BE1008260A6 - Amphiphile polyurethane charged with medicine which is coated onto vascularstents for the treatment of blood vessel constriction - Google Patents
Amphiphile polyurethane charged with medicine which is coated onto vascularstents for the treatment of blood vessel constriction Download PDFInfo
- Publication number
- BE1008260A6 BE1008260A6 BE9400383A BE9400383A BE1008260A6 BE 1008260 A6 BE1008260 A6 BE 1008260A6 BE 9400383 A BE9400383 A BE 9400383A BE 9400383 A BE9400383 A BE 9400383A BE 1008260 A6 BE1008260 A6 BE 1008260A6
- Authority
- BE
- Belgium
- Prior art keywords
- polyurethane
- amphiphile
- blood vessel
- treatment
- prostheses
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/416—Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/42—Anti-thrombotic agents, anticoagulants, anti-platelet agents
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Materials For Medical Uses (AREA)
Abstract
The process of coating endovascular prostheses with medicinally chargedamphiphile polyurethane has been successful in significantly improving thebiocompatibility and the blood compatibility of endovascular prostheses.When these amphiphile polyurethane are implanted into the human or animaltissue or blood vessels, they remain stable and do not trigger aninflammatory reaction. Moreover, it is possible to incorporate medicines inthese polymers, which have a slow release function after implantation, atthe location of the implant. This system can further reduce thethrombogenicity of the prostheses coated with amphiphile polyurethane andcan inhibit the rejection reaction to the prostheses.
Description
AMFIFIELE POLYURETHANEN OPGELADEN MET MEDICIJNEN GECOAT OPVASCULAIRE STENTS TER BEHANDELING VAN BLOEDVATVERNAUWINGEN.
BESCHRIJVING
Behandeling van bloedvatvernauwingen door middel van een balloncatheter is een populaire methode. Vorig jaar werden op deze manier in ons land meer dan 6000 patienten met coronaire bloedvatvernauwingen behandeld. Probleem van deze behandelingsmethode is enerzijds het gevaar dat tijdens het opblazen van de ballon een scheur ontstaat waardoor het bloedvat kan dichtvallen en alzo een akuut myocardinfarkt kan veroorzaken, anderzijds is het goed gedocumenteerd dat deze behandelingsmethode gepaard gaat met een frequente teruggroei(restenose) van de bloedvatvernauwing binnen de 6 maand na de behandeling. Om deze problemen optelossen werden enerzijds medicijnen uitgetest om de teruggroei van de vernauwing te voorkomen en anderzijds nieuwe behandelingsmethoden ontwikkeld.
Een van die nieuwe behandelingsmethoden bestaat erin een metalen intravasculaire prothese (stent) ter hoogte van de vernauwing te plaatsen. Deze methode is zeer efficient voor het behandelen van vaatscheuren die kunnen ontstaan tijdens de ballondilatatie maar deze metalen ondersteuningen zijn op zichzelf ook trombogeen en kunnen aanleiding geven tot een trombotische occlusie van het bloedvat. Anderzijds bleek dat door het implanteren van een metalen prothese in een bloedvat het lichaam kan reageren met een afweerreactie waardoor terug bloedvatvernauwingen (restenose) kunnen ontstaan binnen de 6 maand na implantatie van de prothese. Vervolgens heeft men geprobeerd polymeer prothesen te maken maar ook deze gaven dezelfde problemen.
Door het bedekken (coaten) van deze endovasculaire prothesen met amfifiele polyurethanen zijn wij erin geslaagd zowel het probleem van de trombotische occlusies als het probleem van de reactieve hyperproliferatieve response die aanleiding geeft tot restenose op belangrijke wijze te beperken. Deze polyurethanen worden gesynthetiseerd vertrekkend van amfifiele polyester-diolen op basis van ethyleeno:<ide en propyleenoxide. Door reactie met een diosocyanaat en een ketenverlenger (butaandiol) wordt finaal een thermoplastisch polyurethaan bekomen. Door de geschikte keuze van a) het polyesterdiol, meer bepaald de verhouding ethyleenoxide/propyleenoxide, en b) het moleculair gewicht van het diol kan de bio- en bloedcompatibiliteit worden beinvloed.
