EP1648197B2 - Method and device for reducing the feedback in acoustic systems - Google Patents

Method and device for reducing the feedback in acoustic systems Download PDF

Info

Publication number
EP1648197B2
EP1648197B2 EP05109366.4A EP05109366A EP1648197B2 EP 1648197 B2 EP1648197 B2 EP 1648197B2 EP 05109366 A EP05109366 A EP 05109366A EP 1648197 B2 EP1648197 B2 EP 1648197B2
Authority
EP
European Patent Office
Prior art keywords
signal
feedback
feedback signal
detected
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05109366.4A
Other languages
German (de)
French (fr)
Other versions
EP1648197A2 (en
EP1648197A3 (en
EP1648197B1 (en
Inventor
Volkmar Hamacher
Ulrich Dr. Kornagel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos GmbH
Original Assignee
Siemens Audioligische Technik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35563041&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1648197(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens Audioligische Technik GmbH filed Critical Siemens Audioligische Technik GmbH
Publication of EP1648197A2 publication Critical patent/EP1648197A2/en
Publication of EP1648197A3 publication Critical patent/EP1648197A3/en
Application granted granted Critical
Publication of EP1648197B1 publication Critical patent/EP1648197B1/en
Publication of EP1648197B2 publication Critical patent/EP1648197B2/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/45Prevention of acoustic reaction, i.e. acoustic oscillatory feedback
    • H04R25/453Prevention of acoustic reaction, i.e. acoustic oscillatory feedback electronically
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/02Circuits for transducers, loudspeakers or microphones for preventing acoustic reaction, i.e. acoustic oscillatory feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/03Synergistic effects of band splitting and sub-band processing

Definitions

  • the present invention relates to a method of reducing feedback in an acoustic system by detecting a feedback signal in an input signal and processing the input signal in response to the detected feedback signal to produce an output signal. Moreover, the present invention relates to a corresponding signal processing device for an acoustic system.
  • the acoustic system is, for example, a mobile radio device, a headset, a public address system and in particular a hearing aid or middle ear implant.
  • Feedback Acoustic feedback, hereafter referred to as feedback, is common in hearing aids, especially when it comes to high gain devices. These feedbacks are expressed in strong oscillations of a certain frequency and can be heard as whistling. This "whistling" is usually very uncomfortable for the hearing aid wearer himself as well as for people in his immediate vicinity. Feedback can be z. B. occur when sound that was recorded on the hearing aid microphone, amplified by a signal amplifier and output via the handset, gets back to the microphone and is reinforced again.
  • the simplest approach to reducing feedback is to permanently reduce hearing instrument gain so that the loop gain remains below the critical limit even in adverse situations.
  • the decisive disadvantage is that this limitation can no longer achieve the reinforcements required for severe deafness.
  • Other approaches see a measurement of loop gain during the hearing aid fitting and reduce with the help of so-called notch filters (narrow-band notch filters) the gain targeted in the critical area.
  • notch filters narrow-band notch filters
  • the second class contains the algorithms that only become active when feedback whistles are present. They generally include a feedback whistle detection mechanism that continuously monitors the microphone signal for feedback oscillation. If feedback-type oscillations are detected, the hearing aid gain at the corresponding point is reduced to such an extent that the loop gain drops below the critical limit.
  • the gain reduction can, for. B. by lowering a frequency channel or by activating a suitable narrow-band notch filter (Notchfilter) done.
  • the disadvantage is that the oscillation detectors in principle do not distinguish between tonal input signals and feedback whistles can. The result is that tonal input signals are held for feedback oscillations and then inadvertently lowered in level by the reduction mechanism (eg, notch filter).
  • Another countermeasure is to slow down the adaptation of the filter so that all relevant environmental tonal signals are not attacked.
  • this also has the consequence that the compensation filter can no longer follow rapid changes in the feedback path quickly, so that feedback whistles develop for a certain time, which only disappears again when the feedback path has stabilized and the filter has again been adapted with sufficient accuracy ,
  • the feedback detector operates on the principle of bandwidth detection. If a narrow bandwidth of the input signal of the hearing device is detected by the bandwidth detector in the frequency band prone to feedback whistles, it is assumed that feedback whistling is present. A distinction of natural, narrow-band signals with spectral components in this frequency band, such. As music, but is not possible. In addition, the feedback whistle must represent a dominant signal component in order to be recognized.
  • Another method for reducing feedback in acoustic systems is from the document US 6,347,148 B1 known.
  • the spectrum of an input signal is estimated and a control signal is generated on the basis of a psychoacoustic model.
  • the control signal is used to drive a noise source, with which a non-audible noise signal in response to the noise signal can be generated.
  • the possibility is described there to impose short noise signals of predetermined duration on the output signal.
  • the noise signals in the input signal reduce feedback signals.
  • the object of the present invention is thus to further improve the reduction of feedback of a hearing aid.
  • this object is achieved by a method according to claim 1 and a signal processing device according to claim 7.
  • the underlying idea is to impose imperceptible features on the output signal of the acoustic system and in particular the hearing aid for the hearing aid wearer. This allows, by appropriate analysis of the input signal too determine whether the input signal is feedback or a "normal" external input signal (useful signal). The determination of the characteristic of the feature in the input signal also allows conclusions to be drawn about the corresponding proportions of feedback and useful signal. This can then be used directly to control feedback reduction algorithms.
  • the processing of the input signal preferably takes place with an adaptable filter whose adaptation speed and / or strength depends on the quantity of the detected feedback signal.
  • adaptation speed increases in proportion to the quantity of the detected feedback signal. If, for example, the feature analysis of the input signal is negative, d. H. it contains no feedback signal, so the adaptation speed of the compensation filter mentioned above can be slowed down so that the filter is not adjusted by tonal input signals and they are not attacked. If, on the other hand, the feature is detected in the input signal, the effectiveness and / or speed of the feedback compensator is set to the value at which feedback is optimally suppressed.
  • At least one notch filter may be activated for processing the input signal.
  • phase modulation shows no particular susceptibility to misdetection in narrowband signals.
  • a feedback situation can already be detected before there is a dominant expression of the feedback whistle in the signal mixture.
  • the detection of feedback can be performed separately in several subbands. As a result, the gain, but also the reduction of feedback in the individual subbands can be adjusted individually.
  • a closed loop in the signal processing device can be used for a signal modification.
  • the modulated signal passes through the loop several times, so that the corresponding signal modification is caused.
  • FIG. 1 the prior art explained in more detail.
  • FIG. 1 shows a hearing aid HG, whose input forms a microphone M.
  • the recorded signal is applied as an input signal ES a processing unit V forwarded. There it is processed and possibly reinforced.
  • the resulting output signal AS is delivered to a handset H. Via a feedback path RP, the output signal of the handset H is fed back to the microphone M.
  • a feedback path RP With open supply, there is primarily an acoustic feedback path. In general, however, electromagnetic, electrical, magnetic and other feedback are also conceivable.
  • the feedback signal RS resulting from the feedback path is added to a useful signal NS, and the sum signal is picked up by the microphone M.
  • the signal path from the microphone M via the hearing aid processing V, the handset H, the feedback path RP back to the microphone M represents a loop.
  • H. the gain experienced by a signal passing through this loop is at least 1.0 at least at one frequency, and when the phase condition is met, feedback whistling occurs. Even if the loop gain is just below this limit, audible feedback effects, e.g. B. sound changes on.
  • One successful method for suppressing the feedback effects is the digital replica of the feedback path RP. This is simulated by an adaptive filter AF, which is fed by the output signal of the processing unit V. A corresponding compensation signal KS, which originates from the compensating, adaptive filter AF, is subtracted from the input signal ES of the microphone M and the resulting difference signal is fed to the processing unit V.
  • step size control An important component in the adaptive algorithm for determining the feedback path is its step size control. It indicates the speed with which the adaptive compensation filter adapts to the outer feedback path RP. Since there is no meaningful compromise for a fixed step size, it must be adapted to the current situation in which the system is located.
  • a large step size for a fast adaptation of the adaptive compensation filter AF to the outer feedback path RP is to be aimed for.
  • a disadvantage of a large step size is the generation of perceptible signal artifacts.
  • the step size should be vanishingly small.
  • the situation in which the loop gain is just below 1 or greater than / equal to 1 and the phase condition is fulfilled at least at one frequency is referred to as the feedback situation.
  • the step size should or will be large. This ensures that the algorithm adapts the adaptive compensation filter AF only if it differs significantly in its characteristic from the characteristic of the feedback path RP, ie. H. if there is a need for post-adaptation.
  • a feedback detector is provided.
  • FIG. 2 between the processing unit V and the handset H is connected. It modulates the output signal AS to a modulated output signal AS '.
  • the modulation of the output signal AS is not perceptible. In the event of a feedback situation, a significant proportion of the sound signal emitted by the receiver H returns to the microphone M and is recorded in the device together with the ambient signal.
  • the feedback path RP can basically be designed arbitrarily. Ie. it does not have an acoustic feedback signal RS, as in FIG. 1 is indicated, present, which is added with an acoustic useful signal NS before the microphone M. Rather, the feedback in the microphone M can also be done for example via structure-borne noise or electromagnetic coupling.
  • the input signal ES of the microphone M is analyzed by a feedback detector RD.
  • the feedback signal RS can be detected due to its modulation.
  • a downstream controller S drives the adaptive compensation filter AF according to the detection result of the feedback detector RD. As a result, for example, the adaptation speed of the adaptive filter AF is changed.
  • FIG. 3 corresponds essentially to that of FIG. 2 ,
  • the feedback path as in the example of FIG. 1 purely acoustic nature, so that the feedback signal is added to the useful signal in front of the microphone M.
  • Another difference to the circuit of FIG. 2 is that the signal for the feedback detector RD is not picked up immediately after the microphone M, but after the subtraction of the compensation signal of the adaptive filter AF at the point A.
  • the strength of the modulation of the signal at the point A is an image of the difference between the effect of the feedback path RP and the effect of the adaptive compensation filter AF.
  • FIG. 3 indicated that in the feedback detector RD a step size control can be integrated, so that can be dispensed with a separate control module.
  • the remaining components of the embodiment of FIG. 3 correspond to those of the embodiment of FIG. 2 , In this respect, therefore, the description to FIG. 2 directed.
  • the phase of the output signal AS is modulated since the human ear is largely insensitive to phase changes.
  • the phase of the output signal AS with a specific frequency referred to here as the modulation frequency f_mod
  • the modulation frequency f_mod is linearly rotated back and forth between two phase values.
  • the phase values are ⁇ and ⁇ + ⁇ / 2, where ⁇ is any solid phase.
  • a detectable tremolo component with a frequency of f_mod is formed in the signal loop.
  • the tremolo component can be detected by means of a frequency demodulator in the feedback detector RD. It is advantageous to construct the feedback detector RD with a filter bank, as in FIG. 4 is shown, the z. B. the input signal ES with multiple bandpasses BP1, BP2, ..., BPn divided into subbands. After each bandpass an analysis unit AE and a threshold value SW is arranged in each case. The output signals of the signal paths for each subband are optionally supplied to an OR gate OR.
  • the respective analysis units AE and threshold SW can be identical to each other. Thus, the analysis in this example is done in each subband path in the same way. If the analysis result in a band exceeds a certain threshold, the associated threshold switch SW responds, ie a feedback situation is detected for this band.
  • the step size control of the adaptive filter AF in addition to the simple threshold decision according to FIG. 4 According to which only the presence or absence of feedback is detected, also differentiated occur.
  • the step size can be determined by proportional conversion of the estimated strength of the signal modulation at point A. This can also be done again via a subband approach. The greater the detected signal modification, the higher would be the need for a post-adaptation, ie the higher the necessary step size would have to be selected.
  • the step size can thus be continuously adapted to the signal modulation. In a pure threshold decision, however, the step size is set high for a certain fixed time or for the time frame in which feedback is detected. Otherwise, it takes on a small value.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Neurosurgery (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Amplifiers (AREA)

