EP2354260A1 - Alloy, protective layer and component - Google Patents
Alloy, protective layer and component Download PDFInfo
- Publication number
- EP2354260A1 EP2354260A1 EP10000223A EP10000223A EP2354260A1 EP 2354260 A1 EP2354260 A1 EP 2354260A1 EP 10000223 A EP10000223 A EP 10000223A EP 10000223 A EP10000223 A EP 10000223A EP 2354260 A1 EP2354260 A1 EP 2354260A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- protective layer
- component
- layer
- alloy according
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
Definitions
- the invention relates to an alloy according to claim 1, a protective layer for protecting a component against corrosion and / or oxidation, in particular at high temperatures, according to claim 10 and a component according to claim 11.
- protective layers for metallic components intended to increase their corrosion resistance and / or oxidation resistance are known in the art in large numbers. Most of these protective layers are known under the collective name MCrAlY, where M represents at least one of the elements selected from the group consisting of iron, cobalt and nickel and further essential components are chromium, aluminum and yttrium.
- Typical coatings of this kind are from the U.S. Patents 4,005,989 and 4,034,142 known.
- inlet temperatures are important determinants of thermodynamic efficiencies achievable with gas turbines. Due to the use of specially developed alloys as base materials for components that are subject to high thermal loads such as guide vanes and rotor blades, in particular through the use of monocrystalline superalloys, inlet temperatures of well over 1000 ° C are possible. Meanwhile, the prior art allows inlet temperatures of 950 ° C and more in stationary gas turbines and 1100 ° C and more in gas turbines of aircraft engines.
- a protective layer must also have sufficient mechanical properties, not least in view of the mechanical interaction between the protective layer and the base material , to have.
- the protective layer must be sufficiently ductile in order to be able to follow any deformations of the base material and not to break, since in this way points of attack for oxidation and corrosion would be created.
- an object of the present invention to provide an alloy and a protective layer which has good high-temperature resistance in corrosion and oxidation, has good long-term stability and, in addition, a mechanical stress to be expected particularly in a gas turbine at a high temperature well adjusted.
- the object is achieved by an alloy according to claim 1 and a protective layer according to claim 10.
- Another object of the invention is to provide a component which has increased protection against corrosion and oxidation.
- the object is also achieved by a component according to claim 11, in particular a component of a gas turbine or steam turbine, which protects against corrosion and oxidation at high temperatures, a protective layer of the type described above.
- the invention is u. a. based on the knowledge that the protective layer in the layer and in the transition region between protective layer and base material brittle rhenium precipitates shows.
- these brittle phases which form increasingly with time and temperature, lead to pronounced longitudinal cracks in the layer as well as in the interface layer base material with subsequent detachment of the layer.
- the brittleness of the rhenium precipitates increases as a result of the interaction with carbon, which can diffuse into the layer from the base material or diffuse into the layer during a heat treatment in the furnace through the surface. Oxidation of the rhenium phases further enhances the driving force for crack formation.
- An advantageous embodiment consists of the elements nickel, cobalt, chromium, aluminum and yttrium
- yttrium At higher oxidation load (pure combustion gas), more oxygen must be bound by yttrium, so that the protective aluminum oxide layer can not grow too fast, and then the yttrium value is advantageously up to 0.7wt%.
- the content of yttrium should generally not be too high in the alloy, otherwise this leads to embrittlement.
- the proportions of the individual elements are specially tuned with regard to their effects, which are to be seen in particular in connection with the non-existent element rhenium. If the proportions are so large, can be dispensed with the addition of rhenium (Re), so that no rhenium precipitates form. There are advantageously no brittle phases during the use of the protective layer, so that the runtime behavior is improved and extended.
- the protective layer has, with good corrosion resistance, a particularly good resistance to oxidation and is also distinguished by particularly good ductility properties, so that it is particularly qualified for use in a gas turbine 100 (FIG. Fig. 3 ) with a further increase in the inlet temperature.
- the powders are applied for example by plasma spraying (APS, LPPS, VPS, ).
- Other methods are also conceivable (PVD, CVD, cold gas spraying, ).
- the protective layer 7 described also acts as a primer layer to a superalloy.
- a single protective layer 7 is used for the component, ie no duplex layer for the bondcoat.
- this protective layer 7 more layers, in particular ceramic thermal barrier coatings 10 can be applied.
- the protective layer 7 is advantageously applied to a substrate 4 made of a nickel or cobalt-based superalloy.
- composition is suitable as substrate (data in wt%): 0.1% up to 0.15% carbon 18% up to 22% chrome 18% until 19% cobalt 0% up to 2% tungsten 0% to 4% molybdenum 0% up to 1.5% tantalum 0% up to 1% niobium 1% to 3% aluminum 2% to 4% titanium 0% up to 0.75% hafnium optionally small amounts of boron and / or zirconium, balance nickel.
- compositions of this type are known as casting alloys under the designations GTD222, IN939, IN6203 and Udimet 500.
- the thickness of the protective layer 7 on the component 1 is preferably dimensioned to a value of between about 100 ⁇ m and 300 ⁇ m.
- the protective layer 7 is particularly suitable for protecting the component 1, 120, 130, 155 against corrosion and oxidation, while the component is exposed to a flue gas at a material temperature of about 950 ° C, in aircraft turbines also at about 1100 ° C.
- the protective layer 7 according to the invention is therefore particularly qualified for protecting a component of a gas turbine 100, in particular a guide blade 120, blade 130 or a heat shield element 155, which is acted upon by hot gas before or in the turbine of the gas turbine 100 or the steam turbine.
- the protective layer 7 can be used as an overlay (protective layer is the outer layer or as a bondcoat (protective layer is an intermediate layer).
- FIG. 1 shows a layer system 1 as a component.
- the layer system 1 consists of a substrate 4.
- the substrate 4 may be metallic and / or ceramic.