Deze polyurethanen hebben de eigenschap, wanneer ingeplant in menselijke of dierlijke weefsels of in menselijke of dierlijke bloedvaten, stabiel te blijven en quasi geen inflammatoire reactie uit te lokken.
Deze polyurethanen bleken in onze dierexperimenten dan ook uitermate geschikt als coating van endovasculaire prothesen.
Verder is het mogelijk om medicijnen aan deze polyurethanen te binden. Deze medicijnen hebben tot doel de trombogeniciteit van de prothesen nog verder te verminderen
(heparine, hirudine, streptokinase, tpa e.a.) en de afstotingsreactie tegen de prothese nog verder te inhiberen
(ACE remmers, corticoiden, angiopeptine, antimitotica e.a.). Geneesmiddel beladen coatings worden aangebracht door de
<EMI ID=1.1>
het medicijn in de polymeeroplossing. Tijdens de polymerisatie worden de geneesmuiddelen als het ware gevangen in het polymeernetwerk.
Bij proefondervindelijk onderzoek in vitro, waarbij we medicijnopgeladen polyurethaan gecoate stents incubeerden in een fysiologische bufferoplossing hebben wij kunnen aantonen dat het medicijn langzaam losgelaten werd gedurende verschillende dagen. Bij deze opstelling gebruikten we angiopeptine, methylprednisolone en heparine. Het grote voordeel van het gebruik van amfifiele polyurethanen is dat ze zowel met hydrofobe als hydrofiele medicijnen kunnen opgeladen worden.
Proefondervindelijk onderzoek bij varkens toonde aan dat door het inplanteren van een medicijnopgeladen polyurethaan gecoate stent het mogelijk is om hoge bloedvatwand weefselconcentraties te bekomen gedurende tenminste 10 dagen. De plasmaconcentraties waren verwaarloosbaar laag. We konden dus aantonen dat met deze methode een selectieve toediening van het medicijn tehoogte van het targetorgaan kan bekomen worden. Men kan dus verwachten dat met deze methode de systemische bijwerkingen van de gebruikte medicijnen belangrijk zullen afnemen.
Proefondervindelijk onderzoek bij varkens toonde aan dat inplantatie van medicijn opgeladen polyurethaan gecoatte stents in coronaire bloedvaten significant minder trombogene occlusies vertoonden in vergelijking met niet gecoatte metalen stents. Verder kon aangetoond worden dat de medicijnopgeladen polyurethaan gecoatte stent significant minder neointimale hyperplasie (restenose) vertoonden in vergelijking met niet gecoatte metalen stents.
TOEPASSINGSMOGELIJKHEDEN VAN HET SYSTEEM
1. Behandeling van bloedvatvernauwingen bij mens en dier.
2. Behandeling van complicaties ontstaan tijdens andere
behandelingsmethoden van bloedvatvernauwingen.
3. Behandeling van complicaties ontstaan tijdens
diagnostische procedures voor het opsporen van cardiale en vaataandoeningen.
4. Coating van prothesen, draden, en catheters ingebracht
voor medische doeleinden.
AMPHI-FILE POLYURETHANS CHARGED WITH MEDICINES COATED VASCULAR STENTS FOR TREATING VESSEL STRENGTHS.
DESCRIPTION
Treatment of blood vessel strictures by means of a balloon catheter is a popular method. Last year, more than 6,000 patients with coronary artery strictures were treated in this way in our country. The problem of this treatment method is on the one hand the danger that during the inflation of the balloon a rupture occurs which can cause the blood vessel to close and thus cause an acute myocardial market, on the other hand, it is well documented that this treatment method is accompanied by a frequent regrowth (restenosis) of the blood vessel constriction within 6 months after treatment. To solve these problems, medicines were tested on the one hand to prevent the regrowth of the narrowing and on the other hand new treatment methods were developed.
One of these new treatment methods is to place a metal intravascular prosthesis (stent) at the level of the narrowing. This method is very efficient in treating vascular tears that may develop during balloon dilatation, but these metal supports are also thrombogenic in themselves and may lead to thrombotic occlusion of the blood vessel. On the other hand, it has been found that by implanting a metal prosthesis in a blood vessel, the body can react with an immune response, which can lead to blood vessel constrictions (restenosis) within 6 months after implantation of the prosthesis. Subsequently, attempts were made to make polymer prostheses, but these also presented the same problems.
