AU2014259525B2 - A transcriptomic biomarker of myocarditis - Google Patents
A transcriptomic biomarker of myocarditis Download PDFInfo
- Publication number
- AU2014259525B2 AU2014259525B2 AU2014259525A AU2014259525A AU2014259525B2 AU 2014259525 B2 AU2014259525 B2 AU 2014259525B2 AU 2014259525 A AU2014259525 A AU 2014259525A AU 2014259525 A AU2014259525 A AU 2014259525A AU 2014259525 B2 AU2014259525 B2 AU 2014259525B2
- Authority
- AU
- Australia
- Prior art keywords
- protein
- cdna
- nucleic acid
- clone
- domain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 208000009525 Myocarditis Diseases 0.000 title claims abstract description 81
- 239000000090 biomarker Substances 0.000 title claims description 84
- 108090000623 proteins and genes Proteins 0.000 claims description 191
- 150000007523 nucleic acids Chemical class 0.000 claims description 87
- 210000004027 cell Anatomy 0.000 claims description 84
- 238000000034 method Methods 0.000 claims description 77
- 102000039446 nucleic acids Human genes 0.000 claims description 76
- 108020004707 nucleic acids Proteins 0.000 claims description 76
- 102000004169 proteins and genes Human genes 0.000 claims description 75
- 230000014509 gene expression Effects 0.000 claims description 68
- 235000018102 proteins Nutrition 0.000 claims description 64
- 230000000295 complement effect Effects 0.000 claims description 47
- 101000946843 Homo sapiens T-cell surface glycoprotein CD8 alpha chain Proteins 0.000 claims description 42
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 claims description 42
- 239000002299 complementary DNA Substances 0.000 claims description 37
- 108700028369 Alleles Proteins 0.000 claims description 34
- 102000006479 Heterogeneous-Nuclear Ribonucleoproteins Human genes 0.000 claims description 32
- 108010019372 Heterogeneous-Nuclear Ribonucleoproteins Proteins 0.000 claims description 32
- 238000001514 detection method Methods 0.000 claims description 25
- 238000002493 microarray Methods 0.000 claims description 25
- 102100021868 Calnexin Human genes 0.000 claims description 22
- 108010056891 Calnexin Proteins 0.000 claims description 22
- 102000015656 Activating transcription factor 7-interacting proteins Human genes 0.000 claims description 21
- 108050004962 Activating transcription factor 7-interacting proteins Proteins 0.000 claims description 21
- 102000018757 Apolipoprotein L1 Human genes 0.000 claims description 21
- 108010052469 Apolipoprotein L1 Proteins 0.000 claims description 21
- 102000003911 Thyrotropin Receptors Human genes 0.000 claims description 21
- 108090000253 Thyrotropin Receptors Proteins 0.000 claims description 21
- 102100040244 Trinucleotide repeat-containing gene 6B protein Human genes 0.000 claims description 21
- 101710087261 Trinucleotide repeat-containing gene 6B protein Proteins 0.000 claims description 21
- 102100024659 Zinc finger protein 337 Human genes 0.000 claims description 21
- 101710146974 Zinc finger protein 337 Proteins 0.000 claims description 21
- 102000040107 cytokine receptor-like factor 3 family Human genes 0.000 claims description 21
- 108091056886 cytokine receptor-like factor 3 family Proteins 0.000 claims description 21
- 238000003745 diagnosis Methods 0.000 claims description 20
- 238000009396 hybridization Methods 0.000 claims description 20
- 238000000338 in vitro Methods 0.000 claims description 20
- 238000004458 analytical method Methods 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 19
- 230000027455 binding Effects 0.000 claims description 18
- 238000009739 binding Methods 0.000 claims description 18
- 239000012472 biological sample Substances 0.000 claims description 18
- 238000000018 DNA microarray Methods 0.000 claims description 16
- 238000012360 testing method Methods 0.000 claims description 16
- 102100028735 Dachshund homolog 1 Human genes 0.000 claims description 15
- 101000915055 Homo sapiens Dachshund homolog 1 Proteins 0.000 claims description 15
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 14
- 239000011701 zinc Substances 0.000 claims description 14
- 229910052725 zinc Inorganic materials 0.000 claims description 14
- 102100025705 Centrosomal protein of 170 kDa protein B Human genes 0.000 claims description 13
- 102100024020 Guanine nucleotide-binding protein-like 1 Human genes 0.000 claims description 13
- 101710147094 Guanine nucleotide-binding protein-like 1 Proteins 0.000 claims description 13
- 101000983874 Homo sapiens Centrosomal protein of 170 kDa protein B Proteins 0.000 claims description 13
- 101000605518 Homo sapiens Kallikrein-15 Proteins 0.000 claims description 13
- 101001004868 Homo sapiens Leucine-rich repeat-containing protein 27 Proteins 0.000 claims description 13
- 101000978471 Homo sapiens Mast cell-expressed membrane protein 1 Proteins 0.000 claims description 13
- 101000972278 Homo sapiens Mucin-6 Proteins 0.000 claims description 13
- 101000605534 Homo sapiens Prostate-specific antigen Proteins 0.000 claims description 13
- 101000591115 Homo sapiens RNA-binding protein Musashi homolog 1 Proteins 0.000 claims description 13
- 101000918926 Homo sapiens Sphingolipid delta(4)-desaturase/C4-monooxygenase DES2 Proteins 0.000 claims description 13
- 101000658071 Homo sapiens Splicing factor U2AF 65 kDa subunit Proteins 0.000 claims description 13
- 101000628527 Homo sapiens Sulfotransferase 4A1 Proteins 0.000 claims description 13
- 108010044467 Isoenzymes Proteins 0.000 claims description 13
- 108010003046 KSR-1 protein kinase Proteins 0.000 claims description 13
- 102100038301 Kallikrein-15 Human genes 0.000 claims description 13
- 102100023969 Keratin, type II cytoskeletal 78 Human genes 0.000 claims description 13
- 101710083630 Keratin, type II cytoskeletal 78 Proteins 0.000 claims description 13
- 102100021001 Kinase suppressor of Ras 1 Human genes 0.000 claims description 13
- 102100025948 Leucine-rich repeat-containing protein 27 Human genes 0.000 claims description 13
- 102100023725 Mast cell-expressed membrane protein 1 Human genes 0.000 claims description 13
- 102100022493 Mucin-6 Human genes 0.000 claims description 13
- 102100038358 Prostate-specific antigen Human genes 0.000 claims description 13
- 102100034026 RNA-binding protein Musashi homolog 1 Human genes 0.000 claims description 13
- 102100023008 Single-stranded DNA-binding protein 3 Human genes 0.000 claims description 13
- 101710141937 Single-stranded DNA-binding protein 3 Proteins 0.000 claims description 13
- 102100029473 Sphingolipid delta(4)-desaturase/C4-monooxygenase DES2 Human genes 0.000 claims description 13
- 102100035040 Splicing factor U2AF 65 kDa subunit Human genes 0.000 claims description 13
- 102100026707 Sulfotransferase 4A1 Human genes 0.000 claims description 13
- 102100035146 Transcriptional enhancer factor TEF-4 Human genes 0.000 claims description 13
- 101710152982 Transcriptional enhancer factor TEF-4 Proteins 0.000 claims description 13
- 101710087833 Tubulin-folding cofactor D Proteins 0.000 claims description 13
- 102100030290 Tubulin-specific chaperone D Human genes 0.000 claims description 13
- 101710194698 Tubulin-specific chaperone D Proteins 0.000 claims description 13
- 125000000311 mannosyl group Chemical group C1([C@@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 claims description 13
- 102100023503 Chloride intracellular channel protein 5 Human genes 0.000 claims description 11
- 102000010091 Cold shock domains Human genes 0.000 claims description 11
- 108050001774 Cold shock domains Proteins 0.000 claims description 11
- 102100028907 Cullin-4A Human genes 0.000 claims description 11
- 102100029587 DDB1- and CUL4-associated factor 6 Human genes 0.000 claims description 11
- 102100030796 E3 ubiquitin-protein ligase rififylin Human genes 0.000 claims description 11
- 102100028146 F-box/WD repeat-containing protein 2 Human genes 0.000 claims description 11
- 101000906624 Homo sapiens Chloride intracellular channel protein 5 Proteins 0.000 claims description 11
- 101000916245 Homo sapiens Cullin-4A Proteins 0.000 claims description 11
- 101000917420 Homo sapiens DDB1- and CUL4-associated factor 6 Proteins 0.000 claims description 11
- 101000703348 Homo sapiens E3 ubiquitin-protein ligase rififylin Proteins 0.000 claims description 11
- 101001060245 Homo sapiens F-box/WD repeat-containing protein 2 Proteins 0.000 claims description 11
- 101000972282 Homo sapiens Mucin-5AC Proteins 0.000 claims description 11
- 101000650158 Homo sapiens NEDD4-like E3 ubiquitin-protein ligase WWP1 Proteins 0.000 claims description 11
- 101001137535 Homo sapiens Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 Proteins 0.000 claims description 11
- 101001132652 Homo sapiens Retinoic acid receptor responder protein 2 Proteins 0.000 claims description 11
- 101000629631 Homo sapiens Sorbin and SH3 domain-containing protein 1 Proteins 0.000 claims description 11
- 101000834948 Homo sapiens Tomoregulin-2 Proteins 0.000 claims description 11
- 101001138544 Homo sapiens UMP-CMP kinase Proteins 0.000 claims description 11
- 102100022496 Mucin-5AC Human genes 0.000 claims description 11
- 102100027550 NEDD4-like E3 ubiquitin-protein ligase WWP1 Human genes 0.000 claims description 11
- 102100021007 Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 Human genes 0.000 claims description 11
- 102100033914 Retinoic acid receptor responder protein 2 Human genes 0.000 claims description 11
- 102100026834 Sorbin and SH3 domain-containing protein 1 Human genes 0.000 claims description 11
- 102100026160 Tomoregulin-2 Human genes 0.000 claims description 11
- 102100020797 UMP-CMP kinase Human genes 0.000 claims description 11
- 102100035815 Zinc finger protein 623 Human genes 0.000 claims description 11
- 101710144044 Zinc finger protein 623 Proteins 0.000 claims description 11
- 101000788513 Homo sapiens TBC1 domain family member 25 Proteins 0.000 claims description 10
- 102100025231 TBC1 domain family member 25 Human genes 0.000 claims description 10
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 claims description 9
- 238000012549 training Methods 0.000 claims description 8
- 102100040799 AN1-type zinc finger protein 3 Human genes 0.000 claims description 7
- 101000964568 Homo sapiens AN1-type zinc finger protein 3 Proteins 0.000 claims description 7
- 230000004570 RNA-binding Effects 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 238000010200 validation analysis Methods 0.000 claims description 3
- 238000002790 cross-validation Methods 0.000 claims description 2
- 230000002018 overexpression Effects 0.000 claims 2
- 208000019622 heart disease Diseases 0.000 abstract description 30
- 239000000104 diagnostic biomarker Substances 0.000 abstract description 3
- 239000000523 sample Substances 0.000 description 83
- 239000012634 fragment Substances 0.000 description 27
- 150000001875 compounds Chemical class 0.000 description 26
- 108020004999 messenger RNA Proteins 0.000 description 26
- 238000003556 assay Methods 0.000 description 24
- 208000022368 idiopathic cardiomyopathy Diseases 0.000 description 23
- 125000003729 nucleotide group Chemical group 0.000 description 22
- 239000002773 nucleotide Substances 0.000 description 21
- 102000004196 processed proteins & peptides Human genes 0.000 description 20
- 108090000765 processed proteins & peptides Proteins 0.000 description 20
- 239000013598 vector Substances 0.000 description 20
- 108091023037 Aptamer Proteins 0.000 description 19
- 239000003550 marker Substances 0.000 description 19
- 239000002157 polynucleotide Substances 0.000 description 19
- 230000000694 effects Effects 0.000 description 18
- 102000040430 polynucleotide Human genes 0.000 description 18