- turbine components such as turbine run 120 ( Fig. 4 ) or vanes 130 (FIG. Fig. 3, 4 ), Heat shield elements 155 ( Fig. 5 ) and other housing parts of a steam or gas turbine 100 ( Fig. 3 )
- the substrate 4 consists of a nickel-, cobalt- or iron-based superalloy.
- nickel-based superalloys are used.
- the protective layer 7 is present on the substrate 4, the protective layer 7 according to the invention is present. It is preferably used as a "single" layer, i. there is no other metallic layer. Preferably, this protective layer 7 is applied by plasma spraying (VPS, LPPS, APS1,).
- a ceramic thermal barrier coating 10 is present on the protective layer 7.
- the protective layer 7 can be applied to newly manufactured components and refurbished components from the refurbishment.
- Refurbishment means that after use, components 1 may be separated from layers (thermal barrier coating) and corrosion and oxidation products may be removed, for example by acid treatment (acid stripping). If necessary, cracks still have to be repaired. Thereafter, such a component can be coated again because the substrate 4 is very expensive.
- FIG. 3 shows by way of example a gas turbine 100 in a longitudinal partial section.
- the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft 101, which is also referred to as a turbine runner.
- an intake housing 104 a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
- a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
- the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
- annular annular hot gas channel 111 for example.
- turbine stages 112 connected in series form the turbine 108.
- Each turbine stage 112 is formed, for example, from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.
- the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example.
- air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
- the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
- the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
- the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
- the working medium 113 expands in a pulse-transmitting manner so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
- the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
- the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110.
- substrates of the components can have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
- iron-, nickel- or cobalt-based superalloys are used as the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110.
- Such superalloys are for example from EP 1 204 776 B1 .
- EP 1 306 454 .
- the vane 130 has a guide vane foot (not shown here) facing the inner casing 138 of the turbine 108 and a vane head opposite the vane root.
- the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
- FIG. 4 shows a perspective view of a blade 120 or guide vane 130 of a turbomachine, which extends along a longitudinal axis 121.
- the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
- the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjacent thereto and an airfoil 406 and a blade tip 415.
- the blade 130 may have at its blade tip 415 another platform (not shown).
- a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
- the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
- the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
- Such superalloys are for example from EP 1 204 776 B1 .
- EP 1 306 454 .
- the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
- Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
- Such monocrystalline workpieces takes place, for example, by directed solidification from the melt. These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
- dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified) or a monocrystalline structure, ie the whole Workpiece consists of a single crystal.
- directionally solidified columnar grain structure
- monocrystalline structure ie the whole Workpiece consists of a single crystal.
- directionally solidified microstructures which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.
- the blades 120, 130 may have protection layers 7 according to the invention against corrosion or oxidation.
- the density is preferably 95% of the theoretical density.
- thermal barrier coating which is preferably the outermost layer, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
- the thermal barrier coating covers the entire MCrAlX layer.
- suitable coating methods e.g. Electron beam evaporation (EB-PVD) produces stalk-shaped grains in the thermal barrier coating.
- the thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
- the thermal barrier coating is therefore preferably more porous than the MCrAlX layer.
- the blade 120, 130 may be hollow or solid.
- the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.
- the FIG. 5 shows a combustion chamber 110 of the gas turbine 100.
- the combustion chamber 110 is configured, for example, as a so-called annular combustion chamber, in which a plurality of circumferentially arranged around a rotation axis 102 around burners 107 open into a common combustion chamber space 154, the flames 156 produce.
- the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
- the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
- the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155.
- the heat shield elements 155 are then, for example, hollow and possibly still have cooling holes (not shown) which open into the combustion chamber space 154.
- Each heat shield element 155 made of an alloy is equipped on the working medium side with a particularly heat-resistant protective layer (MCrAlX layer and / or ceramic coating) or is made of high-temperature-resistant material (solid ceramic blocks).
- These protective layers 7 may be similar to the turbine blades.
- a ceramic thermal barrier coating may be present and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
- Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
- thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
- Refurbishment means that turbine blades 120, 130, heat shield elements 155 may need to be deprotected (e.g., by sandblasting) after use. This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, cracks in the turbine blade 120, 130 or the heat shield element 155 are also repaired. This is followed by a re-coating of the turbine blades 120, 130, heat shield elements 155 and a renewed use of the turbine blades 120, 130 or the heat shield elements 155.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Coating By Spraying Or Casting (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
Die Erfindung betrifft eine Legierung gemäß Anspruch 1, eine Schutzschicht zum Schutz eines Bauteils gegen Korrosion und/oder Oxidation insbesondere bei hohen Temperaturen gemäß Anspruch 10 und ein Bauteil gemäß Anspruch 11.The invention relates to an alloy according to claim 1, a protective layer for protecting a component against corrosion and / or oxidation, in particular at high temperatures, according to
Schutzschichten für metallische Bauteile, die deren Korrosionsbeständigkeit und/oder Oxidationsbeständigkeit erhöhen sollen, sind im Stand der Technik in großer Zahl bekannt. Die meisten dieser Schutzschichten sind unter dem Sammelnamen MCrAlY bekannt, wobei M für mindestens eines der Elemente aus der Gruppe umfassend Eisen, Kobalt und Nickel steht und weitere wesentliche Bestandteile Chrom, Aluminium und Yttrium sind.Protective layers for metallic components intended to increase their corrosion resistance and / or oxidation resistance are known in the art in large numbers. Most of these protective layers are known under the collective name MCrAlY, where M represents at least one of the elements selected from the group consisting of iron, cobalt and nickel and further essential components are chromium, aluminum and yttrium.
Typische Beschichtungen dieser Art sind aus den
Bekannt ist auch die Zugabe von Rhenium (Re) zu NiCoCrAlY-Legierungen.Also known is the addition of rhenium (Re) to NiCoCrAlY alloys.
