DE102006062600B4 - Verfahren zum Inbetriebnehmen und/oder Überwachen eines In-Line-Meßgeräts - Google Patents

Verfahren zum Inbetriebnehmen und/oder Überwachen eines In-Line-Meßgeräts Download PDF

Info

Publication number
DE102006062600B4
DE102006062600B4 DE102006062600.1A DE102006062600A DE102006062600B4 DE 102006062600 B4 DE102006062600 B4 DE 102006062600B4 DE 102006062600 A DE102006062600 A DE 102006062600A DE 102006062600 B4 DE102006062600 B4 DE 102006062600B4
Authority
DE
Germany
Prior art keywords
measuring
sensor
inclination
parameter
measuring sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102006062600.1A
Other languages
English (en)
Other versions
DE102006062600A1 (de
Inventor
Stefan Grotzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Flowtec AG, Flowtec AG filed Critical Endress and Hauser Flowtec AG
Priority to DE102006062600.1A priority Critical patent/DE102006062600B4/de
Priority to PCT/EP2007/063965 priority patent/WO2008080802A1/de
Priority to US12/005,303 priority patent/US7765878B2/en
Publication of DE102006062600A1 publication Critical patent/DE102006062600A1/de
Application granted granted Critical
Publication of DE102006062600B4 publication Critical patent/DE102006062600B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • G01F1/8418Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments motion or vibration balancing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Verfahren zum Inbetriebnehmen und/oder Überwachen eines In-Line-Meßgeräts (1), nämlich eines Coriolis-Massendurchfluß-/Dichte- und/oder Viskositätsmessers, eines magnetisch-induktiven Durchflußmessers, eines Vortex-Durchflußmeßgeräts oder eines Ultraschall-Durchflußmeßgeräts mit einem im Betrieb von einem zu messenden Medium durchströmten Meßaufnehmer (DA), welches Verfahren folgende Schritte umfaßt:- Ermitteln einer momentanen Inklination des Meßaufnehmers (DA), die mit einer Neigung wenigstens einer Trägheitshauptachse des Meßaufnehmers (DA) gegenüber wenigstens einer gedachten Bezugsachse (G) korrespondiert;- Erzeugen eines Inklinationsmeßwerts, der die Abweichung der momentanen Inklination von einem dafür vorgegebenen Referenzwert zumindest zweiwertig, insb. mehrwertig, repräsentiert;- Strömenlassen von zu messendem Medium durch den Meßaufnehmer (DA);- Erfassen wenigstens eines Parameters von im Meßaufnehmer (DA) befindlichem Medium;- sowie Erzeugen wenigstens eines den Parameter quantitativ repräsentierenden Parametermeßwerts (XM);- wobei der Schritt des Erfassens des wenigstens einen Parameters weiters einen Schritt des Erzeugens wenigstens eines mit dem Parameter korrespondierenden Meßsignals umfaßt;- wobei der Schritt des Erzeugens des wenigstens einen Parametermeßwerts (XM) weiters einen Schritt des Verwendens des mit dem Parameter korrespondierenden Meßsignals, sowie einen Schritt des Verwendens auch des momentanen Inklinationsmeßwerts, insb. zur Kompensation von mit der momentanen Inklination einhergehenden Meßfehlern und/oder zur Validierung des Parametermeßwerts (XM), umfaßt.