By covering (coating) these endovascular prostheses with amphiphilic polyurethanes, we have succeeded in significantly limiting both the problem of thrombotic occlusions and the problem of the reactive hyperproliferative response that gives rise to restenosis. These polyurethanes are synthesized starting from amphiphilic polyester diols based on ethylene oxide and propylene oxide. A thermoplastic polyurethane is finally obtained by reaction with a diosocyanate and a chain extender (butanediol). By the suitable choice of a) the polyester diol, in particular the ratio of ethylene oxide / propylene oxide, and b) the molecular weight of the diol, the bio and blood compatibility can be influenced.
These polyurethanes have the property, when implanted in human or animal tissues or in human or animal blood vessels, to remain stable and to elicit virtually no inflammatory response.
In our animal experiments, these polyurethanes were therefore extremely suitable as a coating for endovascular prostheses.
It is also possible to bind medicines to these polyurethanes. These drugs aim to further reduce the thrombogenicity of the prostheses
(heparin, hirudin, streptokinase, tpa and others) and to further inhibit the rejection reaction against the prosthesis
(ACE inhibitors, corticoids, angiopeptin, antimitotics, etc.). Drug loaded coatings are applied by the
<EMI ID = 1.1>
the drug in the polymer solution. During the polymerization, the drug components are, as it were, trapped in the polymer network.
In vitro experimentation, in which we incubated drug-charged polyurethane-coated stents in a physiological buffer solution, we demonstrated that the drug was slowly released over several days. In this setup, we used angiopeptin, methylprednisolone and heparin. The major advantage of using amphiphilic polyurethanes is that they can be charged with both hydrophobic and hydrophilic drugs.
Experimental studies in pigs showed that by implanting a drug-charged polyurethane coated stent it is possible to obtain high blood vessel wall tissue concentrations for at least 10 days. Plasma concentrations were negligibly low. We were therefore able to demonstrate that with this method a selective administration of the drug can be achieved at the height of the target organ. It can therefore be expected that with this method the systemic side effects of the drugs used will decrease significantly.
Experimental studies in pigs showed that implantation of drug-charged polyurethane coated stents into coronary arteries showed significantly fewer thrombogenic occlusions compared to uncoated metal stents. Furthermore, it could be shown that the drug-charged polyurethane coated stent exhibited significantly less neointimal hyperplasia (restenosis) compared to uncoated metal stents.
SCOPE OF APPLICATION OF THE SYSTEM
1. Treatment of blood vessel strictures in humans and animals.
2. Treatment of complications arising during others
treatment methods of blood vessel strictures.
3. Treatment of complications arising during
diagnostic procedures for detecting cardiovascular disease.
4. Coating of prostheses, wires, and catheters inserted
for medical purposes.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE9400383A BE1008260A6 (en) | 1994-04-14 | 1994-04-14 | Amphiphile polyurethane charged with medicine which is coated onto vascularstents for the treatment of blood vessel constriction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE9400383A BE1008260A6 (en) | 1994-04-14 | 1994-04-14 | Amphiphile polyurethane charged with medicine which is coated onto vascularstents for the treatment of blood vessel constriction |
Publications (1)
Publication Number | Publication Date |
---|---|
BE1008260A6 true BE1008260A6 (en) | 1996-02-27 |
Family
ID=3888095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BE9400383A BE1008260A6 (en) | 1994-04-14 | 1994-04-14 | Amphiphile polyurethane charged with medicine which is coated onto vascularstents for the treatment of blood vessel constriction |
Country Status (1)
Country | Link |
---|---|