Die Bemühung um die Steigerung der Eintrittstemperaturen sowohl bei stationären Gasturbinen als auch bei Flugtriebwerken hat auf dem Fachgebiet der Gasturbinen eine große Bedeutung, da die Eintrittstemperaturen wichtige Bestimmungsgrößen für die mit Gasturbinen erzielbaren thermodynamischen Wirkungsgrade sind. Durch den Einsatz speziell entwickelter Legierungen als Grundwerkstoffe für thermisch hoch zu belastende Bauteile wie Leit- und Laufschaufeln, insbesondere durch den Einsatz einkristalliner Superlegierungen, sind Eintrittstemperaturen von deutlich über 1000°C möglich. Inzwischen erlaubt der Stand der Technik Eintrittstemperaturen von 950°C und mehr bei stationären Gasturbinen sowie 1100°C und mehr in Gasturbinen von Flugtriebwerken.Efforts to increase the inlet temperatures of both stationary gas turbines and aircraft engines are of great importance in the gas turbine art because inlet temperatures are important determinants of thermodynamic efficiencies achievable with gas turbines. Due to the use of specially developed alloys as base materials for components that are subject to high thermal loads such as guide vanes and rotor blades, in particular through the use of monocrystalline superalloys, inlet temperatures of well over 1000 ° C are possible. Meanwhile, the prior art allows inlet temperatures of 950 ° C and more in stationary gas turbines and 1100 ° C and more in gas turbines of aircraft engines.
Beispiele zum Aufbau einer Turbinenschaufel mit einem einkristallinen Substrat, die seinerseits komplex aufgebaut sein kann, gehen hervor aus der
Während die physikalische Belastbarkeit der inzwischen entwickelten Grundwerkstoffe für die hoch belasteten Bauteile im Hinblick auf mögliche weitere Steigerungen der Eintrittstemperaturen weitgehend unproblematisch ist, muss zur Erzielung einer hinreichenden Beständigkeit gegen Oxidation und Korrosion auf Schutzschichten zurückgegriffen werden. Neben der hinreichenden chemischen Beständigkeit einer Schutzschicht unter den Angriffen, die von Rauchgasen bei Temperaturen in der Größenordnung von 1000°C zu erwarten sind, muss eine Schutzschicht auch genügend gute mechanische Eigenschaften, nicht zuletzt im Hinblick auf die mechanische Wechselwirkung zwischen der Schutzschicht und dem Grundwerkstoff, haben. Insbesondere muss die Schutzschicht hinreichend duktil sein, um eventuellen Verformungen des Grundwerkstoffes folgen zu können und nicht zu reißen, da auf diese Weise Angriffspunkte für Oxidation und Korrosion geschaffen würden.While the physical strength of the now developed base materials for the highly loaded components with regard to possible further increases in the inlet temperatures is largely unproblematic, must be used to achieve a sufficient resistance to oxidation and corrosion on protective layers. In addition to the sufficient chemical resistance of a protective layer under the attacks that are expected of flue gases at temperatures in the order of 1000 ° C, a protective layer must also have sufficient mechanical properties, not least in view of the mechanical interaction between the protective layer and the base material , to have. In particular, the protective layer must be sufficiently ductile in order to be able to follow any deformations of the base material and not to break, since in this way points of attack for oxidation and corrosion would be created.
Dementsprechend liegt der Erfindung die Aufgabe zugrunde, eine Legierung und eine Schutzschicht anzugeben, die eine gute Hochtemperaturbeständigkeit in Korrosion und Oxidation aufweist, eine gute Langzeitstabilität aufweist und die außerdem einer mechanischen Beanspruchung, die insbesondere in einer Gasturbine bei einer hohen Temperatur zu erwarten ist, besonders gut angepasst ist.Accordingly, it is an object of the present invention to provide an alloy and a protective layer which has good high-temperature resistance in corrosion and oxidation, has good long-term stability and, in addition, a mechanical stress to be expected particularly in a gas turbine at a high temperature well adjusted.
Die Aufgabe wird gelöst durch eine Legierung gemäß Anspruch 1 und eine Schutzschicht gemäß Anspruch 10.The object is achieved by an alloy according to claim 1 and a protective layer according to
Eine weitere Aufgabe der Erfindung besteht darin, ein Bauteil aufzuzeigen, das einen erhöhten Schutz gegen Korrosion und Oxidation aufweist.Another object of the invention is to provide a component which has increased protection against corrosion and oxidation.
Die Aufgabe wird ebenso gelöst durch ein Bauteil gemäß Anspruch 11, insbesondere ein Bauteil einer Gasturbine oder Dampfturbine, das zum Schutz gegen Korrosion und Oxidation bei hohen Temperaturen einer Schutzschicht der vorbeschriebenen Art aufweist.The object is also achieved by a component according to
In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die beliebig in vorteilhafter Art und Weise miteinander verknüpft werden können.In the subclaims further advantageous measures are listed, which can be linked to each other in an advantageous manner.
Der Erfindung liegt u. a. die Erkenntnis zugrunde, dass die Schutzschicht in der Schicht und in dem Übergangsbereich zwischen Schutzschicht und Grundwerkstoff spröde Rhenium-Ausscheidungen zeigt. Diese mit der Zeit und Temperatur im Einsatz sich verstärkt ausbildenden Sprödphasen führen im Betrieb zu stark ausgeprägten Längsrissen in der Schicht als auch im Interface Schicht-Grundwerkstoff mit anschließender Ablösung der Schicht. Durch die Wechselwirkung mit Kohlenstoff, der aus dem Grundwerkstoff in die Schicht hineindiffundieren kann oder während einer Wärmebehandlung im Ofen durch die Oberfläche in die Schicht hineindiffundiert, erhöht sich zusätzlich die Sprödigkeit der Rhenium-Ausscheidungen. Durch eine Oxidation der Rhenium-Phasen wird die Triebkraft zur Rissbildung noch verstärkt.The invention is u. a. based on the knowledge that the protective layer in the layer and in the transition region between protective layer and base material brittle rhenium precipitates shows. During operation, these brittle phases, which form increasingly with time and temperature, lead to pronounced longitudinal cracks in the layer as well as in the interface layer base material with subsequent detachment of the layer. In addition, the brittleness of the rhenium precipitates increases as a result of the interaction with carbon, which can diffuse into the layer from the base material or diffuse into the layer during a heat treatment in the furnace through the surface. Oxidation of the rhenium phases further enhances the driving force for crack formation.