- 108091033319 polynucleotide Proteins 0.000 description 18
- 210000001519 tissue Anatomy 0.000 description 18
- 238000003199 nucleic acid amplification method Methods 0.000 description 17
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 16
- 108091034117 Oligonucleotide Proteins 0.000 description 16
- 230000003321 amplification Effects 0.000 description 16
- 239000003795 chemical substances by application Substances 0.000 description 16
- 239000003814 drug Substances 0.000 description 15
- 229920001184 polypeptide Polymers 0.000 description 13
- 102000004190 Enzymes Human genes 0.000 description 12
- 108090000790 Enzymes Proteins 0.000 description 12
- 238000003491 array Methods 0.000 description 12
- 229940088598 enzyme Drugs 0.000 description 12
- 206010019280 Heart failures Diseases 0.000 description 11
- 239000000427 antigen Substances 0.000 description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- 230000001225 therapeutic effect Effects 0.000 description 11
- 108020004414 DNA Proteins 0.000 description 10
- 150000001413 amino acids Chemical class 0.000 description 10
- 230000000875 corresponding effect Effects 0.000 description 10
- 210000000130 stem cell Anatomy 0.000 description 10
- 108091007433 antigens Proteins 0.000 description 9
- 102000036639 antigens Human genes 0.000 description 9
- 201000010099 disease Diseases 0.000 description 9
- 229940079593 drug Drugs 0.000 description 9
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 7
- 238000001574 biopsy Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 238000002372 labelling Methods 0.000 description 7
- 150000003384 small molecules Chemical class 0.000 description 7
- 102100026926 60S ribosomal protein L4 Human genes 0.000 description 6
- 102100021953 Carboxypeptidase Z Human genes 0.000 description 6
- 108010043471 Core Binding Factor Alpha 2 Subunit Proteins 0.000 description 6
- 102100027893 Homeobox protein Nkx-2.1 Human genes 0.000 description 6
- 102100025373 Runt-related transcription factor 1 Human genes 0.000 description 6
- 108010057966 Thyroid Nuclear Factor 1 Proteins 0.000 description 6
- 108010053786 carboxypeptidase Z Proteins 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000003752 polymerase chain reaction Methods 0.000 description 6
- -1 rRNA Proteins 0.000 description 6
- 108090000893 ribosomal protein L4 Proteins 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 208000031229 Cardiomyopathies Diseases 0.000 description 5
- 238000002123 RNA extraction Methods 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 210000001185 bone marrow Anatomy 0.000 description 5
- 230000000747 cardiac effect Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000012258 culturing Methods 0.000 description 4
- 238000002405 diagnostic procedure Methods 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- 210000002216 heart Anatomy 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 239000003147 molecular marker Substances 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229940124597 therapeutic agent Drugs 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 3
- 102100036779 Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 3 Human genes 0.000 description 3
- 102100038080 B-cell receptor CD22 Human genes 0.000 description 3
- 208000024172 Cardiovascular disease Diseases 0.000 description 3
- 102100024045 Cell adhesion molecule 4 Human genes 0.000 description 3
- 102100021965 Coiled-coil domain-containing protein 32 Human genes 0.000 description 3
- 102100033601 Collagen alpha-1(I) chain Human genes 0.000 description 3
- 102100034976 Cystathionine beta-synthase Human genes 0.000 description 3
- 108010073644 Cystathionine beta-synthase Proteins 0.000 description 3
- 102100037794 Diacylglycerol lipase-beta Human genes 0.000 description 3
- 101710114381 Diacylglycerol lipase-beta Proteins 0.000 description 3
- 102100031766 Excitatory amino acid transporter 5 Human genes 0.000 description 3
- 102100037577 FERM, ARHGEF and pleckstrin domain-containing protein 2 Human genes 0.000 description 3
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 3
- 108090000031 Hedgehog Proteins Proteins 0.000 description 3
- 102000003693 Hedgehog Proteins Human genes 0.000 description 3
- 102100032508 Histamine H3 receptor Human genes 0.000 description 3
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 3
- 101000928222 Homo sapiens Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 3 Proteins 0.000 description 3
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 description 3
- 101000910447 Homo sapiens Cell adhesion molecule 4 Proteins 0.000 description 3
- 101000897095 Homo sapiens Coiled-coil domain-containing protein 32 Proteins 0.000 description 3
- 101000945357 Homo sapiens Collagen alpha-1(I) chain Proteins 0.000 description 3
- 101000866606 Homo sapiens Excitatory amino acid transporter 5 Proteins 0.000 description 3
- 101001028283 Homo sapiens FERM, ARHGEF and pleckstrin domain-containing protein 2 Proteins 0.000 description 3
- 101000746373 Homo sapiens Granulocyte-macrophage colony-stimulating factor Proteins 0.000 description 3
- 101001016833 Homo sapiens Histamine H3 receptor Proteins 0.000 description 3
- 101000580021 Homo sapiens Inactive rhomboid protein 2 Proteins 0.000 description 3
- 101001000784 Homo sapiens Integral membrane protein GPR137 Proteins 0.000 description 3
- 101000957106 Homo sapiens Mitotic spindle assembly checkpoint protein MAD1 Proteins 0.000 description 3
- 101000623713 Homo sapiens Motile sperm domain-containing protein 3 Proteins 0.000 description 3
- 101000953653 Homo sapiens Neurosecretory protein VGF Proteins 0.000 description 3
- 101001121506 Homo sapiens Protein odd-skipped-related 2 Proteins 0.000 description 3
- 101000795018 Homo sapiens Putative trypsin-6 Proteins 0.000 description 3
- 101000936731 Homo sapiens Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 Proteins 0.000 description 3
- 101000628647 Homo sapiens Serine/threonine-protein kinase 24 Proteins 0.000 description 3
- 101000987317 Homo sapiens Serine/threonine-protein kinase PAK 1 Proteins 0.000 description 3
- 101000831928 Homo sapiens Stomatin-like protein 1 Proteins 0.000 description 3
- 101000663036 Homo sapiens Transmembrane and coiled-coil domains protein 2 Proteins 0.000 description 3
- 101000830563 Homo sapiens Trinucleotide repeat-containing gene 18 protein Proteins 0.000 description 3
- 101000830205 Homo sapiens Tripartite motif-containing protein 66 Proteins 0.000 description 3
- 101000709986 Homo sapiens Uncharacterized protein C7orf50 Proteins 0.000 description 3
- 101000978303 Homo sapiens Uncharacterized protein CCDC198 Proteins 0.000 description 3
- 101000667116 Homo sapiens Vacuolar protein sorting-associated protein 13D Proteins 0.000 description 3
- 101001074035 Homo sapiens Zinc finger protein GLI2 Proteins 0.000 description 3
- 102100027537 Inactive rhomboid protein 2 Human genes 0.000 description 3
- 102100035568 Integral membrane protein GPR137 Human genes 0.000 description 3
- 102100028350 Keratin-associated protein 4-5 Human genes 0.000 description 3
- 101710184814 Keratin-associated protein 4-5 Proteins 0.000 description 3
- 102100027020 Latent-transforming growth factor beta-binding protein 3 Human genes 0.000 description 3
- 101710178976 Latent-transforming growth factor beta-binding protein 3 Proteins 0.000 description 3
- 102100026930 Mitogen-activated protein kinase 13 Human genes 0.000 description 3
- 108700015928 Mitogen-activated protein kinase 13 Proteins 0.000 description 3
- 102100038828 Mitotic spindle assembly checkpoint protein MAD1 Human genes 0.000 description 3
- 102100023091 Motile sperm domain-containing protein 3 Human genes 0.000 description 3
- 108010013731 Myelin-Associated Glycoprotein Proteins 0.000 description 3
- 102100021831 Myelin-associated glycoprotein Human genes 0.000 description 3
- 102100027673 NCK-interacting protein with SH3 domain Human genes 0.000 description 3
- 101710203469 NCK-interacting protein with SH3 domain Proteins 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- 102100037571 Neurosecretory protein VGF Human genes 0.000 description 3
- 238000000636 Northern blotting Methods 0.000 description 3
- 108091005461 Nucleic proteins Proteins 0.000 description 3
- 102100025469 Nyctalopin Human genes 0.000 description 3
- 101710126674 Nyctalopin Proteins 0.000 description 3
- 108700020796 Oncogene Proteins 0.000 description 3
- 102000007079 Peptide Fragments Human genes 0.000 description 3
- 108010033276 Peptide Fragments Proteins 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 102100040168 Pre-B-cell leukemia transcription factor 2 Human genes 0.000 description 3
- 101710170162 Pre-B-cell leukemia transcription factor 2 Proteins 0.000 description 3
- 102100022988 Protein arginine N-methyltransferase 2 Human genes 0.000 description 3
- 102100025660 Protein odd-skipped-related 2 Human genes 0.000 description 3
- 102100029629 Putative trypsin-6 Human genes 0.000 description 3
- 102100027697 Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 Human genes 0.000 description 3
- 102100026764 Serine/threonine-protein kinase 24 Human genes 0.000 description 3
- 102100027910 Serine/threonine-protein kinase PAK 1 Human genes 0.000 description 3
- 102000004598 Small Nuclear Ribonucleoproteins Human genes 0.000 description 3
- 108010003165 Small Nuclear Ribonucleoproteins Proteins 0.000 description 3
- 102100024173 Stomatin-like protein 1 Human genes 0.000 description 3
- 108060008245 Thrombospondin Proteins 0.000 description 3
- 102000002938 Thrombospondin Human genes 0.000 description 3
- 102100037721 Transmembrane and coiled-coil domains protein 2 Human genes 0.000 description 3
- 102100024597 Trinucleotide repeat-containing gene 18 protein Human genes 0.000 description 3
- 102100025033 Tripartite motif-containing protein 66 Human genes 0.000 description 3
- 102100034425 Uncharacterized protein C7orf50 Human genes 0.000 description 3
- 102100023656 Uncharacterized protein CCDC198 Human genes 0.000 description 3
- 102100039110 Vacuolar protein sorting-associated protein 13D Human genes 0.000 description 3
- 102100023555 Zinc finger protein 135 Human genes 0.000 description 3
- 101710145579 Zinc finger protein 135 Proteins 0.000 description 3
- 102100035558 Zinc finger protein GLI2 Human genes 0.000 description 3
- 239000000556 agonist Substances 0.000 description 3
- 210000001124 body fluid Anatomy 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000000925 erythroid effect Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000003018 immunoassay Methods 0.000 description 3
- 238000003364 immunohistochemistry Methods 0.000 description 3
- 238000007901 in situ hybridization Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 210000003097 mucus Anatomy 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004393 prognosis Methods 0.000 description 3
- 108010032697 protein arginine methyltransferase 2 Proteins 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 108010008314 tyrosine-tubulin Proteins 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 208000004476 Acute Coronary Syndrome Diseases 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 206010002383 Angina Pectoris Diseases 0.000 description 2
- 208000020446 Cardiac disease Diseases 0.000 description 2
- 206010007558 Cardiac failure chronic Diseases 0.000 description 2
- 206010007559 Cardiac failure congestive Diseases 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- 208000002330 Congenital Heart Defects Diseases 0.000 description 2
- 208000002251 Dissecting Aneurysm Diseases 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 102100021658 Embigin Human genes 0.000 description 2
