numéro du pixel éclairé par le barycentre
de la tâche image sur la barrette B3 la largeur d'un pixel f la distance d'une barrette à la fente correspondante d la distance des fentes F1, F2 x la distance du coin rétroréflecteur au plan qui passe
par la fente F3 et qui est orthogonal à la barrette B3 y la distance du coin rétroréflecteur au plan qui passe
par la fente F1 et qui est orthogonal à la barrette B1 z la distance du coin rétroréflecteur au plan commun
des fentes F1, F2, F3, la considération des triangles semblables de la figure 9 relative aux barrettes B1 et B2 montre que
j (1) Y = k - j d
f (2) z = (k-j)# d et la considération des triangles semblables de la figure 10 relative à la barrette B3 montre que (3) x = d'où, compte tenu de (2) (4) x = d
(k-j)
il est donc facile de calculer les coordonnées du cube à partir des données mesurées et des caractéristiques de construction du capteur. If we denote by j the pixel number illuminated by the barycenter
of the image task on the bar Bi k the number of the pixel illuminated by the barycenter
of the image task on the bar B2 1 the number of the pixel illuminated by the barycenter
of the image task on the bar B3 the width of a pixel f the distance from a bar to the corresponding slot d the distance from the slots F1, F2 x the distance from the retro-reflective corner to the passing plane
by the slot F3 and which is orthogonal to the bar B3 y the distance from the retro-reflective corner to the passing plane
by the slot F1 and which is orthogonal to the bar B1 z the distance from the retroreflective corner to the common plane
of the slots F1, F2, F3, consideration of the similar triangles in FIG. 9 relating to the bars B1 and B2 shows that
j (1) Y = k - jd
f (2) z = (kj) # d and the consideration of similar triangles in Figure 10 relating to the bar B3 shows that (3) x = hence, taking into account (2) (4) x = d
(K J)
it is therefore easy to calculate the coordinates of the cube from the measured data and the construction characteristics of the sensor.
Pour s'affranchir de lumières parasites (plein soleil dans l'espace), il est judicieux de réaliser les mesures diodes allumées et diodes éteintes. To get rid of stray lights (full sun in space), it is a good idea to carry out the diode on and diode off measurements.
Si V (j) et Vo (j) représentent la part d'énergie intégrée par le pixel nO j, lorsqu'il reçoit la lumière, respectivement lorsque la diode est allumée et lorsque la diode est éteinte, le signal-utile est obtenu par la différence V (j) - Vo (j). If V (j) and Vo (j) represent the part of energy integrated by the pixel nO j, when it receives the light, respectively when the diode is lit and when the diode is extinct, the useful signal is obtained by the difference V (j) - Vo (j).
On peut aussi utiliser la propriété de modulation rapide de la diode pour adapter et synchroniser le temps de lecture des barrettes à l'impulsion laser. Ceci permet de minimiser les flux parasites externes. One can also use the fast modulation property of the diode to adapt and synchronize the reading time of the bars to the laser pulse. This minimizes external parasitic flows.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8610085A FR2601443B1 (en) | 1986-07-10 | 1986-07-10 | POSITION SENSOR AND ITS APPLICATION TO TELEMETRY, ESPECIALLY FOR SPATIAL ROBOTICS |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8610085A FR2601443B1 (en) | 1986-07-10 | 1986-07-10 | POSITION SENSOR AND ITS APPLICATION TO TELEMETRY, ESPECIALLY FOR SPATIAL ROBOTICS |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2601443A1 true FR2601443A1 (en) | 1988-01-15 |