Die Erfindung wird im Folgenden näher erläutert.The invention will be explained in more detail below.
Es zeigen
- Figur 1
- ein Schichtsystem mit einer Schutzschicht,
Figur 2- Zusammensetzungen von Superlegierungen,
- Figur 3
- eine Gasturbine,
Figur 4- eine Turbinenschaufel und
- Figur 5
- eine Brennkammer.
- FIG. 1
- a layer system with a protective layer,
- FIG. 2
- Compositions of superalloys,
- FIG. 3
- a gas turbine,
- FIG. 4
- a turbine blade and
- FIG. 5
- a combustion chamber.
Die Figuren und die Beschreibung stellen nur Ausführungsbeispiele der Erfindung dar.The figures and the description represent only embodiments of the invention.
Erfindungsgemäß weist eine Schutzschicht 7 (
- 18% bis 22% Kobalt (Co),
- 6% bis 8% Aluminium (Al),
- 0,5% bis 0,7% Yttrium (Y) und/oder zumindest ein äquivalentes Metall aus der Gruppe umfassend Scandium und die Elemente der Seltenen Erden,
- 22% bis 20% Chrom (Cr),
- Nickel (Ni) (NiCoCrAlY).
- 18% to 22% cobalt (Co),
- 6% to 8% aluminum (Al),
- 0.5% to 0.7% yttrium (Y) and / or at least one equivalent metal from the group comprising scandium and the elements of the rare earths,
- 22% to 20% chromium (Cr),
- Nickel (Ni) (NiCoCrAlY).
Diese Auflistung ist nicht abschließend.This listing is not exhaustive.
Eine vorteilhafte Ausführung besteht aus den Elementen Nickel, Kobalt, Chrom, Aluminium und YttriumAn advantageous embodiment consists of the elements nickel, cobalt, chromium, aluminum and yttrium
Bei höherer Oxidationsbelastung (reines Verbrennungsgas) muss durch Yttrium mehr Sauerstoff gebunden werden, damit die schützende Aluminiumoxidschicht nicht zu schnell wachsen kann, wobei dann der Yttriumwert vorteilhafterweise bei bis zu 0,7wt% liegt. Jedoch darf der Gehalt an Yttrium generell nicht zu hoch in der Legierung werden, da dies ansonsten zur Versprödung führt.At higher oxidation load (pure combustion gas), more oxygen must be bound by yttrium, so that the protective aluminum oxide layer can not grow too fast, and then the yttrium value is advantageously up to 0.7wt%. However, the content of yttrium should generally not be too high in the alloy, otherwise this leads to embrittlement.
Ein bevorzugtes Ausführungsbeispiel ist:
- Ni - 20Co - 24Cr - 7A1 - 0,6Y .
- Ni - 20Co - 24Cr - 7A1 - 0,6Y.
Festzustellen ist, dass die Anteile der einzelnen Elemente besonders abgestimmt sind im Hinblick auf ihre Wirkungen, die insbesondere in Zusammenhang mit dem nicht vorhandenen Element Rhenium zu sehen sind. Wenn die Anteile so bemessen sind, kann auf die Zugabe von Rhenium (Re) verzichtet werden, so dass sich auch keine Rhenium-Ausscheidungen bilden. Es entstehen vorteilhafterweise keine Sprödphasen während des Einsatzes der Schutzschicht, so dass das Laufzeitverhalten verbessert und verlängert ist.It should be noted that the proportions of the individual elements are specially tuned with regard to their effects, which are to be seen in particular in connection with the non-existent element rhenium. If the proportions are so large, can be dispensed with the addition of rhenium (Re), so that no rhenium precipitates form. There are advantageously no brittle phases during the use of the protective layer, so that the runtime behavior is improved and extended.
In Wechselwirkung mit der Reduzierung der Sprödphasen, die sich besonders unter höheren mechanischen Eigenschaften negativ auswirken, werden durch die Verringerung der mechanischen Spannungen durch den ausgewählten Nickel-Gehalt die mechanischen Eigenschaften verbessert.In interaction with the reduction of the brittle phases, which have a negative effect especially under higher mechanical properties, by reducing the mechanical Stresses due to the selected nickel content improves the mechanical properties.
Die Schutzschicht weist bei guter Korrosionsbeständigkeit eine besonders gute Beständigkeit gegen Oxidation auf und zeichnet sich auch durch besonders gute Duktilitätseigenschaften aus, so dass sie besonders qualifiziert ist für die Anwendung in einer Gasturbine 100 (
Die Pulver werden beispielsweise durch Plasmaspritzen aufgebracht (APS, LPPS, VPS, ...). Andere Verfahren sind ebenso denkbar (PVD, CVD, Kaltgasspritzen, ...).The powders are applied for example by plasma spraying (APS, LPPS, VPS, ...). Other methods are also conceivable (PVD, CVD, cold gas spraying, ...).
Die beschriebene Schutzschicht 7 wirkt auch als Haftvermittlerschicht zu einer Superlegierung.The protective layer 7 described also acts as a primer layer to a superalloy.