Description

  • Die Erfindung betrifft einen ein Verfahren zum Inbetriebnehmen und/oder Überwachen eines In-Line-Meßgeräts sowie ein Meßsystem zum Messen wenigstens eines physikalischen Parameters, insb. eines Massedurchflusses und/oder einer Dichte und/oder einer Viskosität, eines in einer Rohrleitung strömenden Mediums.
  • In der Prozeßmeß- und Automatisierungstechnik werden für die hochgenaue Messung physikalischer Parameter, wie z.B. dem Massedurchfluß, der Dichte und/oder der Viskosität, eines in einer Rohrleitung strömenden Mediums, beispielsweise einem Gas und/oder einer Flüssigkeit, oftmals solche mittels mindestens einem In-Line-Meßgerät gebildte Meßsysteme verwendet, die mittels eines vom Medium durchströmten Meßaufnehmers vom Vibrationstyp und einer daran angeschlossenen Meß- und Betriebsschaltung, im Medium Reaktionskräfte, wie z.B. mit dem Massedurchfluß korrespondierende Corioliskräfte, mit der Dichte korrespondierende Trägheitskräfte oder mit der Viskosität korrespondierende Reibungskräfte etc., bewirken und von diesen abgeleitet ein den jeweiligen Massedurchfluß, ein die jeweilige Vikosität und/oder ein die jeweilige Dichte des Mediums repräsentierendes Meßsignal erzeugen. Derartige In-Line-Meßgeräte mit einem Meßaufnehmer vom Vibrationstyp sowie deren Wirkungsweise sind dem Fachmann an und für sich bekannt und z.B. in der WO-A 03/095950 , WO-A 03/095949 , der WO-A 02/37063 , der WO-A 01/33174 , der WO-A 00/57141 , der WO-A 99/39164 , der WO-A 98/07009 , der WO-A 95/16897 , der WO-A 88/03261 , der US 2003/0208325 , der US-B 69 10 366 , der US-B 68 95 826 , der US-B 68 80 410 , der US-B 66 91 583 , der US-B 66 51 513 , der US-B 65 13 393 , der US-B 65 05 519 , der US-A 60 06 609 , der US-A 58 69 770 , der US-A 58 61 561 , der US-A 57 96 011 , der US-A 56 16 868 , der US-A 56 02 346 , der US-A 56 02 345 , der US-A 55 31 126 , der US-A 53 59 881 , der US-A 53 01 557 , der US-A 52 53 533 , der US-A 52 18 873 , der US-A 50 69 074 , der US-A 49 57 005 , der US-A48 95 031 , der US-A 48 76 898 , der US-A 47 33 569 , der US-A 46 60 421 , der US-A 45 24 610 , der US-A 44 91 025 oder der US-A 41 87 721 ausführlich und detailiert beschrieben. Zum Führen des strömenden Mediums umfassen die Meßaufnehmer jeweils wenigstens ein in einem zumeist als geschlossenes Aufnehmer-Gehäuse ausgebildeten Trägerrahmen gehaltertes Meßrohr mit einem gebogenen oder geraden Rohrsegment, das zum Erzeugen oben genannter Reaktionskräfte, angetrieben von einer elektromechanischen Erregeranordnung, im Betrieb vibrieren gelassen wird. Zum Erfassen, insb. einlaßseitger und auslaßseitiger, Vibrationen des Rohrsegments weisen die Meßaufnehmer ferner jeweils eine auf Bewegungen des Rohrsegments reagierende Sensoranordnung auf.
  • Bei Coriolis-Massedurchflußmeßgeräten beruht die Messung des Massedurchflusses eines in einer Rohrleitung strömenden Mediums bekanntlich darauf, daß das Medium durch das in Rohrleitung eingefügte und im Betrieb zumindest anteilig lateral zu einer Messrohrachse schwingende Meßrohr strömen gelassen wird, wodurch im Medium Corioliskräfte induziert werden. Diese wiederum bewirken, daß einlaßseitige und auslaßseitige Bereiche des Meßrohrs zueinander phasenverschoben schwingen. Die Größe dieser Phasenverschiebungen dient dabei als ein Maß für den Massedurchfluß. Die Schwingungen des Meßrohrs werden daher mittels zweier entlang des Meßrohres voneinander beabstandeter Schwingungssensoren der vorgenannten Sensoranordnung erfaßt und in Schwingungsmeßsignale gewandelt, aus deren gegenseitiger Phasenverschiebung der Massedurchfluß abgleitet wird. Bereits die eingangs referierte US-A 41 87 721 erwähnt ferner, daß mittels solcher In-Line-Meßgeräte auch die momentane Dichte des strömenden Mediums meßbar ist, und zwar anhand einer Frequenz wenigstens eines der von der Sensoranordnung gelieferten Schwingungsmeßsignale.
  • Überdies wird zumeist auch eine Temperatur des Mediums in geeigneter Weise direkt gemessen, beispielsweise mittels eines am wenigstens einen Meßrohr angeordneten Temperatursensors. Zudem können gerade Meßrohre, zu Torsionsschwingungen um eine im wesentlichen mit der jeweiligen Messrohrlängsachse parallel verlaufenden oder koinzidierenden Torsions-Schwingungsachse angeregt, bewirken, daß im hindurchgeführten Medium radiale Scherkräfte erzeugt werden, wodurch wiederum den Torsionsschwingungen signifikant Schwingungsenergie entzogen und im Medium dissipiert wird. Daraus resultierend erfolgt eine erhebliche Bedämpfung der Torsionsschwingungen des schwingenden Meßrohrs zu deren Aufrechterhaltung demzufolge dem Meßrohr zusätzlich elektrische Erregerleistung zugeführt werden muß. Abgeleitet von einer zum Aufrechterhalten der Torsionsschwingungen des Meßrohrs entsprechend erforderlichen elektrischen Erregerleistung, kann in der dem Fachmann bekannten Weise mittels des Meßaufnehmers so beispielsweise auch eine Viskosität des Mediums zumindest nährungsweise bestimmt werden, vgl. hierzu insb. auch die US-A 45 24 610 , die US-A 52 53 533 , die US-A 60 06 609 oder die US-B 66 51 513 . Es kann insoweit im folgenden ohne weiteres vorausgesetzt werden, daß - selbst wenn nicht ausdrücklich beschrieben - mittels moderner In-Line-Meßgeräten mit einem Messaufnehmer vom Vibationstyp, insb. mittels Coriolis-Massendurchfluß-Meßgeräten, jedenfalls auch Dichte, Viskosität und/oder Temperatur des Mediums gemessen werden können, zumal diese bei der Massendurchflußmessung ohnehin zur Kompensation von Meßfehlern infolge schwankender Mediumsdichte und/oder Mediumsviskosität oftmals heran zu ziehen sind, vgl. hierzu insb. die bereits erwähnten US-B 65 13 393 , US-A 60 06 609 , US-A 56 02 346 , WO-A 02/37063 , WO-A 99/39164 oder auch die WO-A 00/36379 . Neben derartigen Meßaufnehmern vom Vibrationstyp werden in der Prozeßmeß- und Automatisierungstechnik für die In-Line-Messungen häufig auch In-Line-Meßgeräte mit magnetisch-induktiven Meßaufnehmern oder die Laufzeit von in Strömungsrichtung ausgesendeten Ultraschallwellen auswertende, insb. auch nach dem Doppler-Prinzip arbeitende, Meßaufnehmern eingesetzt. Da der prinzipielle Aufbau und die Funktionsweise solcher magnetisch-induktiven Meßaufnehmer z.B. in der EP-A 1 039 269 , US-A 60 31 740 , US-A 55 40 103 , US-A 53 51 554 , US-A 45 63 904 etc. oder solcher Ultraschall-Meßaufnehmer z.B. in der US-B 63 97 683 , der US-B 63 30 831 , der US-B 62 93 156 , der US-B 61 89 389 , der US-A 55 31 124 , der US-A 54 63 905 , der US-A 51 31 279 , der US-A 47 87 252 etc. hinlänglich beschrieben und überdies dem Fachmann ebenfalls hinreichend bekannt sind, kann an dieser Stelle auf eine detailliertere Erläuterung dieser Meßprinzipien verzichtet werden.
  • Wie beispielsweise in der US-A 49 57 005 erwähnt, ist in zahlreichen Anwendungen der industrilellen Meßtechnik ein wichtiges Kriterium für den Betrieb von In-Line-Meßgeräten der beschriebenen Art, das der Durchflußmeßaufnehmer in-situ, also in Einbaulage, entleerbar ist. So erfordern beispielsweise in der Nahrungsmittel-Industrie oder auch der pharmazeutischen Industrie etablierte Standards, z.B. ASME BPE, daß Leitungssegmente über einen weiten Neigungsbereich selbstentleerbar sein müssen. Dementsprechend müssen praktisch sämtliche Leitungssegmente, einschließlich der vom jeweiligen Durchflußaufnehmer realisierten, eine bestimmte Steigung aufweisen, die eine Selbst-Entleerbarkeit des Rohrleitungssystems garantiert. Die geforderte Selbstentleerbarkeit kann für eine Vielzahl von Durchflußmeßaufnehmern auf einfache Weise dadurch realisiert werden, daß beim Einbau des In-Line-Meßgeräts eine auf die tatsächliche Geometrie des wenigstens einen Meßrohrs entsprechend angepaßte Neigung für den Durchflußmeßaufnehmers gewählt ist, die dann im Betrieb bei Leerlaufen der angeschlossenen Rohrleitung auch eine Selbstentleerung des wenisgtens einen Meßrohrs ermöglicht.
  • Bei der Verwendung von solchen In-Line-Meßgeräten mit wenigstens einem in den Verlauf der Mediums führenden Rohrleitung eingefügten Meßrohr hat es sich ferner gezeigt, daß bei inhomogenen, insb. zwei- oder mehrphasigen Medien, die damit erzeugten Meßsignale in erheblichem Maße nicht reproduzierbaren Schwankungen unterliegen können, obwohl die die Meßsignale signifikant beinflussenden Mediumsparameter, insb. der Massendurchfluß, praktisch konstant gehaltenen sind, vgl. hierzu auch die eingangs erwähnten US-B 69 10 366 , US-B 68 80 410 , US-B 65 05 519 , US-B 63 11 136 oder US-A 54 00 657 . Infolgedessen sind diese Meßsignale bei mehrphasigen Mediumsströmen für eine hoch genaue Messung des jeweiligen physikalischen Strömungsparameters praktisch unbrauchbar. Solche inhomogenen Medien können beispielsweise Flüssigkeiten sein, in die, wie z.B. bei Dosier- oder Abfüllprozessen praktisch unvermeidbar, ein in der Rohrleitung vorhandenes Gas, insb. Luft, eingetragen ist oder aus denen ein gelöstes Medium, z.B. Kohlendioxid, ausgast und zur Schaumbildung führt. Als weitere Beispiele für solche inhomogenen Medien seien ferner auch Emulsionen, Naß- oder Sattdampf sowie Feststoffpartikel mitführende Fluide genannt. Im besonderen ist bei In-Line-Meßgeräten mit einem Meßaufnehmer vom Vibrationstyp, wie beispielsweise auch in der JP-A 10-281846 , der EP-A 1 291 639 , der US-B 68 80 410 , der US-B 65 05 519 oder der US-A 45 24 610 diskutiert, festgestellt worden, daß die von den Schwingungen des Meßrohrs abgeleiteten Schwingungsmeßsignale, insb. auch die erwähnte Phasenverschiebung, bei zwei- oder mehrphasigen Medien trotz dem der Massendurchfluß sowie auch Viskosität und Dichte in den einzelnen Mediumsphasen praktisch konstantgehalten und/oder entsprechend mitberücksichtigt werden, in erheblichem Maße Schwankungen unterliegen und so ggf. für die Messung des jeweiligen physikalischen Strömungsparameters ohne abhelfende Maßnahmen völlig unbrauchbar werden können. Als Ursachen für die mit der Messung von inhomogenen Medien mittels Messaufnehmern vom Vibrationstyp einhergehenden Meßfehler seien exemplarisch das einseitige Anlagern oder Absetzen von in Flüssigkeiten mitgeführten Gasblasen oder Feststoffpartikeln innen an der Messrohrwand und der sogenannte „Bubble-Effekt“ erwähnt, bei dem in der Flüssigkeit mitgeführte Gasblasen als Störkörper für quer zur Messrohrlängsachse beschleunigte Flüssigkeitsteilvolumina wirkt. Zur Verringerung der mit zwei- oder mehrphasigen Medien einhergehenden Meßfehler ist beispielsweise in der US-A 45 24 610 vorgeschlagen, den Meßaufnehmer in einer vorgegebenenen, hier im wesentlichen lotrechten, Einbaulage zu verwenden, um eine unerwünschte Verteilung störender Gasblasen zu vermeiden. Neben solchen störenden Einflüssen infolge von Inhomogenitäten im Medium können aber auch Asymmetrien im Strömungsprofil, hervorgerufen beispielsweise durch gekrümmte Meßrohre und/oder bei turbulenter Strömung, zu Abhängigkeiten der Meßgenauigkeit von der Einbaulage des Meßaufnehmers führen.
  • Dem Erfordernis einer definierten Einbaulage für Durchflußmeßaufnehmer der beschriebenen Art, insb. einer definierten Ausrichtung des Durchflußaufnehmers bezüglich dieser gedachten Bezugsachse, Rechnung tragend - sei es aus Gründen einer geforderten Selbstentleerbarkeit oder aus Gründen der Meßgenauigkeit - werden von Herstellern solcher In-Line-Meßgeräte dem Anwender üblicherweise Kataloge von geeigneten und gegebenenfalls ungeeigneten Einbaulagen des jeweiligen Meßgeräts zur Verfügung gestellt, wobei sich die geeigneten Einbaulagen zumeist auf im wesentlichen lot- und/oder waagerechte Einbaulagen beschränken. Allerdings hat es sich hierbei ferner gezeigt, daß insbesondere bei Sonderanwendungen, in denen eine im obigen Sinne standardisierte - also vorwiegend lot- oder waagerechte - Einbaulage nicht realisierbar ist oder nicht realisiert werden soll, erhebliche Probleme bei der Gewährleistung einer ausreichenden Meßgenauigkeit und/oder bei der Sicherstellung einer Selbstentleerung des Durchflußaufnehmers auftreten können.
  • In Popa, N.C. et al.: Some applications of inductive transducers with magnetic liquids. In: Sensors and Actuators A, 59, 1997, 197-200., der WO-A 2006/033901 , der JP-A 2000-205 921 oder der EP-A 856 723 sind jeweils nach anderen Prinzipien wirkende Meßsysteme gezeigt, die ausgestaltet sind, eine Neigung des jeweiligen Meßsystems zu ermitteln.
  • Eine Aufgabe der Erfindung besteht daher darin, Meßsysteme der in Rede stehenden Art, nämlich jeweils als Coriolis-Massendurchfluß-/Dichte- und/oder Viskositätsmesser, als magnetisch-induktiver Durchflußmesser, als Vortex-Durchflußmeßgerät oder als Ultraschall-Durchflußmeßgerät ausgebildete In-Line-Meßgeräte dahingehend zu verbessern, daß es dem Anwender ermöglicht wird, bereits während der Inbetriebnahme - sei es während oder unmittelbar nach dem Einbau des Durchflußaufnehmers - die Eignung der für den Durchflußaufnehmer momentan gewählten Einbaulage ad-hoc festzustellen und insoweit auch die Einhaltung der für das betroffene In-Line-Meßgerät hinsichtlich der Einbaulage festgelegten Spezifikationen sicherzustellen. Anderseits sollen zumindest völlig ungeeignete Einbaulagen dem Anwender möglichst unverzüglich gemeldet werden können.
  • Zur Lösung der Aufgabe besteht die Erfindung in einem Verfahren gemäß dem unabhängigen Anspruch 1 zum Inbetriebnehmen und/oder Überwachen eines In-Line-Meßgeräts mit einem im Betrieb von einem zu messenden Medium durchströmten Meßaufnehmer, nämlich einen Meßaufnehmer vom Vibrationstyp, insb. vom Biegeschwingungstyp mit ausschließlich oder zumindest anteilig in einem Biegeschwingungsmode vibrierendem, gebogenem oder geradem Meßrohr, einen magnetisch-induktive Meßaufnehmer, einen Vortex-Durchflußaufnehmer oder einen Ultraschall-Meßaufnehmer, welches Verfahren insb. einen Schritt des Ermittelns einer momentanen Inklination des Meßaufnehmers umfaßt, die mit einer Neigung wenigstens einer Trägheitshauptachse des Meßaufnehmers gegenüber wenigstens einer gedachten Bezugsachse korrespondiert .
  • Darüber hinaus besteht die Erfindung in einem Meßsystem gemäß dem unabhängigen Anspruch 19, insb. umfassend ein einen im Betrieb von einem zu messenden Medium durchströmten Durchflußmeßaufnehmer, nämlich einen Meßaufnehmer vom Vibrationstyp, insb. vom Biegeschwingungstyp mit ausschließlich oder zumindest anteilig in einem Biegeschwingungsmode vibrierendem, gebogenem oder geradem Meßrohr, einen magnetisch-induktive Meßaufnehmer, einen Vortex-Durchflußaufnehmer oder einen Ultraschall-Meßaufnehmer, sowie wenigstens einen Neigungssensor zum Erfassen und/oder Überwachen einer momentanen Inklination des Meßaufnehmers, die mit einer Neigung wenigstens einer Trägheitshaupachse des Meßaufnehmers gegenüber wenigstens einer gedachten Bezugsachse korrespondiert.
  • Nach einer ersten Ausgestaltung des Verfahrens der Erfindung umfaßt dieses weiters einen Schritt des Erzeugens einer, insb. visuell und/oder akustisch und/oder haptisch wahrnehmbaren, Meldung, die eine Abweichung der momentanen Inklination von einem dafür vorgegebenen Referenzwert zumindest qualitativ signalisiert.