BE (1) | BE1008260A6 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010095044A3 (en) * | 2009-02-21 | 2010-11-04 | Sofradim Production | Medical device with degradation-retarding coating |
US8648144B2 (en) | 2009-02-21 | 2014-02-11 | Sofradim Production | Crosslinked fibers and method of making same by extrusion |
US8795331B2 (en) | 2010-03-25 | 2014-08-05 | Covidien Lp | Medical devices incorporating functional adhesives |
US8865857B2 (en) | 2010-07-01 | 2014-10-21 | Sofradim Production | Medical device with predefined activated cellular integration |
US8956603B2 (en) | 2009-02-21 | 2015-02-17 | Sofradim Production | Amphiphilic compounds and self-assembling compositions made therefrom |
US8969473B2 (en) | 2009-02-21 | 2015-03-03 | Sofradim Production | Compounds and medical devices activated with solvophobic linkers |
US8968818B2 (en) | 2009-02-21 | 2015-03-03 | Covidien Lp | Medical devices having activated surfaces |
US9039979B2 (en) | 2009-02-21 | 2015-05-26 | Sofradim Production | Apparatus and method of reacting polymers passing through metal ion chelated resin matrix to produce injectable medical devices |
US9247931B2 (en) | 2010-06-29 | 2016-02-02 | Covidien Lp | Microwave-powered reactor and method for in situ forming implants |
US9272074B2 (en) | 2010-03-25 | 2016-03-01 | Sofradim Production | Surgical fasteners and methods for sealing wounds |
US9273191B2 (en) | 2009-02-21 | 2016-03-01 | Sofradim Production | Medical devices with an activated coating |
US9375699B2 (en) | 2009-02-21 | 2016-06-28 | Sofradim Production | Apparatus and method of reacting polymers by exposure to UV radiation to produce injectable medical devices |
US9510810B2 (en) | 2009-02-21 | 2016-12-06 | Sofradim Production | Medical devices incorporating functional adhesives |
US9523159B2 (en) | 2009-02-21 | 2016-12-20 | Covidien Lp | Crosslinked fibers and method of making same using UV radiation |
US9555154B2 (en) | 2009-02-21 | 2017-01-31 | Covidien Lp | Medical devices having activated surfaces |
US9775928B2 (en) | 2013-06-18 | 2017-10-03 | Covidien Lp | Adhesive barbed filament |
US9987297B2 (en) | 2010-07-27 | 2018-06-05 | Sofradim Production | Polymeric fibers having tissue reactive members |
-
1994
- 1994-04-14 BE BE9400383A patent/BE1008260A6/en not_active IP Right Cessation
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9273191B2 (en) | 2009-02-21 | 2016-03-01 | Sofradim Production | Medical devices with an activated coating |
US10632207B2 (en) | 2009-02-21 | 2020-04-28 | Sofradim Production | Compounds and medical devices activated with solvophobic linkers |
WO2010095044A3 (en) * | 2009-02-21 | 2010-11-04 | Sofradim Production | Medical device with degradation-retarding coating |
US8829071B2 (en) | 2009-02-21 | 2014-09-09 | Sofradim Production | Medical device with degradation-retarding coating |
US9375699B2 (en) | 2009-02-21 | 2016-06-28 | Sofradim Production | Apparatus and method of reacting polymers by exposure to UV radiation to produce injectable medical devices |
US8956603B2 (en) | 2009-02-21 | 2015-02-17 | Sofradim Production | Amphiphilic compounds and self-assembling compositions made therefrom |
US8969473B2 (en) | 2009-02-21 | 2015-03-03 | Sofradim Production | Compounds and medical devices activated with solvophobic linkers |
US8968818B2 (en) | 2009-02-21 | 2015-03-03 | Covidien Lp | Medical devices having activated surfaces |
US9039979B2 (en) | 2009-02-21 | 2015-05-26 | Sofradim Production | Apparatus and method of reacting polymers passing through metal ion chelated resin matrix to produce injectable medical devices |
US9216226B2 (en) | 2009-02-21 | 2015-12-22 | Sofradim Production | Compounds and medical devices activated with solvophobic linkers |
US10167371B2 (en) | 2009-02-21 | 2019-01-01 | Covidien Lp | Medical devices having activated surfaces |
US9421296B2 (en) | 2009-02-21 | 2016-08-23 | Covidien Lp | Crosslinked fibers and method of making same by extrusion |
US9555154B2 (en) | 2009-02-21 | 2017-01-31 | Covidien Lp | Medical devices having activated surfaces |
US8648144B2 (en) | 2009-02-21 | 2014-02-11 | Sofradim Production | Crosslinked fibers and method of making same by extrusion |