Vorzugsweise wird nur eine einzige Schutzschicht 7 für das Bauteil verwendet, also keine Duplexschicht für das Bondcoat. Auf diese Schutzschicht 7 können weitere Schichten, insbesondere keramische Wärmedämmschichten 10 aufgebracht werden.Preferably, only a single protective layer 7 is used for the component, ie no duplex layer for the bondcoat. On this protective layer 7 more layers, in particular ceramic
Bei einem Bauteil 1 ist die Schutzschicht 7 vorteilhafterweise aufgetragen auf ein Substrat 4 aus einer Superlegierung auf Nickel- oder Kobaltbasis.In the case of a component 1, the protective layer 7 is advantageously applied to a
Als Substrat kommt insbesondere folgende Zusammensetzung in Frage (Angaben in wt%):
Zusammensetzungen dieser Art sind als Gusslegierungen unter den Bezeichnungen GTD222, IN939, IN6203 und Udimet 500 bekannt.Compositions of this type are known as casting alloys under the designations GTD222, IN939, IN6203 and
Weitere Alternativen für das Substrat 4 des Bauteils 1, 120, 130, 155 sind in der
Die Dicke der Schutzschicht 7 auf dem Bauteil 1 wird vorzugsweise auf einen Wert zwischen etwa 100µm und 300µm bemessen.The thickness of the protective layer 7 on the component 1 is preferably dimensioned to a value of between about 100 μm and 300 μm.
Die Schutzschicht 7 eignet sich besonders zum Schutz des Bauteils 1, 120, 130, 155 gegen Korrosion und Oxidation, während das Bauteil bei einer Materialtemperatur um etwa 950°C, bei Flugturbinen auch um etwa 1100°C, mit einem Rauchgas beaufschlagt wird.The protective layer 7 is particularly suitable for protecting the
Die Schutzschicht 7 gemäß der Erfindung ist damit besonders qualifiziert zum Schutz eines Bauteils einer Gasturbine 100, insbesondere einer Leitschaufel 120, Laufschaufel 130 oder eines Hitzeschildelements 155, das mit heißem Gas vor oder in der Turbine der Gasturbine 100 oder der Dampfturbine beaufschlagt wird.The protective layer 7 according to the invention is therefore particularly qualified for protecting a component of a
Die Schutzschicht 7 kann als overlay (Schutzschicht ist die äußere Schicht oder als Bondcoat (Schutzschicht ist eine Zwischenschicht) verwendet werden.The protective layer 7 can be used as an overlay (protective layer is the outer layer or as a bondcoat (protective layer is an intermediate layer).
Sie wird vorzugsweise als "single" layer verwendet, d.h. es gibt keine weitere metallische Schicht.It is preferably used as a "single" layer, i. there is no other metallic layer.
Das Schichtsystem 1 besteht aus einem Substrat 4.The layer system 1 consists of a
Das Substrat 4 kann metallisch und/oder keramisch sein. Insbesondere bei Turbinenbauteilen, wie z.B. Turbinenlauf- 120 (
Auf dem Substrat 4 ist die erfindungsgemäße Schutzschicht 7 vorhanden. Sie wird vorzugsweise als "single" layer verwendet, d.h. es gibt keine weitere metallische Schicht. Vorzugsweise wird diese Schutzschicht 7 durch Plasmaspritzen (VPS, LPPS, APS1, ...) aufgebracht.On the
Diese kann als äußere Schicht (nicht dargestellt) oder Zwischenschicht (
Im letzteren Fall ist auf der Schutzschicht 7 eine keramische Wärmedämmschicht 10 vorhanden.In the latter case, a ceramic
Die Schutzschicht 7 kann auf neu hergestellte Bauteile und wieder aufgearbeitete Bauteile aus dem Refurbishment aufgebracht werden.The protective layer 7 can be applied to newly manufactured components and refurbished components from the refurbishment.
Wiederaufarbeitung (Refurbishment) bedeutet, dass Bauteile 1 nach ihrem Einsatz gegebenenfalls von Schichten (Wärmedämmschicht) getrennt werden und Korrosions- und Oxidationsprodukte entfernt werden, beispielsweise durch eine Säurebehandlung (Säurestrippen). Gegebenenfalls müssen noch Risse repariert werden. Danach kann ein solches Bauteil wieder beschichtet werden, da das Substrat 4 sehr teuer ist.Refurbishment means that after use, components 1 may be separated from layers (thermal barrier coating) and corrosion and oxidation products may be removed, for example by acid treatment (acid stripping). If necessary, cracks still have to be repaired. Thereafter, such a component can be coated again because the
Die
Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 drehgelagerten Rotor 103 mit einer Welle 101 auf, der auch als Turbinenläufer bezeichnet wird.The
Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Brennkammer 110, insbesondere Ringbrennkammer, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.Along the
Die Ringbrennkammer 110 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinander geschaltete Turbinenstufen 112 die Turbine 108.The
Jede Turbinenstufe 112 ist beispielsweise aus zwei Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125.Each
Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 beispielsweise mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind.The guide vanes 130 are fastened to an
An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt).Coupled to the
Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 105 bereitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.During operation of the
Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 110 auskleidenden Hitzeschildelementen am meisten thermisch belastet.The components exposed to the hot working
Um den dort herrschenden Temperaturen standzuhalten, können diese mittels eines Kühlmittels gekühlt werden.To withstand the prevailing temperatures, they can be cooled by means of a coolant.