FR2601443B1 FR2601443B1 (en) | 1991-11-29 |
Family
ID=9337311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR8610085A Expired - Lifetime FR2601443B1 (en) | 1986-07-10 | 1986-07-10 | POSITION SENSOR AND ITS APPLICATION TO TELEMETRY, ESPECIALLY FOR SPATIAL ROBOTICS |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR2601443B1 (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996017258A2 (en) * | 1994-12-01 | 1996-06-06 | Novus Limited | Optical position sensing system |
WO1999010136A1 (en) * | 1997-08-28 | 1999-03-04 | Proteus Corporation | Laser calibration of robotics systems |
WO2005008275A1 (en) * | 2003-07-08 | 2005-01-27 | Lightswitch Safety Systems, Inc. | Method and element for light detecting and angle of view compensation for optical devices |
WO2005098476A1 (en) * | 2004-03-29 | 2005-10-20 | Evolution Robotics, Inc. | Method and apparatus for position estimation using reflected light sources |
WO2005098475A1 (en) * | 2004-03-29 | 2005-10-20 | Evolution Robotics, Inc. | Sensing device and method for measuring position and orientation relative to multiple light sources |
US8606401B2 (en) | 2005-12-02 | 2013-12-10 | Irobot Corporation | Autonomous coverage robot navigation system |
US8632376B2 (en) | 2007-09-20 | 2014-01-21 | Irobot Corporation | Robotic game systems and methods |
US8634956B1 (en) | 2004-07-07 | 2014-01-21 | Irobot Corporation | Celestial navigation system for an autonomous robot |
US8656550B2 (en) | 2002-01-03 | 2014-02-25 | Irobot Corporation | Autonomous floor-cleaning robot |
US8670866B2 (en) | 2005-02-18 | 2014-03-11 | Irobot Corporation | Autonomous surface cleaning robot for wet and dry cleaning |
US8726454B2 (en) | 2007-05-09 | 2014-05-20 | Irobot Corporation | Autonomous coverage robot |
US8739355B2 (en) | 2005-02-18 | 2014-06-03 | Irobot Corporation | Autonomous surface cleaning robot for dry cleaning |
US8761931B2 (en) | 2005-12-02 | 2014-06-24 | Irobot Corporation | Robot system |
US8781626B2 (en) | 2002-09-13 | 2014-07-15 | Irobot Corporation | Navigational control system for a robotic device |
US8800107B2 (en) | 2010-02-16 | 2014-08-12 | Irobot Corporation | Vacuum brush |
US8838274B2 (en) | 2001-06-12 | 2014-09-16 | Irobot Corporation | Method and system for multi-mode coverage for an autonomous robot |
EP2814064A1 (en) * | 2013-06-10 | 2014-12-17 | Nxp B.V. | Integrated sensor chip package with directional light sensor, apparatus including such a package and method of manufacturing such an integrated sensor chip package |
US8972052B2 (en) | 2004-07-07 | 2015-03-03 | Irobot Corporation | Celestial navigation system for an autonomous vehicle |
US8978196B2 (en) | 2005-12-02 | 2015-03-17 | Irobot Corporation | Coverage robot mobility |
US8985127B2 (en) | 2005-02-18 | 2015-03-24 | Irobot Corporation | Autonomous surface cleaning robot for wet cleaning |
US9002511B1 (en) | 2005-10-21 | 2015-04-07 | Irobot Corporation | Methods and systems for obstacle detection using structured light |
US9144361B2 (en) | 2000-04-04 | 2015-09-29 | Irobot Corporation | Debris sensor for cleaning apparatus |
US9215957B2 (en) | 2004-01-21 | 2015-12-22 | Irobot Corporation | Autonomous robot auto-docking and energy management systems and methods |
US9310806B2 (en) | 2010-01-06 | 2016-04-12 | Irobot Corporation | System for localization and obstacle detection using a common receiver |
US9317038B2 (en) | 2006-05-31 | 2016-04-19 | Irobot Corporation | Detecting robot stasis |
US9320398B2 (en) | 2005-12-02 | 2016-04-26 | Irobot Corporation | Autonomous coverage robots |