- 108700039887 Essential Genes Proteins 0.000 description 2
- 208000021662 Fiedler myocarditis Diseases 0.000 description 2
- 101000896275 Homo sapiens Embigin Proteins 0.000 description 2
- 101000986265 Homo sapiens Protein MTSS 1 Proteins 0.000 description 2
- 101000984533 Homo sapiens Ribosome biogenesis protein BMS1 homolog Proteins 0.000 description 2
- 108010063954 Mucins Proteins 0.000 description 2
- 102000015728 Mucins Human genes 0.000 description 2
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 2
- 238000010222 PCR analysis Methods 0.000 description 2
- 102100028951 Protein MTSS 1 Human genes 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- 206010049418 Sudden Cardiac Death Diseases 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 208000007474 aortic aneurysm Diseases 0.000 description 2
- 206010002895 aortic dissection Diseases 0.000 description 2
- 206010003119 arrhythmia Diseases 0.000 description 2
- 230000006793 arrhythmia Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 208000028831 congenital heart disease Diseases 0.000 description 2
- 208000029078 coronary artery disease Diseases 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 238000002224 dissection Methods 0.000 description 2
- 230000003828 downregulation Effects 0.000 description 2
- 238000007876 drug discovery Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010195 expression analysis Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 238000012224 gene deletion Methods 0.000 description 2
- 238000001476 gene delivery Methods 0.000 description 2
- 230000003394 haemopoietic effect Effects 0.000 description 2
- 230000004217 heart function Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 2
- 238000010208 microarray analysis Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 238000007899 nucleic acid hybridization Methods 0.000 description 2
- 239000002751 oligonucleotide probe Substances 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 239000013610 patient sample Substances 0.000 description 2
- 208000008494 pericarditis Diseases 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000010837 poor prognosis Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 210000002307 prostate Anatomy 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 238000003757 reverse transcription PCR Methods 0.000 description 2
- 210000000582 semen Anatomy 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- 108020004463 18S ribosomal RNA Proteins 0.000 description 1
- 108020005096 28S Ribosomal RNA Proteins 0.000 description 1
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 206010001497 Agitation Diseases 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 206010056370 Congestive cardiomyopathy Diseases 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 108020003215 DNA Probes Proteins 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 201000010046 Dilated cardiomyopathy Diseases 0.000 description 1
- 238000000729 Fisher's exact test Methods 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101001033889 Homo sapiens Inositol 1,4,5-trisphosphate receptor-interacting protein-like 2 Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 206010062767 Hypophysitis Diseases 0.000 description 1
- 102100039741 Inositol 1,4,5-trisphosphate receptor-interacting protein-like 2 Human genes 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 108010066717 Q beta Replicase Proteins 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 1
- 108091032917 Transfer-messenger RNA Proteins 0.000 description 1
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 1
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 238000002820 assay format Methods 0.000 description 1
- 210000001130 astrocyte Anatomy 0.000 description 1
- 230000037429 base substitution Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 210000000013 bile duct Anatomy 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000012148 binding buffer Substances 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 108700021042 biotin binding protein Proteins 0.000 description 1
- 102000043871 biotin binding protein Human genes 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000003593 chromogenic compound Substances 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000002559 cytogenic effect Effects 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003796 diagnosis of exclusion Methods 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000009274 differential gene expression Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- BFMYDTVEBKDAKJ-UHFFFAOYSA-L disodium;(2',7'-dibromo-3',6'-dioxido-3-oxospiro[2-benzofuran-1,9'-xanthene]-4'-yl)mercury;hydrate Chemical compound O.[Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C([O-])C([Hg])=C1OC1=C2C=C(Br)C([O-])=C1 BFMYDTVEBKDAKJ-UHFFFAOYSA-L 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000000857 drug effect Effects 0.000 description 1
- 230000008406 drug-drug interaction Effects 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 210000004696 endometrium Anatomy 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000002875 fluorescence polarization Methods 0.000 description 1
- UIWYJDYFSGRHKR-AHCXROLUSA-N gadolinium-153 Chemical compound [153Gd] UIWYJDYFSGRHKR-AHCXROLUSA-N 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000003500 gene array Methods 0.000 description 1
- 238000011223 gene expression profiling Methods 0.000 description 1
- 230000004547 gene signature Effects 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000005003 heart tissue Anatomy 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 238000010231 histologic analysis Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 238000002991 immunohistochemical analysis Methods 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000007834 ligase chain reaction Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000031864 metaphase Effects 0.000 description 1
- 238000012775 microarray technology Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 210000001087 myotubule Anatomy 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 230000036963 noncompetitive effect Effects 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 230000030648 nucleus localization Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000002966 oligonucleotide array Methods 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 210000002741 palatine tonsil Anatomy 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 210000003681 parotid gland Anatomy 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 210000003635 pituitary gland Anatomy 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 231100000683 possible toxicity Toxicity 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 238000000164 protein isolation Methods 0.000 description 1
- 210000000449 purkinje cell Anatomy 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 231100000188 sister chromatid exchange Toxicity 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 210000001138 tear Anatomy 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 230000002446 thrombocytic effect Effects 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 210000004926 tubular epithelial cell Anatomy 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000002861 ventricular Effects 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
Landscapes
- Enzymes And Modification Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Molecular signatures that function as very sensitive diagnostic biomarker for myocarditis, heart disease and disorders thereof, are identified.
Description
A TRANSCRIPTOMIC BIOMARKER OF MYOCARDITIS
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
This invention was made with U.S. government support under grant numbers M400-217-2954 and RO-1 HL-65455 both awarded by the National Institutes of Health. The U.S. government may have certain rights in the invention.
FIELD OF THE INVENTION
This invention relates to biomarkers of heart disease, myocarditis, novel drug therapeutic targets, compositions and methods of predicting, diagnosing and treating heart diseases and related disorders thereof. More specifically, the invention concerns methods and compositions based on unique molecular signatures associated with various aspects of cardiac diseases and disorders.
BACKGROUND
The current approach to the treatment of patients with heart failure due to impaired cardiac function lacks individualization. This issue is of increasing importance as the number of classes of medicine for heart failure increase. Moreover there is growing appreciation that there may be utility to cause specific therapies. Accurate biomarkers are needed to refine diagnostic accuracy so as to enhance the application of personalized medicine in the field of heart failure.
There is a need in the art to provide early diagnosis and prognosis of heart disease. Myocarditis causes a significant minority of depressed heart function and thus causes heart failure and premature and unexpected sudden cardiac death. Myocarditis affects humans throughout life including children. The current diagnostic approach using histologic analysis of heart tissue obtained by biopsy lacks sensitivity and specificity. Given high risk of developing serious cardiac complications from myocarditis and the availability of disease specific therapies, there is a need for better biomarkers, to adjust treatment appropriately and early enough.
SUMMARY
Molecular signatures that function as very sensitive diagnostic biomarker for myocarditis, heart disease and disorders thereof, were identified.
In one aspect of the invention, there is provided use of nucleic acid molecules consisting of nucleic acid sequences of: 1553145_at (hypothetical protein FLJ39653), 1553575_at, 1557236_at (apolipoprotein L, 6), 1558142_at (trinucleotide repeat containing 6B), 1560752_at (F-box and WD-40 domain protein 2), 1565614_at (Zinc finger protein 337), 1567100_at (Dachshund homolog I (Drosophila)), 200068_s_at (calnexin /// calnexin), 20103 l_s_at (heterogeneous nuclear ribonucleoprotein HI (H)), 202646_s_at (cold shock domain containing El, RNA- binding), 205758_at (CD8a molecule /// CD8a molecule), 206188_at (zinc finger protein 623), 212637_s_at (WW domain containing E3 ubiquitin protein ligase 1), 212920_ at, 213317_ at (chloride intracellular channel 5), 213619_at (Heterogeneous nuclear ribonucleoprotein HI (H)), 215443_at (thyroid stimulating hormone receptor), 216198_at (activating transcription factor 7 interacting protein), 217870_s_at (cytidylate kinase), 218087_s_at (sorbin and SH3 domain containing 1), 222145_at (CDNA: FLJ23572 fis, clone LNG12403), 223577_x_at (PRO1073 protein), 22432l_at (transmembrane protein with EGF-like and two follistatin-like domains 2), 224373_s_at (IQ motif and WD repeats 1), 224644_at (CDNA clone IMAGE:5278517), 226173_at (ornithine aminotransferase-like 1), 226773_at (CDNA FLJ35131 fis, clone PLACE6008824), 226880_at (nuclear casein kinase and cyclin-dependent kinase substrate 1), 228980 at (ring finger and FYVE-like domain containing 1), 229569_ at (CDNA clone IMAGE:5263455), 231735_s_at (PRO1073 protein), 233765_at (Hypothetical LOCI97135), 235803_at (Cytokine receptor-like factor 3), 23613 l_at (CDNA clone IMAGE:6622963), 236953_s_at (similar to RIKEN cDNA 8030451K01), 240544_at (Zinc finger, AN 1-type domain 3), 24097 l_x_at (Cullin 4A), and 244042_x_at (Similar to retinoic acid receptor responder (tazarotene induced) 2) in the manufacture of a molecular composition for the in vitro diagnosis of myocarditis.