Abstract

A feedback signal (RS) is detected in an incoming signal (ES), which is processed by relying on a detected feedback signal in an outgoing signal (AS), which is modulated (MO) so that the feedback signal is also modulated correspondingly. This modulation detects the feedback signal and has to be unheard by hearing-aid wearers. An independent claim is also included for a signal-processing device for an acoustic system.

Description

Verfahren und Vorrichtung zur Reduktion von Rückkopplungen bei einem AkustiksystemMethod and apparatus for reducing feedback in an acoustic system

Die vorliegende Erfindung betrifft ein Verfahren zur Reduktion von Rückkopplungen bei einem Akustiksystem durch Detektieren eines Rückkopplungssignals in einem Eingangssignal und Verarbeiten des Eingangssignals in Abhängigkeit von dem detektierten Rückkopplungssignal unter Erzeugung eines Ausgangssignals. Darüber hinaus betrifft die vorliegende Erfindung eine entsprechende Signalverarbeitungsvorrichtung für ein Akustiksystem. Bei dem Akustiksystem handelt es sich beispielsweise um ein Mobilfunkgerät, ein Headset, eine Saalbeschallungsanlage und insbesondere ein Hörgerät oder Mittelohrimplantat.The present invention relates to a method of reducing feedback in an acoustic system by detecting a feedback signal in an input signal and processing the input signal in response to the detected feedback signal to produce an output signal. Moreover, the present invention relates to a corresponding signal processing device for an acoustic system. The acoustic system is, for example, a mobile radio device, a headset, a public address system and in particular a hearing aid or middle ear implant.

Akustische Rückkopplungen, im Folgenden Feedback genannt, treten häufig bei Hörgeräten auf, insbesondere wenn es sich um Geräte mit hoher Verstärkung handelt. Diese Rückkopplungen äußern sich in starken Oszillationen einer bestimmten Frequenz und sind als Pfeifen zu hören. Dieses "Pfeifen" ist in der Regel sowohl für den Hörgeräteträger selbst als auch für Personen in seiner näheren Umgebung sehr unangenehm. Feedback kann z. B. dann auftreten, wenn Schall, der über das Hörgeräte-Mikrofon aufgenommen, durch einen Signalverstärker verstärkt und über den Hörer ausgegeben wird, wieder zum Mikrofon gelangt und erneut verstärkt wird.Acoustic feedback, hereafter referred to as feedback, is common in hearing aids, especially when it comes to high gain devices. These feedbacks are expressed in strong oscillations of a certain frequency and can be heard as whistling. This "whistling" is usually very uncomfortable for the hearing aid wearer himself as well as for people in his immediate vicinity. Feedback can be z. B. occur when sound that was recorded on the hearing aid microphone, amplified by a signal amplifier and output via the handset, gets back to the microphone and is reinforced again.

Der einfachste Ansatz zur Feedbackreduktion ist die dauerhafte Reduktion der Hörgeräte-Verstärkung, so dass die Schleifenverstärkung auch in ungünstigen Situationen unter dem kritischen Grenzwert bleibt. Der entscheidende Nachteil ist jedoch, dass durch diese Begrenzung die bei stärkerer Schwerhörigkeit erforderlichen Verstärkungen nicht mehr erreicht werden können. Andere Ansätze sehen eine Messung der Schleifenverstärkung während der Hörgeräteanpassung vor und reduzieren mit Hilfe von so genannten Notchfiltern (schmalbandige Sperrfilter) die Verstärkung gezielt im kritischen Bereich. Da sich die Schleifenverstärkungen jedoch wie oben geschildert im Alltagsleben ständig ändern können, ist der Nutzen ebenfalls begrenzt.The simplest approach to reducing feedback is to permanently reduce hearing instrument gain so that the loop gain remains below the critical limit even in adverse situations. The decisive disadvantage, however, is that this limitation can no longer achieve the reinforcements required for severe deafness. Other approaches see a measurement of loop gain during the hearing aid fitting and reduce with the help of so-called notch filters (narrow-band notch filters) the gain targeted in the critical area. However, since the loop gains can change constantly in everyday life as described above, the utility is also limited.