US9446521B2 (en) | 2000-01-24 | 2016-09-20 | Irobot Corporation | Obstacle following sensor scheme for a mobile robot |
US9486924B2 (en) | 2004-06-24 | 2016-11-08 | Irobot Corporation | Remote control scheduler and method for autonomous robotic device |
US9492048B2 (en) | 2006-05-19 | 2016-11-15 | Irobot Corporation | Removing debris from cleaning robots |
US9582005B2 (en) | 2001-01-24 | 2017-02-28 | Irobot Corporation | Robot confinement |
US9895808B2 (en) | 2009-11-06 | 2018-02-20 | Irobot Corporation | Methods and systems for complete coverage of a surface by an autonomous robot |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8788092B2 (en) | 2000-01-24 | 2014-07-22 | Irobot Corporation | Obstacle following sensor scheme for a mobile robot |
US8396592B2 (en) | 2001-06-12 | 2013-03-12 | Irobot Corporation | Method and system for multi-mode coverage for an autonomous robot |
US9128486B2 (en) | 2002-01-24 | 2015-09-08 | Irobot Corporation | Navigational control system for a robotic device |
US8386081B2 (en) | 2002-09-13 | 2013-02-26 | Irobot Corporation | Navigational control system for a robotic device |
US8930023B2 (en) | 2009-11-06 | 2015-01-06 | Irobot Corporation | Localization by learning of wave-signal distributions |
ES2334064T3 (en) | 2005-12-02 | 2010-03-04 | Irobot Corporation | MODULAR ROBOT. |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2275285A1 (en) * | 1974-05-31 | 1976-01-16 | Nasa | MULTIAXIS DETECTOR FOR REMOTE OPERATION OF A DEVICE FOR HANDLING AN OBJECT |
US3951550A (en) * | 1974-08-12 | 1976-04-20 | The Magnavox Company | Direction-sensing virtual aperture radiation detector |
US4003635A (en) * | 1968-03-27 | 1977-01-18 | The United States Of America As Represented By The Secretary Of The Navy | Mosaic interference filter |
FR2399033A1 (en) * | 1977-07-29 | 1979-02-23 | Thomson Csf | DEVICE FOR LOCATING A RADIANT SOURCE AND DIRECTION TRACKING SYSTEM INCLUDING SUCH A DEVICE |
FR2433760A1 (en) * | 1978-08-17 | 1980-03-14 | Thomson Csf | Detector for position of pilot's helmet - uses opto-electronic system giving line of sight for arming system |
EP0017540A1 (en) * | 1979-04-06 | 1980-10-15 | Thomson-Csf | Opto-electric device for localising a luminous point-source |
EP0155858A1 (en) * | 1984-02-02 | 1985-09-25 | Thomson-Csf | System for marking the direction of one or several axes of a moving object |
-
1986
- 1986-07-10 FR FR8610085A patent/FR2601443B1/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4003635A (en) * | 1968-03-27 | 1977-01-18 | The United States Of America As Represented By The Secretary Of The Navy | Mosaic interference filter |
FR2275285A1 (en) * | 1974-05-31 | 1976-01-16 | Nasa | MULTIAXIS DETECTOR FOR REMOTE OPERATION OF A DEVICE FOR HANDLING AN OBJECT |
US3951550A (en) * | 1974-08-12 | 1976-04-20 | The Magnavox Company | Direction-sensing virtual aperture radiation detector |
FR2399033A1 (en) * | 1977-07-29 | 1979-02-23 | Thomson Csf | DEVICE FOR LOCATING A RADIANT SOURCE AND DIRECTION TRACKING SYSTEM INCLUDING SUCH A DEVICE |
FR2433760A1 (en) * | 1978-08-17 | 1980-03-14 | Thomson Csf | Detector for position of pilot's helmet - uses opto-electronic system giving line of sight for arming system |
EP0017540A1 (en) * | 1979-04-06 | 1980-10-15 | Thomson-Csf | Opto-electric device for localising a luminous point-source |
EP0155858A1 (en) * | 1984-02-02 | 1985-09-25 | Thomson-Csf | System for marking the direction of one or several axes of a moving object |
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996017258A3 (en) * | 1994-12-01 | 1997-02-13 | Novus Ltd | Optical position sensing system |