  • Nach einer zweiten Ausgestaltung des Verfahrens der Erfindung ist vorgesehen, daß die Meldung zumindest zeitweise eine zulässige Abweichung der momentanen Inklination vom dafür vorgegebenen Referenzwert signalisiert und/oder daß die Meldung zeitweise eine unzulässig hohe Abweichung der momentanen Inklination vom dafür vorgegebenen Referenzwert signalisiert.
  • Nach einer dritten Ausgestaltung des Verfahrens der Erfindung ist vorgesehen, daß der Schritt des Ermittelns einer momentanen Inklination des Meßaufnehmers weiters einen Schritt des Messens der momentanen Inklination umfaßt.
  • Nach einer vierten Ausgestaltung des Verfahrens der Erfindung umfaßt diese weiters einen Schritt des Erzeugens einer, insb. vor Ort visuell und/oder akustisch und/oder haptisch wahrnehmbaren, Meldung, die eine momentane Einbaulage des Meßaufnehmers als für den Betrieb des In-Line-Meßgeräts ungeeignet signalisiert, unter Berücksichtigung der momentanen Inklination des Meßaufnehmers.
  • Nach einer fünften Ausgestaltung des Verfahrens der Erfindung umfaßt dieses weiters einen Schritt des Erzeugens eines Inklinationsmeßwerts, der die Abweichung der momentanen Inklination vom dafür vorgegebenen Referenzwert zumindest zweiwertig, insb. mehrwertig, repräsentiert.
  • Nach einer sechsten Ausgestaltung des Verfahrens der Erfindung umfaßt dieses weiters Schritte des sensorischen Erfassens der momentanen Inklination mittels eines auf eine Änderung der Inklination des Meßaufnehmers reagierenden, insb. im wesentlichen starr an den Meßaufnehmer gekoppelten, Neigungssensors und des Erzeugens eines die momentane Inklination des Meßaufnehmers repräsentierenden Meßsignals.
  • Nach einer siebenten Ausgestaltung des Verfahrens der Erfindung ist vorgesehen, daß die Inklination des Meßaufnehmers mit einer Neigung einer gedachten, zwischen einer ersten Trägheitshauptachse des Meßaufnehmers und einer zweiten Trägheitshauptachse des Meßaufnehmers imaginär aufgespannten Bezugsebene des Meßaufnehmers gegenüber der wenigstens einen gedachten Bezugsachse korrespondiert.
  • Nach einer achten Ausgestaltung des Verfahrens der Erfindung umfaßt dieses weiters Schritte des Strömenlassens von zu messendem Medium durch den Meßaufnehmer, des Erfassens wenigstens eines Parameters von im Meßaufnehmer befindlichem Medium sowie des Erzeugens wenigstens eines den Parameter quantitativ repräsentierenden Parametermeßwerts.
  • Nach einer Weiterbildung der achten Ausgestaltung der Erfindung ist ferner vorgesehen, daß der Schritt des Erfassens des wenigstens einen Parameters weiters einen Schritt des Erzeugens wenigstens eines mit dem Parameter korrespondierenden Meßsignals umfaßt. Dabei kann der Schritt des Erzeugens des wenigstens einen Parametermeßwerts weiters einen Schritt des Verwendes des mit dem Parameter korrespondierenden Meßsignals umfassen.
  • Nach einer anderen Weiterbildung der achten Ausgestaltung des Verfahrens der Erfindung ist ferner vorgesehen, daß der Schritt des Erzeugens wenigstens eines die Meßgröße quantitativ repräsentierenden Meßwerts dann erfolgt, wenn der Inklinationsmeßwert mit einer zulässigen Abweichung der momentanen Inklination vom dafür vorgegebenen Referenzwert korrespondiert und/oder daß der Schritt des Erzeugens wenigstens eines die Meßgröße quantitativ repräsentierenden Meßwerts dann nicht erfolgt, wenn der Inklinationsmeßwert mit einer unzulässig hohen Abweichung der momentanen Inklination vom dafür vorgegebenen Referenzwert korrespondiert.
  • Nach einer neunten Ausgestaltung des Verfahrens der Erfindung ist vorgesehen, daß der Meßaufnehmer eine einen Einlaß für einströmendes Medium und einen Auslaß für ausströmendes Medium aufweist.
  • Nach einer Weiterbildung der neunten Ausgestaltung der Erfindung ist als die die Inklination des Meßaufnehmers zumindest anteilig definierende Trägheitshaupachse des Meßaufnehmers jene gewählt, die im wesentlichen parallel zu einer gedachten, Einlaß und Auslaß imaginär verbindende Strömungsachse verläuft, insb. mit dieser koinzident ist.
  • Nach einer anderen Weiterbildung der neunten Ausgestaltung der Erfindung ist als die die Inklination des Meßaufnehmers zumindest anteilig definierende Trägheitshaupachse des Meßaufnehmers jene gewählt, die im wesentlichen senkrecht zu einer gedachten, Einlaß und Auslaß imaginär verbindende Strömungsachse verläuft.
  • Nach einer zehnten Ausgestaltung des Verfahrens der Erfindung ist vorgesehen, daß als Bezugsachse eine in Richtung der Erbeschleunigung weisende gedachte Fallline gewählt ist.
  • Nach einer elften Ausgestaltung des Verfahrens der Erfindung ist vorgesehen, daß der Meßaufnehmer wenigstens ein Meßrohr zum Führen von zu messendem Medium umfaßt. Nach einer Weiterbildung dieser Ausgestaltung der Erfindung ist ferner vorgesehen, daß das wenigstens eine Meßrohr zumindest abschnittsweise im wesentlichen gerade ist und/oder wobei das wenigstens eine Meßrohr zumindest abschnittsweise gekrümmt, insb. zumindest abschnittsweise im wesentlichen U- oder V-förmig ausgebildet, ist.
  • Nach einer ersten Ausgestaltung des Meßsystems der Erfindung ist vorgesehen, daß der Neigungssensor zumindest zeitweise ein die momentane Inklination des Meßaufnehmers zumindest anteilig repräsentierendes Meßsignal liefert und/oder daß der Neigungssensor zumindest zeitweise ein Schaltsignal liefert, das eine unzulässig hohe Abweichung der momentanen Inklination von einem dafür vorgegebenen Referenzwert signalisiert.
  • Nach einer zweiten Ausgestaltung des Meßsystems der Erfindung umfaßt dieses weiters eine Meßgerät-Elektronik und ist die Meßgerät-Elektronik mit dem wenigstens einen Neigungssensor, insb. leitungsgebunden, elektrisch gekoppelt und ist vorgesehen, daß die Meßgerät-Elektronik mittels des vom Neigungssensor gelieferten Meßsignals und/oder mittels des vom Neigungssensor gelieferten Schaltsignals zeitweise eine Meldung generiert, die eine Abweichung der momentanen Inklination von einem dafür vorgegebenen Referenzwert zumindest qualitativ signalisiert.
  • Nach einer dritten Ausgestaltung des Meßsystems der Erfindung umfaßt dieses weiters ein mit dem Neigungssensor gekoppeltes Anzeigeelement zum Signalisieren einer mit der momentanen Inklination des Meßaufnehmers korrespondierenden Einbaulage des Durchflußaufnehmers.
  • Nach einer vierten Ausgestaltung des Meßsystems der Erfindung umfaßt dieses weiters ein Elektronik-Gehäuse für die Meßgerät-Elektronik.
  • Nach einer fünften Ausgestaltung des Meßsystems der Erfindung umfaßt der Meßaufnehmer wenigstens ein, insb. von einem Aufnehmer-Gehäuse umgebenens und/oder eingehülltes, Meßrohr zum Führen von zu messendem Medium. Nach einer Weiterbildung dieser Ausgestaltung der Erfindung ist das wenigstens eine Meßrohr zumindest abschnittsweise im wesentlichen gerade ist und/oder ist das wenigstens eine Meßrohr zumindest abschnittsweise, insb. im wesentlichen U- oder V-förmig, gekrümmt.
  • Nach einer sechsten Ausgestaltung des Meßsystems der Erfindung umfaßt dieses weiters ein Aufnehmer-Gehäuse.
  • Nach einer siebenten Ausgestaltung des Meßsystems der Erfindung umfaßt dieses weiters ein Aufnehmer-Gehäuse sowie ein damit mechanisch, insb. im wesentlichen starr, gekoppeltes Elektronik-Gehäuse für eine Meßgerät-Elektronik des Meßsystems. Nach einer Weiterbildung dieser Ausgestaltung der Erfindung weist das Aufnehmer-Gehäuse einen, insb. halsförmigen, Anschlußstutzen zum Haltern des Elektronik-Gehäuses auf. Nach einer anderen Weiterbildung dieser Ausgestaltung der Erfindung ist vorgesehen, daß der wenigstens eine Neigungssensor mit dem Aufnehmer-Gehäuse mechanisch, insb. im wesentlichen starr und/oder dauerhaft, verbunden ist und/oder innerhalb des Aufnehmer-Gehäuses, beispielsweise im Anschlußstutzen, plaziert ist.
  • Nach einer achten Ausgestaltung des Meßsystems der Erfindung ist der Neigungssensor geeignet, eine Neigung einer gedachten Bezugsebene des Meßaufnehmers gegenüber der wenigstens einen gedachten Bezugsachse zu erfassen. Als Bezugsebene kann beispielsweise eine zwischen einer ersten Trägheitshauptachse des Meßaufnehmers und einer zweiten Trägheitshauptachse des Meßaufnehmers imaginär aufgespannte Schnittebene oder Symmetrieebene des Durchflußaufnehmers dienen. Ferner ist bei dieser Ausgestaltung der Erfindung vorgesehen, daß der Neigungssensor zumindest zeitweise ein erstes Meßsignal liefert, das eine Neigung der ersten Trägheitshauptachse gegenüber der wenigstens einen gedachten Bezugsachse repräsentiert, und daß der Neigungssensor zumindest zeitweise ein zweites Meßsignal liefert, das eine Neigung der zweiten Trägheitshauptachse gegenüber der wenigstens einen gedachten Bezugsachse repräsentiert.
  • Nach einer neunten Ausgestaltung des Meßsystems der Erfindung umfaßt dieses wenigstens zwei Neigungssensoren zum Erfassen einer Neigung zweier Trägheitshaupachsen des Meßaufnehmers gegenüber der wenigstens einen gedachten Bezugsachse.
  • Ein Grundgedanke der Erfidnung besteht darin, einen mit einem im Betrieb von einem zu messenden Medium durchströmten (Durchfluß-)Meßaufnehmer, nämlich einem Meßaufnehmer vom Vibrationstyp, insb. vom Biegeschwingungstyp mit ausschließlich oder zumindest anteilig in einem Biegeschwingungsmode vibrierendem, gebogenem oder geradem Meßrohr, einem magnetisch-induktive Meßaufnehmer, einem Vortex-Durchflußaufnehmer oder einem Ultraschall-Meßaufnehmer mechanisch, insb. starr und/oder dauerhaft, gekoppelten, insb. an eine Meßgerät-Elektronik des (Durchfluß-)Meßaufnehmers zumindest zeitweise Meßwerte sendenden, Neigungssensors zu verwenden, um eine momentanen Inklination des Durchflußmeßaufnehmers, die mit einer Neigung wenigstens einer Trägheitshaupachse des Meßaufnehmers gegenüber wenigstens einer gedachten Bezugsachse korrespondiert, zu erfassen und/oder zu überwachen und somit das Einhalten einer für den Durchflußaufnehemr allfällig vorgegebene Einbaulage zu vereinfachen.
  • Die Erfindung und weitere Vorteile werden nachfolgend anhand von Ausführungsbeispielen näher erläutert, die in den Figuren der Zeichnung dargestellt sind; gleiche Teile sind in den Figuren mit gleichen Bezugszeichen versehen. Falls es der Übersichtlichkeit dienlich ist, wird auf die Angabe bereits vergebener Bezugszeichen in nachfolgenden Figuren verzichtet.
    • 1a, b zeigt in einer ersten und einer zweiten Seitenansicht ein Ausführungsbeispiel eines mittels eines In-Line-Meßgeräts und eines Neigungssensor gebildeten Meßsystems,
    • 2 zeigt perspektivisch in einer Seitenansicht ein Ausführungsbeispiel eines für das in 1a, b gezeigte Meßsystem geeigneten In-Line-Meßgeräts mit einem Meßaufnehmer vom Vibrations-Typ, und.
    • 3 zeigt in einer Seitenansicht ein weiters Ausführungsbeispiel für ein mittels eines In-Line-Meßgeräts und eines Neigungssensor gebildetes Meßsystem.
  • In den 1a, b ist ein Ausführungsbeispiel für ein Meßsystem dargestellt, das dafür geeignet und dafür vorgesehen ist, wenigstens einen physikalischen Parameter, insb. einen Massendurchfluß m und/oder Volumendurchfluß v und/oder eine Strömungsgeschwindigkeit u, eines in einer - hier nicht dargestellten - Rohrleitung strömenden Mediums, beispielsweise einer Flüssigkeit, einem Gas, einem Dampf oder dergleichen, sehr robust zu messen und in wenigstens einen entsprechenden Parmetermeßwert XM abzubilden. Des weiteren kann das Meßsystem auch dafür verwendet werden, einen oder mehrere solcher physikalischen Parameter von einem zumindest zeitweise zwei- oder mehrphasigen Medium zu messen.
  • Das Meßsystem umfaßt dafür wenigstens ein In-Line-Meßgerät 1 für strömende Medien, das mittels eines entsprechenden im Betrieb von zu messendem Medium durchströmten Durchflußaufnehmers DA - im folgenden kurz Meßaufnehmer - sowie einer mit diesem im Betrieb zumindest zeitweise elektrisch gekoppelten Meßgerät-Elektronik E1 gebildet ist. Die Meßgerät-Elektronik E1 kann beispielsweise unmittelbar im Durchflußaufnehmer DA oder auch in einem separaten Elektronik-Gehäuse des In-Line-Meßgeräts bzw. des Meßsystems untergebracht sein, wobei das Elektronik-Gehäuse seinerseits wiederum unmittelbar am Durchflußaufnehmer DA gehaltert sein kann.
  • Der Durchflußaufnehmer DA weist ferner wenigstens ein in den Verlauf der Rohrleitung eingesetztes, zwischen einem Einlaß des Durchflußaufnehmers für einströmendes Medium und einen Auslaß des Durchflußaufnehmers für ausströmendes Medium verlaufendes Meßrohr auf, durch das im Betrieb des Meßsystems zumindest zeitweise das zu messenden Medium hindurch strömen gelassen wird. Das wenigstens eine Meßrohr selbst kann zumindest abschnittsweise im wesentlichen gerade und/oder zumindest abschnittsweise gekrümmt ausgebildet sein. Erfindungsgemäß dienen ein - in 1a, b beispielhaft gezeigter - Coriolis-Massendurchfluß-/ Dichte- und/oder Viskositätsmesser, bei dem der Durchflußaufnehmer DA als Messaufnehmer vom Vibrationstyp ausgebildet ist, oder auch, in der Prozeßautomatisierungstechnik gleichermaßen etablierte In-Line-Meßgeräte zum Ermitteln des physikalischen Parameter, nämlich magnetisch-induktive Durchflußmesser, Vortex-Durchflußmeßgeräte oder auch Ultraschall-Durchflußmeßgeräte als In-Line-Meßgerät.
  • Nach einer Weiterbildung der Erfindung ist im Durchflußaufnehmer ferner ein das wenigstens eine Meßrohr umgebendes und/oder einhüllendes Aufnehmer-Gehäuse vorgesehen. Nach einer weiteren Ausgestaltung der Erfindung ist für den Fall, daß das Meßsystem sowohl ein Elektronik-Gehäuse für die Meßgerät-Elektronik sowie ein Aufnehmer-Gehäuse für den Durchflußaufnehmer bzw. dessen wenigstens eines Meßrohr aufweist, ferner vorgesehen daß das Elektronik-Gehäuse mit dem Aufnehmer-Gehäuse mechanisch, insb. im wesentlichen starr, gekoppelt ist. Zum Haltern des Elektronik-Gehäuses am Aufnehmer-Gehäuse kann dieses beispielsweise einen entsprechenden, insb. halsförmigen, Anschlußstutzen aufweisen.
  • Der Durchflußaufnehmer DA im besonderen dient dazu, zumindest zeitweise wenigstens ein Meßsignal s1 zu erzeugen, das von wenigstens einem physikalischen Parameter, beispielsweise einer Strömungsgeschwindigkeit, einem Massendurchfluß m, einem Volumendurchfluß v, einer Dichte ρ und/oder einer Viskosität η, des im Meßrohr befindlichen Mediums beeinflußt ist und insoweit mit dem Parameter entsprechend, insb. auch quantitativ, korrespondiert. Zum Erzeugen des wenigstens einen Meßsignals dient eine am Meßrohr und/oder in dessen Nähe angeordnete Sensoranordnung des In-Line-Meßgeräts, die zumindest mittelbar auf Änderungen des wenigstens einen physikalischen Parameters des Mediums in einer das wenigstens eine Meßsignal entsprechend beeinflussenden Weise reagiert. Unter Verwendung des wenigstens einen Meßsignals aktualisiert die Meßgerät-Elektronik im Betrieb wiederkehrend den Parametermeßwert.
  • Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist die Messgerät-Elektronik ferner so ausgelegt, daß sie im Betrieb das Meßsystem mit einer diesem übergeordneten Messwertverarbeitungseinheit, beispielsweise einer speicherprogrammierbaren Steuerung (SPS), einem Personalcomputer, einer Workstation oder einem anderen Prozeßrechner, via elektronischem Datenübertragungssystem, beipielsweise einem Feldbussystem, Meß- und/oder andere Betriebsdaten, insb. auch den wenigstens einen Messwert XM, austauschen kann. Für diesen vorgenannten Fall, daß das Meßsystem für eine Ankopplung an ein Feldbus- oder ein anderes Kommunikationssystem vorgesehen ist, weist zumindest die wenigstens eine an das Kommunikationssystem angeschlossene Meßgerät-Elektronik eine entsprechende Kommunikations-Schnittstelle für eine Datenkommunikation auf, z.B. zum Senden der Meßdaten an die bereits erwähnte speicherprogrammierbare Steuerung oder ein übergeordnetes Prozeßleitsystem, auf. Hierfür können beispielsweise in der industriellen Meß- und Automatisierungstechnik entsprechend etablierte Standardschnittstellen zum Einsatz kommen. Darüber hinaus kann auch die externe Energieversorgung an das Feldbussystem angeschlossen sein und das Meßsystem in der vorbeschriebenen Weise direkt via Feldbussystem mit Energie versorgen.
  • Wie bereits angedeutet, kann das In-Line-Meßgerät erfindungsgemäß einen Meßaufnehmer vom Vibrationstyp umfassen, der im Betrieb vom zu messenden Medium durchströmt ist, und der dazu dient, in einem hindurchströmenden Medium solche mechanische Reaktionskräfte, insb. vom Massendurchfluß abhängige Corioliskräfte, von der Mediumsdichte abhängige Trägheitskräfte und/oder von der Mediumsviskosität abhängige Reibungskräfte, zu erzeugen, die meßbar, insb. sensorisch erfaßbar, auf den Meßaufnehmer zurückwirken. Abgeleitet von diesen das Medium beschreibenden Reaktionskräften können so in der dem Fachmann bekannten Weise z.B. der Massendurchfluß, die Dichte und/oder die Viskosität des Mediums gemessen werden.
  • In der 2 ist ein Ausführungsbeispiel einer als Messaufnehmer 10 vom Vibrations-Typ gezeigt dienenden physikalisch-elektrischen Wandleranordnung schematisch dargestellt. Der mechanische Aufbau und die Funktionsweise einer derartigen Wandleranordnung ist dem Fachmann an und für sich bekannt und z.B. auch in der US-B 68 60 158 , der US-A 57 96 011 oder der US-A 53 59 881 detailiert beschrieben. Es sei an dieser Stelle ferner darauf verwiesen, daß zur Realisierung der Erfindung anstelle eines Meßaufnehmers gemäß dem hier gezeigten Ausführungsbeispiel praktisch jeder der dem Fachmann für Coriolis-Massedurchfluß-/ Dichtemeßgeräte bereits bekannten Meßaufnehmer, insb. auch ein solcher vom Biegeschwingungstyp mit ausschließlich oder zumindest anteilig in einem Biegeschwingungsmode vibrierendem, gebogenem oder geradem Meßrohr, verwendet werden kann. Weitere geeignete Ausführungsformen für solche als Meßaufnehmer 10 dienende elektro-mechanische Wandleranordnungen sind z.B. in der US-B 66 91 583 , der US-B 63 08 580 , der US-A 53 01 557 , der US-A 53 57 811 , der US-A 55 57 973 , der US-A 56 02 345 , der US-A 56 48 616 , WO-A 03/095949 oder der WO-A 03/095950 ausführlich und detailliert beschrieben, deren Offenbarung daher als zur Offenbarung dieser Anmeldung zugehörig erachtet wird. Alternativ dazu können erfindungsgemäß auch dem Fachmann bekannte magnetisch-induktive Meßaufnehmer, Vortex-Durchflußaufnehmer oder auch Ultraschall-Meßaufnehmer verwendet werden.
  • Zum Führen des zu messenden Fluids umfaßt Meßaufnehmer ein - hier einziges, abschnittsweise im wesentlichen gerades und abschnittsweise gekrümmtes - Meßrohr 10, das über ein einlaßseitig mündendes Einlaßrohrstück 11 und über ein auslaßseitig mündendes Auslaßrohrstück 12 an die Rohrleitung angeschlossen ist. Einlaß- und Auslaßrohrstück 11, 12 sind, zueinander sowie zu einer gedachten Längsachse A1 des Meßaufnehmers möglichst fluchtend ausgerichtet. Darüberhinaus sind Meßrohr, Einlaß- und Auslaßrohrstück 11, 12 in vorteilhafter Weise einstückig ausgeführt, so daß zu deren Herstellung z.B. ein einziges rohrförmiges Halbzeug dienen kann; falls erforderlich können das Meßrohr 10 sowie das Einlaß- und das Auslaßrohrstück 11, 12 aber auch mittels einzelner, nachträglich zusammengefügter, z.B. zusammengeschweißter, Halbzeuge hergestellt werden. Zur Herstellung des Meßrohrs 10 kann hierbei praktisch jedes der für solche Meßwandler üblichen Materialien, wie z.B. Stahl, Hastelloy, Titan, Zirkonium, Tantal etc., verwendet werden. Es sei an dieser Stelle darauf verwiesen, daß anstelle des im Ausführungsbeispiel gezeigten Messaufnehmers mit einzigen - hier eher U- oder V-förmigen - Meßrohr, der der Realisierung der Erfindung dienenende Meßaufnehmr gleichwohl aus einer Vielzahl von aus dem Stand der Technik bekannten Messaufnehmern vom Vibrationstyp ausgewählt werden kann, bei denen das wenigstens eine Meßrohr zumindest abschnittsweise im wesentlichen gerade und/oder zumindest abschnittsweise gekrümmt ist. Beispielsweise eigenen sich auch Meßaufnehmer vom Vibrationstyp mit zwei parallel vom zu messenden Medium durchflossenen, beispielsweise zueinander im wesentlichen parallel verlaufenden und/oder im wesentlichen baugleichen, geraden oder gebogenen Meßrohren, wie sie beispielsweise auch in der US-A 56 02 345 oder der US-A 57 96 011 beschrieben sind, oder auch solche mit einem einzigen geraden Meßrohr, vgl. hierzu beispielsweise auch die US-B 68 40 109 oder die die US-B 60 06 609 .
  • Für den Fall, daß der Meßaufnehmer lösbar mit der Rohrleitung zu montieren ist, kann dem Einlaßrohrstück 11 und dem Auslaßrohrstück 12 in der üblichen Weise ferner jeweils ein erster bzw. zweiter Flansch 13, 14 angeformt; falls erforderlich können Ein- und Auslaßrohrstück 11, 12 aber auch direkt mit der Rohrleitung, z.B. mittels Schweißen oder Hartlötung, verbunden werden.
  • Ferner ist, wie in den 2 schematisch dargestellt, am ein Ein- und am Auslaßrohrstück 11, 12 fixiertes, das Meßrohr 10 aufnehmendes Wandlergehäuse 100 vorgesehen, das im Vergleich zum Meßrohr eher biege- und torsionssteif ausgebildet ist. Neben dem schwingfähigen Haltern des Meßrohrs dient das Meßaufnehmer-Gehäuse 100 dazu das Meßrohr 10 sowie allfällige weitere Komponenten des Messaufnehmers einzuhausen und diese somit vor schädlichen Umgebungseinflüssen zu schützen und/oder allfällige Schallemissionen des Meßaufnehmers nach außen hin zu dämpfen. Überdies dient das Meßaufnehmer-Gehäuse 100 ferner auch dazu ein die Meßgerät-Elektronik E1 einhausendes Elektronik-Gehäuse 200 entsprechend zu haltern. Hierzu ist das Meßaufnehmer-Gehäuse 100, wie erwähnt, mit einem halsartigen Anschlußstutzen versehen, an dem das Elektronik-Gehäuse 200 entsprechend fixiert ist. Anstelle des hier gezeigten eher kastenförmigen Wandlerghäuses 100 können selbstverständlich auch andere, auf die jeweilige Form des tatsächlich verwendeten Meßrohrs abgestimmte geeignete Gehäuseformen, wie z.B. rohrförmigen, koaxial zum Messrohr verlaufenden Strukturen, verwendete werden.
  • Wie in der 2 dargestellt, umfaßt der Meßaufnehmer des Ausführungsbeispiels weiters einen Gegenschwinger 20 für das Meßrohr 10, der mittels eines einlaßseitgen ersten Kopplers 31 an einem Einlaßende des Meßrohrs 10 und und mittels eines auslaßseitigen, insb. zum Koppler 31 identisch geformten, zweiten Kopplers 32 an einem Auslaßende des Meßrohrs 10 schwingfähig fixiert ist. Als Koppler 31 können hierbei z.B. eine oder, wie auch in der 2 gezeigt, zwei Knotenplatten dienen, die in entsprechender Weise einlaßseitig jeweils an Meßrohr 10 und Gegenschwinger 20 befestigt sind; analog dazu kann auch der Koppler 32 mittels auslaßseitig jeweils an Meßrohr 10 und Gegenschwinger 20 befestigten Knotenplatten realisiert werden. Der hier ebenfalls rohrförmige Gegenschwinger 20 ist vom Meßrohr 10 beabstandet und zu diesem im wesentlichen parallel ausgerichtet im Meßwandler angeordnet. Meßrohr 10 und Gegenschwinger 20 können dabei so ausgeführt sein, daß sie bei einer möglichst identischen äußeren Raumform gleiche oder zumindest einander ähnliche, insb. zueinander proportionale, Massenverteilungen aufweisen. Es kann aber auch von Vorteil sein, den Gegenschwinger 20 nicht-identisch zum Meßrohr 10 zu formen; z.B. kann der Gegenschwinger 20 auch, falls erforderlich, koaxial zum Meßrohr 10 verlaufend im Meßwandler angeordnet sein.
  • Zum Erzeugen oben genannter Reaktionskräfte im Fluid wird das Meßrohr 13 im Betrieb des Meßaufnehmers 10, angetrieben von einer mit dem Meßrohr 10 gekoppelten elektro-mechanischen Erregeranordnung 40, bei einer vorgebbaren Erregerfrequenz fexc, insb. einer natürlichen Resonanzfrequenz, im sogenannten Nutzmode vibrieren gelassen und somit in vorgebbarer Weise elastisch verformt. Im vorliegenden Ausführungsbeispiel wird das Messrohr 10, wie bei derartigen Meßwandlern vom Vibrations-Typ üblich, im Nutzmode zu Auslegerschwingungen so angeregt, daß es sich, um eine mit dem Einlaßrohrstück 11 und dem Auslaßrohrstück 12 im wesentlichen fluchtende gedachte Längsachse A1 des Meßaufnehmers pendelnd, zumindest anteilig auslegerartige Biegeschwingungen um diese gedachte Längsachse A1 ausführt. Gleichzeitig wird auch der Gegenschwinger 20 zu Auslegerschwingungen angeregt, und zwar so, daß er, zumindest bei ruhendem Medium, im wesentlichen gleichförmig, jedoch gegenphasig zum im Nutzmode schwingenden Meßrohr 10 oszilliert. Anders gesagt, Meßrohr 10 und Gegenschwinger 20 bewegen sich dann nach der Art von gegeneinander schwingenden Stimmgabelzinken.
  • Für den Fall, daß dabei Medium strömt und somit der Massendurchfluß m von Null verschieden ist, werden mittels des im Nutzmode schwingenden Meßrohrs 10 im hindurchströmenden Medium Corioliskräfte induziert. Diese wiederum wirken auf das Meßrohr 10 zurück und bewirken so in der dem Fachmann bekannten Weise eine zusätzliche, sensorisch erfaßbare Verformung des Meßrohrs 10, die den Biegeschwingungen des Nutzmodes inform eines sogenannten Coriolis-Modes überlagert sind. Die momentane Ausprägung der Verformungen des Meßrohrs 10 ist dabei, insb. hinsichtlich ihrer Amplituden, auch vom momentanen Massendurchfluß m abhängig und wird mittels einer entsprechenden am Meßrohr angeordneten Sensoranordnung erfaßt. Im vorliegenden Ausführungsbeispiel ist der Coriolis-Mode, wie bei deratigen Meßwandlern üblich, als ein anti-symmetrischer Twistmode ausgebildet, in dem das Meßrohr 10 auch Drehschwingungen um eine senkrecht zur Längsachse A1 ausgerichteten, gedachten Hochachse A2 des Meßaufnehmers ausführt. Nach einer Ausgestaltung der Erfindung, ist die Erreger- oder auch Nutzmodefrequenz fexc dabei so eingestellt, daß sie möglichst genau einer, insb. niedrigsten, natürlichen Eigenfrequenz des Meßrohrs 10 entspricht, so daß sich das Meßrohr im wesentlichen gemäß einer natürlichen Eigenschwingungsform ausbiegt. Da natürliche Eigenfrequenzen solcher Biegeschwingungsmoden von Meßrohren bekanntlich in besonderem Maße auch von der Dichte ρ des Mediums abhängig sind, kann mittels des In-Line-Meßgerät ohne weiteres zusätzlich zum Massedurchfluß m auch die Dichte ρ gemessen werden.
  • Zum Erzeugen von Vibrationen des Meßrohrs 10 umfaßt der Meßaufnehmer, wie bereits erwähnt, ferner eine am wenigstens einen Meßrohr angeordnete und zumindest mittelbar auf das darin geführte Medium einwirkende elektro-physikalischen -hier elektrodynamische - Erregeranordnung 40. Diese dient dazu, eine von einer Meß- und Betriebsschaltung 50 der Meßgerät-Elektronik E1 eingespeiste elektrische Erregerenergie Eexc, z.B. mit einem geregelten Strom und/oder einer geregelten Spannung, in eine auf das Meßrohr 10, z.B. pulsförmig oder harmonisch, einwirkende und dieses in der vorbeschriebenen Weise auslenkende Erregerkraft Fexc umzuwandeln. Von der erwähnten Meß- und Betriebselektronik 50 ist in 7 ein entsprechendes Ausführunsgbeispiel gezeigt. Für das Einstellen der Erregerenergie Eexc geeignete Treiberschaltungen sind z.B. in der US-A 47 77 833 , der US-A 48 01 897 , der 48 79 911 oder der US-A 50 09 109 gezeigt. Die Erregerkraft Fexc kann, wie bei derartigen Meßwandlern üblich, bidirektional oder unidirektional ausgebildet sein und in der dem Fachmann bekannten Weise z.B. mittels einer Strom-und/oder Spannungs-Regelschaltung, hinsichtlich ihrer Amplitude und, z.B. mittels einer Phasen-Regelschleife, hinsichtlich ihrer Frequenz eingestellt werden. Als Erregeranordnung 40 kann z.B. eine einfache Tauchspulenanordnung mit einer am Gegenschwinger 20 befestigten zylindrischen Erregerspule, die im Betrieb von einem entsprechenden Erregerstrom durchflossen ist, und einem in die Erregerspule zumindest teilweise eintauchenden dauermagnetischen Anker dienen, der von außen, insb. mittig, am Meßrohr 10 fixiert ist. Ferner kann als Erregeranordnung 40 z.B. auch ein Elektromagnet dienen.
  • Zum Detektieren und Erfassen von Vibrationen, insb. Biegeschwingungen, des Meßrohrs 10 umfaßt der Meßaufnehmer außerdem eine Sensoranordnung 50. Als Sensoranordnung 50 kann praktisch jede der für derartige Meßwandler üblichen Sensoranordnungen verwendet werden, die Bewegungen des Meßrohrs 10, insb. einlaßseitig und auslaßseitig, erfaßt und in entsprechende als von der Sensoranordnung gelieferte Meßsignale dienende Schwingungssignale umwandelt. So kann die Sensoranordnung 50 z.B. in der dem Fachmann bekannten Weise, mittels eines einlaßßseitig am Meßrohr 10 angeordneten ersten Sensors und mittels eines auslaßseitigen am Meßrohr 10 angeordneten zweiten Sensors gebildet sein. Als Sensoren können dabei z.B. Schwingungen relativ messende, elektrodynamische Geschwindigkeitssensoren oder aber auch elektrodynamische Wegsensoren oder Beschleunigungssensoren verwendet werden. Anstelle elektrodynamischer Sensoranordnungen können ferner auch mittels resistiver oder piezo-elektrischer Dehnungsmeßstreifen messende oder opto-elektronische Sensoranordnungen zum Detektieren der Schwingungen des Meßrohrs 10 dienen. Falls erforderlich, können darüber hinaus in der dem Fachmann bekannten Weise noch weitere für die Messung und/oder den Betrieb des Meßwandlers benötigte Sensoren, wie z.B. am Gegenschwinger 20 und/oder am Wandlergehäuse 100 angeordnete zusätzliche Schwingungssensoren, vgl. hierzu auch die US-A 57 36 653 , oder z.B. auch am Meßrohr 10, am Gegenschwinger 20 und/oder am Wandlergehäuse 100 angeordente Temperatursensoren vorgesehen sein, vgl. hierzu auch die US-A 47 68 384 oder die WO-A 00/102816 .
  • Da es sich bei dem hier gezeigten Durchflußmeßaufnehmer 10 praktisch um einen Mehrgrößen-Meßaufnehmer handelt, mit dem alternierend oder auch simultan z.B. der Massedurchfluß, m, anhand der beiden Sensorsinale s1, s2 und/oder die Dichte, ρ, anhand der Schwingungsfrequenz fexc und/oder die Viskosität, η, des Fluids anhand des Erregerstroms iexc detektiert werden können im Rahmen der vorliegenden Erfindung die von der Sensoranordnung gelieferten Schwingungsmeßsignale s1, s2, der Erregerstrom iexc einzeln oder auch in Kombination als „Meßsignal“ verstanden werden. Gleichermaßen können entsprechende Meßspannungen des ggf. anstelle des Coriolis-Massedurchflußmesser verwendeten magnetisch-induktiven Durchflußmesser, Vortex-Durchflußmeßgerät oder auch Ultraschall-Durchflußmeßgerät Meßsignal im vorgenannten Sinne sein. Es sei ferner noch erwähnt, daß für den Fall, daß als Meßaufnehmer ein magnetisch-induktiver Durchflußaufnehmer dient, anstelle der oben gezeigten Erregeranordnung in der dem Fachmann bekannten Weise eine Spulenanordnung als Erregeranordnung verwendet wird, die, von einem Erregerstrom durchflossen, ein Magnetfeld in das Fluid im Meßrohr einkoppelt. In entsprechender Weise dient dann als Sensoranordnung eine spannungsabgreifende Elektrodenanordnung, die eine im Fluid mittels des oben erwähnten Magnetfelds induzierte Meßspannung auskoppelt. Für den Fall, daß als Meßaufnehmer ein Ultraschall-Durchflußaufnehmer dient, wird in der dem Fachmann bekannten Weise ein Ultraschallwandler als Erregeranordnung verwendet, die, von einem entsprechenden Erregersignal angesteuert ist, Ultraschallwellen in das Fluid im Meßrohr einkoppelt. Ebenso dient dann auch üblicherweise ein Ultraschallwandler als Sensoranordnung, der Ultraschallwellen aus dem Fluid auskoppelt und in eine entsprechende Meßspannung umwandelt.