Zur dynamischen Reduktion von Feedback sind eine Reihe von adaptiven Algorithmen vorgeschlagen worden, die sich automatisch auf die jeweilige Feedbacksituation einstellen und entsprechende Maßnahmen bewirken. Diese Verfahren lassen sich grob in zwei Klassen einteilen:

  • Die erste Klasse umfasst die so genannten KompensationsAlgorithmen, die mit Hilfe adaptiver Filter den Feedbackanteil im Mikrofonsignal schätzen und durch Subtraktion neutralisieren und somit die Hörgeräteverstärkung nicht beeinträchtigen. Allerdings setzen diese Kompensationsverfahren unkorrelierte, d. h. idealerweise weiße, Eingangssignale voraus. Tonale Eingangssignale, die immer eine hohe zeitliche Korrelation aufweisen, führen zu einer fehlerhaften Schätzung des Feedbackpfads, was dazu führen kann, dass irrtümlicherweise das tonale Eingangssignal selbst subtrahiert wird.
For the dynamic reduction of feedback, a number of adaptive algorithms have been proposed which automatically adjust to the respective feedback situation and take appropriate measures. These procedures can be roughly divided into two classes:
  • The first class comprises the so-called compensation algorithms, which use adaptive filters to estimate the feedback component in the microphone signal and neutralize it by subtraction, thus not impairing hearing aid amplification. However, these compensation methods assume uncorrelated, ie ideally white, input signals. Tonal input signals, which always have a high temporal correlation, lead to an erroneous estimation of the feedback path, which can lead to the erroneous subtraction of the tonal input signal itself.

Die zweite Klasse beinhaltet die Algorithmen, die erst dann aktiv werden, wenn Rückkopplungspfeifen vorhanden ist. Sie beinhalten im Allgemeinen einen Mechanismus zur Detektion des Rückkopplungspfeifens, der kontinuierlich das Mikrofonsignal auf Feedback-Oszillation hin überwacht. Werden Feedbacktypische Oszillationen detektiert, wird die Hörgeräteverstärkung an der entsprechenden Stelle so weit reduziert, dass die Schleifenverstärkung unter die kritische Grenze sinkt. Die Verstärkungsreduktion kann z. B. durch Absenkung eines Frequenzkanals oder durch Aktivierung eines geeigneten schmalbandigen Sperrfilters (Notchfilter) erfolgen. Nachteilig ist, dass die Oszillationsdetektoren prinzipiell nicht zwischen tonalen Eingangssignalen und Feedbackpfeifen unterscheiden können. Das Resultat ist, dass tonale Eingangssignale für Feedback-Oszillationen gehalten und dann unzulässigerweise durch den Reduktionsmechanismus (z. B. Notchfilter) im Pegel abgesenkt werden.The second class contains the algorithms that only become active when feedback whistles are present. They generally include a feedback whistle detection mechanism that continuously monitors the microphone signal for feedback oscillation. If feedback-type oscillations are detected, the hearing aid gain at the corresponding point is reduced to such an extent that the loop gain drops below the critical limit. The gain reduction can, for. B. by lowering a frequency channel or by activating a suitable narrow-band notch filter (Notchfilter) done. The disadvantage is that the oscillation detectors in principle do not distinguish between tonal input signals and feedback whistles can. The result is that tonal input signals are held for feedback oscillations and then inadvertently lowered in level by the reduction mechanism (eg, notch filter).

Zusammenfassend lässt sich festhalten, dass die Funktionsweise sämtlicher adaptiver Feedbackreduktionsverfahren durch Eingangssignale, die einen durch dominante Sinussignalanteile geprägten tonalen Charakter aufweisen (z. B. Triangeltöne, Alarmsignale), beeinträchtigt werden. Dies führt häufig zu inakzeptablen Klangverschlechterungen des Eingangssignals. Hier setzt die vorliegende Erfindungsmeldung an.In summary, it can be said that the functioning of all adaptive feedback reduction methods is impaired by input signals which have a tonal character characterized by dominant sinusoidal signal components (eg triangular tones, alarm signals). This often leads to unacceptable sound degradation of the input signal. This is where the present invention disclosure begins.

Bei den Kompensationsalgorithmen werden häufig dekorrelierend wirkende Verzögerungsglieder in die Signalverarbeitungskette eingebracht, um zu verhindern, dass tonale Signalabschnitte mit einer für Sprachsignale charakteristischen Länge nicht merklich angegriffen werden. Allerdings sind aufgrund von Echoeffekten und Irritationen durch desynchronisierte visuelle und auditive Informationen nur Verzögerungen im Millisekundenbereich zulässig. Daher kann beispielsweise die Reduktion von Musiksignalen, die häufig über einen deutlich längeren Zeitraum korreliert sind, nicht vermieden werden.In the compensation algorithms decorrelating delay elements are often introduced into the signal processing chain in order to prevent that tonal signal sections are not significantly attacked with a length characteristic of speech signals. However, due to echo effects and irritations caused by desynchronized visual and auditory information, only millisecond delays are allowed. Therefore, for example, the reduction of music signals, which are often correlated over a much longer period of time, can not be avoided.

Eine weitere Gegenmaßnahme besteht darin, die Adaption des Filters so zu verlangsamen, dass alle relevanten tonalen Umweltsignale nicht angegriffen werden. Allerdings hat dies auch zur Konsequenz, dass das Kompensationsfilter rapiden Änderungen des Feedbackpfads nicht mehr schnell genug folgen kann, so dass für eine gewisse Zeit Rückkopplungspfeifen entsteht, das erst dann wieder verschwindet, wenn sich der Feedbackpfad stabilisiert hat und das Filter wieder ausreichend genau adaptiert ist.Another countermeasure is to slow down the adaptation of the filter so that all relevant environmental tonal signals are not attacked. However, this also has the consequence that the compensation filter can no longer follow rapid changes in the feedback path quickly, so that feedback whistles develop for a certain time, which only disappears again when the feedback path has stabilized and the filter has again been adapted with sufficient accuracy ,

Den negativen Folgen der Fehldetektionen von Oszillationsdetektoren begegnet man dadurch, dass die resultierende Verstärkungsabsenkung nur im begrenzten Maße stattfindet, so dass z. B. irrtümlich für Feedbackoszillationen gehaltene tonale Nutzsignale (z. B. Alarmsignale) noch hörbar bleiben. Dies birgt allerdings die Gefahr, dass im Feedbackfall die Verstärkungsabsenkung nicht ausreicht, um die kritische Grenze zu unterschreiten und das Feedbackpfeifen damit nicht beseitigt wird.The negative consequences of the misdetections of oscillation detectors are counteracted by the fact that the resulting gain reduction takes place only to a limited extent that z. B. erroneously held for feedback oscillations tonal useful signals (eg alarm signals) remain audible. However, this entails the risk that in the feedback case, the gain reduction is not sufficient to fall below the critical limit and the feedback whistling is not eliminated.

Aus der Druckschrift WO 2001/06746-A2 ist eine Schrittweitensteuerung des Kompensationsfilters bekannt, wobei der Rückkopplungsdetektor nach dem Prinzip der Bandbreitendetektion arbeitet. Wird von dem Bandbreitendetektor in dem für Rückkopplungspfeifen anfälligen Frequenzband eine schmale Bandbreite des Eingangssignals des Hörgeräts erkannt, wird davon ausgegangen, dass Rückkopplungspfeifen vorliegt. Eine Unterscheidung von natürlichen, schmalbandigen Signalen mit Spektralkomponenten in diesem Frequenzband, wie z. B. Musik, ist jedoch nicht möglich. Darüber hinaus muss das Rückkopplungspfeifen einen dominanten Signalanteil darstellen, um erkannt zu werden.From the publication WO 2001/06746-A2 is a step size control of the compensation filter known, the feedback detector operates on the principle of bandwidth detection. If a narrow bandwidth of the input signal of the hearing device is detected by the bandwidth detector in the frequency band prone to feedback whistles, it is assumed that feedback whistling is present. A distinction of natural, narrow-band signals with spectral components in this frequency band, such. As music, but is not possible. In addition, the feedback whistle must represent a dominant signal component in order to be recognized.