In another aspect, there is provided use of a molecular composition in the in vitro diagnosis of myocarditis, said composition comprising nucleic acid molecules consisting of nucleic acid sequences of: 1553145_at (hypothetical protein FLJ39653), 1553575_at, 1557236_at (apolipoprotein L, 6), 1558142_at (trinucleotide repeat containing 6B), 1560752_at (F-box and WD-40 domain protein 2), 1565614_at (Zinc finger protein 337), 1567100_at (Dachshund homolog I (Drosophila)), 200068_s_at (calnexin /// calnexin), 201031_s_at (heterogeneous nuclear ribonucleoprotein HI (H)), 202646_s_at (cold shock domain containing El, RNA- binding), 205758_at (CD8a molecule /// CD8a molecule), 206188_at (zinc finger protein 623), 212637_s_at (WW domain containing E3 ubiquitin protein ligase 1), 212920_ at, 213317_ at (chloride intracellular channel 5), 213619_at (Heterogeneous nuclear ribonucleoprotein HI (H)), 215443_at (thyroid stimulating hormone receptor), 216198_at (activating transcription factor 7 interacting protein), 217870_s_at (cytidylate kinase), 218087_s_at (sorbin and SH3 domain containing 1), 222145_at (CDNA: FLJ23572 fis, clone LNG12403), 223577_x_at (PRO1073 protein), 224321_at (transmembrane protein with EGF-like and two follistatin-like domains 2), 224373_s_at (IQ motif and WD repeats 1), 224644_at (CDNA clone IMAGE:5278517), 226173_at (ornithine aminotransferase-like 1), 226773_at (CDNA FLJ35131 fis, clone PLACE6008824), 226880_at (nuclear casein kinase and cyclin-dependent kinase substrate 1), 228980 at (ring finger and FYVE-like domain containing 1), 229569_ at (CDNA clone IMAGE:5263455), 231735_s_at (PRO1073 protein), 233765_at (Hypothetical LOCI97135), 235803_at (Cytokine receptor-like factor 3), 23613 l_at (CDNA clone IMAGE:6622963), 236953_s_at (similar to RIKEN cDNA 8030451K01), 240544_at (Zinc finger, ANl-type domain 3), 24097 l_x_at (Cullin 4A), and 244042_x_at (Similar to retinoic acid receptor responder (tazarotene induced) 2).
In another aspect, there is provided use of a transcriptomic biomarker consisting of nucleic acid molecules complementary to: 1553212_at (keratin 78), 1557236_at (apolipoprotein L), 1558142_at (trinucleotide repeat containing 6B), 1558484_s_at (leucine rich repeat containing 27), 1565614_at (Zinc finger protein 337), 1565662_at (Mucin 6, oligomeric mucus/gel-forming), 1567100_at (Dachshund homolog 1 (Drosophila)), 203307_at (guanine nucleotide binding protein-like 1), 205758_at (CD8a molecule /// CD8a molecule), 206333_at (musashi homolog 1 (Drosophila)), 212920_at, 213242_x_at (KIAA0284), 213619_at (Heterogeneous nuclear ribonucleoprotein HI (H)), 213770_at (kinase suppressor of ras 1), 214171 _s_at (U2 small nuclear RNA auxiliary factor 2), 215443_at (thyroid stimulating hormone receptor), 216198_at (activating transcription factor 7 interacting protein), 216427_ at (CDNA: FLJ22786 fis, clone KAIA2150), 217054_at (cDNA FLJ39484 fis, clone PROST2014925), 217182_at (mucin 5AC, oligomeric mucus/gel-forming), 217322_x_at, 219425_at (sulfotransferase family 4A, member 1), 222145_at (cDNA: FLJ23572 fis, clone LNG12403), 229191_at (tubulin folding cofactor D), 229569 at (cDNA clone IMAGE:5263455), 231629_x_at (Kallikrein-related peptidase 3), 233765_at (Hypothetical LOCI97135), 233794_at (Single stranded DNA binding protein 3), 233974_s_at (family with sequence similarity 129, member B), 234495_at (kallikrein-related peptidase 15), 235568_at (chromosome 19 open reading frame 59), 235803_at (Cytokine receptor-like factor 3), 236496_at (degenerative spermatocyte homolog 2, lipid desaturase (Drosophila)), 236953_s_at, 238445_x_at (mannosyl (alpha-1,6-)-glycoprotein beta-l,6-N-acetyl-glucosaminyltransferase, isozyme B), 239463 at (Transcribed locus), 240544_at (Zinc finger, ANI-type domain 3) and 243766_s_at (TEA domain family member 2), in the manufacture of a molecular composition for the in vitro diagnosis of myocarditis.
In another aspect, there is provided use of a transcriptomic biomarker in the in vitro diagnosis of myocarditis, said transcriptomic biomarker consisting of nucleic acid molecules complementary to: 1553212_at (keratin 78), 1557236_at (apolipoprotein L), 1558142_at (trinucleotide repeat containing 6B), 1558484_s_at (leucine rich repeat containing 27), 1565614_at (Zinc finger protein 337), 1565662_at (Mucin 6, oligomeric mucus/gel-forming), 1567100_at (Dachshund homolog 1 (Drosophila)), 203307_at (guanine nucleotide binding protein-like 1), 205758_at (CD8a molecule /// CD8a molecule), 206333_at (musashi homolog 1 (Drosophila)), 212920_at, 213242_x_at (KIAA0284), 213619_at (Heterogeneous nuclear ribonucleoprotein HI (H)), 213770_at (kinase suppressor of ras 1), 214171_s_at (U2 small nuclear RNA auxiliary factor 2), 215443_at (thyroid stimulating hormone receptor), 216198_at (activating transcription factor 7 interacting protein), 216427_ at (CDNA: FLJ22786 fis, clone KAIA2150), 217054_at (cDNA FLJ39484 fis, clone PROST2014925), 217182_at (mucin 5AC, oligomeric mucus/gel-forming), 217322_x_at, 219425_at (sulfotransferase family 4A, member 1), 222145_at (cDNA: FLJ23572 fis, clone LNG12403), 229191_at (tubulin folding cofactor D), 229569 at (cDNA clone IMAGE:5263455), 231629_x_at (Kallikrein-related peptidase 3), 233765_at (Hypothetical LOCI97135), 233794_at (Single stranded DNA binding protein 3), 233974_s_at (family with sequence similarity 129, member B), 234495_at (kallikrein-related peptidase 15), 235568_at (chromosome 19 open reading frame 59), 235803_at (Cytokine receptor-like factor 3), 236496_at (degenerative spermatocyte homolog 2, lipid desaturase (Drosophila)), 236953_s_at, 238445_x_at (mannosyl (alpha-l,6-)-glycoprotein beta-l,6-N-acetyl-glucosaminyltransferase, isozyme B), 239463 at (Transcribed locus), 240544_at (Zinc finger, ANI-type domain 3) and 243766_s_at (TEA domain family member 2).
In a preferred embodiment of the above uses, detection of the gene sequences, complementary sequences, alleles, and gene products thereof, is diagnostic of myocarditis.
In another preferred embodiment of the above uses, the gene sequences, complementary sequences, alleles, and gene products thereof, are over-expressed at levels by at least 10% to 75% in a cell or patient as compared to levels in a normal cell or normal subject.
In another aspect of the invention, there is provided a method of diagnosing myocarditis, comprising: generating from a patient a molecular signature, wherein the generating comprises measuring the expression of nucleic acid molecules comprising nucleic acid sequences: 1553145_at (hypothetical protein FLJ39653), 1553575_at, 1557236_at (apolipoprotein L, 6), 1558142_at (trinucleotide repeat containing 6B), 1560752_at (F-box and WD-40 domain protein 2), 1565614_at (Zinc finger protein 337), 1567100_at (Dachshund homolog I (Drosophila)), 200068_s_at (calnexin /// calnexin), 201031_s_at (heterogeneous nuclear ribonucleoprotein HI (H)), 202646_s_at (cold shock domain containing El, RNA-binding), 205758_at (CD8a molecule /// CD8a molecule), 206188_at (zinc finger protein 623), 212637_s_at (WW domain containing E3 ubiquitin protein ligase 1), 212920_ at, 213317_ at (chloride intracellular channel 5), 213619_at (Heterogeneous nuclear ribonucleoprotein HI (H)), 215443_at (thyroid stimulating hormone receptor), 216198_at (activating transcription factor 7 interacting protein), 217870_s_at (cytidylate kinase), 218087_s_at (sorbin and SH3 domain containing 1), 222145_at (CDNA: FLJ23572 fis, clone LNG12403), 223577_x_at (PRO1073 protein), 224321_at (transmembrane protein with EGF- like and two follistatin-like domains 2), 224373_s_at (IQ motif and WD repeats 1), 224644_at (CDNA clone IMAGE:5278517), 226173_at (ornithine aminotransferase-like 1), 226773_at (CDNA FLJ35131 fis, clone PLACE6008824), 226880_at (nuclear casein kinase and cyclin- dependent kinase substrate 1), 228980 at (ring finger and FYVE-like domain containing 1), 229569_ at (CDNA clone IMAGE:5263455), 231735_s_at (PRO1073 protein), 233765_at (Hypothetical LOCI97135), 235803_at (Cytokine receptor-like factor 3), 23613 l_at (CDNA clone IMAGE:6622963), 236953_s_at (similar to RIKEN cDNA 8030451K01), 240544_at (Zinc finger, AN 1-type domain 3), 24097 l_x_at (Cullin 4A) and 244042_x_at (Similar to retinoic acid receptor responder (tazarotene induced) 2); analyzing the generated molecular signature; and diagnosing whether or not the patient has myocarditis upon the analysis of the generated molecular signature.
In another aspect, there is provided use of a biochip in the in vitro diagnosis of myocarditis, said biochip comprising nucleic acid molecules hybridized to the biochip, wherein the nucleic acid molecules consist of: 1553212_at (keratin 78), 1557236_at (apolipoprotein L), 1558142_at (trinucleotide repeat containing 6B), 1558484_s_at (leucine rich repeat containing 27), 1565614_at (Zinc finger protein 337), 1565662_at (Mucin 6, oligomeric mucus/gel- forming), 1567100_at (Dachshund homolog 1 (Drosophila)), 203307_at (guanine nucleotide binding protein-like 1), 205758_at (CD8a molecule /// CD8a molecule), 206333_at (musashi homolog 1 (Drosophila)), 212920_at, 213242_x_at (KIAA0284), 213619_at (Heterogeneous nuclear ribonucleoprotein HI (H)), 213770_at (kinase suppressor of ras 1), 214171_s_at (U2 small nuclear RNA auxiliary factor 2), 215443_at (thyroid stimulating hormone receptor), 216198_at (activating transcription factor 7 interacting protein), 216427_ at (CDNA: FLJ22786 fis, clone KAIA2150), 217054_at (cDNA FLJ39484 fis, clone PROST2014925), 217182_at (mucin 5AC, oligomeric mucus/gel-forming), 217322_x_at, 219425_at (sulfotransferase family 4A, member 1), 222145_at (cDNA: FLJ23572 fis, clone LNG12403), 229191_at (tubulin folding cofactor D), 229569 at (cDNA clone IMAGE:5263455), 231629_x_at (Kallikrein-related peptidase 3), 233765_at (Hypothetical LOCI97135), 233794_at (Single stranded DNA binding protein 3), 233974_s_at (family with sequence similarity 129, member B), 234495_at (kallikrein- related peptidase 15), 235568_at (chromosome 19 open reading frame 59), 235803_at (Cytokine receptor-like factor 3), 236496_at (degenerative spermatocyte homolog 2, lipid desaturase (Drosophila)), 236953_s_at, 238445_x_at (mannosyl (alpha-l,6-)-glycoprotein beta-l,6-N- acetyl - glucosaminyltransferase, isozyme B), 239463 at (Transcribed locus), 240544_at (Zinc finger, ANI-type domain 3), 243766_s_at ( and TEA domain family member 2).