  • Wie bereits erwähnt, kann für den Betrieb von In-Line-Meßgeräten der vorgenannten Art gegebenenfalls die Einbaulage des Durchflußaufnehmers DA, insb. dessen Ausrichtung bezüglich einer gedachten vorgegebenen Bezugsachse G, von erheblichem Interesse sein. Dies beispielsweise dann, wenn eine Abhängigkeit der Empfindlichkeit des Durchflußaufnehmers und insoweit der Meßgenauigkeit des In-Line-Meßgerät von einer momentanen Inklination I des Meßaufnehmers gegeben ist, die mit einer Neigung oder auch einem Neigungswinkel wenigstens einer, beispielsweise quer zu einer Strömungsrichtung des im wenigstens einen Meßrohr strömenden Mediums ausgerichtete, Trägheitshauptachse des Meßaufnehmers gegenüber wenigstens einer gedachten Bezugsachse, beispielsweise der lokal in Richtung der Erbeschleunigung weisenden gedachten Fallline, korrespondiert. Solche Abhängigkeiten der Meßgenauigkeit können z.B. bei Anwendungen mit zwei- oder mehrphasigen Medien, bei betriebsbedingt bewegten Durchflußaufnehmern in rotierenden Abfüllanlagen oder auch im Bereich von Strömungsprofil verzerrenden Störern gegeben sein. Desweiteren kann die Einbaulage beispielsweise dann von Belang sein, wenn eine Selbstentleerbarkeit des Durchflußaufnehmers bzw. des darin vorgesehenen wenigstens einen Meßrohrs zu gewährleisten und insoweit eine vorgegebene Neigung einer gedachten, den Einlaß und Auslaß imaginär verbindenden Strömungsachse des Durchflußaufnehmers einzuhalten ist. Im hier gezeigten Ausführungsbeispiel verläuft die Strömungsachse, wie bei derartigen Meßaufnehmern üblich, im wesentlichen parallel zur erwähnten Längsachse A1 des Durchflußaufnehmers. Beim hier gezeigten Durchflußaufnehmer ist die erwähnte Strömungsachse - wie bei Durchflußaufnehmern der in Rede stehenden Art durchaus üblich - zudem zumindest anteilig im wesentlichen parallel zu einer von dessen Trägheitshaupachsen. Für den oben beschriebenen Fall, daß der Durchflußaufnehmer ein einziges im wesentlichen gerades Meßrohr auf weist, ist diese Trägheitshaupachse des Meßaufnehmers darüber hinaus zumeist auch durchgehend koinzident mit der Strömungsachse.
  • Dem Erfordernis nach einer definierten Einbaulage einerseits und dem Wunsch nach einer unmittelbaren Detektion derselben anderseits Rechnung tragend ist beim erfindunggemäßen Meßsystem ferner vorgesehen, zumindest zeitweise - gegebenenfalls auch wiederkeherend - die momenetane Inklination des Durchflußaufnehmers zu ermitteln und, falls erforderlich, geeignet zu signalsieren. Das Ermitteln der Inklination kann jeweils beispielsweise während des Inbetriebnehmens des In-Line-Meßgeräts erfolgen, also während dessen Einbau in die Rohrleitung und/oder unmittelbar danach in einer Initialisierungsphase. Alternativ oder in Ergänzung dazu kann die momentanen Inklination auch während des Betriebes des In-Line-Meßgeräts wiederkehrend ermittelt werden, beispielsweise zum Zwecke der Überwachung des In-Line-Meßgeräts und/oder der Anlage selbst in entsprechend gefährdeten und/oder betriebsgemäß bewegten Anwendungen.
  • Zum Ermitteln der Inklination umfaßt das erfindungsgemäße Meßsystem neben dem - hier beispielhaft als Meßaufnehmer vom Vibrationstyp ausgebildeten - Durchflußaufnehmer weiters wenigstens einen, insb. im wesentlichen starr an den Meßaufnehmer gekoppelten, auf eine Änderung der Inklination des Meßaufnehmers reagierenden Neigungssensor 60 zum sensorischen Erfassen und/oder Überwachen einer momentanen Inklination des Durchflußaufnehmers. Der Neigungssensor 60 ist im besonderen dafür vorgesehen, im Betrieb zumindest zeitweise ein, insb. binäres, Schaltsignal, das eine unzulässig hohe Abweichung der momentanen Inklination von einem dafür vorgegebenen Referenzwert signalisiert, und/oder zumindest zeitweise ein die momentane Inklination des Meßaufnehmers zumindest anteilig, insb. mehrwertig, repräsentierendes Inklinationsmeßsignal zu liefern. Als Neigungssensor können herkömmliche, in industriellen Anwendungen, beispielsweise auch in der Automobilindustrie, bewährte und dem Fachmann an und für sich bekannte Neigungssensoren verwendet werden. Beispiele für solche Neigungssensoren sind u.a. der DE-A 195 12 374 , DE-A 197 52 439 , DE-A 100 07 246 , DE-A 10 2004 048 747, DE-A 44 35 521 , DE-A 42 38 930 , DE-A 42 19 823 , EP-A 537 812 , EP-A 359 090 , US-B 63 11 406 , US-A 46 68 846 , oder US-A 35 99 745 entnehmbar. Dabei kann es durchaus von Vorteil sein, wenn der Neigungssensor eher robust ausgebildet und kompakt gehalten ist und einen möglichst geringen Platzbedarf aufweist.
  • Gemäß einer Ausgestaltung der Erfindung ist der wenigstens eine Neigungssensor mit dem Durchflußaufnehmer selbst mechanisch, insb. im wesentlichen starr und/oder dauerhaft, verbunden. In vorteilhafter Weise ist der Neigungssensor dabei in das In-Line-Meßgerät integriert und insoweit als eine Komponenete desselben ausgebildet. Für den oben beschriebenen Fall, daß der Durchflußaufnehmer ein Aufnehmer-Gehäuse aufweist, kann der Neigungssensor mit diesem entsprechend verbunden sein. Ferner ist nach einer weiteren Ausgestaltung der Erfindung vorgesehen, daß der wenigstens eine Neigungssensor innerhalb des Aufnehmer-Gehäuses, beispielsweise im Anschlußstutzen, plaziert ist; falls erforderlich, kann er aber auch an einer anderen geeigneten Stelle im In-Line-Meßgerät plaziert sein, beispielsweise an einer Seitenwand des Aufnehmer-Gehäuses oder auch innerhalb des Elektronik-Gehäuses. Falls erforderlich, kann der Neigungssensor aber auch extern des In-Line-Meßgeräts, beispielsweise - wie auch in 3 exemplarisch dargestellt - in dessen unmittelbarer Nähe und/oder auf der angeschlossenen Rohrleitung unmittelbar vor oder nach den oben erwähnten Anschlußflanschen, plaziert sein und über eine externe Datenverbindung, beispielsweise eine Signalleitung, mit diesem entsprechend kommunizieren, insb. Inklinationsmeßsignale oder entsprechende Inklinationsmeßwerte senden. Gegebenenfalls kann der Neigungssensor dabei auch nur temporär mit dem In-Line-Meßgerät mechanisch und/oder elektrisch gekoppelt sein.
  • Der wenigstens eine Neigungssensor kann ferner so angeordnet und zum Durchflußaufnehmer ausgerichtet sein, daß er ausschließlich oder zumindest überwiegend die Neigung genau einer Trägheitshauptachse erfaßt bzw. auf eine entsprechende Änderung dieser Neigung reagiert. Darüberhinaus ist der wenigstens eine Neigungssensor gemäß einer Weiterbildung der Erfindung so ausgebildet und so im In-Line-Meßgerät, insb. im Durchflußaufnehmer selbst, angeordnet, daß er eine Neigung einer gedachten Bezugsebene des Meßaufnehmers gegenüber der wenigstens einen gedachten Bezugsachse erfassen kann. Bezugsebene kann beispielsweise jene gedachte Schnittebene sein, die zwischen einer ersten Trägheitshauptachse des Meßaufnehmers und einer zweiten Trägheitshauptachse des Meßaufnehmers imaginär aufgespannt ist. Dementsprechend ist nach einer weiteren Ausgestaltung der Erfindung der Neigungssensor so ausgebildet, daß er zumindest zeitweise ein erstes Inklinationsmeßsignal liefert, das eine Neigung der ersten Trägheitshauptachse gegenüber der wenigstens einen gedachten Bezugsachse repräsentiert, und daß er zeitweise ein zweites Inklinationsmeßsignal liefert, das eine Neigung der zweiten Trägheitshauptachse gegenüber der wenigstens einen gedachten Bezugsachse repräsentiert. Insbesondere für den vorbeschriebenen Fall, daß die Neigungen zweier Trägheitshauptachsen des Durchflußaufnehmers kontrolliert werden sollen, ist nach einer Weiterbildung der Erfindung vorgesehen, daß das Meßsystem wenigstens zwei Neigungssensoren zum Erfassen jeweils der Neigung einer der beiden Trägheitshaupachsen gegenüber jeweils der wenigstens einen gedachten Bezugsachse aufweist.
  • Gemäß einer Ausgestaltung der Erfindung ist die zu ermittelnden Inklination des Durchflußaufnehmers durch die Neigung der zur Strömungsachse im wesentlichen parallelen Trägheitshauptachse des Durchflußaufnehmers zur Bezugsachse, beispielsweise die lokal in Richtung der Erbeschleunigung weisende gedachte Fallline, definiert. Dementsprechend ist der Neigungssensor so ausgebildet und im Meßsystem angeodnet, daß das Inklinationsmeßsignal mit dieser definierten Neigung entsprechend korrespondiert. Alternativ oder in Ergänzung dazu ist die zu ermittelnden Inklination des Durchflußaufnehmers gemäß einer andern Ausgestaltung der Erfindung durch die Neigung einer zur Strömungsachse im wesentlichen senkrechten Trägheitshauptachse des Durchflußaufnehmers relativ zur vorgenannten Bezugsachse definiert und liefert der Neigungssensor ein dementsprechendes Inklinationsmeßsignal.
  • Zur Verarbeitung des vom Neigungssensor gelieferten Meß- und/oder Schaltsignals ist dieser gemäß einer Ausgestaltung der Erfindung mit der Meßgerät-Elektronik gekoppelt. Die die Meßgerät-Elektronik kann mittels des vom Neigungssensor gelieferten Meß- und/oder Schaltsignals zumindest zeitweise eine Meldung generieren, die eine Abweichung der momentanen Inklination des Durchflußaufnehmers von einem dafür vorgegebenen Referenzwert zumindest qualitativ signalisiert. Die Abweichung kann beispielsweise vorübergend, z.B. während einer Einricht- und Justagephase beim Einbau des Durchflußaufnehmers in die Rohrleitung oder im Betrieb infolge einer temporären Lageänderung des Durchflußaufnehmers, oder auch dauerhaft sein, z.B. infolge einer Zerstörung der Rohrleitung. Zum visuellen Signalisieren der momentanen Inklination des Meßaufnehmers und/oder der mit der momentanen Inklination des Meßaufnehmers korrespondierenden Einbaulage des Durchflußaufnehmers ist gemäß einer Weiterbildung der Erfindung im Meßsystem ferner ein mit dem Neigungssensor gekoppeltes, insb. an die Meßgerät-Elektronik angeschlossenes, Anzeigeelement 70 vorgesehen. Das Signalisieren kann beispielsweise dadurch erfolgen, daß symbolhaft mittels Richtungspfeilen und/oder Farbgebung Ausmaß und/oder Richtung der Abweichung angezeigt werden und somit dem Anwender bereits vor Ort eine Information darüber vermittelt wird, wie der Einbaufehler zu korrigieren ist. Alternativ oder in Ergänzung dazu kann das Signalisieren der Abweichung vor Ort auch in einer akustisch und/oder haptisch wahrnehmbaren Weise erfolgen, beispielsweise inform einer einfachen Tonfolge mit einer vom Ausmaß der Inklination abhängigen Ton- und/oder Taktfrequenz und/oder mittels eines Vibrationsalarms. Für den oben erwähnten Fall, daß im Durchflußaufnehmer eine elektro-mechanische Errgeranordnung vorgesehen ist, kann diese beispielsweise für Alarmgenerierung mit verwendet werden, indem diese beispielsweise mit außerhalb des üblichen Nutzmode-Frequenzbereichs liegenden Signalen so angesteuert wird, daß ein außerhalb des Nutzmodebereichs liegender, für die Signalsierung entsprechend geeigneter Schwingungsmode des Durchflußaufnehmers, insb. dessen Aufnehmer-Gehäuse, angeregt ist.
  • Die Meßgerät-Elektronik kann zudem beispielsweise derart ausgebildet sein, daß unter Berücksichtigung der momentan gemessenen Inklination des Meßaufnehmers dann eine entsprechende Meldung ausgegeben wird, wenn eine zulässige Abweichung der momentanen Inklination vom dafür jeweils vorgegebenen Referenzwert ermittelt worden ist. Demgemäß signalisisert die von der Meßgerät-Elektronik generierte Meldung nach einer weiteren Ausgestaltung der Erfindung zumindest zeitweise eine zulässige Abweichung der momentanen Inklination vom dafür vorgegebenen Referenzwert, z.B. ingestalt eines grünen Signallichts und/oder einer Klartextmeldung. Alternativ oder in Ergänzung dazu kann die Meßgerät-Elektronik auch derart ausgebildet sein, daß unter Berücksichtigung der momentan gemessenen Inklination des Meßaufnehmers dann eine entsprechende Meldung ausgegeben wird, wenn eine unzulässige Abweichung der momentanen Inklination vom dafür jeweils vorgegebenen Referenzwert ermittelt worden ist. Demgemäß signalisisert die von der Meßgerät-Elektronik unter Berücksichtigung der momentanen Inklination des Meßaufnehmers generierte Meldung nach einer anderen Ausgestaltung der Erfindung zumindest zeitweise eine unzulässig hohe Abweichung der momentanen Inklination vom dafür vorgegebenen Referenzwert oder zumindest das die momentane Einbaulage des Meßaufnehmers als für den Betrieb des In-Line-Meßgeräts ungeeignet anzusehen ist, z.B. ingestalt eines roten Signallichts und/oder einer Klartextmeldung.
  • Nach einer weitern Ausgestaltung der Erfindung ist vorgesehen, daß von der Meßgerät-Elektronik zumindest intern wiederkehrend ein Inklinationsmeßwert generiert wird, der die Abweichung der momentanen Inklination vom dafür vorgegebenen Referenzwert zumindest zweiwertig, insb. mehrwertig, repräsentiert. Der Inklinationsmeßwert kann die Abweichung beispielsweise quantitativ in Winkelgraden oder auch qualitativ in Eignungsgraden ermittelt und gegebenenfalls als entsprechende Meldung ausgegeben werden.
  • Gemäß der Erfindung ist vorgesehen, daß die Meßgerät-Elektronik den wenigstens einen Parametermeßwert unter Verwendung auch des momentanen Inklinationsmeßwerts generiert. Dies kann beispielsweise in der Weise erfolgen, daß das Erzeugen des wenigstens einen die Meßgröße quantitativ repräsentierenden Meßwerts dann erfolgt, wenn der Inklinationsmeßwert mit einer zulässigen Abweichung der momentanen Inklination vom dafür vorgegebenen Referenzwert korrespondiert. In Ergänzung dazu kann die Meßgerät-Elektronik ferner so ausgebildet sein, daß Meßwert dann nicht generiert oder zumindest nicht ausgegeben werden, wenn der momentane Inklinationsmeßwert mit einer unzulässig hohen Abweichung der momentanen Inklination vom dafür vorgegebenen Referenzwert korrespondiert. Nach einer anderen Weiterbildung der Erfindung ist ferner vorgesehen, daß die Meßgerät-Elektronik den Inklinationsmeßwert zur Kompensation von mit der momentanen Inklination einhergehenden Meßfehlern und/oder zur Validierung des aktuellen Parametermeßwerts verwendet. Nach einer weiteren Ausgestaltung der Erfindung vorgesehen, die von dem In-Line-Meßgerät gelieferten Meßwerte allenfalls dann zu generieren oder zumindest nur dann als gültigen Meßwert auszugeben, wenn das wenigstens eine Inklinationsmeßsignal keine unzulässige Einbaulage signalisiert.