Weiterhin ist aus der Druckschrift EP 1 052 881-A2 ein Oszillationsdetektor zum Detektieren von Rückkopplungen bekannt. Auch hier muss das Rückkopplungspfeifen sehr deutlich ausgeprägt sein, um erkannt zu werden.Furthermore, from the document EP 1 052 881-A2 an oscillation detector for detecting feedback known. Again, the feedback whistles must be very clear to be recognized.

In der Druckschrift WO 2001/95578-A2 ist eine Detektion von Rückkopplungspfeifen durch Schätzung der Varianz der Frequenzschätzung des Hörgeräteeingangssignals beschrieben. Auch dieses Verfahren weist die oben genannten Nachteile auf.In the publication WO 2001/95578-A2 For example, a detection of feedback whistles is described by estimating the variance of the frequency estimate of the hearing aid input signal. This method also has the above-mentioned disadvantages.

Ferner ist in der Druckschrift DE 199 04 538-C1 das wahlweise Dämpfen einzelner Frequenzbänder vorgeschlagen. Dabei erfahren Frequenzbänder, in denen Rückkopplungspfeifen vorliegt, durch ein eingebrachtes Dämpfungselement eine stärkere Dämpfung als dies bei Nutzsignalen zu erwarten wäre. Der Eingriff in den Vorwärtssignalpfad ist für den Hörgeräteträger unter Umständen hörbar und außerdem findet voraussichtlich eine langsame Detektion statt, da die Bänder idealerweise nacheinander untersucht werden.Furthermore, in the document DE 199 04 538-C1 the optional damping of individual frequency bands proposed. Frequency bands in which there is feedback whistling, through a damping element introduced a stronger attenuation than would be expected for useful signals. The engagement in the forward signal path may be audible to the hearing aid wearer and is likely to occur Slow detection takes place, since the bands are ideally examined sequentially.

Ein weiteres Verfahren zur Reduktion von Rückkopplungen in akustischen Systemen ist aus der Druckschrift US 6,347,148 B1 bekannt. Dabei wird das Spektrum eines Eingangssignals geschätzt und anhand eines psychoakustischen Modells ein Steuersignal generiert. Das Steuersignal dient zur Ansteuerung einer Rauschquelle, mit der ein nicht hörbares Rauschsignal in Abhängigkeit von dem Rauschsignal erzeugt werden kann. Darüber hinaus wird dort die Möglichkeit beschrieben, dem Ausgangssignal kurze Rauschsignale vorgegebener Zeitdauer aufzuprägen. Anhand der Rauschsignale im Eingangssignal werden Rückkopplungssignale reduziert.Another method for reducing feedback in acoustic systems is from the document US 6,347,148 B1 known. In the process, the spectrum of an input signal is estimated and a control signal is generated on the basis of a psychoacoustic model. The control signal is used to drive a noise source, with which a non-audible noise signal in response to the noise signal can be generated. In addition, the possibility is described there to impose short noise signals of predetermined duration on the output signal. The noise signals in the input signal reduce feedback signals.

Die Druckschrift US 5 748 751 A beschreibt einen Echoreduktion durch eine Dekorrelation des Eingangssignals und des Ausgangssignals. Die Dekorrelation erfolgt mit einem Phasenmodulator, der mit einer bestimmten Frequenz betrieben wird.The publication US 5,748,751 A describes echo reduction by decorrelating the input signal and the output signal. The decorrelation takes place with a phase modulator, which is operated with a certain frequency.

Weiterhin zeigt die Druckschrift US 5 412 734 und WO 00/44113 A1 eine Rückkopplungsreduktion mittels AM, FM oder QPSK. Das entsprechend modulierte Signal wird zum Grundsignal addiert und bei Rückkopplung wieder detektiert.Furthermore, the document shows US 5,412,734 and WO 00/44113 A1 a feedback reduction using AM, FM or QPSK. The correspondingly modulated signal is added to the basic signal and detected again during feedback.

Die Aufgabe der vorliegenden Erfindung besteht somit darin, die Reduktion von Rückkopplungen eines Hörgeräts weiter zu verbessern.The object of the present invention is thus to further improve the reduction of feedback of a hearing aid.

Erfindungsgemäß wird diese Aufgabe gelöst durch ein Verfahren nach Anspruch 1 und eine Signalverarbeitungsvorrichtung nach Anspruch 7 gelöst.According to the invention, this object is achieved by a method according to claim 1 and a signal processing device according to claim 7.

Die zugrunde liegende Idee ist, auf das Ausgangssignal des Akustiksystems und insbesondere des Hörgeräts für den Hörgeräteträger nicht wahrnehmbare Merkmale aufzuprägen. Dies ermöglicht, durch entsprechende Analyse des Eingangssignals zu bestimmen, ob es sich beim Eingangssignal um Rückkopplungen handelt oder um ein "normales" externes Eingangssignal (Nutzsignal). Die Bestimmung der Ausprägung des Merkmals im Eingangssignal lässt zudem Rückschlüsse über entsprechende Anteilsverhältnisse von Rückkopplungen und Nutzsignal zu. Dies kann dann unmittelbar zur Steuerung von Feedbackreduktionsalgorithmen verwendet werden.The underlying idea is to impose imperceptible features on the output signal of the acoustic system and in particular the hearing aid for the hearing aid wearer. This allows, by appropriate analysis of the input signal too determine whether the input signal is feedback or a "normal" external input signal (useful signal). The determination of the characteristic of the feature in the input signal also allows conclusions to be drawn about the corresponding proportions of feedback and useful signal. This can then be used directly to control feedback reduction algorithms.

In vorteilhafter Weise kann somit im Betrieb laufend und absolut unauffällig bzw. unhörbar bestimmt werden, in welchem Maß an einem Mikrofon bzw. am Hörgerätemikrofon Rückkopplungssignale vorliegen, wodurch die Steuerung und Wirkungsweise der bekannten Feedbackreduktionsalgorithmen deutlich verbessert werden kann.In an advantageous manner, it is thus possible during operation to determine continuously and absolutely inconspicuously or inaudibly the extent to which feedback signals are present at a microphone or at the hearing device microphone, whereby the control and operation of the known feedback reduction algorithms can be significantly improved.

Vorzugsweise erfolgt die Verarbeitung des Eingangssignals mit einem adaptierbaren Filter, dessen Adaptionsgeschwindigkeit und/oder Wirkungsstärke von der Quantität des detektierten Rückkopplungssignals abhängt. Insbesondere ist es vorteilhaft, wenn die Adaptionsgeschwindigkeit proportional mit der Quantität des detektierten Rückkopplungssignals steigt. Ist dann die Merkmalsanalyse des Eingangssignals beispielsweise negativ, d. h. es enthält kein Feedbacksignal, so kann die Adaptionsgeschwindigkeit des oben genannten Kompensationsfilters so verlangsamt werden, dass das Filter durch tonale Eingangssignale nicht verstellt wird und diese nicht angegriffen werden. Wird dagegen das Merkmal im Eingangssignal detektiert, wird die Wirkungsstärke und/oder Geschwindigkeit des Feedbackkompensators auf den Wert gestellt, bei dem Rückkopplungen optimal unterdrückt werden.The processing of the input signal preferably takes place with an adaptable filter whose adaptation speed and / or strength depends on the quantity of the detected feedback signal. In particular, it is advantageous if the adaptation speed increases in proportion to the quantity of the detected feedback signal. If, for example, the feature analysis of the input signal is negative, d. H. it contains no feedback signal, so the adaptation speed of the compensation filter mentioned above can be slowed down so that the filter is not adjusted by tonal input signals and they are not attacked. If, on the other hand, the feature is detected in the input signal, the effectiveness and / or speed of the feedback compensator is set to the value at which feedback is optimally suppressed.

Im Falle der Detektion eines Rückkopplungssignals kann mindestens ein Notchfilter für das Verarbeiten des Eingangssignals aktiviert werden.In the case of detection of a feedback signal, at least one notch filter may be activated for processing the input signal.

Die Phasenmodulation zeigt keine besondere Anfälligkeit bezüglich Fehldetektion bei schmalbandigen Signalen.The phase modulation shows no particular susceptibility to misdetection in narrowband signals.