Other aspects of the invention are described infra.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention is pointed out with particularity in the appended claims. The above and further advantages of this invention may be better understood by referring to the following description taken in conjunction with the accompanying drawings, in which:
Figure 1 shows a SAM plot of samples from patients with idiopathic cardiomyopathy versus patients with myocarditis: Red color denotes genes that were significantly upregulated in patients with myocarditis, green color denotes genes that were significantly downregulated. The outer blue lines represent the positive and negative cutoff points that were chosen with the delta value. 134 genes were significantly different between the two groups, when a delta value of 1.41 was chosen (FDR=0.49). We reduced this subset of genes to 122 candidate genes with a q-value of 0% that we used for hierarchical clustering and PAM analysis.
Figure 2 shows a heatmap created by hierarchical clustering using 122 candidate genes: Samples from patients with myocarditis are labeled “Myo-”, samples from patients with idiopathic cardiomyopathy are labeled either with “GP-” or “BP-”. Each column represents a sample and each line corresponds to a gene, for which the IDs from Affymetrix are listed on the right side. For further details about the gene annotations see Table 1. A red color means low expression of the gene, whereas a blue color demonstrates high gene expression levels. Six samples were grouped wrong.
Figure 3 is a graph showing the misclassification error of the training set. The classifier was trained on 8 samples from patients with myocarditis and 25 samples from patients with idiopathic cardiomyopathy. After increasing the threshold to 3.2 and reducing the genes of the classifier to less than 22, the misclassification error increased dramatically.
Figure 4 is a graph showing results from the “39 genes classifier” for myocarditis: This graph visualizes the calculated probabilities for each class after the “39 genes molecular signature” was applied with a threshold of 2.6. The probability can be read from the y-axis. Group 1 represents the samples from patients with idiopathic cardiomyopathy, group 2 represents the samples from patients with myocarditis.
Figure 5 shows the nearest shrunken centroid of the “39 genes classifier”: The centroids were calculated in PAM from the average expression for each gene in each class divided by the within-class standard deviation for that gene. The nearest shrunken centroid classification “shrinks” each of the class centroids toward the overall centroid for all classes by the threshold. Nearest centroid classification takes the gene expression profile of a new sample, and compares it to each of these class centroids. The class whose centroid that it is closest to, in squared distance, is the predicted class for that new sample. Each line in the graph represents a gene. The red centroid characterizes group 1 (idiopathic cardiomyopathy), the green centroid characterizes group 2 (myocarditis). Upregulation is illustrated as a vector to the right, downregulation as a vector to the left on the graph.
Figure 6 shows a heatmap of the “39 genes transcriptomic biomarker”: This heatmap was created by the same unsupervised clustering method as figure 2.
Figure 7 shows the Principal Components Analysis (PCA) and various Cluster Algorithms in samples of myocarditis vs. other types of cardiomyopathy: To illustrate the contribution of each of the 122 genes (FC>1.2; q<0.1%) to every phenotype, we performed PCA (n=61). We used correlation matrix with genes as variables. Less significant genes are denoted with vectors close to the center and correspond to genes that were excluded using PAM analysis. Myocarditis samples were labeled with “M”, samples from patients with other forms of cardiomyopathy were labeled with “O”. Genes that were overexpressed are labeled with serial numbers and are clustered with the corresponding class. All myocarditis samples, except two, were clearly grouped together. We further tested the robustness of the reduced set of 39 genes with 3 different types of clustering algorithms (Ward’s method, complete linkage and average linkage). Myocarditis samples are highlighted in red - incorrectly classified samples are encircled in blue. All methods achieved the same accuracy as PAM (n=33, 97% accuracy).
Figures 8A to 8J show Affymetrix IDS and corresponding probe sequences.
DETAILED DESCRIPTION
The invention comprises molecular signatures that function as a very sensitive diagnostic biomarker for heart failure, heart diseases, myocarditis, and other heart disorders. Myocarditis is a common disease that is estimated to cause up to 30% of dilated cardiomyopathy, even in patients initially asymptomatic. Myocarditis can also present as sudden cardiac death and affects individuals of all ages. In childhood, myocarditis causes a greater percentage of heart failure than in adulthood. The fact that the majority of viral induced cases pass in a clinically unapparent course, points out the significance of finding more reliable biomarkers than standard diagnostic tools which are currently available, e.g. ECG, cardiac enzymes and immunohistochemistry.
Current standard diagnostic tools for myocarditis (ECG, cardiac enzymes, immunohistochemistry) are not always reliable enough and many patients undergo clinically unapparent courses without getting treated. Especially in pediatrics it is crucial to detect myocarditis in an early stage as a fatal course has been observed many times in children.
Definitions in accordance with the present invention and as used herein, the following terms are defined with the following meanings, unless explicitly stated otherwise.
As used herein, “a”, “an,” and “the” include plural references unless the context clearly dictates otherwise.
As used herein, a “molecular signature” or “signature” or “biomarker” or “transcriptomic based biomarker” are used interchangeably herein and refers to all the biomolecules identified in Tables 1, 2, and 4. Thus, Table 1 comprising the biomolecules listed therein, represents one biomarker or molecular signature; Table 2 comprising the biomolecules listed therein, represents another one biomarker or molecular signature; and so forth. As more biomolecules are discovered, each newly identified biomolecules can be assigned to any one or more biomarker or molecular signature. Each biomolecule can also be removed, reassigned or reallocated to a molecular signature. Thus, in some embodiments the molecular signature comprises at least ten biomolecules. The ten biomolecules are selected from the genes identified herein, or from newly identified biomolecules. The biomarkers from Table 1 comprising the 38 upregulated genes is termed TBB-I for brevity. The biomarker comprising the biomolecules in Table 2 are termed TBB-II for brevity. The biomarker comprising the biomolecules in Table 4 is termed TBB-III for brevity. When making a diagnosis it is desirable to detect at least 10 or more biomolecules. Any one of TBB-I, TBB-II and TBB- III or combinations thereof can be used in the diagnosis of myocarditis. Any one of TBB-I, TBB-II and TBB- III or combinations thereof can be used in the diagnosis of myocarditis and idiopathic cardiomyopathy and differentiating between the two conditions.
The term "biomolecule" refers to DNA, RNA (including mRNA, rRNA, tRNA and tmRNA), nucleotides, nucleosides, analogs, polynucleotides, peptides and any combinations thereof. A base "position" as used herein refers to the location of a given base or nucleotide residue within a nucleic acid.
As used herein, the term "array" refers to an ordered spatial arrangement, particularly an arrangement of immobilized biomolecules.
As used herein, the term "addressable array" refers to an array wherein the individual elements have precisely defined x and y coordinates, so that a given element at a particular position in the array can be identified.
As used herein, the terms "probe" and "biomolecular probe" refer to a biomolecule used to detect a complementary biomolecule. Examples include antigens that detect antibodies, oligonucleotides that detect complimentary oligonucleotides, and ligands that detect receptors. Such probes are preferably immobilized on a microelectrode comprising a substrate.
As used herein, the terms "bioarray," "biochip" and "biochip array" refer to an ordered spatial arrangement of immobilized biomolecules on a microelectrode arrayed on a solid supporting substrate. Preferred probe molecules include aptamers, nucleic acids, oligonucleotides, peptides, ligands, antibodies and antigens; peptides and proteins are the most preferred probe species. Biochips, as used in the art, encompass substrates containing arrays or microarrays, preferably ordered arrays and most preferably ordered, addressable arrays, of biological molecules that comprise one member of a biological binding pair. Typically, such arrays are oligonucleotide arrays comprising a nucleotide sequence that is complementary to at least one sequence that may be or is expected to be present in a biological sample. Alternatively, and preferably, proteins, peptides or other small molecules can be arrayed in such biochips for performing, inter alia, immunological analyses (wherein the arrayed molecules are antigens) or assaying biological receptors (wherein the arrayed molecules are ligands, agonists or antagonists of said receptors).
Expression/amount of a gene, biomolecule, or biomarker in a first sample is at a level "greater than" the level in a second sample if the expression level/amount of the gene or biomarker in the first sample is at least about 1 time, 1.2 times, 1.5 times, 1.75 times, 2 times, 3 times , 4 times, 5 times, 6 times, 7 times, 8 times, 9 times, 10 times, 20 times, 30 times, the expression level/amount of the gene or biomarker in the second sample or a normal sample. Expression levels/amounts can be determined based on any suitable criterion known in the art, including but not limited to mRNA, cDNA, proteins, protein fragments and/or gene copy. Expression levels/amounts can be determined qualitatively and/or quantitatively.
By the term "modulate," it is meant that any of the mentioned activities, are, e.g., increased, enhanced, increased, agonized (acts as an agonist), promoted, decreased, reduced, suppressed blocked, or antagonized (acts as an agonist). Modulation can increase activity more than 1-fold, 2-fold, 3-fold, 5-fold, 10-fold, 100-fold, etc., over baseline values. Modulation can also decrease its activity below baseline values.
An "allele" or "variant" is an alternative form of a gene. Variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes that give rise to variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
The term, "complementary" means that two sequences are complementary when the sequence of one can bind to the sequence of the other in an anti-parallel sense wherein the 3'-end of each sequence binds to the 5'-end of the other sequence and each A, T(U), G, and C of one sequence is then aligned with a T(U), A, C, and G, respectively, of the other sequence. Normally, the complementary sequence of the oligonucleotide has at least 80% or 90%, preferably 95%, most preferably 100%, complementarity to a defined sequence. Preferably, alleles or variants thereof can be identified. A BLAST program also can be employed to assess such sequence identity.
The term "complementary sequence" as it refers to a polynucleotide sequence, relates to the base sequence in another nucleic acid molecule by the base-pairing rules. More particularly, the term or like term refers to the hybridization or base pairing between nucleotides or nucleic acids, such as, for instance, between the two strands of a double stranded DNA molecule or between an oligonucleotide primer and a primer binding site on a single stranded nucleic acid to be sequenced or amplified. Complementary nucleotides are, generally, A and T (or A and U), or C and G. Two single stranded RNA or DNA molecules are said to be substantially complementary when the nucleotides of one strand, optimally aligned and compared and with appropriate nucleotide insertions or deletions, pair with at least about 95% of the nucleotides of the other strand, usually at least about 98%, and more preferably from about 99 % to about 100%. Complementary polynucleotide sequences can be identified by a variety of approaches including use of well-known computer algorithms and software, for example the BLAST program.