Claims (34)

  1. Verfahren zum Inbetriebnehmen und/oder Überwachen eines In-Line-Meßgeräts (1), nämlich eines Coriolis-Massendurchfluß-/Dichte- und/oder Viskositätsmessers, eines magnetisch-induktiven Durchflußmessers, eines Vortex-Durchflußmeßgeräts oder eines Ultraschall-Durchflußmeßgeräts mit einem im Betrieb von einem zu messenden Medium durchströmten Meßaufnehmer (DA), welches Verfahren folgende Schritte umfaßt: - Ermitteln einer momentanen Inklination des Meßaufnehmers (DA), die mit einer Neigung wenigstens einer Trägheitshauptachse des Meßaufnehmers (DA) gegenüber wenigstens einer gedachten Bezugsachse (G) korrespondiert; - Erzeugen eines Inklinationsmeßwerts, der die Abweichung der momentanen Inklination von einem dafür vorgegebenen Referenzwert zumindest zweiwertig, insb. mehrwertig, repräsentiert; - Strömenlassen von zu messendem Medium durch den Meßaufnehmer (DA); - Erfassen wenigstens eines Parameters von im Meßaufnehmer (DA) befindlichem Medium; - sowie Erzeugen wenigstens eines den Parameter quantitativ repräsentierenden Parametermeßwerts (XM); - wobei der Schritt des Erfassens des wenigstens einen Parameters weiters einen Schritt des Erzeugens wenigstens eines mit dem Parameter korrespondierenden Meßsignals umfaßt; - wobei der Schritt des Erzeugens des wenigstens einen Parametermeßwerts (XM) weiters einen Schritt des Verwendens des mit dem Parameter korrespondierenden Meßsignals, sowie einen Schritt des Verwendens auch des momentanen Inklinationsmeßwerts, insb. zur Kompensation von mit der momentanen Inklination einhergehenden Meßfehlern und/oder zur Validierung des Parametermeßwerts (XM), umfaßt.
  2. Verfahren nach dem vorherigen Anspruch, weiters umfassend einen Schritt des Erzeugens einer, insb. visuell und/oder akustisch und/oder haptisch wahrnehmbaren, Meldung, die die Abweichung der momentanen Inklination von dem dafür vorgegebenen Referenzwert zumindest qualitativ signalisiert.
  3. Verfahren nach dem vorherigen Anspruch, wobei die Meldung zumindest zeitweise eine zulässige Abweichung der momentanen Inklination vom dafür vorgegebenen Referenzwert signalisiert und/oder wobei die Meldung zeitweise eine unzulässig hohe Abweichung der momentanen Inklination vom dafür vorgegebenen Referenzwert signalisiert.
  4. Verfahren nach einem der vorherigen Ansprüche, wobei der Schritt des Ermittelns einer momentanen Inklination des Meßaufnehmers (DA) weiters einen Schritt des Messens der momentanen Inklination umfaßt.
  5. Verfahren nach einem der vorherigen Ansprüche, weiters umfassend einen Schritt des Erzeugens einer, insb. vor Ort visuell und/oder akustisch und/oder haptisch wahrnehmbaren, Meldung, die eine momentane Einbaulage des Meßaufnehmers (DA) als für den Betrieb des In-Line-Meßgeräts (1) ungeeignet signalisiert, unter Berücksichtigung der momentanen Inklination des Meßaufnehmers (DA).
  6. Verfahren nach einem der vorherigen Ansprüche, weiters umfassend Schritte des sensorischen Erfassens der momentanen Inklination mittels eines auf eine Änderung der Inklination des Meßaufnehmers (DA) reagierenden, insb. im wesentlichen starr an den Meßaufnehmer (DA) gekoppelten, Neigungssensors (60) und des Erzeugens eines die momentane Inklination des Meßaufnehmers (DA) repräsentierenden Meßsignals.
  7. Verfahren nach einem der vorherigen Ansprüche, wobei die Inklination des Meßaufnehmers (DA) mit einer Neigung einer gedachten, zwischen einer ersten Trägheitshauptachse des Meßaufnehmers (DA) und einer zweiten Trägheitshauptachse des Meßaufnehmers (DA) imaginär aufgespannten Bezugsebene des Meßaufnehmers (DA) gegenüber der wenigstens einen gedachten Bezugsachse (G) korrespondiert.
  8. Verfahren nach einem der vorherigen Ansprüche, wobei der Schritt des Erzeugens des wenigstens einen den Parameter quantitativ repräsentierenden Parametermesswerts (XM) dann erfolgt, wenn der Inklinationsmeßwert mit einer zulässigen Abweichung der momentanen Inklination vom dafür vorgegebenen Referenzwert korrespondiert.
  9. Verfahren nach dem vorherigen Anspruch, wobei der Schritt des Erzeugens des wenigstens einen den Parameter quantitativ repräsentierenden Parametermesswerts (XM) dann nicht erfolgt, wenn der Inklinationsmeßwert mit einer unzulässig hohen Abweichung der momentanen Inklination vom dafür vorgegebenen Referenzwert korrespondiert.
  10. Verfahren nach einem der vorherigen Ansprüche, wobei der Meßaufnehmer (DA) einen Einlaß für einströmendes Medium und einen Auslaß für ausströmendes Medium aufweist.
  11. Verfahren nach dem vorherigen Anspruch, wobei der Meßaufnehmer (DA) eine gedachte, Einlaß und Auslaß imaginär verbindende Strömungsachse aufweist.
  12. Verfahren nach dem vorherigen Anspruch, wobei die die Inklination des Meßaufnehmers (DA) zumindest anteilig definierende Trägheitshauptachse des Meßaufnehmers (DA) im wesentlichen parallel zur Strömungsachse verläuft.
  13. Verfahren nach dem vorherigen Anspruch, wobei die die Inklination des Meßaufnehmers (DA) zumindest anteilig definierende Trägheitshauptachse des Meßaufnehmers (DA) koinzident mit der Strömungsachse ist.
  14. Verfahren nach Anspruch 11, wobei die die Inklination des Meßaufnehmers (DA) zumindest anteilig definierende Trägheitshauptachse des Meßaufnehmers (DA) im wesentlichen senkrecht zur Strömungsachse verläuft.
  15. Verfahren nach einem der vorherigen Ansprüche, wobei als Bezugsachse (G) eine in Richtung der Erbeschleunigung weisende gedachte Fallline gewählt ist.
  16. Verfahren nach einem der vorherigen Ansprüche, wobei der Meßaufnehmer (DA) wenigstens ein Meßrohr (10) zum Führen von zu messendem Medium umfaßt.
  17. Verfahren nach dem vorherigen Anspruch, wobei das wenigstens eine Meßrohr (10) zumindest abschnittsweise im wesentlichen gerade ist und/oder wobei das wenigstens eine Meßrohr (10) zumindest abschnittsweise gekrümmt ist.
  18. Verfahren nach dem vorherigen Anspruch, wobei das wenigstens eine Meßrohr (10) zumindest abschnittsweise im wesentlichen U- oder V-förmig ausgebildet ist.
  19. Meßsystem, umfassend: - einen im Betrieb von einem zu messenden Medium durchströmten Durchflußmeßaufnehmer (DA), nämlich einen Meßaufnehmer (DA) vom Vibrationstyp, insb. vom Biegeschwingungstyp mit ausschließlich oder zumindest anteilig in einem Biegeschwingungsmode vibrierendem, gebogenem oder geradem Meßrohr, einen magnetisch-induktiven Meßaufnehmer, einen Vortex-Durchflußaufnehmer oder einen Ultraschall-Meßaufnehmer, - wenigstens einen Neigungssensor (60) zum Erfassen und/oder Überwachen einer momentanen Inklination des Meßaufnehmers (DA), die mit einer Neigung wenigstens einer Trägheitshauptachse des Meßaufnehmers (DA), gegenüber wenigstens einer gedachten Bezugsachse (G) korrespondiert - sowie eine elektrisch mit dem Messaufnehmer (DA) und mit dem wenigstens einen Neigungssensor (60) gekoppelte Meßgerät-Elektronik (E1) ; - wobei der Meßaufnehmer (DA) im Betrieb wenigstens einen Parameter des Mediums erfaßt und wenigstens ein mit dem Parameter korrespondierendes Meßsignal liefert, - wobei die Meßgerät-Elektronik (E1) im Betrieb mittels des wenigstens einen Meßsignals wenigstens einen den Parameter quantitativ repräsentierenden Parametermeßwert (XM) generiert - und wobei die Meßgerät-Elektronik den wenigstens einen Parametermeßwert (XM) unter Verwendung auch des momentanen Inklinationsmeßwerts generiert.
  20. Meßsystem nach dem vorherigen Anspruch, wobei der Neigungssensor (60) zumindest zeitweise ein die momentane Inklination des Meßaufnehmers (DA) zumindest anteilig repräsentierendes Meßsignal liefert und/oder wobei der Neigungssensor (60) zumindest zeitweise ein Schaltsignal liefert, das eine unzulässig hohe Abweichung der momentanen Inklination von einem dafür vorgegebenen Referenzwert signalisiert.
  21. Meßsystem nach Anspruch 20, wobei die Meßgerät-Elektronik (E1) mittels des vom Neigungssensor (60) gelieferten Meßsignals und/oder mittels des vom Neigungssensor (60) gelieferten Schaltsignals zeitweise eine Meldung generiert, die eine Abweichung der momentanen Inklination von einem dafür vorgegebenen Referenzwert zumindest qualitativ signalisiert.
  22. Meßsystem nach einem der Ansprüche 19 bis 21, weiters umfassend ein mit dem Neigungssensor (60) gekoppeltes, insb. an die Meßgerät-Elektronik (E1) angeschlossenes, Anzeigeelement (70) zum Signalisieren einer mit der momentanen Inklination des Meßaufnehmers (DA) korrespondierenden Einbaulage des Meßaufnehmers (DA).
  23. Meßsystem nach einem der Ansprüche 19 bis 22, weiters umfassend: ein Elektronik-Gehäuse (200) für die Meßgerät-Elektronik (E1).
  24. Meßsystem nach dem vorherigen Anspruch, wobei der Meßaufnehmer (DA) wenigstens ein Meßrohr (10) zum Führen des zu messenden Mediums umfaßt.
  25. Meßsystem nach dem vorherigen Anspruch, wobei das wenigstens eine Meßrohr (10) zumindest abschnittsweise im wesentlichen gerade ist und/oder wobei das wenigstens eine Meßrohr (10) zumindest abschnittsweise gekrümmt ist.
  26. Meßsystem nach dem vorherigen Anspruch, wobei das wenigstens eine Meßrohr (10) zumindest abschnittsweise im wesentlichen U- oder V-förmig ausgebildet ist.
  27. Meßsystem nach einem der Ansprüche 24 bis 26, weiters umfassend: ein das wenigstens eine Meßrohr (10) umgebendes und/oder einhüllendes Aufnehmer-Gehäuse (100).
  28. Meßsystem nach Anspruch 27 in Verbindung mit einem der Ansprüche 23 bis 26, wobei das Elektronik-Gehäuse (200) mit dem Aufnehmer-Gehäuse (100) mechanisch, insb. im wesentlichen starr, gekoppelt ist.
  29. Meßsystem nach dem vorherigen Anspruch, wobei das Aufnehmer-Gehäuse (100) einen, insb. halsförmigen, Anschlußstutzen (101) zum Haltern des Elektronik-Gehäuses (200) aufweist.
  30. Meßsystem nach Anspruch 27 bis 29, wobei der wenigstens eine Neigungssensor (60) mit dem Aufnehmer-Gehäuse (100) mechanisch, insb. im wesentlichen starr und/oder dauerhaft, verbunden ist.
  31. Meßsystem nach einem der Ansprüche 27 bis 30, wobei der wenigstens eine Neigungssensor (60) innerhalb des Aufnehmer-Gehäuses (100) plaziert ist.
  32. Meßsystem nach einem der Ansprüche 19 bis 31, wobei der Neigungssensor (60) geeignet ist, eine Neigung einer gedachten Bezugsebene des Meßaufnehmers (DA) gegenüber der wenigstens einen gedachten Bezugsachse (G) zu erfassen.
  33. Meßsystem nach dem vorherigen Anspruch, wobei die Bezugsebene zwischen einer ersten Trägheitshauptachse des Meßaufnehmers (DA) und einer zweiten Trägheitshauptachse des Meßaufnehmers (DA) imaginär aufgespannt ist.
  34. Meßsystem nach dem vorherigen Anspruch, wobei der Neigungssensor (60) zumindest zeitweise ein erstes Meßsignal liefert, das eine Neigung der ersten Trägheitshauptachse gegenüber der wenigstens einen gedachten Bezugsachse (G) repräsentiert, und wobei der Neigungssensor (60) zumindest zeitweise ein zweites Meßsignal liefert, das eine Neigung der zweiten Trägheitshauptachse gegenüber der wenigstens einen gedachten Bezugsachse (G) repräsentiert.
DE102006062600.1A 2006-12-29 2006-12-29 Verfahren zum Inbetriebnehmen und/oder Überwachen eines In-Line-Meßgeräts Active DE102006062600B4 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102006062600.1A DE102006062600B4 (de) 2006-12-29 2006-12-29 Verfahren zum Inbetriebnehmen und/oder Überwachen eines In-Line-Meßgeräts
PCT/EP2007/063965 WO2008080802A1 (de) 2006-12-29 2007-12-14 Verfahren zum inbetriebnehmen und/oder überwachen eines in-line-messgeräts
US12/005,303 US7765878B2 (en) 2006-12-29 2007-12-27 Method for start-up and monitoring of an inline measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006062600.1A DE102006062600B4 (de) 2006-12-29 2006-12-29 Verfahren zum Inbetriebnehmen und/oder Überwachen eines In-Line-Meßgeräts