WO1996017258A2 (en) * | 1994-12-01 | 1996-06-06 | Novus Limited | Optical position sensing system |
WO1999010136A1 (en) * | 1997-08-28 | 1999-03-04 | Proteus Corporation | Laser calibration of robotics systems |
US6175413B1 (en) | 1997-08-28 | 2001-01-16 | Proteus Corporation | Laser calibration of robotics systems |
US9446521B2 (en) | 2000-01-24 | 2016-09-20 | Irobot Corporation | Obstacle following sensor scheme for a mobile robot |
US9144361B2 (en) | 2000-04-04 | 2015-09-29 | Irobot Corporation | Debris sensor for cleaning apparatus |
US9622635B2 (en) | 2001-01-24 | 2017-04-18 | Irobot Corporation | Autonomous floor-cleaning robot |
US9167946B2 (en) | 2001-01-24 | 2015-10-27 | Irobot Corporation | Autonomous floor cleaning robot |
US9582005B2 (en) | 2001-01-24 | 2017-02-28 | Irobot Corporation | Robot confinement |
US8838274B2 (en) | 2001-06-12 | 2014-09-16 | Irobot Corporation | Method and system for multi-mode coverage for an autonomous robot |
US9104204B2 (en) | 2001-06-12 | 2015-08-11 | Irobot Corporation | Method and system for multi-mode coverage for an autonomous robot |
US8656550B2 (en) | 2002-01-03 | 2014-02-25 | Irobot Corporation | Autonomous floor-cleaning robot |
US8671507B2 (en) | 2002-01-03 | 2014-03-18 | Irobot Corporation | Autonomous floor-cleaning robot |
US8781626B2 (en) | 2002-09-13 | 2014-07-15 | Irobot Corporation | Navigational control system for a robotic device |
US9949608B2 (en) | 2002-09-13 | 2018-04-24 | Irobot Corporation | Navigational control system for a robotic device |
US7501613B2 (en) | 2003-07-08 | 2009-03-10 | Lightswitch Safety Systems, Inc. | Light detecting and angle of view compensation for optical devices and method |
WO2005008275A1 (en) * | 2003-07-08 | 2005-01-27 | Lightswitch Safety Systems, Inc. | Method and element for light detecting and angle of view compensation for optical devices |
US9215957B2 (en) | 2004-01-21 | 2015-12-22 | Irobot Corporation | Autonomous robot auto-docking and energy management systems and methods |
WO2005098475A1 (en) * | 2004-03-29 | 2005-10-20 | Evolution Robotics, Inc. | Sensing device and method for measuring position and orientation relative to multiple light sources |
US9360300B2 (en) | 2004-03-29 | 2016-06-07 | Irobot Corporation | Methods and apparatus for position estimation using reflected light sources |
US8295955B2 (en) | 2004-03-29 | 2012-10-23 | Evolutions Robotics, Inc. | Methods and apparatus for position estimation using reflected light sources |
US8780342B2 (en) | 2004-03-29 | 2014-07-15 | Irobot Corporation | Methods and apparatus for position estimation using reflected light sources |
US7996097B2 (en) | 2004-03-29 | 2011-08-09 | Evolution Robotics, Inc. | Methods and apparatus for position estimation using reflected light sources |
US7720554B2 (en) | 2004-03-29 | 2010-05-18 | Evolution Robotics, Inc. | Methods and apparatus for position estimation using reflected light sources |
WO2005098476A1 (en) * | 2004-03-29 | 2005-10-20 | Evolution Robotics, Inc. | Method and apparatus for position estimation using reflected light sources |
US9486924B2 (en) | 2004-06-24 | 2016-11-08 | Irobot Corporation | Remote control scheduler and method for autonomous robotic device |
US9223749B2 (en) | 2004-07-07 | 2015-12-29 | Irobot Corporation | Celestial navigation system for an autonomous vehicle |
US8634956B1 (en) | 2004-07-07 | 2014-01-21 | Irobot Corporation | Celestial navigation system for an autonomous robot |
US8972052B2 (en) | 2004-07-07 | 2015-03-03 | Irobot Corporation | Celestial navigation system for an autonomous vehicle |
US9229454B1 (en) | 2004-07-07 | 2016-01-05 | Irobot Corporation | Autonomous mobile robot system |