Eine Rückkopplungssituation kann auch schon erkannt werden, bevor es zu einer dominanten Ausprägung des Rückkopplungspfeifens im Signalgemisch kommt.A feedback situation can already be detected before there is a dominant expression of the feedback whistle in the signal mixture.

Das Detektieren von Rückkopplungen kann separat in mehreren Teilbändern durchgeführt werden. Dadurch kann die Verstärkung, aber auch die Reduktion von Rückkopplungen in den einzelnen Teilbändern individuell eingestellt werden.The detection of feedback can be performed separately in several subbands. As a result, the gain, but also the reduction of feedback in the individual subbands can be adjusted individually.

Eine geschlossene Schleife in der Signalverarbeitungsvorrichtung kann zu einer Signalmodifikation herangezogen werden. Dabei durchläuft das modulierte Signal die Schleife mehrfach, so dass die entsprechende Signalmodifikation hervorgerufen wird.A closed loop in the signal processing device can be used for a signal modification. In this case, the modulated signal passes through the loop several times, so that the corresponding signal modification is caused.

Die vorliegende Erfindung wird nun anhand der beigefügten Zeichnungen näher erläutert, in denen zeigen:

  • FIG 1 ein Hörgerätesystem gemäß dem Stand der Technik;
  • FIG 2 ein Hörgerätesystem gemäß einer ersten Ausführungsform der vorliegenden Erfindung;
  • FIG 3 ein Hörgerätesystem gemäß einer zweiten Ausführungsform der vorliegenden Erfindung; und
  • FIG 4 einen Rückkopplungsdetektor mit Filterbank.
The present invention will now be explained in more detail with reference to the accompanying drawings, in which:
  • FIG. 1 a hearing aid system according to the prior art;
  • FIG. 2 a hearing aid system according to a first embodiment of the present invention;
  • FIG. 3 a hearing aid system according to a second embodiment of the present invention; and
  • FIG. 4 a feedback detector with filter bank.

Die nachfolgend näher geschilderten Ausführungsbeispiele stellen bevorzugte Ausführungsformen der vorliegenden Erfindung dar. Zum besseren Verständnis der Erfindung wird zunächst anhand von FIG 1 der Stand der Technik näher erläutert.The embodiments described in more detail below represent preferred embodiments of the present invention. For a better understanding of the invention, reference will first be made to FIG FIG. 1 the prior art explained in more detail.

FIG 1 zeigt ein Hörgerät HG, dessen Eingang ein Mikrofon M bildet. Das aufgenommene Signal wird als Eingangssignal ES an eine Verarbeitungseinheit V weitergeleitet. Dort wird es verarbeitet und gegebenenfalls verstärkt. Das resultierende Ausgangssignal AS wird an einen Hörer H abgegeben. Über einen Rückkopplungspfad RP wird das Ausgangssignal des Hörers H zum Mikrofon M zurückgekoppelt. Bei offener Versorgung besteht in erster Linie ein akustischer Rückkopplungspfad. Generell sind aber auch elektromagnetische, elektrische, magnetische und andere Rückkopplungen denkbar. Das aus dem Rückkopplungspfad resultierende Rückkopplungssignal RS wird mit einem Nutzsignal NS addiert, und das Summensignal wird von dem Mikrofon M aufgenommen. FIG. 1 shows a hearing aid HG, whose input forms a microphone M. The recorded signal is applied as an input signal ES a processing unit V forwarded. There it is processed and possibly reinforced. The resulting output signal AS is delivered to a handset H. Via a feedback path RP, the output signal of the handset H is fed back to the microphone M. With open supply, there is primarily an acoustic feedback path. In general, however, electromagnetic, electrical, magnetic and other feedback are also conceivable. The feedback signal RS resulting from the feedback path is added to a useful signal NS, and the sum signal is picked up by the microphone M.

Der Signalpfad vom Mikrofon M über die Hörgeräteverarbeitung V, den Hörer H, den Rückkopplungspfad RP zurück bis zum Mikrofon M stellt eine Schleife dar. Hat die Schleifenverstärkung, d. h. die Verstärkung, die ein Signal erfährt, wenn es diese Schleife durchfährt, bei wenigstens einer Frequenz einen Wert von mindestens 1,0 und ist die Phasenbedingung erfüllt, tritt Rückkopplungspfeifen auf. Auch wenn die Schleifenverstärkung knapp unterhalb dieser Grenze liegt, treten hörbare Rückkopplungseffekte, z. B. Klangveränderungen, auf.The signal path from the microphone M via the hearing aid processing V, the handset H, the feedback path RP back to the microphone M represents a loop. H. the gain experienced by a signal passing through this loop is at least 1.0 at least at one frequency, and when the phase condition is met, feedback whistling occurs. Even if the loop gain is just below this limit, audible feedback effects, e.g. B. sound changes on.

Eine erfolgreiche Methode zur Unterdrückung der Rückkopplungseffekte besteht in der digitalen Nachbildung des Rückkopplungspfads RP. Dieser wird durch ein adaptives Filter AF nachgebildet, das von dem Ausgangssignal der Verarbeitungseinheit V gespeist wird. Ein entsprechendes Kompensationssignal KS, das aus dem kompensierenden, adaptiven Filter AF stammt, wird von dem Eingangssignal ES des Mikrofons M subtrahiert und das resultierende Differenzsignal wird der Verarbeitungseinheit V zugeleitet.One successful method for suppressing the feedback effects is the digital replica of the feedback path RP. This is simulated by an adaptive filter AF, which is fed by the output signal of the processing unit V. A corresponding compensation signal KS, which originates from the compensating, adaptive filter AF, is subtracted from the input signal ES of the microphone M and the resulting difference signal is fed to the processing unit V.

Es bestehen somit zwei Pfade, zum einen der äußere Rückkopplungspfad RP und zum anderen der über das adaptive Filter AF nachgebildete digitale Kompensationspfad. Die resultierenden Signale beider Pfade werden am Eingang des Geräts voneinander subtrahiert, wie dies in FIG 1 durch die beiden Additionseinheiten dargestellt ist. Im Idealfall ist die Wirkung des äußeren Rückkopplungspfads RP hierdurch aufgehoben.There are thus two paths, on the one hand the outer feedback path RP and on the other hand the adaptive filter AF simulated digital compensation path. The resulting signals of both paths are subtracted from each other at the input of the device as shown in FIG FIG. 1 through the two addition units is shown. Ideally, the effect of the external feedback path RP is thereby canceled.

Eine wichtige Komponente im adaptiven Algorithmus zur Bestimmung des Rückkopplungspfads ist dessen Schrittweitensteuerung. Sie gibt an, mit welcher Geschwindigkeit sich das adaptive Kompensationsfilter an den äußeren Rückkopplungspfad RP anpasst. Da es keinen sinnvollen Kompromiss für eine fest eingestellte Schrittweite gibt, muss diese an die jeweils aktuelle Situation, in der sich das System befindet, angepasst werden.An important component in the adaptive algorithm for determining the feedback path is its step size control. It indicates the speed with which the adaptive compensation filter adapts to the outer feedback path RP. Since there is no meaningful compromise for a fixed step size, it must be adapted to the current situation in which the system is located.

Prinzipiell ist eine große Schrittweite für eine schnelle Anpassung des adaptiven Kompensationsfilters AF an den äußeren Rückkopplungspfad RP anzustreben. Nachteilig bei einer großen Schrittweite ist jedoch die Erzeugung von wahrnehmbaren Signalartefakten.In principle, a large step size for a fast adaptation of the adaptive compensation filter AF to the outer feedback path RP is to be aimed for. A disadvantage of a large step size, however, is the generation of perceptible signal artifacts.