Publications (2)

Publication Number Publication Date
DE102006062600A1 DE102006062600A1 (de) 2008-07-03
DE102006062600B4 true DE102006062600B4 (de) 2023-12-21

Family

ID=39301128

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102006062600.1A Active DE102006062600B4 (de) 2006-12-29 2006-12-29 Verfahren zum Inbetriebnehmen und/oder Überwachen eines In-Line-Meßgeräts

Country Status (3)

Country Link
US (1) US7765878B2 (de)
DE (1) DE102006062600B4 (de)
WO (1) WO2008080802A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7689372B2 (en) * 2006-12-13 2010-03-30 Abb Patent Gmbh Process for operating a measurement device of the vibration type
US10918308B2 (en) * 2007-05-18 2021-02-16 Koninklijke Philips N.V. Respiratory component measurement system including a sensor for detecting orientation or motion
DE102008016235A1 (de) * 2008-03-27 2009-10-01 Endress + Hauser Flowtec Ag Verfahren zum Betreiben eines auf einer rotierenden Karussell-Abfüllmachine angeordneten Meßgeräts
US9521963B2 (en) * 2008-05-13 2016-12-20 Ric Investments, Llc Respiratory component measurement system with indicating elements
DE102008063261A1 (de) * 2008-12-31 2010-07-08 Elster Meßtechnik GmbH Volumenzähler für Flüssigkeiten
DE102010001973A1 (de) 2010-02-16 2011-08-18 Endress + Hauser Flowtec Ag Messwandler vom Vibrationstyp mit zwei Gegenschwingerarmen
DE102011089846A1 (de) 2011-12-23 2013-06-27 Endress + Hauser Gmbh + Co. Kg Neigungsmelder für einen Messumformer, Messumformer mit einer Schnittstelle für einen Neigungsmelder und Verfahren zum Ermitteln der Neigung eines Messumformers
DE102014010189B4 (de) * 2014-07-10 2019-03-28 Diehl Metering Gmbh Zählervorrichtung mit Rechenwerk und Volumengeber, Modul und Verfahren zum Betrieb einer Zählervorrichtung
WO2016107693A1 (de) 2014-12-30 2016-07-07 Endress+Hauser Flowtec Ag Verfahren zum messen einer dichte eines fluids
DE102014019396A1 (de) 2014-12-30 2016-06-30 Endress+Hauser Flowtec Ag Verfahren zum Messen einer Dichte eines Fluids
US11085803B2 (en) * 2015-09-24 2021-08-10 Micro Motion, Inc. Entrained fluid detection diagnostic
DE102018126679B4 (de) 2018-10-25 2023-08-10 Endress + Hauser Flowtec Ag Magnetisch-induktives Durchflussmessgerät und ein Verfahren zum Betreiben eines magnetisch-induktiven Durchflussmessgerätes
DE102021201364A1 (de) 2021-02-12 2022-08-18 Vega Grieshaber Kg Messeinrichtung mit Lagesensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856723A2 (de) 1997-01-14 1998-08-05 New Holland Belgium N.V. Verbesserungen an oder in Bezug auf Massendurchflussmessung
JP2000205921A (ja) 1999-01-14 2000-07-28 Osaka Gas Co Ltd ガスメ―タの感震装置
WO2006033901A1 (en) 2004-09-17 2006-03-30 Mks Instruments, Inc. Attitude error self-correction for thermal sensors of mass flow meters and controllers