As used herein, the term "aptamer" or "selected nucleic acid binding species" shall include non-modified or chemically modified RNA or DNA. The method of selection may be by, but is not limited to, affinity chromatography and the method of amplification by reverse transcription (RT) or polymerase chain reaction (PCR).
As used herein, the term "signaling aptamer" shall include aptamers with reporter molecules, preferably a fluorescent dye, appended to a nucleotide in such a way that upon conformational changes resulting from the aptamer’s interaction with a ligand, the reporter molecules yields a differential signal, preferably a change in fluorescence intensity.
As used herein, the term “fragment or segment”, as applied to a nucleic acid sequence, gene or polypeptide, will ordinarily be at least about 5 contiguous nucleic acid bases (for nucleic acid sequence or gene) or amino acids (for polypeptides), typically at least about 10 contiguous nucleic acid bases or amino acids, more typically at least about 20 contiguous nucleic acid bases or amino acids, usually at least about 30 contiguous nucleic acid bases or amino acids, preferably at least about 40 contiguous nucleic acid bases or amino acids, more preferably at least about 50 contiguous nucleic acid bases or amino acids, and even more preferably at least about 60 to 80 or more contiguous nucleic acid bases or amino acids in length. “Overlapping fragments” as used herein, refer to contiguous nucleic acid or peptide fragments which begin at the amino terminal end of a nucleic acid or protein and end at the carboxy terminal end of the nucleic acid or protein. Each nucleic acid or peptide fragment has at least about one contiguous nucleic acid or amino acid position in common with the next nucleic acid or peptide fragment, more preferably at least about three contiguous nucleic acid bases or amino acid positions in common, most preferably at least about ten contiguous nucleic acid bases amino acid positions in common. "Biological samples" include solid and body fluid samples. Preferably, the sample is obtained from heart. However, the biological samples used in the present invention can include cells, protein or membrane extracts of cells, blood or biological fluids such as ascites fluid or brain fluid (e.g., cerebrospinal fluid). Examples of solid biological samples include, but are not limited to, samples taken from tissues of the central nervous system, bone, breast, kidney, cervix, endometrium, head/neck, gallbladder, parotid gland, prostate, pituitary gland, muscle, esophagus, stomach, small intestine, colon, liver, spleen, pancreas, thyroid, heart, lung, bladder, adipose, lymph node, uterus, ovary, adrenal gland, testes, tonsils and thymus. Examples of "body fluid samples" include, but are not limited to blood, serum, semen, prostate fluid, seminal fluid, urine, saliva, sputum, mucus, bone marrow, lymph, and tears. “Sample” is used herein in its broadest sense. A sample comprising polynucleotides, polypeptides, peptides, antibodies and the like may comprise a bodily fluid; a soluble fraction of a cell preparation, or media in which cells were grown; a chromosome, an organelle, or membrane isolated or extracted from a cell; genomic DNA, RNA, or cDNA, polypeptides, or peptides in solution or bound to a substrate; a cell; a tissue; a tissue print; a fingerprint, skin or hair; and the like. “Diagnostic” means identifying the presence or nature of a pathologic condition. Diagnostic methods differ in their sensitivity and specificity. The “sensitivity” of a diagnostic assay is the percentage of diseased individuals who test positive (percent of “true positives”). Diseased individuals not detected by the assay are “false negatives.” Subjects who are not diseased and who test negative in the assay, are termed “true negatives.” The “specificity” of a diagnostic assay is 1 minus the false positive rate, where the “false positive” rate is defined as the proportion of those without the disease who test positive. While a particular diagnostic method may not provide a definitive diagnosis of a condition, it suffices if the method provides a positive indication that aids in diagnosis.
Transcriptomic Biomarker/Molecular Signatures
In a preferred embodiment, a biomarker (TBB-I) comprises nucleic acid sequences/biomolecules comprising: 1553145 at (hypothetical protein FLJ39653), 1553575_at, 1557236_at (apolipoprotein L, 6), 1558142_at (trinucleotide repeat containing 6B), 1560752_at (F-box and WD-40 domain protein 2), 1565614_at (Zinc finger protein 337), 1567100_at (Dachshund homolog 1 (Drosophila)), 200068_s_at (calnexin/// calnexin), 20103 l_s_at (heterogeneous nuclear ribonucleoprotein HI (H)), 202646_s_at (cold shock domain containing El, RNA-binding), 205758_at (CD8a molecule /// CD8a molecule), 206188_at (zinc finger protein 623), 2I2637_s_at (WW domain containing E3 ubiquitin protein ligase 1), 212920_at, 213317_at (chloride intracellular channel 5), 213619_at (Heterogeneous nuclear ribonucleoprotein HI (H)), 215443_at (thyroid stimulating hormone receptor), 216198_at (activating transcription factor 7 interacting protein), 217870_s_at (cytidylate kinase), 218087_s_at (sorbin and SH3 domain containing 1), 222145_at (CDNA: FLJ23572 fis, clone LNG12403), 223577_x_at (PRO1073 protein), 224321_at (transmembrane protein with EGF-like and two follistatin-like domains 2), 224373_s_at (IQ motif and WD repeats 1), 224644_at (CDNA clone IMAGE:5278517), 226173_at (ornithine aminotransferase-like 1), 226773_at (CDNA FLJ35131 fis, clone PLACE6008824), 226880_at (nuclear casein kinase and cyclin-dependent kinase substrate 1), 228980_at (ring finger and FYVE-like domain containing 1), 229569_at (CDNA clone IMAGE:5263455), 231735_s_at (PRO1073 protein), 233765_at (Hypothetical LOC197135), 235803_at (Cytokine receptor-like factor 3), 23613 l_at (CDNA clone IMAGE:6622963), 236953_s_at (similar to RIKEN cDNA 8030451 KOI), 240544_at (Zinc finger, AN 1-type domain 3), 24097l_x_at (Cullin 4A), 244042 x_at (Similar to retinoic acid receptor responder (tazarotene induced) 2), complementary sequences, fragments, alleles, variants and gene products thereof.
In another preferred embodiment, the biomolecules comprising: 1553145_at (hypothetical protein FLJ39653), 1553575_at, 1557236_at (apolipoprotein L, 6), 1558142_at (trinucleotide repeat containing 6B), 1560752_at (F-box and WD-40 domain protein 2), 1565614 at (Zinc finger protein 337), 1567100_at (Dachshund homolog 1 (Drosophila)), 200068_s_at (calnexin /// calnexin), 201031_s at (heterogeneous nuclear ribonucleoprotein HI (H)), 202646_s_at (cold shock domain containing El, RNA-binding), 20575 8_at (CD8a molecule /// CD8a molecule), 206188_at (zinc finger protein 623), 212637_s_at (WW domain containing E3 ubiquitin protein ligase 1), 212920_at, 213317_at (chloride intracellular channel 5), 213619_at (Heterogeneous nuclear ribonucleoprotein HI (H)), 215443_at (thyroid stimulating hormone receptor), 216198_at (activating transcription factor 7 interacting protein), 217870_s_at (cytidylate kinase), 218087_s_at (sorbin and SH3 domain containing 1), 222145_at (CDNA: FLJ23572 fis, clone LNG12403), 223577_x_at (PRO1073 protein), 22432 l_at (transmembrane protein with EGF-like and two follistatin-like domains 2), 224373_s_at (IQ motif and WD repeats 1), 224644_at (CDNA clone IMAGE:5278517), 226173_at (ornithine aminotransferase-like 1), 226773_at (CDNA FLJ35131 fis, clone PLACE6008824), 226880_at (nuclear casein kinase and cyclin-dependent kinase substrate 1), 228980 at (ring finger and FYVE-like domain containing 1), 229569_at (CDNA clone IMAGE:5263455), 231735_s_at (PRO 1073 protein), 233765_at (Hypothetical LOCI97135), 235803_at (Cytokine receptor-like factor 3), 236131 at (CDNA clone IMAGE;6622963), 236953_s_at (similar to RIKEN cDNA 8030451K01), 240544 at (Zinc finger, ANl-type domain 3), 24097 l x_at (Cullin 4A), 244042_x_at (Similar to retinoic acid receptor responder (tazarotene induced) 2) are upregulated in patients with myocarditis as compared to normal subjects. In some embodiments at least ten biomolecules are upregulated.
In another preferred embodiment, a transcriptomic biomarker (TBB- II) comprises biomolecules comprising: 1552419_s_at (tubulin tyrosine ligase-like family, member 10), 1553212_at (keratin 78), 1555124_at (hypothetical protein MGC40574), 1556192_x_at (Metastasis suppressor 1), 1556320 at (Stomatin (EPB72)-like 1), 1556510_at (CDNA clone IMAGE:4796864), 1558484_s_at (leucine rich repeat containing 27), 1565662_at (Mucin 6, oligomeric mucus/gel-forming), 1567410_at (zinc finger protein 135), 1568513_x_at (Protease, serine, 1 (trypsin 1)), 1570408_at (Serine/threonine kinase 24 (STE20 homolog, yeast)), 203307_at (guanine nucleotide binding protein-like 1), 20458 l_at (CD22 molecule, myelin associated glycoprotein), 205586_x_at (VGF nerve growth factor inducible), 206333_at (musashi homolog 1 (Drosophila)), 207004_at (B-cell CLL/lymphoma 2), 210059_s at (mitogen-activated protein kinase 13), 210228_at (colony stimulating factor 2 (granulocyte-macrophage)), 210384_at (protein arginine methyltransferase 2), 210923 at (solute carrier family 1 (glutamate transporter), member 7), 211024_s_at (thyroid transcription factor 1 /// thyroid transcription factor 1), 211062_s_at (carboxypeptidase Z /// carboxypeptidase Z), 211096 at (pre-B-cell leukemia transcription factor 2), 211181x_at (runt-related transcription factor 1 (acute myeloid leukemia 1; amll oncogene)), 2117I0_x_at (ribosomal protein L4 /// ribosomal protein L4), 213096_at (transmembrane and coiled-coil domain family 2), 213121 at (small nuclear ribonucleoprotein 70kDa polypeptide (RNP antigen)), 213242_x_at (KIAA0284), 213568_at (odd-skipped related 2 (Drosophila)), 213770_at (kinase suppressor of ras 1), 214171_s_at (U2 small nuclear RNA auxiliary factor 2), 216116_at (NCK interacting protein with SH3 domain), 216427_at (CDNA: FLJ22786 fis, clone KAIA2150), 216820_at, 217054_at (CDNA FLJ39484 fis, clone PROST2014925), 217180_at (Hypothetical protein similar to KIAA0187 gene product), 217182_at (mucin 5AC, oligomeric mucus/gel-forming), 217322_x_at, 217430_x_at (collagen, type I, alpha 1), 219070_s_at (motile sperm domain containing 3), 219425_at (sulfotransferase family 4A, member 1), 221663_x_at (histamine receptor H3), 221684_s_at (Nyctalopin), 223974_at (hypothetical protein MGC11082), 226640 at (diacylglycerol lipase beta), 228074_at (hypothetical protein LOCI62073), 229I91_at (tubulin folding cofactor D), 229257_at (KIAA1856 protein), 229335_at (immunoglobulin superfamily, member 4C), 229358 at (Indian hedgehog homolog (Drosophila)), 23034I_x_at (ADAM metallopeptidase with thrombospondin type 1 motif, 10), 230693_at (ATPase, Ca++ transporting, cardiac muscle, fast twitch 1), 230768_at (FERM, RhoGEF and pleckstrin domain protein 2), 231510_at (GLI-Kruppel family member GLI2), 231629_x_at (Kallikrein-related peptidase 3), 231998_at, 233794_at (Single stranded DNA binding protein 3), 233974_s_at (family with sequence similarity 129, member B), 234495 at (kallikrein-related peptidase 15), 234637_at (keratin associated protein 4-5), 234881_at, 235568_at (chromosome 19 open reading frame 59), 235600_at (Transcribed locus), 236496_at (degenerative spermatocyte homolog 2, lipid desaturase (Drosophila)), 237087_at (Chromosome 14 open reading frame 105), 237144_at (Latent transforming growth factor beta binding protein 3), 237398_at (Transcribed locus), 237547_at (Hypothetical protein LOC728730), 237679_at (tripartite motif-containing 66), 238267 s at, 238445_x_at (mannosyl (alpha-1,6-)-glycoprotein beta-l,6-N-acetyl-glucosaminyltransferase, isozyme B), 239026_x_at (centaurin, gamma 3), 239463_at (Transcribed locus), 239756_at (MAD1 mitotic arrest deficient-like 1 (yeast)), 240039_at (Transcribed locus /// Transcribed locus), 240147_at (hypothetical protein MGC11257), 240517 at (Cystathionine-beta-synthase), 241270_at (Rhomboid 5 homolog 2 (Drosophila)), 24143 l_at, 242365 at (Coiled-coil domain containing 32), 243297 _at (Vacuolar protein sorting 13 homolog D (S. cerevisiae)), 243497_at (Transcribed locus), 243766_s_at (TEA domain family member 2), 43934_at (G protein-coupled receptor 137), complementary sequences, fragments, alleles, variants and gene products thereof.