Für den Fall, dass keine Rückkopplungssituation vorliegt, sollte die Schrittweite verschwindend klein sein. Dabei wird als Rückkopplungssituation diejenige Situation bezeichnet, bei der die Schleifenverstärkung knapp unter 1 bzw. größer/gleich 1 ist und die Phasenbedingung wenigstens bei einer Frequenz erfüllt ist. Tritt dagegen eine Rückkopplungssituation auf, sollte die Schrittweite groß sein bzw. werden. Damit ist gewährleistet, dass der Algorithmus nur dann das adaptive Kompensationsfilter AF anpasst, wenn dieses sich in seiner Charakteristik nennenswert von der Charakteristik des Rückkopplungspfads RP unterscheidet, d. h. wenn Bedarf zur Nachadaption besteht. Hierzu ist ein Rückkopplungsdetektor vorzusehen.In the event that there is no feedback situation, the step size should be vanishingly small. In this case, the situation in which the loop gain is just below 1 or greater than / equal to 1 and the phase condition is fulfilled at least at one frequency is referred to as the feedback situation. If, on the other hand, a feedback situation occurs, the step size should or will be large. This ensures that the algorithm adapts the adaptive compensation filter AF only if it differs significantly in its characteristic from the characteristic of the feedback path RP, ie. H. if there is a need for post-adaptation. For this purpose, a feedback detector is provided.

Um eine Rückkopplung sicher detektieren zu können, ist erfindungsgemäß eine Modulationseinrichtung MO vorgesehen, die gemäß FIG 2 zwischen die Verarbeitungseinheit V und den Hörer H geschaltet ist. Sie moduliert das Ausgangssignal AS zu einem modulierten Ausgangssignal AS'. Die Modulation des Ausgangssignals AS ist nicht wahrnehmbar. Im Falle einer Rückkopplungssituation gelangt ein nennenswerter Anteil des vom Hörer H abgegebenen Schallsignals zurück zum Mikrofon M und wird gemeinsam mit dem Umgebungssignal in das Gerät aufgenommen.In order to be able to reliably detect a feedback, a modulation device MO is provided according to the invention FIG. 2 between the processing unit V and the handset H is connected. It modulates the output signal AS to a modulated output signal AS '. The modulation of the output signal AS is not perceptible. In the event of a feedback situation, a significant proportion of the sound signal emitted by the receiver H returns to the microphone M and is recorded in the device together with the ambient signal.

In FIG 2 ist angedeutet, dass der Rückkopplungspfad RP im Grunde genommen beliebig gestaltet sein kann. D. h. es muss nicht ein akustisches Rückkopplungssignal RS, wie es in FIG 1 angedeutet ist, vorliegen, das mit einem akustischen Nutzsignal NS vor dem Mikrofon M addiert wird. Vielmehr kann die Rückkopplung in das Mikrofon M auch beispielsweise über Körperschall oder eine elektromagnetische Einkopplung erfolgen.In FIG. 2 is indicated that the feedback path RP can basically be designed arbitrarily. Ie. it does not have an acoustic feedback signal RS, as in FIG. 1 is indicated, present, which is added with an acoustic useful signal NS before the microphone M. Rather, the feedback in the microphone M can also be done for example via structure-borne noise or electromagnetic coupling.

Das Eingangssignal ES des Mikrofons M wird durch einen Rückkopplungsdetektor RD analysiert. Damit kann das rückgekoppelte Signal RS aufgrund seiner Modulation detektiert werden. Eine nachgeschaltete Steuerung S steuert das adaptive Kompensationsfilter AF entsprechend dem Detektionsergebnis des Rückkopplungsdetektors RD an. Dadurch wird beispielsweise die Adaptionsgeschwindigkeit des adaptiven Filters AF geändert.The input signal ES of the microphone M is analyzed by a feedback detector RD. Thus, the feedback signal RS can be detected due to its modulation. A downstream controller S drives the adaptive compensation filter AF according to the detection result of the feedback detector RD. As a result, for example, the adaptation speed of the adaptive filter AF is changed.

Das Ausführungsbeispiel von FIG 3 entspricht im Wesentlichen dem von FIG 2. Hier ist der Rückkopplungspfad wie im Beispiel von FIG 1 rein akustischer Natur, so dass das Rückkopplungssignal mit dem Nutzsignal vor dem Mikrofon M addiert wird.The embodiment of FIG. 3 corresponds essentially to that of FIG. 2 , Here is the feedback path as in the example of FIG. 1 purely acoustic nature, so that the feedback signal is added to the useful signal in front of the microphone M.

Ein weiterer Unterschied zu der Schaltung von FIG 2 besteht darin, dass das Signal für den Rückkopplungsdetektor RD nicht unmittelbar hinter dem Mikrofon M, sondern nach der Subtraktion des Kompensationssignals des adaptiven Filters AF am Punkt A abgegriffen wird. Die Stärke der Ausprägung der Signalmodulation am Punkt A ist ein Abbild der Differenz aus Wirkung des Rückkopplungspfads RP und der Wirkung des adaptiven Kompensationsfilters AF. Ein wesentlicher Unterschied zu der Ausführungsform gemäß FIG 2, bei der das zu analysierende Signal unmittelbar hinter dem Mikrofon M abgegriffen wird, besteht jedoch nicht.Another difference to the circuit of FIG. 2 is that the signal for the feedback detector RD is not picked up immediately after the microphone M, but after the subtraction of the compensation signal of the adaptive filter AF at the point A. The strength of the modulation of the signal at the point A is an image of the difference between the effect of the feedback path RP and the effect of the adaptive compensation filter AF. An essential difference to the embodiment according to FIG. 2 in which the signal to be analyzed is tapped immediately behind the microphone M, however, does not exist.

Darüber hinaus ist in FIG 3 angedeutet, dass in den Rückkopplungsdetektor RD eine Schrittweitensteuerung integriert sein kann, so dass auf einen separaten Steuerbaustein verzichtet werden kann. Die übrigen Komponenten des Ausführungsbeispiels von FIG 3 entsprechen denen des Ausführungsbeispiels von FIG 2. Diesbezüglich wird somit auf die Beschreibung zu FIG 2 verwiesen.In addition, in FIG. 3 indicated that in the feedback detector RD a step size control can be integrated, so that can be dispensed with a separate control module. The remaining components of the embodiment of FIG. 3 correspond to those of the embodiment of FIG. 2 , In this respect, therefore, the description to FIG. 2 directed.

In dem Ausführungsbeispiel gemäß FIG 3 wird die Phase des Ausgangssignals AS moduliert, da das menschliche Gehör weitgehend unempfindlich ist gegenüber Phasenänderungen. In einem konkreten Beispiel wird die Phase des Ausgangssignals AS mit einer bestimmten Frequenz, hier als Modulationsfrequenz f_mod bezeichnet, zwischen zwei Phasenwerten linear vor- und zurückgedreht. Beispielsweise liegen die Phasenwerte bei α und α+π/2, wobei α eine beliebige feste Phase ist. In der Rückkopplungssituation bildet sich in der Signalschleife eine detektierbare Tremolokomponente mit einer Frequenz von f_mod aus.In the embodiment according to FIG. 3 the phase of the output signal AS is modulated since the human ear is largely insensitive to phase changes. In a concrete example, the phase of the output signal AS with a specific frequency, referred to here as the modulation frequency f_mod, is linearly rotated back and forth between two phase values. For example, the phase values are α and α + π / 2, where α is any solid phase. In the feedback situation, a detectable tremolo component with a frequency of f_mod is formed in the signal loop.

Die Tremolokomponente kann mit Hilfe eines Frequenzdemodulators in dem Rückkopplungsdetektor RD detektiert werden. Dabei ist es günstig, den Rückkopplungsdetektor RD mit einer Filterbank aufzubauen, wie sie in FIG 4 dargestellt ist, die z. B. das Eingangssignal ES mit mehreren Bandpässen BP1, BP2, ..., BPn in Teilbänder zerlegt. Nach jedem Bandpass ist jeweils eine Analyseeinheit AE und ein Schwellwertschalter SW angeordnet. Die Ausgangssignale der Signalpfade für jedes Teilband werden optional einem ODER-Gatter OR zugeführt. Die jeweiligen Analyseeinheiten AE und Schwellwertschalter SW können untereinander baugleich sein. Damit erfolgt die Analyse in diesem Beispiel in jedem Teilbandpfad auf die gleiche Weise. Übersteigt das Analyseergebnis in einem Band eine gewisse Schwelle, so spricht der zugehörige Schwellwertschalter SW an, d. h. es wird für dieses Band eine Rückkopplungssituation erkannt.The tremolo component can be detected by means of a frequency demodulator in the feedback detector RD. It is advantageous to construct the feedback detector RD with a filter bank, as in FIG. 4 is shown, the z. B. the input signal ES with multiple bandpasses BP1, BP2, ..., BPn divided into subbands. After each bandpass an analysis unit AE and a threshold value SW is arranged in each case. The output signals of the signal paths for each subband are optionally supplied to an OR gate OR. The respective analysis units AE and threshold SW can be identical to each other. Thus, the analysis in this example is done in each subband path in the same way. If the analysis result in a band exceeds a certain threshold, the associated threshold switch SW responds, ie a feedback situation is detected for this band.