US10470629B2 (en) | 2005-02-18 | 2019-11-12 | Irobot Corporation | Autonomous surface cleaning robot for dry cleaning |
US8739355B2 (en) | 2005-02-18 | 2014-06-03 | Irobot Corporation | Autonomous surface cleaning robot for dry cleaning |
US8782848B2 (en) | 2005-02-18 | 2014-07-22 | Irobot Corporation | Autonomous surface cleaning robot for dry cleaning |
US8966707B2 (en) | 2005-02-18 | 2015-03-03 | Irobot Corporation | Autonomous surface cleaning robot for dry cleaning |
US8774966B2 (en) | 2005-02-18 | 2014-07-08 | Irobot Corporation | Autonomous surface cleaning robot for wet and dry cleaning |
US8670866B2 (en) | 2005-02-18 | 2014-03-11 | Irobot Corporation | Autonomous surface cleaning robot for wet and dry cleaning |
US8985127B2 (en) | 2005-02-18 | 2015-03-24 | Irobot Corporation | Autonomous surface cleaning robot for wet cleaning |
US9445702B2 (en) | 2005-02-18 | 2016-09-20 | Irobot Corporation | Autonomous surface cleaning robot for wet and dry cleaning |
US9632505B2 (en) | 2005-10-21 | 2017-04-25 | Irobot Corporation | Methods and systems for obstacle detection using structured light |
US9002511B1 (en) | 2005-10-21 | 2015-04-07 | Irobot Corporation | Methods and systems for obstacle detection using structured light |
US9392920B2 (en) | 2005-12-02 | 2016-07-19 | Irobot Corporation | Robot system |
US9320398B2 (en) | 2005-12-02 | 2016-04-26 | Irobot Corporation | Autonomous coverage robots |
US8978196B2 (en) | 2005-12-02 | 2015-03-17 | Irobot Corporation | Coverage robot mobility |
US8606401B2 (en) | 2005-12-02 | 2013-12-10 | Irobot Corporation | Autonomous coverage robot navigation system |
US8761931B2 (en) | 2005-12-02 | 2014-06-24 | Irobot Corporation | Robot system |
US9144360B2 (en) | 2005-12-02 | 2015-09-29 | Irobot Corporation | Autonomous coverage robot navigation system |
US10244915B2 (en) | 2006-05-19 | 2019-04-02 | Irobot Corporation | Coverage robots and associated cleaning bins |
US9955841B2 (en) | 2006-05-19 | 2018-05-01 | Irobot Corporation | Removing debris from cleaning robots |
US9492048B2 (en) | 2006-05-19 | 2016-11-15 | Irobot Corporation | Removing debris from cleaning robots |
US9317038B2 (en) | 2006-05-31 | 2016-04-19 | Irobot Corporation | Detecting robot stasis |
US9480381B2 (en) | 2007-05-09 | 2016-11-01 | Irobot Corporation | Compact autonomous coverage robot |
US11498438B2 (en) | 2007-05-09 | 2022-11-15 | Irobot Corporation | Autonomous coverage robot |
US11072250B2 (en) | 2007-05-09 | 2021-07-27 | Irobot Corporation | Autonomous coverage robot sensing |
US8726454B2 (en) | 2007-05-09 | 2014-05-20 | Irobot Corporation | Autonomous coverage robot |
US10070764B2 (en) | 2007-05-09 | 2018-09-11 | Irobot Corporation | Compact autonomous coverage robot |
US10299652B2 (en) | 2007-05-09 | 2019-05-28 | Irobot Corporation | Autonomous coverage robot |
US8632376B2 (en) | 2007-09-20 | 2014-01-21 | Irobot Corporation | Robotic game systems and methods |
US10583562B2 (en) | 2009-11-06 | 2020-03-10 | Irobot Corporation | Methods and systems for complete coverage of a surface by an autonomous robot |
US9895808B2 (en) | 2009-11-06 | 2018-02-20 | Irobot Corporation | Methods and systems for complete coverage of a surface by an autonomous robot |
US11052540B2 (en) | 2009-11-06 | 2021-07-06 | Irobot Corporation | Methods and systems for complete coverage of a surface by an autonomous robot |
US9310806B2 (en) | 2010-01-06 | 2016-04-12 | Irobot Corporation | System for localization and obstacle detection using a common receiver |
US8800107B2 (en) | 2010-02-16 | 2014-08-12 | Irobot Corporation | Vacuum brush |