US9550164B2 (en) | 2009-02-21 | 2017-01-24 | Sofradim Production | Apparatus and method of reacting polymers passing through metal ion chelated resin matrix to produce injectable medical devices |
US9511175B2 (en) | 2009-02-21 | 2016-12-06 | Sofradim Production | Medical devices with an activated coating |
US9510810B2 (en) | 2009-02-21 | 2016-12-06 | Sofradim Production | Medical devices incorporating functional adhesives |
US9517291B2 (en) | 2009-02-21 | 2016-12-13 | Covidien Lp | Medical devices having activated surfaces |
US9523159B2 (en) | 2009-02-21 | 2016-12-20 | Covidien Lp | Crosslinked fibers and method of making same using UV radiation |
US9554782B2 (en) | 2010-03-25 | 2017-01-31 | Covidien Lp | Medical devices incorporating functional adhesives |
US8795331B2 (en) | 2010-03-25 | 2014-08-05 | Covidien Lp | Medical devices incorporating functional adhesives |
US9272074B2 (en) | 2010-03-25 | 2016-03-01 | Sofradim Production | Surgical fasteners and methods for sealing wounds |
US10143471B2 (en) | 2010-03-25 | 2018-12-04 | Sofradim Production | Surgical fasteners and methods for sealing wounds |
US9247931B2 (en) | 2010-06-29 | 2016-02-02 | Covidien Lp | Microwave-powered reactor and method for in situ forming implants |
US8865857B2 (en) | 2010-07-01 | 2014-10-21 | Sofradim Production | Medical device with predefined activated cellular integration |
US9987297B2 (en) | 2010-07-27 | 2018-06-05 | Sofradim Production | Polymeric fibers having tissue reactive members |
US9775928B2 (en) | 2013-06-18 | 2017-10-03 | Covidien Lp | Adhesive barbed filament |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BE1008260A6 (en) | Amphiphile polyurethane charged with medicine which is coated onto vascularstents for the treatment of blood vessel constriction | |
US6203536B1 (en) | Medical device for delivering a therapeutic substance and method therefor | |
US6541116B2 (en) | Superoxide dismutase or superoxide dismutase mimic coating for an intracorporeal medical device | |
US5824048A (en) | Method for delivering a therapeutic substance to a body lumen | |
AU2003277023B2 (en) | Apparatus and method for delivery of mitomycin through an eluting biocompatible implantable medical device | |
US5776184A (en) | Intravasoular stent and method | |
US20050049691A1 (en) | Polymeric reconstrainable, repositionable, detachable, percutaneous endovascular stentgraft | |
BE1006819A7 (en) | Polyurethane coated prostheses (stents) FOR THE TREATMENT OF VESSEL CHOKES. | |
US20100023112A1 (en) | Biocorrodible implant with a coating comprising a hydrogel | |
US20100023116A1 (en) | Biocorrodible implant with a coating containing a drug eluting polymer matrix | |
WO1998057706A1 (en) | An implantable device for delivering localized radiation in vivo and method for making the same | |
Ozaki et al. | New stent technologies | |
JPH067455A (en) | Stent for inside of vessel cavity and preparation thereof | |
EP0691841B1 (en) | Medicament dispensing stents | |
US6746481B1 (en) | Implatable device including a polyamino acid component | |
BE1006816A7 (en) | Polyphosphazene-coated prosthesis (stents) for the treatment of blood vessel constriction | |
De Feyter et al. | Some thoughts on the present and future of coronary artery stenting. | |
BE1008668A6 (en) | A new endovascular prostheses (ids-sts-2) for the treatment of dissected andnarrowed blood vessels | |
Gammon et al. | Bioabsorbable endovascular stent prostheses | |
WO2009114257A2 (en) | A1 adenosine receptor antagonist-coated implantable medical device | |
Van Der Giessen et al. | An experimental cardiologist’s view on coronary stents | |
Kibbe et al. | Liquid Cast Arterial Stents: Stents of the Future | |
Sorop et al. | Neointimal hyperplasia and endothelial function after percutaneous coronary intervention | |
REIFART et al. | New Stents: Our Experience and Visions | |
JP2003135587A (en) | Drug delivery via conformal film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RE | Patent lapsed |
Owner name: D.S.B. N.V. Effective date: 19960430 |