In another preferred embodiment, the biomolecules comprising the transcriptomic biomarker (TBB-II) complementary sequences, fragments, alleles, variants and gene products thereof are downregulated in a patient suffering from myocarditis as compared to a normal subject.
In another preferred embodiment, a biomarker (TBB-III) comprises nucleic acid sequences/biomolecules comprising: 1553212_at (keratin 78), 1557236_at (apolipoprotein L), 1558142 at (trinucleotide repeat containing 6B), 1558484_s_at (leucine rich repeat containing 27), 1565614_at (Zinc finger protein 337), 1565662_at (Mucin 6, oligomeric mucus/gel-forming), 1567100_at (Dachshund homolog 1 (Drosophila)), 203307_at (guanine nucleotide binding protein-like 1), 205758_at (CD8a molecule /// CD8a molecule), 206333_at (musashi homolog 1 (Drosophila)), 212920_at, 213242_x_at (KIAA0284), 213619_at (Heterogeneous nuclear ribonucleoprotein HI (H)), 213770_at (kinase suppressor of ras 1), 214171_s_at (U2 small nuclear RNA auxiliary factor 2), 215443_at (thyroid stimulating hormone receptor), 216198_at (activating transcription factor 7 interacting protein), 216427_at (CDNA: FLJ22786 fis, clone KAIA2150), 217054_at (CDNA FLJ39484 fis, clone PROST2014925), 217182_at (mucin SAC, oligomeric mucus/gel-forming), 217322_x_at, 219425_at (sulfotransferase family 4A, member 1), 222145_at (CDNA:
FLJ23572 fis, clone LNG12403), 229191_at (tubulin folding cofactor D), 229569_at (CDNA clone IMAGE :5263455), 231629_x_at (Kallikrein-related peptidase 3), 233765_at (Hypothetical LOCI97135), 233794_at (Single stranded DNA binding protein 3), 233974_s_at (family with sequence similarity 129, member B), 234495_at (kallikrein-related peptidase 15), 235568_at (chromosome 19 open reading frame 59), 235803_at (Cytokine receptor-like factor 3), 236496_at (degenerative spermatocyte homolog 2, lipid desaturase (Drosophila)), 236953_sat, 238445_x_at (mannosyl (alpha-1,6-)-glycoprotcin beta-l,6-N-acetyl-glucosaminyltransferase, isozyme B), 239463_at (Transcribed locus), 240544_at (Zinc finger, AN 1-type domain 3), 243766_s_at (TEA domain family member 2), and 244042_x_at complementary sequences, fragments, alleles, variants and gene products thereof.
In another preferred embodiment, the detection of any one of the biomarkers, TBB-I, TBB-II and TBB-III or combinations thereof, are diagnostic of myocarditis, idiopathic cardiomyopathy, heart diseases and disorders thereof.
In another preferred embodiment, the detection of at least ten biomolecules in TBB-I is diagnostic of myocarditis, idiopathic cardiomyopathy, heart diseases and disorders thereof.
In another preferred embodiment, the detection of at least ten molecules in TBB-II is diagnostic of myocarditis, idiopathic cardiomyopathy, heart diseases and disorders thereof. Since the biomolecules in TBB-II are downregulated in myocarditis, when the term “detection” is used with respect to the biomolecules of TBB-II, will refer to the downregulation of the biomolecules as compared to the expression in normal or healthy cells or subjects,
In another preferred embodiment, the detection of at least ten molecules in TBB-III is diagnostic of myocarditis, idiopathic cardiomyopathy, heart diseases and disorders thereof.
In another preferred embodiment, the detection in a cell or patient of the biomolecules, complementary sequences, fragments, alleles, variants and gene products thereof, is diagnostic of myocarditis, idiopathic cardiomyopathy, heart diseases and disorders thereof. Preferably, the biomolecule sequences, complementary sequences, fragments, alleles, variants and gene products thereof, are modulated at levels by at least between 1%, 2%, 5%, 10% in a cell or patient as compared to levels in a normal cell or normal subject; more preferably, the gene biomarker sequences, complementary sequences, fragments, alleles, variants and gene products thereof, are modulated by about 50% in a cell or a patient as compared to levels in a normal cell or normal subject; more preferably, the gene biomarker sequences, complementary sequences, fragments, alleles, variants and gene products thereof, are modulated by about 75% in a cell or a patient as compared to levels in a normal cell or normal subject. The term “modulated” refers to an increase or decrease in level, concentration, amount etc, as compared to a normal cell or normal healthy subject.
In another preferred embodiment, a biochip comprises a molecular signature comprising TBB-I, TBB-II, or TBB-III, complementary sequences, fragments, alleles, variants and gene products thereof.
In another preferred embodiment, a biochip comprises at least ten biomolecules selected from the biomolecules comprising TBB-I, TBB-II, or TBB-III, complementary sequences, fragments, alleles, variants and gene products thereof. Any ten or more can be selected from either one of TBB-I, TBB-II, or TBB-III biomarkers or selected form combinations thereof. There is nothing to preclude adding any newly identified biomarkers or any other known biomarkers or biomolecules thereof.
In another preferred embodiment, a method of differentiating between idiopathic cardiomyopathy and myocarditis, comprises: identifying in a biological sample from a patient a molecular signature comprising a transcriptomic based biomarker TBB-I, TBB-II and TBB-III.
In another preferred embodiment, a method of differentiating between idiopathic cardiomyopathy and myocarditis, comprises identifying in a biological sample from a patient a molecular signature comprising the biomolecules of transcriptomic based biomarker (TBB) complementary sequences, fragments, alleles, variants and gene products thereof; assessing the probability of identification of each component gene in each sample; and assigning each to a class.
In another preferred embodiment, the biomolecules are selected from TBB-I, TBB-II, and TBB-III, or combinations thereof.
In a preferred embodiment, phenotype specificity is identified by creating a classifier in a training set comprising about 66% of data obtained, with subsequent validation in a test set comprising about 33% of data obtained and defining a phenotype specific nearest shrunken centroid for classification.
In another preferred embodiment, a method of diagnosing heart disease or myocarditis comprises identifying in a biological sample from a patient a molecular signature comprising a transcriptomic based biomarker (TBB), TBB-I, TBB-II and TBB-III.
In another preferred embodiment, a method of diagnosing heart disease or myocarditis comprises detection of at least ten biomolecules, complementary sequences, fragments, alleles, variants and gene products thereof in a sample; assessing the probability of identification of each component gene in each sample; assigning each to a class; and, diagnosing heart disease or myocarditis.
Alternative Methods and Materials for Identifying Molecular Signatures or Transcriptomic Biomarkers
Detection of Nucleic Acids and Proteins as Markers'. In preferred embodiments, each biomarker is detected on chip based methods such as those described in detail in the examples which follow. In order to provide accurate diagnosis of cardiac disorders and diseases, for example, heart failure, myocarditis, idiopathic cardiomyopathy and the like. Other methods are also known in the art and one or more methods can be utilized.
The methods and assays disclosed herein are directed to the examination of expression of transcriptomic biomarkers in a mammalian tissue or cell sample, wherein the determination of that expression of one or more such transcriptomic biomarkers is predictive of prognostic outcome or diagnostic of cardiac and cardiovascular diseases and disorders, such as for example, myocarditis, Coronary Heart Disease, angina, Acute Coronary Syndrome, Aortic Aneurysm and Dissection, arrhythmias, Cardiomyopathy, Congenital Heart Disease, congestive heart failure or chronic heart failure, pericarditis, and the like. The Molecular signatures or Transcriptomic biomarker comprise the biomolecules identified in Tables 1, 2, and 4. When making a diagnosis it is desirable to detect at least 10 or more biomolecules. Any one of TBB-I (Table 1), TBB-II (Table 2), TBB-III (Table 4) or combinations thereof can be used in the diagnosis of myocarditis. Any one of TBB-I, TBB-II and TBB- III or combinations thereof can be used in the diagnosis of myocarditis and idiopathic cardiomyopathy and differentiating between the two conditions.
Preferred embodiments in the identification of biomolecules, analytical methods etc, are described in detail in the Examples which follow.