Ebenso können Substrate der Bauteile eine gerichtete Struktur aufweisen, d.h. sie sind einkristallin (SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur).Likewise, substrates of the components can have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
Als Material für die Bauteile, insbesondere für die Turbinenschaufel 120, 130 und Bauteile der Brennkammer 110 werden beispielsweise eisen-, nickel- oder kobaltbasierte Superlegierungen verwendet.As the material for the components, in particular for the
Solche Superlegierungen sind beispielsweise aus der
Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht dargestellt) und einen dem Leitschaufelfuß gegenüberliegenden Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt.The
Die
Die Strömungsmaschine kann eine Gasturbine eines Flugzeugs oder eines Kraftwerks zur Elektrizitätserzeugung, eine Dampfturbine oder ein Kompressor sein.The turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
Die Schaufel 120, 130 weist entlang der Längsachse 121 aufeinander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie ein Schaufelblatt 406 und eine Schaufelspitze 415 auf.The
Als Leitschaufel 130 kann die Schaufel 130 an ihrer Schaufelspitze 415 eine weitere Plattform aufweisen (nicht dargestellt).As a
Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an einer Welle oder einer Scheibe dient (nicht dargestellt).In the mounting
Der Schaufelfuß 183 ist beispielsweise als Hammerkopf ausgestaltet. Andere Ausgestaltungen als Tannenbaum- oder Schwalbenschwanzfuß sind möglich.The
Die Schaufel 120, 130 weist für ein Medium, das an dem Schaufelblatt 406 vorbeiströmt, eine Anströmkante 409 und eine Abströmkante 412 auf.The
Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Schaufel 120, 130 beispielsweise massive metallische Werkstoffe, insbesondere Superlegierungen verwendet.In
Solche Superlegierungen sind beispielsweise aus der
Die Schaufel 120, 130 kann hierbei durch ein Gussverfahren, auch mittels gerichteter Erstarrung, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.The
Werkstücke mit einkristalliner Struktur oder Strukturen werden als Bauteile für Maschinen eingesetzt, die im Betrieb hohen mechanischen, thermischen und/oder chemischen Belastungen ausgesetzt sind.Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
Die Fertigung von derartigen einkristallinen Werkstücken erfolgt z.B..durch gerichtetes Erstarren aus der Schmelze. Es handelt sich dabei um Gießverfahren, bei denen die flüssige metallische Legierung zur einkristallinen Struktur, d.h. zum einkristallinen Werkstück, oder gerichtet erstarrt.The manufacture of such monocrystalline workpieces takes place, for example, by directed solidification from the melt. These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
Dabei werden dendritische Kristalle entlang dem Wärmefluss ausgerichtet und bilden entweder eine stängelkristalline Kornstruktur (kolumnar, d.h. Körner, die über die ganze Länge des Werkstückes verlaufen und hier, dem allgemeinen Sprachgebrauch nach, als gerichtet erstarrt bezeichnet werden) oder eine einkristalline Struktur, d.h. das ganze Werkstück besteht aus einem einzigen Kristall. In diesen Verfahren muss man den Übergang zur globulitischen (polykristallinen) Erstarrung meiden, da sich durch ungerichtetes Wachstum notwendigerweise transversale und longitudinale Korngrenzen ausbilden, welche die guten Eigenschaften des gerichtet erstarrten oder einkristallinen Bauteiles zunichte machen.Here, dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified) or a monocrystalline structure, ie the whole Workpiece consists of a single crystal. In these processes, it is necessary to avoid the transition to globulitic (polycrystalline) solidification, since non-directional growth necessarily produces transverse and longitudinal grain boundaries which negate the good properties of the directionally solidified or monocrystalline component.
Ist allgemein von gerichtet erstarrten Gefügen die Rede, so sind damit sowohl Einkristalle gemeint, die keine Korngrenzen oder höchstens Kleinwinkelkorngrenzen aufweisen, als auch Stängelkristallstrukturen, die wohl in longitudinaler Richtung verlaufende Korngrenzen, aber keine transversalen Korngrenzen aufweisen. Bei diesen zweitgenannten kristallinen Strukturen spricht man auch von gerichtet erstarrten Gefügen (directionally solidified structures).The term generally refers to directionally solidified microstructures, which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.
Solche Verfahren sind aus der
Ebenso können die Schaufeln 120, 130 erfindungsgemäße Schutzschichten 7 gegen Korrosion oder Oxidation aufweisen.Likewise, the
Die Dichte liegt vorzugsweise bei 95% der theoretischen Dichte.The density is preferably 95% of the theoretical density.
Auf der MCrAlX-Schicht (als Zwischenschicht oder als äußerste Schicht) bildet sich eine schützende Aluminiumoxidschicht (TGO = thermal grown oxide layer).A protective aluminum oxide layer (TGO = thermal grown oxide layer) is formed on the MCrAlX layer (as an intermediate layer or as the outermost layer).
Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, die vorzugsweise die äußerste Schicht ist, und besteht beispielsweise aus ZrO2, Y2O3-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.On the MCrAlX may still be present a thermal barrier coating, which is preferably the outermost layer, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
Die Wärmedämmschicht bedeckt die gesamte MCrAlX-Schicht. Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.The thermal barrier coating covers the entire MCrAlX layer. By suitable coating methods, e.g. Electron beam evaporation (EB-PVD) produces stalk-shaped grains in the thermal barrier coating.
Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärmedämmschicht kann poröse, mikro- oder makrorissbehaftete Körner zur besseren Thermoschockbeständigkeit aufweisen. Die Wärmedämmschicht ist also vorzugsweise poröser als die MCrAlX-Schicht.Other coating methods are conceivable, e.g. atmospheric plasma spraying (APS), LPPS, VPS or CVD. The thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance. The thermal barrier coating is therefore preferably more porous than the MCrAlX layer.
Die Schaufel 120, 130 kann hohl oder massiv ausgeführt sein.The
Wenn die Schaufel 120, 130 gekühlt werden soll, ist sie hohl und weist ggf. noch Filmkühllöcher 418 (gestrichelt angedeutet) auf.If the
Die
Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer 110 für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 1000°C bis 1600°C ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebsparametern eine vergleichsweise lange Betriebsdauer zu ermöglichen, ist die Brennkammerwand 153 auf ihrer dem Arbeitsmedium M zugewandten Seite mit einer aus Hitzeschildelementen 155 gebildeten Innenauskleidung versehen.To achieve a comparatively high efficiency, the
Aufgrund der hohen Temperaturen im Inneren der Brennkammer 110 kann zudem für die Hitzeschildelemente 155 bzw. für deren Halteelemente ein Kühlsystem vorgesehen sein. Die Hitzeschildelemente 155 sind dann beispielsweise hohl und weisen ggf. noch in den Brennkammerraum 154 mündende Kühllöcher (nicht dargestellt) auf.Due to the high temperatures inside the
Jedes Hitzeschildelement 155 aus einer Legierung ist arbeitsmediumsseitig mit einer besonders hitzebeständigen Schutzschicht (MCrAlX-Schicht und/oder keramische Beschichtung) ausgestattet oder ist aus hochtemperaturbeständigem Material (massive keramische Steine) gefertigt.Each
Diese Schutzschichten 7 können ähnlich der Turbinenschaufeln sein.These protective layers 7 may be similar to the turbine blades.