Diese Information kann für ein adaptives Kompensationsfilter AF, das in Teilbändern adaptiert zur Schrittweitensteuerung genutzt werden. Wird dagegen ein adaptives Filter AF im gesamten Band verwendet, müssen die Ergebnisse der Teilbanddetektionen mittels einer logischen ODER-Verknüpfung zu einer Gesamtband-Detektionsaussage zusammengefasst werden. Auch der Spezialfall, dass das Gesamtband einheitlich analysiert wird, wobei n = 1 ist, führt zu einem funktionstüchtigen System. Allerdings ist die Fehlerdetektionsrate bei einem größeren n geringer, z. B. n = 16.This information can be used for an adaptive compensation filter AF, which is adapted in subbands for step size control. If, on the other hand, an adaptive filter AF is used in the entire band, the results of the subband detections must be combined by means of a logical OR operation into an overall band detection statement. Even the special case that the entire band is analyzed uniformly, where n = 1, leads to a functional system. However, the error detection rate is lower for a larger n, e.g. B. n = 16.

Die Schrittweitensteuerung des adaptiven Filters AF kann neben der einfachen Schwellwertentscheidung gemäß FIG 4, wonach lediglich das Vorhandensein oder Nicht-Vorhandensein einer Rückkopplung detektiert wird, auch differenzierter erfolgen. Beispielsweise kann die Schrittweite durch proportionale Umrechnung der geschätzten Stärke der Signalmodulation am Punkt A ermittelt werden. Dies kann auch wieder über einen Teilbandansatz erfolgen. Je größer die erkannte Signalmodifikation ist, desto höher wäre dann der Bedarf einer Nachadaption, d. h. desto höher müsste die notwendige Schrittweite gewählt werden. Die Schrittweite kann somit kontinuierlich an die Signalmodulation angepasst werden. Bei einer reinen Schwellwertentscheidung wird die Schrittweite hingegen für eine gewisse fest vorgegebene Zeit oder für den Zeitrahmen, in dem Rückkopplung detektiert wird, hochgesetzt. Ansonsten nimmt sie einen kleinen Wert an.The step size control of the adaptive filter AF, in addition to the simple threshold decision according to FIG. 4 According to which only the presence or absence of feedback is detected, also differentiated occur. For example, the step size can be determined by proportional conversion of the estimated strength of the signal modulation at point A. This can also be done again via a subband approach. The greater the detected signal modification, the higher would be the need for a post-adaptation, ie the higher the necessary step size would have to be selected. The step size can thus be continuously adapted to the signal modulation. In a pure threshold decision, however, the step size is set high for a certain fixed time or for the time frame in which feedback is detected. Otherwise, it takes on a small value.

Claims (12)

  1. Method for reducing feedback in an audio system (HG) by
    - detecting a feedback signal (RS) in an input signal (ES),
    - processing the input signal (ES) to produce an output signal (AS) on the basis of the detected feedback signal (RS) and
    - modulating (MO) the output signal (AS) by impressing a feature onto the output signal (AS), so that the feedback signal (RS) is also correspondingly modulated,
    where
    - the feedback signal (RS) is detected on the basis that the impressed feature is present
    characterized in that
    - the modulation (MO) is effected by phase modulation and this involves the phase being shifted forward and back at a predetermined frequency between two phase values.
  2. Method according to Claim 1, where the input signal (ES) is processed using an adaptable filter (AF) whose adaptation speed and/or level of action is dependent on the quantity of the detected feedback signal (RS).
  3. Method according to Claim 2, where the adaptation speed and/or level of action rises in proportion to the quantity of the detected feedback signal (RS).
  4. Method according to one of the preceding claims, where if a feedback signal is detected then at least one notch filter for processing the input signal (ES) is activated.
  5. Method according to one of the preceding claims, where the detection is performed separately in a plurality of subbands.
  6. Method according to Claim 5, where the adaptive filter (AF) is individually adapted in the subbands.
  7. Signal processing apparatus for an audio system (HG) having
    - a processing device (V, AF) for producing an output signal (AS) from an input signal (ES) by taking into account a feedback signal (RS),
    - a modulation device for modulating (MO) the output signal (AS) by impressing a feature onto the output signal (AS), so that feedback results in a correspondingly modulated feedback signal (RS), and
    - a detection device (RD) for detecting the modulated feedback signal (RS), where
    - the feedback signal can be detected by the detection device on the basis that the impressed feature is present, characterized in that
    - the output signal (AS) can be modulated with the modulation device (MO) by phase modulation
    and
    - this involves the phase being able to be shifted forward and back at a predetermined frequency between two phase values.
  8. Signal processing apparatus according to Claim 7, where the processing device (V, AF) has an adaptable filter (AF) whose adaptation speed and/or level of action is dependent on the quantity of the feedback signal (RS).
  9. Signal processing apparatus according to Claim 8, where the adaptation speed and/or level of action rises in proportion to the quantity of the feedback signal (RS).
  10. Signal processing apparatus according to one of Claims 7 to 9, where the processing device can be used to activate at least one notch filter if a feedback signal is detected.
  11. Signal processing apparatus according to one of Claims 7 to 10, which has a respective detection device (RD) for a plurality of subbands.
  12. Signal processing apparatus according to one of Claims 7 to 11, which utilizes a closed loop to produce a signal modification.
EP05109366.4A 2004-10-14 2005-10-07 Method and device for reducing the feedback in acoustic systems Not-in-force EP1648197B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004050304A DE102004050304B3 (en) 2004-10-14 2004-10-14 Method for reducing feedback in an acoustic system and signal processing device

Publications (4)

Publication Number Publication Date
EP1648197A2 EP1648197A2 (en) 2006-04-19
EP1648197A3 EP1648197A3 (en) 2008-01-23
EP1648197B1 EP1648197B1 (en) 2011-09-14
EP1648197B2 true EP1648197B2 (en) 2015-01-07

Family

ID=35563041

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05109366.4A Not-in-force EP1648197B2 (en) 2004-10-14 2005-10-07 Method and device for reducing the feedback in acoustic systems

Country Status (7)

Country Link
EP (1) EP1648197B2 (en)
JP (1) JP4309390B2 (en)
CN (1) CN1774144B (en)
AT (1) ATE524937T1 (en)
AU (1) AU2005220246B2 (en)
DE (1) DE102004050304B3 (en)
DK (1) DK1648197T4 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8280088B2 (en) 2006-05-19 2012-10-02 Siemens Audiologische Technik Gmbh Hearing apparatus with feedback detection and corresponding method
DE102006023723A1 (en) * 2006-05-19 2007-11-22 Siemens Audiologische Technik Gmbh Hearing device with feedback detection and corresponding method
DE102006029194B4 (en) * 2006-06-26 2010-04-15 Siemens Audiologische Technik Gmbh Device and method for increment control of an adaptive filter
DK2148527T3 (en) * 2008-07-24 2014-07-14 Oticon As Acoustic feedback reduction system in hearing aids using inter-aural signal transmission, method and application
DE102008036803B3 (en) * 2008-08-07 2009-12-17 Siemens Medical Instruments Pte. Ltd. Arrangement and method for controlling a feedback suppression in hearing devices
DE102009016845B3 (en) * 2009-04-08 2010-08-05 Siemens Medical Instruments Pte. Ltd. Arrangement and method for detecting feedback in hearing devices
CN102740189B (en) * 2011-04-01 2014-10-08 中国科学院声学研究所 Acoustic feedback inhibition method based on time reversal
CN104320750B (en) * 2014-11-25 2018-08-17 厦门莱亚特医疗器械有限公司 A method of measuring hearing aid feedback path
CN104575520A (en) * 2014-12-16 2015-04-29 中国农业大学 Acoustic monitoring device and method combining psychological acoustic evaluation
JPWO2023277022A1 (en) * 2021-06-28 2023-01-05