US10314449B2 (en) | 2010-02-16 | 2019-06-11 | Irobot Corporation | Vacuum brush |
US11058271B2 (en) | 2010-02-16 | 2021-07-13 | Irobot Corporation | Vacuum brush |
EP2814064A1 (en) * | 2013-06-10 | 2014-12-17 | Nxp B.V. | Integrated sensor chip package with directional light sensor, apparatus including such a package and method of manufacturing such an integrated sensor chip package |
US9666637B2 (en) | 2013-06-10 | 2017-05-30 | Nxp B.V. | Integrated sensor chip package with directional light sensor, apparatus including such a package and method of manufacturing such an integrated sensor chip package |
Also Published As
Publication number | Publication date |
---|---|
FR2601443B1 (en) | 1991-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2601443A1 (en) | Position sensor and its application in telemetry, in particular space robotics | |
FR2489501A1 (en) | OPTICAL POSITION LOCATION APPARATUS | |
FR2559577A1 (en) | POLYGONAL TRACE MEASUREMENT METHOD AND MEASURING DEVICE | |
FR2950441A1 (en) | Modular multipoint chromatic confocal altitude sensor e.g. field static multipoint chromatic confocal sensor, for high frequency and high resolution contactless three-dimensional digitization field, has supply block to supply power to LEDs | |
FR2685764A1 (en) | COMPACT AND HIGH RESOLUTION OPTICAL SENSOR FOR THREE DIMENSIONAL SHAPE ANALYSIS. | |
CA2688942A1 (en) | Sensor and imaging system for the remote detection of an object | |
EP0712009A1 (en) | Integrated angular deviation measurement system | |
FR2488691A1 (en) | METHOD AND DEVICE FOR DETECTION AND QUANTIFICATION OF REAL-TIME AGGLUTINATES | |
FR2503391A1 (en) | OPTICAL SCANNING SYSTEM | |
EP0515252A1 (en) | Device for acquisition of the instantaneous angular position of a moving element, and opto-mechanical system comprising such device | |
FR2779517A1 (en) | METHOD AND DEVICE FOR OPTOELECTRIC ACQUISITION OF SHAPES BY AXIAL ILLUMINATION | |
EP0970391B1 (en) | Optical device for the contactless measurement of distance of a light source | |
FR2524633A1 (en) | STATIONARY WAVE INTERFEROMETER FOR MEASURING OPTICAL PATH DIFFERENCES | |
CA2220940C (en) | Device for determining phase faults in electromagnetic waves | |
EP0762139B1 (en) | Optical device for the determination of the orientation of a solid | |
EP1111347B1 (en) | Positional encoder | |
FR2723208A1 (en) | Location/direction detection system for pilot helmet sights | |
EP0151057B1 (en) | Velocity-interferometer with continuously variable sensibility | |
FR2909182A1 (en) | Retroreflecting object e.g. eye, detecting method, involves forming two set of images of scene through respective filters whose bandwidths are adjusted on wavelengths during object illumination, respectively, and forming third set of image | |
EP1449020B1 (en) | High-speed sectorial or panoramic surveillance device without apparent motion | |
FR2647902A1 (en) | INTERFEROMETRIC DEVICE, IN PARTICULAR FOR A SPECTRO-IMAGER THROUGH A MULTIPLEX FOURIER TRANSFORM, AND SPECTRO-IMAGER COMPRISING SAME | |
FR2978826A1 (en) | OPTICAL SYSTEM FOR CUBIC CORNER ORIENTATION MEASUREMENT AND MASK | |
EP0048688B1 (en) | Method to detect optically and/or to measure a deformation and/or a displacement of an object or part of an object, device to carry out the method and use of the method | |
EP0196980A1 (en) | View finder for optical ranging | |
EP4143504B1 (en) | System for generating a signal representative of the profile of a surface moving relative to the system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ER | Errata listed in the french official journal (bopi) |
Free format text: 02/88 |
|
ST | Notification of lapse |