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3599745A (en) 1969-07-28 1971-08-17 Benjamin F Hughes Gravity safety switch
US3681983A (en) * 1971-05-11 1972-08-08 William Alexander System for measuring fluid flow
US4187721A (en) 1977-07-25 1980-02-12 S & F Associates Method and structure for flow measurement
US4491025A (en) 1982-11-03 1985-01-01 Micro Motion, Inc. Parallel path Coriolis mass flow rate meter
US4524610A (en) 1983-09-02 1985-06-25 National Metal And Refining Company, Ltd. In-line vibratory viscometer-densitometer
AU580623B2 (en) 1984-07-11 1989-01-19 Exac Corporation Coriolis mass flow rate meter
US4563904A (en) 1984-09-12 1986-01-14 Fischer & Porter Company Excitation circuit for electromagnetic flowmeter
US4895031A (en) 1985-08-29 1990-01-23 Micro Motion Inc. Sensor mounting for coriolis mass flow rate meter
US4733569A (en) 1985-12-16 1988-03-29 K-Flow Division Of Kane Steel Co., Inc. Mass flow meter
US4668846A (en) 1985-12-31 1987-05-26 Klumpp Henry B Gravity sensing switch for detecting inclination
DE8712331U1 (de) 1986-09-26 1988-01-28 Flowtec AG, Reinach, Basel Corioliskraft-Massendurchflussmesser
DE3632800A1 (de) 1986-09-26 1988-04-07 Flowtec Ag Nach dem coriolisprinzip arbeitendes massendurchflussmessgeraet
KR960000099B1 (ko) 1986-10-28 1996-01-03 더폭스보로 컴패니 코리올리 유형의 질량유량계
US4777833A (en) 1986-11-12 1988-10-18 Micro Motion, Inc. Ferromagnetic drive and velocity sensors for a coriolis mass flow rate meter
US5069074A (en) 1987-07-22 1991-12-03 Exac Corporation Apparatus and method for measuring the mass flow rate of material flowing through at least one vibrating conduit
US4787252A (en) 1987-09-30 1988-11-29 Panametrics, Inc. Differential correlation analyzer
US4879911A (en) 1988-07-08 1989-11-14 Micro Motion, Incorporated Coriolis mass flow rate meter having four pulse harmonic rejection
DE3831144A1 (de) 1988-09-13 1990-03-15 Dynamit Nobel Ag Neigungssensor
US4876898A (en) 1988-10-13 1989-10-31 Micro Motion, Inc. High temperature coriolis mass flow rate meter
EP0431132B1 (de) 1989-06-09 1998-09-16 Micro Motion Incorporated Stabilitätsverbesserung bei einem coriolis-massenflussmesser
US4957005A (en) 1989-10-05 1990-09-18 Fischer & Porter Company Coriolis-type flowmeter
US5009109A (en) 1989-12-06 1991-04-23 Micro Motion, Inc. Flow tube drive circuit having a bursty output for use in a coriolis meter
ES2049454T3 (es) 1990-03-30 1994-04-16 Flowtec Ag Aparato de medida de caudal de masa que trabaja segun el principio de coriolis.
EP0457999B1 (de) 1990-05-19 1994-09-28 Endress + Hauser Flowtec AG Messerwertaufnehmer für ein Ultraschall-Volumendurchfluss-Messgerät
EP0469448A1 (de) 1990-07-28 1992-02-05 KROHNE MESSTECHNIK MASSAMETRON GmbH & Co. KG Massendurchflussmessgerät
US5373745A (en) 1991-02-05 1994-12-20 Direct Measurement Corporation Single path radial mode Coriolis mass flow rate meter
EP0521169B1 (de) 1991-06-08 1995-11-08 Endress + Hauser Flowtec AG Magnetisch-induktiver Durchflussmesser
SE469048B (sv) 1991-09-16 1993-05-03 Bofors Ab Rubbningssensor
US5357811A (en) 1992-02-11 1994-10-25 Exac Corporation Single tube coriolis flow meter with floating intermediate section
AU3931193A (en) 1992-03-20 1993-10-21 Micro Motion, Inc. Improved viscometer for sanitary applications
DE4219823A1 (de) 1992-06-17 1993-12-23 Gustav Hahn Neigungsschalter
DE4238930A1 (de) 1992-11-19 1994-05-26 Dynamit Nobel Ag In einer Leiterplatte integrierter Lageänderungssensor
US5463905A (en) 1993-02-23 1995-11-07 Baird; James D. Portable non-invasive flowmeter for partially filled pipe
US5796011A (en) 1993-07-20 1998-08-18 Endress + Hauser Flowtech Ag Coriolis-type mass flow sensor
EP0660920B1 (de) 1993-07-21 1999-06-02 Endress + Hauser Flowtec AG Coriolis-massedurchflussaufnehmer
KR960013251B1 (ko) 1993-08-25 1996-10-02 주식회사 창민물산 초음파 유량측정 방법과 장치
CN1047844C (zh) 1993-09-11 1999-12-29 安德雷斯和霍瑟弗罗泰克股份公司 具有螺旋状测量管的科里奥利式质量流量传感器
EP0649005B1 (de) 1993-10-14 1997-04-23 Endress + Hauser Flowtec AG Magnetisch-induktive Durchflussaufnehmer
US5400657A (en) 1994-02-18 1995-03-28 Atlantic Richfield Company Multiphase fluid flow measurement
ES2145244T3 (es) 1994-05-26 2000-07-01 Flowtec Ag Detector de caudal masico segun el principio de coriolis.
US5602346A (en) 1994-06-06 1997-02-11 Oval Corporation Mass flowmeter converter
JP3132628B2 (ja) 1994-07-21 2001-02-05 富士電機株式会社 コリオリ式質量流量計
EP0698783A1 (de) 1994-08-16 1996-02-28 Endress + Hauser Flowtec AG Auswerte-Elektronik eines Coriolis-Massedurchflussaufnehmers
DE4435521A1 (de) 1994-10-04 1996-04-11 Licentia Gmbh Neigungssensor und Verfahren zu dessen Herstellung
DE19512374C2 (de) 1995-04-01 1998-12-03 Megamos F & G Sicherheit Neigungssensor
EP0749006B1 (de) 1995-06-14 2002-04-10 Endress + Hauser Flowtec AG Coriolis-Massedurchflussaufnehmer mit einem einzigen Messrohr
DK0754934T3 (da) 1995-07-21 2001-01-02 Flowtec Ag Coriolis-massestrømningsmåler med mindst ét målerør
JP3283524B2 (ja) 1996-01-17 2002-05-20 マイクロ・モーション・インコーポレーテッド バイパス型流量計
US6189389B1 (en) 1996-05-28 2001-02-20 Krohne A.G. Ultrasonic flowmeter
JPH103308A (ja) 1996-06-18 1998-01-06 Fanuc Ltd 産業用ロボットの干渉回避方法
US5734112A (en) 1996-08-14 1998-03-31 Micro Motion, Inc. Method and apparatus for measuring pressure in a coriolis mass flowmeter
DE59700185D1 (de) 1996-12-11 1999-07-08 Flowtec Ag Coriolis-Massendurchfluss-/-Dichte-Aufnehmer mit einem einzigen geraden Messrohr
JPH10281846A (ja) 1997-04-09 1998-10-23 Oval Corp コリオリ流量計を利用したパターン認識法による多相流量計
DE19752439C2 (de) 1997-11-26 2001-02-08 Siemens Ag Mikromechanischer Neigungssensor, insbesondere für Kraftfahrzeuge
US6311136B1 (en) 1997-11-26 2001-10-30 Invensys Systems, Inc. Digital flowmeter
US6092409A (en) 1998-01-29 2000-07-25 Micro Motion, Inc. System for validating calibration of a coriolis flowmeter
TW399146B (en) 1998-05-29 2000-07-21 Oval Corp Coliolis mass flowmeter
US6031740A (en) 1998-07-03 2000-02-29 Endress + Hauser Flowtec Ag Method of regulating the coil current of electromagnetic flow sensors
CN1226195C (zh) 1998-07-09 2005-11-09 净水42控股公司 活性炭过滤器、陶瓷过滤器元件和装有这两种过滤器的水净化系统
US6397683B1 (en) 1998-07-22 2002-06-04 Flowtec Ag Clamp-on ultrasonic flowmeter
US6330831B1 (en) 1998-10-20 2001-12-18 Panametrics, Inc. Stream-cleaned differential reflection coefficient sensor
EP1055102B1 (de) 1998-12-11 2003-03-26 Endress + Hauser Flowtec AG Coriolis-massedurchfluss-/dichtemesser
DE59904728D1 (de) 1998-12-11 2003-04-30 Flowtec Ag Coriolis-massedurchfluss-/dichtemesser
US6293156B1 (en) 1999-01-22 2001-09-25 Panametrics, Inc. Coherent multi-path flow measurement system
JP4014326B2 (ja) 1999-02-18 2007-11-28 本田技研工業株式会社 静電容量式傾斜センサ
US6308580B1 (en) 1999-03-19 2001-10-30 Micro Motion, Inc. Coriolis flowmeter having a reduced flag dimension
DK1039269T3 (da) 1999-03-26 2009-03-09 Flowtec Ag Fremgangsmåde til fremstilling af en elektromangetisk flowsensor
US6184974B1 (en) 1999-07-01 2001-02-06 Wavefront Sciences, Inc. Apparatus and method for evaluating a target larger than a measuring aperture of a sensor
US6776052B2 (en) 1999-10-29 2004-08-17 Micro Motion, Inc. Coriolis flowmeter having a reduced flag dimension for handling large mass flows
WO2001071291A1 (en) 2000-03-23 2001-09-27 Invensys Systems, Inc. Correcting for two-phase flow in a digital flowmeter
US6651513B2 (en) 2000-04-27 2003-11-25 Endress + Hauser Flowtec Ag Vibration meter and method of measuring a viscosity of a fluid
US6711958B2 (en) 2000-05-12 2004-03-30 Endress + Hauser Flowtec Ag Coriolis mass flow rate/density/viscoy sensor with two bent measuring tubes
CA2720501C (en) * 2000-08-18 2015-09-22 Emerson Electric Co. Coriolis mass flow controller
US6556931B1 (en) 2000-11-03 2003-04-29 Micro Motion, Inc. Apparatus and method for compensating mass flow rate of a material when the density of the material causes an unacceptable error in flow rate
US6691583B2 (en) 2001-04-24 2004-02-17 Endress + Hauser Flowtec Ag Vibratory transducer
US6910366B2 (en) 2001-08-24 2005-06-28 Endress + Hauser Flowtec Ag Viscometer
EP1291639B1 (de) 2001-08-24 2013-11-06 Endress + Hauser Flowtec AG Viskositäts-Messgerät
US6636815B2 (en) 2001-08-29 2003-10-21 Micro Motion, Inc. Majority component proportion determination of a fluid using a coriolis flowmeter
US6880410B2 (en) 2002-03-14 2005-04-19 Endress + Hauser Flowtec Ag Transducer and method for measuring a fluid flowing in a pipe
CA2485131C (en) 2002-05-08 2011-01-04 Endress + Hauser Flowtec Ag Vibratory transducer
DE102004048747A1 (de) 2004-10-05 2006-04-06 Westfaliasurge Gmbh Neigungs- und Beschleunigungssensor
JP2006275541A (ja) * 2005-03-28 2006-10-12 Fujitsu Ten Ltd 空気流量計測装置の異常検出装置
DE102005038599A1 (de) * 2005-08-16 2007-02-22 Robert Bosch Gmbh Ultraschallmesseinheit mit integrierter Feuchteermittlung
US7409871B2 (en) * 2006-03-16 2008-08-12 Celerity, Inc. Mass flow meter or controller with inclination sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856723A2 (de) 1997-01-14 1998-08-05 New Holland Belgium N.V. Verbesserungen an oder in Bezug auf Massendurchflussmessung
JP2000205921A (ja) 1999-01-14 2000-07-28 Osaka Gas Co Ltd ガスメ―タの感震装置
WO2006033901A1 (en) 2004-09-17 2006-03-30 Mks Instruments, Inc. Attitude error self-correction for thermal sensors of mass flow meters and controllers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Popa, N.C. et al.: Some applications of inductive transducers with magnetic liquids. In: Sensors and Actuators A, 59, 1997, 197-200.

Also Published As

Publication number Publication date
US7765878B2 (en) 2010-08-03
WO2008080802A1 (de) 2008-07-10
US20080229846A1 (en) 2008-09-25
DE102006062600A1 (de) 2008-07-03

Similar Documents

Publication Publication Date Title
DE102006062600B4 (de) Verfahren zum Inbetriebnehmen und/oder Überwachen eines In-Line-Meßgeräts
EP2502032B1 (de) Messsystem mit einer zwei parallel durchströmte messrohre aufweisenden rohranordnung sowie verfahren zu deren überwachung
EP2406592B1 (de) Messsystem mit einem messwandler vom vibrationstyp
EP1931949B1 (de) Verfahren zum messen eines in einer rohrleitung strömenden mediums sowie messsystem dafür
EP2519805B1 (de) MEßSYSTEM MIT EINEM MEßWANDLER VOM VIBRATIONSTYP UND VERFAHREN ZUM MESSEN EINER DRUCKDIFFERENZ
EP3080560B1 (de) Dichte-messgerät
EP2606319B1 (de) MEßSYSTEM MIT EINEM MEßWANDLER VOM VIBRATIONSTYP
EP1938052B1 (de) In-line-messgerät und verfahren zum überwachen von veränderungen einer rohrwand
EP2906915B1 (de) Messsystem zum ermitteln eines volumendurchflusses und/oder einer volumendurchflussrate eines in einer rohrleitung strömenden mediums
EP2457066A1 (de) MEßWANDLER VOM VIBRATIONSTYP SOWIE MESSGERÄT MIT EINEM SOLCHEN MESSWANDLER
DE102010044179A1 (de) Meßsystem mit einem Meßwandler von Vibrationstyp
WO2012150241A2 (de) Messaufnehmer vom vibrationstyp sowie damit gebildetes messsystem
EP3729011B1 (de) Coriolis-massendurchfluss-messgerät
WO2011009684A1 (de) Messwandler vom vibrationstyp sowie messgerät mit einem solchen messwandler
EP2519806B1 (de) Mess-system mit einem messwandler vom vibrationstyp
DE10358663B4 (de) Coriolis-Massedurchfluß-Meßgerät
EP3241011B1 (de) Verfahren zum messen einer dichte eines fluids
DE102010000759A1 (de) Meßsystem mit einem Meßwandler vom Vibrationstyp
EP2519804A2 (de) Mess-system mit einem messwandler vom vibrationstyp
DE102010000760B4 (de) Meßsystem mit einem Meßwandler vom Vibrationstyp zum Messen eines statischen Drucks in einem strömenden Medium
DE102014019396A1 (de) Verfahren zum Messen einer Dichte eines Fluids
DE102010000761A1 (de) Meßsystem mit einem Meßwandler vom Vibrationstyp
DE102023112374A1 (de) Meßsystem
DE102022112523A1 (de) Vibronisches Meßsystem

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
R012 Request for examination validly filed

Effective date: 20130925

R016 Response to examination communication
R082 Change of representative

Representative=s name: HAHN, CHRISTIAN, DIPL.-PHYS. DR.RER.NAT., DE

R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final