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783818A (en) 1985-10-17 1988-11-08 Intellitech Inc. Method of and means for adaptively filtering screeching noise caused by acoustic feedback
US5259033A (en) 1989-08-30 1993-11-02 Gn Danavox As Hearing aid having compensation for acoustic feedback
US5412734A (en) 1993-09-13 1995-05-02 Thomasson; Samuel L. Apparatus and method for reducing acoustic feedback
US5748751A (en) 1994-04-12 1998-05-05 U.S. Philips Corporation Signal amplifier system with improved echo cancellation
WO2000044113A1 (en) 1999-01-21 2000-07-27 Acoustic Technologies, Inc. Reducing acoustic feedback with digital modulation
EP1191814A1 (en) 2000-09-25 2002-03-27 TOPHOLM & WESTERMANN APS A hearing aid with an adaptive filter for suppression of acoustic feedback
US7092532B2 (en) 2003-03-31 2006-08-15 Unitron Hearing Ltd. Adaptive feedback canceller

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6347148B1 (en) * 1998-04-16 2002-02-12 Dspfactory Ltd. Method and apparatus for feedback reduction in acoustic systems, particularly in hearing aids
DE19904538C1 (en) * 1999-02-04 2000-07-13 Siemens Audiologische Technik Method of detecting feedback in hearing aid
DK1052881T3 (en) * 1999-05-12 2011-02-14 Siemens Audiologische Technik Hearing aid with oscillation detector and method for detecting oscillations in a hearing aid
AU5806400A (en) * 1999-07-19 2001-02-05 Oticon A/S Feedback cancellation with low frequency input
CA2427845C (en) * 2001-10-05 2010-07-13 Phonak Ag Method for verifying the availability of a signal component and device for carrying out said method
US7197152B2 (en) * 2002-02-26 2007-03-27 Otologics Llc Frequency response equalization system for hearing aid microphones

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783818A (en) 1985-10-17 1988-11-08 Intellitech Inc. Method of and means for adaptively filtering screeching noise caused by acoustic feedback
US5259033A (en) 1989-08-30 1993-11-02 Gn Danavox As Hearing aid having compensation for acoustic feedback
US5412734A (en) 1993-09-13 1995-05-02 Thomasson; Samuel L. Apparatus and method for reducing acoustic feedback
US5748751A (en) 1994-04-12 1998-05-05 U.S. Philips Corporation Signal amplifier system with improved echo cancellation
WO2000044113A1 (en) 1999-01-21 2000-07-27 Acoustic Technologies, Inc. Reducing acoustic feedback with digital modulation
EP1191814A1 (en) 2000-09-25 2002-03-27 TOPHOLM & WESTERMANN APS A hearing aid with an adaptive filter for suppression of acoustic feedback
US7092532B2 (en) 2003-03-31 2006-08-15 Unitron Hearing Ltd. Adaptive feedback canceller

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GÉZA KOLUMBAN: "PLL Applications"
GUAN-CHYUN HSIEH ET AL.: "Phase-locked loop techniques. A surevy.", IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol. 43, no. 6, 1 December 1996 (1996-12-01), IEEE SERVICE CENTER PISCATAWAY, NJ, USA, pages 609 - 615, DOI: 10.1109/41.544547
T.J.F. BUUNEN: "On the perception of phase differences in acoustic signals.", DELFT 1976

Also Published As

Publication number Publication date
EP1648197A2 (en) 2006-04-19
JP2006115509A (en) 2006-04-27
ATE524937T1 (en) 2011-09-15
CN1774144A (en) 2006-05-17
EP1648197A3 (en) 2008-01-23
DE102004050304B3 (en) 2006-06-14
DK1648197T4 (en) 2015-04-13
AU2005220246A1 (en) 2006-05-04
AU2005220246B2 (en) 2007-09-27
DK1648197T3 (en) 2011-12-19
CN1774144B (en) 2013-12-18
JP4309390B2 (en) 2009-08-05
EP1648197B1 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
EP1239700B2 (en) Method of operating a hearing device or hearing system and a corresponding device and system
EP3068146B1 (en) Method for operating a hearing device and hearing device
DE102006047965A1 (en) Method for the reduction of occlusion effects with acoustic device locking an auditory passage, involves using signal from transmission path of audio signal, and transmission function is observed by output of output converter
EP3222057A1 (en) Method and apparatus for fast recognition of a user's own voice
EP1648197B2 (en) Method and device for reducing the feedback in acoustic systems
EP3454572A1 (en) Method for detection of a defect in a listening instrument
EP2023669A2 (en) Method for operating a hearing aid system and hearing aid system
DE102015216822B4 (en) A method of suppressing feedback in a hearing aid
DE102016225205A1 (en) Method for determining a direction of a useful signal source
DE10244184B3 (en) Feedback compensation for hearing aids with system distance estimation
DE102011006129B4 (en) Hearing device with feedback suppression device and method for operating the hearing device
EP2595414B1 (en) Hearing aid with a device for reducing a microphone noise and method for reducing a microphone noise
DE10357800B3 (en) Hearing aid with noise suppression has signal processing device for simulating transmission function of acoustic path that applies function to noise signal to form noise output signal that is combined with useful output signal
DE102008046040B4 (en) Method for operating a hearing device with directivity and associated hearing device
EP4093052A1 (en) Method and apparatus for frequency-selective processing of a low latency audio signal
WO2001047335A2 (en) Method for the elimination of noise signal components in an input signal for an auditory system, use of said method and a hearing aid
EP2373063B1 (en) Hearing device and method for setting the same for acoustic feedback-free operation
EP3576433B1 (en) Method for reduction of acoustic feedback in a hearing aid
EP3697107B1 (en) Method for operating a hearing device and hearing device
DE102006029268B4 (en) Hearing device with structure-borne noise detection device and corresponding method
DE602004010317T2 (en) Method for operating a hearing aid and hearing aid
DE10114015A1 (en) Hearing aid or hearing protector operating method by identifying noise and useful signals and boosting identified useful signal and reducing identified noise signal
DE102010007336B4 (en) Method for compensating a feedback signal and hearing device
EP2590437B1 (en) Periodic adaptation of a feedback suppression device
DE102019213810B3 (en) Method for operating a hearing aid and hearing aid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080312

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005011871

Country of ref document: DE

Owner name: SIVANTOS GMBH, DE

Free format text: FORMER OWNER: SIEMENS AUDIOLOGISCHE TECHNIK GMBH, 91058 ERLANGEN, DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005011871

Country of ref document: DE

Effective date: 20111201

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111215

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: SIEMENS AUDIOLOGISCHE TECHNIK G.M.B.H.

Effective date: 20111031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120114

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120116

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: OTICON A/S / GN RESOUND A/S / WIDEX A/S

Effective date: 20120614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502005011871

Country of ref document: DE

Effective date: 20120614

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 524937

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20150107

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502005011871

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AELC

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502005011871

Country of ref document: DE

Effective date: 20150107

REG Reference to a national code

Ref country code: DK

Ref legal event code: T4

Effective date: 20150409

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005011871

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005011871

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005011871

Country of ref document: DE

Owner name: SIVANTOS GMBH, DE

Free format text: FORMER OWNER: SIEMENS AUDIOLOGISCHE TECHNIK GMBH, 91058 ERLANGEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20181025

Year of fee payment: 14

Ref country code: DE

Payment date: 20181024

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181025

Year of fee payment: 14

Ref country code: CH

Payment date: 20181025

Year of fee payment: 14

Ref country code: FR

Payment date: 20181023

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005011871

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20191031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191007