Auf der MCrAlX kann noch eine beispielsweise keramische Wärmedämmschicht vorhanden sein und besteht beispielsweise aus ZrO2, Y2O3-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.On the MCrAlX, for example, a ceramic thermal barrier coating may be present and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.By suitable coating methods, e.g. Electron beam evaporation (EB-PVD) produces stalk-shaped grains in the thermal barrier coating.
Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärmedämmschicht kann poröse, mikro- oder makrorissbehaftete Körner zur besseren Thermoschockbeständigkeit aufweisen.Other coating methods are conceivable, e.g. atmospheric plasma spraying (APS), LPPS, VPS or CVD. The thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
Wiederaufarbeitung (Refurbishment) bedeutet, dass Turbinenschaufeln 120, 130, Hitzeschildelemente 155 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen). Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidationsschichten bzw. -produkte. Gegebenenfalls werden auch noch Risse in der Turbinenschaufel 120, 130 oder dem Hitzeschildelement 155 repariert. Danach erfolgt eine Wiederbeschichtung der Turbinenschaufeln 120, 130, Hitzeschildelemente 155 und ein erneuter Einsatz der Turbinenschaufeln 120, 130 oder der Hitzeschildelemente 155.Refurbishment means that
Claims (11)
die folgende Elemente enthält
(Angaben in wt%) :
Nickel,
insbesondere Rest Nickel.alloy
contains the following elements
(Data in wt%):
Nickel,
especially the rest of nickel.
enthaltend 24wt% Chrom.Alloy according to claim 1,
containing 24wt% chromium.
enthaltend 20% Kobalt (Co).Alloy according to claim 1 or 2,
containing 20% cobalt (Co).
nicht enthaltend Rhenium.Alloy according to one or more of the preceding claims,
not containing rhenium.
nicht enthaltend Silizium (Si).Alloy according to one or more of the preceding claims,
not containing silicon (Si).
nicht enthaltend Zirkon (Zr) und/oder
nicht enthaltend Titan (Ti) und/oder
nicht enthaltend Gallium (Ga) und/oder
nicht enthaltend Germanium (Ge).Alloy according to one or more of the preceding claims,
not containing zirconium (Zr) and / or
not containing titanium (Ti) and / or
not containing gallium (Ga) and / or
not containing germanium (Ge).
bestehend aus Kobalt (Co), Chrom (Cr), Aluminium (Al), Yttrium (Y), Nickel (Ni).Alloy according to one or more of the preceding claims,
consisting of cobalt (Co), chromium (Cr), aluminum (Al), yttrium (Y), nickel (Ni).
insbesondere bei hohen Temperaturen,
die die Zusammensetzung der Legierung gemäß einem oder mehreren der Ansprüche 1 bis 9 aufweist und
die insbesondere als Einfachschicht vorhanden ist.Protective layer for protection of a component (1) against corrosion and / or oxidation,
especially at high temperatures,
which has the composition of the alloy according to one or more of claims 1 to 9 and
which is present in particular as a single layer.
insbesondere ein Bauteil (120, 130, 155) einer Gasturbine (100),
insbesondere bei dem ein Substrat (4) des Bauteils (120, 130, 155) nickelbasiert oder kobaltbasiert ist,
das zum Schutz gegen Korrosion und Oxidation bei hohen Temperaturen eine Schutzschicht (7) nach Anspruch 10 aufweist, insbesondere nur eine metallische Schutzschicht (7) aufweist und
bei dem insbesondere auf der Schutzschicht (7) eine keramische Wärmedämmschicht (10) aufgebracht ist.component
in particular a component (120, 130, 155) of a gas turbine (100),
in particular in which a substrate (4) of the component (120, 130, 155) is nickel-based or cobalt-based,
which, for protection against corrosion and oxidation at high temperatures, has a protective layer (7) according to claim 10, in particular only a metallic protective layer (7), and
in which, in particular on the protective layer (7), a ceramic thermal barrier coating (10) is applied.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10000223A EP2354260A1 (en) | 2010-01-12 | 2010-01-12 | Alloy, protective layer and component |
PCT/EP2011/050221 WO2011086045A1 (en) | 2010-01-12 | 2011-01-10 | Alloy, protective layer, and component |
US13/521,245 US20120328900A1 (en) | 2010-01-12 | 2011-01-10 | Alloy, protective layer, and component |
EP11700398A EP2524063A1 (en) | 2010-01-12 | 2011-01-10 | Alloy, protective layer, and component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10000223A EP2354260A1 (en) | 2010-01-12 | 2010-01-12 | Alloy, protective layer and component |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2354260A1 true EP2354260A1 (en) | 2011-08-10 |
Family
ID=42078995
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10000223A Withdrawn EP2354260A1 (en) | 2010-01-12 | 2010-01-12 | Alloy, protective layer and component |
EP11700398A Withdrawn EP2524063A1 (en) | 2010-01-12 | 2011-01-10 | Alloy, protective layer, and component |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11700398A Withdrawn EP2524063A1 (en) | 2010-01-12 | 2011-01-10 | Alloy, protective layer, and component |
Country Status (3)
Country | Link |
---|---|
US (1) | US20120328900A1 (en) |
EP (2) | EP2354260A1 (en) |
WO (1) | WO2011086045A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2904185C (en) | 2013-03-13 | 2021-02-23 | General Electric Company | Coatings for metallic substrates |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4005989A (en) | 1976-01-13 | 1977-02-01 | United Technologies Corporation | Coated superalloy article |
US4034142A (en) | 1975-12-31 | 1977-07-05 | United Technologies Corporation | Superalloy base having a coating containing silicon for corrosion/oxidation protection |
US4451299A (en) * | 1982-09-22 | 1984-05-29 | United Technologies Corporation | High temperature coatings by surface melting |
WO1991001433A1 (en) | 1989-07-25 | 1991-02-07 | Allied-Signal Inc. | Dual alloy turbine blade |
WO1996012049A1 (en) * | 1994-10-14 | 1996-04-25 | Siemens Aktiengesellschaft | Protective layer for protecting parts against corrosion, oxidation and excessive thermal stresses, as well as process for producing the same |
EP0892090A1 (en) | 1997-02-24 | 1999-01-20 | Sulzer Innotec Ag | Method for manufacturing single crystal structures |
WO1999067435A1 (en) | 1998-06-23 | 1999-12-29 | Siemens Aktiengesellschaft | Directionally solidified casting with improved transverse stress rupture strength |
US6024792A (en) | 1997-02-24 | 2000-02-15 | Sulzer Innotec Ag | Method for producing monocrystalline structures |
WO2000044949A1 (en) | 1999-01-28 | 2000-08-03 | Siemens Aktiengesellschaft | Nickel base superalloy with good machinability |
EP1306454A1 (en) | 2001-10-24 | 2003-05-02 | Siemens Aktiengesellschaft | Rhenium containing protective coating protecting a product against corrosion and oxidation at high temperatures |
EP1319729A1 (en) | 2001-12-13 | 2003-06-18 | Siemens Aktiengesellschaft | High temperature resistant part, made of single-crystal or polycrystalline nickel-base superalloy |
EP1204776B1 (en) | 1999-07-29 | 2004-06-02 | Siemens Aktiengesellschaft | High-temperature part and method for producing the same |
WO2009119345A1 (en) * | 2008-03-28 | 2009-10-01 | 三菱重工業株式会社 | Alloy material having high-temperature corrosion resistance, heat-shielding coating material, turbine member, and gas turbine |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110189502A1 (en) * | 2008-05-20 | 2011-08-04 | Friedhelm Schmitz | Two-Layer MCRALX Coating Having Different Contents of Cobalt and Nickel |
-
2010
- 2010-01-12 EP EP10000223A patent/EP2354260A1/en not_active Withdrawn
-
2011
- 2011-01-10 US US13/521,245 patent/US20120328900A1/en not_active Abandoned
- 2011-01-10 WO PCT/EP2011/050221 patent/WO2011086045A1/en active Application Filing
- 2011-01-10 EP EP11700398A patent/EP2524063A1/en not_active Withdrawn
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4034142A (en) | 1975-12-31 | 1977-07-05 | United Technologies Corporation | Superalloy base having a coating containing silicon for corrosion/oxidation protection |
US4005989A (en) | 1976-01-13 | 1977-02-01 | United Technologies Corporation | Coated superalloy article |
US4451299A (en) * | 1982-09-22 | 1984-05-29 | United Technologies Corporation | High temperature coatings by surface melting |
WO1991001433A1 (en) | 1989-07-25 | 1991-02-07 | Allied-Signal Inc. | Dual alloy turbine blade |
WO1996012049A1 (en) * | 1994-10-14 | 1996-04-25 | Siemens Aktiengesellschaft | Protective layer for protecting parts against corrosion, oxidation and excessive thermal stresses, as well as process for producing the same |
US6024792A (en) | 1997-02-24 | 2000-02-15 | Sulzer Innotec Ag | Method for producing monocrystalline structures |
EP0892090A1 (en) | 1997-02-24 | 1999-01-20 | Sulzer Innotec Ag | Method for manufacturing single crystal structures |
WO1999067435A1 (en) | 1998-06-23 | 1999-12-29 | Siemens Aktiengesellschaft | Directionally solidified casting with improved transverse stress rupture strength |
WO2000044949A1 (en) | 1999-01-28 | 2000-08-03 | Siemens Aktiengesellschaft | Nickel base superalloy with good machinability |
EP1204776B1 (en) | 1999-07-29 | 2004-06-02 | Siemens Aktiengesellschaft | High-temperature part and method for producing the same |
EP1306454A1 (en) | 2001-10-24 | 2003-05-02 | Siemens Aktiengesellschaft | Rhenium containing protective coating protecting a product against corrosion and oxidation at high temperatures |
EP1319729A1 (en) | 2001-12-13 | 2003-06-18 | Siemens Aktiengesellschaft | High temperature resistant part, made of single-crystal or polycrystalline nickel-base superalloy |
WO2009119345A1 (en) * | 2008-03-28 | 2009-10-01 | 三菱重工業株式会社 | Alloy material having high-temperature corrosion resistance, heat-shielding coating material, turbine member, and gas turbine |
Also Published As
Publication number | Publication date |
---|---|
WO2011086045A1 (en) | 2011-07-21 |
EP2524063A1 (en) | 2012-11-21 |
US20120328900A1 (en) | 2012-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2382333B1 (en) | Alloy, protective layer and component | |
EP2612949B1 (en) | Alloy, protective layer and component | |
EP1806418A1 (en) | Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member | |
EP2710167B1 (en) | Alloy, protective coating and component | |
EP2474413A1 (en) | Alloy, protective coating and component | |
EP1854898A1 (en) | Alloy, protective layer and component | |
EP1798299B1 (en) | Alloy, protective coating and component | |
EP1793008A1 (en) | Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member | |
EP2699713B1 (en) | Coating system with two-ply metallic layer | |
EP2611949B1 (en) | Nickel base alloy, protective coating, and component | |
EP2661370B1 (en) | Alloy, protective layer and component | |
EP1790743A1 (en) | Alloy, protective layer and component | |
EP2756107B1 (en) | Alloy, protective coating and component | |
EP1790746B1 (en) | Alloy, protective layer and component | |
EP2354260A1 (en) | Alloy, protective layer and component | |
EP2345748A1 (en) | Alloy, protective layer and component | |
EP1806419B1 (en) | Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member | |
EP1818419A1 (en) | Alloy, protective layer and component | |
EP1798300A1 (en) | Alloy, protective coating to protect a part against corrosion and/or oxidation at high temperatures and component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20120211 |