Microarrays\ In general, using nucleic acid microarrays, test and control mRNA samples from test and control tissue samples are reverse transcribed and labeled to generate cDNA probes. The probes are then hybridized to an array of nucleic acids immobilized on a solid support. The array is configured such that the sequence and position of each member of the array is known. For example, a selection of genes that have potential to be expressed in certain disease states may be arrayed on a solid support. Hybridization of a labeled probe with a particular array member indicates that the sample from which the probe was derived expresses that gene. Differential gene expression analysis of disease tissue can provide valuable information. Microarray technology utilizes nucleic acid hybridization techniques and computing technology to evaluate the mRNA expression profile of thousands of genes within a single experiment, (see, e.g., WO 01/75166 published Oct. 11, 2001; (See, for example, U.S. Pat. No. 5,700,637, U.S. Pat. No. 5,445,934, and U.S. Pat. No. 5,807,522, Lockart, Nature Biotechnology, 14:1675-1680 (1996); Cheung, V. G. et al., Nature Genetics 21 (Suppl): 15-19 (1999) for a discussion of array fabrication). DNA microarrays are miniature arrays containing gene fragments that are either synthesized directly onto or spotted onto glass or other substrates. Thousands of genes are usually represented in a single array. A typical microarray experiment involves the following steps: 1) preparation of fluorescently labeled target from RNA isolated from the sample, 2) hybridization of the labeled target to the microarray, 3) washing, staining, and scanning of the array, 4) analysis of the scanned image and 5) generation of gene expression profiles. Currently two main types of DNA microarrays are being used: oligonucleotide (usually 25 to 70 mers) arrays and gene expression arrays containing PCR products prepared from cDNAs. In forming an array, oligonucleotides can be either prefabricated and spotted to the surface or directly synthesized on to the surface (in situ). The Affymetrix GENECHIP™ system is a commercially available microarray system which comprises arrays fabricated by direct synthesis of oligonucleotides on a glass surface.
Probe/Gene Arrays: Oligonucleotides, usually 25 mers, are directly synthesized onto a glass wafer by a combination of semiconductor-based photolithography and solid phase chemical synthesis technologies. Each array contains up to 400,000 different oligonucleotides and each oligonucleotide is present in millions of copies. Since oligonucleotide probes are synthesized in known locations on the array, the hybridization patterns and signal intensities can be interpreted in terms of gene identity and relative expression levels by the Affymetrix Microarray Suite software. Each gene is represented on the array by a series of different oligonucleotide probes. Each probe pair consists of a perfect match oligonucleotide and a mismatch oligonucleotide. The perfect match probe has a sequence exactly complimentary to the particular gene and thus measures the expression of the gene. The mismatch probe differs from the perfect match probe by a single base substitution at the center base position, disturbing the binding of the target gene transcript. This helps to determine the background and nonspecific hybridization that contributes to the signal measured for the perfect match oligonucleotide. The Microarray Suite software subtracts the hybridization intensities of the mismatch probes from those of the perfect match probes to determine the absolute or specific intensity value for each probe set, Probes are chosen based on current information from GenBank and other nucleotide repositories. The sequences are believed to recognize unique regions of the 3' end of the gene. A GeneChip Hybridization Oven ("rotisserie" oven) is used to carry out the hybridization of up to 64 arrays at one time. The fluidics station performs washing and staining of the probe arrays. It is completely automated and contains four modules, with each module holding one probe array. Each module is controlled independently through Microarray Suite software using preprogrammed fluidics protocols. The scanner is a confocal laser fluorescence scanner which measures fluorescence intensity emitted by the labeled cRNA bound to the probe arrays. The computer workstation with Microarray Suite software controls the fluidics station and the scanner. Microarray Suite software can control up to eight fluidics stations using preprogrammed hybridization, wash, and stain protocols for the probe array. The software also acquires and converts hybridization intensity data into a presence/absence call for each gene using appropriate algorithms. Finally, the software detects changes in gene expression between experiments by comparison analysis and formats the output into .txt files, which can be used with other software programs for further data analysis.
The expression of a selected biomarker may also be assessed by examining gene deletion or gene amplification. Gene deletion or amplification may be measured by any one of a wide variety of protocols known in the art, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA (Thomas, Proc. Natl. Acad. Sci. USA, 77:5201-5205 (1980)), dot blotting (DNA analysis), or in situ hybridization (e.g., FISH), using an appropriately labeled probe, cytogenetic methods or comparative genomic hybridization (CGH) using an appropriately labeled probe.
Detection of Polypeptides: In another embodiment of the present invention, a polypeptide corresponding to a marker is detected. A preferred agent for detecting a polypeptide of the invention is an antibody or aptamer capable of binding to a polypeptide corresponding to a marker of the invention, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof, e.g., Fab or F(ab') 2 can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct-labeling of the probe or antibody by coupling, i.e., physically linking, a detectable substance to the probe or antibody, as well as indirect-labeling of the probe or antibody by reactivity with another reagent that is directly-labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin.
Proteins from individuals can be isolated using techniques that are well-known to those of skill in the art. The protein isolation methods employed can, e.g., be such as those described in Harlow & Lane (1988), supra. A variety of formats can be employed to determine whether a sample contains a protein that binds to a given antibody. Expression of various biomarkers in a sample can be analyzed by a number of methodologies, many of which are known in the art and understood by the skilled artisan, including but not limited to, immunohistochemical and/or Western analysis, quantitative blood based assays (as for example Serum ELISA) (to examine, for example, levels of protein expression), biochemical enzymatic activity assays, in situ hybridization, Northern analysis and/or PCR analysis of mRNAs, as well as any one of the wide variety of assays that can be performed by gene and/or tissue array analysis. Typical protocols for evaluating the status of genes and gene products are found, for example in Ausubel et al. eds., 1995, Current Protocols In Molecular Biology, Units 2 (Northern Blotting), 4 (Southern Blotting), 15 (Immunoblotting) and 18 (PCR Analysis). A skilled artisan can readily adapt known protein/antibody detection methods for use in determining whether cells express a marker of the present invention and the relative concentration of that specific polypeptide expression product in blood or other body tissues.
In such alternative methods, a sample may be contacted with an antibody specific for said biomarker under conditions sufficient for an antibody-biomarker complex to form, and then detecting said complex. The presence of the biomarker may be detected in a number of ways, such as by Western blotting and ELISA procedures for assaying a wide variety of tissues and samples, including plasma or serum. A wide range of immunoassay techniques using such an assay format are available, see, e.g., U.S. Pat. Nos. 4,016,043, 4,424,279 and 4,018,653. These include both single-site and two-site or "sandwich" assays of the noncompetitive types, as well as in the traditional competitive binding assays. These assays also include direct binding of a labeled antibody to a target biomarker.
Sandwich assays are among the most useful and commonly used assays. A number of variations of the sandwich assay technique exist, and all are intended to be encompassed by the present invention. Briefly, in a typical forward assay, an unlabelled antibody is immobilized on a solid substrate, and the sample to be tested brought into contact with the bound molecule. After a suitable period of incubation, for a period of time sufficient to allow formation of an antibody-antigen complex, a second antibody specific to the antigen, labeled with a reporter molecule capable of producing a detectable signal is then added and incubated, allowing time sufficient for the formation of another complex of antibody-antigen-labeled antibody. Any unreacted material is washed away, and the presence of the antigen is determined by observation of a signal produced by the reporter molecule. The results may either be qualitative, by simple observation of the visible signal, or may be quantitated by comparing with a control sample containing known amounts of biomarker.
Variations on the forward assay include a simultaneous assay, in which both sample and labeled antibody are added simultaneously to the bound antibody. These techniques are well known to those skilled in the art, including any minor variations as will be readily apparent. In a typical forward sandwich assay, a first antibody having specificity for the biomarker is either covalently or passively bound to a solid surface. The solid surface is typically glass or a polymer, the most commonly used polymers being cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene. The solid supports may be in the form of tubes, beads, discs of microplates, or any other surface suitable for conducting an immunoassay. The binding processes are well-known in the art and generally consist of cross-linking covalently binding or physically adsorbing, the polymer-antibody complex is washed in preparation for the test sample. An aliquot of the sample to be tested is then added to the solid phase complex and incubated for a period of time sufficient (e.g. 2-40 minutes or overnight if more convenient) and under suitable conditions (e.g. from room temperature to 40° C. such as between 25° C. and 32° C. inclusive) to allow binding of any subunit present in the antibody. Following the incubation period, the antibody subunit solid phase is washed and dried and incubated with a second antibody specific for a portion of the biomarker. The second antibody is linked to a reporter molecule which is used to indicate the binding of the second antibody to the molecular marker.
An alternative method involves immobilizing the target biomarkers in the sample and then exposing the immobilized target to specific antibody which may or may not be labeled with a reporter molecule. Depending on the amount of target and the strength of the reporter molecule signal, a bound target may be detectable by direct labeling with the antibody. Alternatively, a second labeled antibody, specific to the first antibody is exposed to the target-first antibody complex to form a target-first antibody-second antibody tertiary complex. The complex is detected by the signal emitted by the reporter molecule, By "reporter molecule", as used in the present specification, is meant a molecule which, by its chemical nature, provides an analytically identifiable signal which allows the detection of antigen-bound antibody. The most commonly used reporter molecules in this type of assay are either enzymes, fluorophores or radionuclide containing molecules (i.e. radioisotopes) and chemiluminescent molecules.
In the case of an enzyme immunoassay, an enzyme is conjugated to the second antibody, generally by means of glutaraldehyde or periodate. As will be readily recognized, however, a wide variety of different conjugation techniques exist, which are readily available to the skilled artisan. Commonly used enzymes include horseradish peroxidase, glucose oxidase, -galactosidase and alkaline phosphatase, amongst others. The substrates to be used with the specific enzymes are generally chosen for the production, upon hydrolysis by the corresponding enzyme, of a detectable color change. Examples of suitable enzymes include alkaline phosphatase and peroxidase. It is also possible to employ fluorogenic substrates, which yield a fluorescent product rather than the chromogenic substrates noted above. In all cases, the enzyme-labeled antibody is added to the first antibody-molecular marker complex, allowed to bind, and then the excess reagent is washed away. A solution containing the appropriate substrate is then added to the complex of antibody-antigen-antibody. The substrate will react with the enzyme linked to the second antibody, giving a qualitative visual signal, which may be further quantitated, usually spectrophotometrically, to give an indication of the amount of biomarker which was present in the sample. Alternately, fluorescent compounds, such as fluorescein and rhodamine, may be chemically coupled to antibodies without altering their binding capacity. When activated by illumination with light of a particular wavelength, the fluorochrome-labeled antibody adsorbs the light energy, inducing a state to excitability in the molecule, followed by emission of the light at a characteristic color visually detectable with a light microscope. As in the EIA, the fluorescent labeled antibody is allowed to bind to the first antibody-molecular marker complex. After washing off the unbound reagent, the remaining tertiary complex is then exposed to the light of the appropriate wavelength, the fluorescence observed indicates the presence of the molecular marker of interest. Immunofluorescence and EIA techniques are both very well established in the art. However, other reporter molecules, such as radioisotope, chemiluminescent or bioluminescent molecules, may also be employed.
Methods of the invention further include protocols which examine the presence and/or expression of mRNAs, in a tissue or cell sample. Methods for the evaluation of mRNAs in cells are well known and include, for example, hybridization assays using complementary DNA probes (such as in situ hybridization using labeled riboprobes, Northern blot and related techniques) and various nucleic acid amplification assays (such as RT-PCR and other amplification type detection methods, such as, for example, branched DNA, SISBA, TMA and the like).
In an embodiment, the level of mRNA corresponding to the marker can be determined both by in situ and by in vitro formats in a biological sample using methods known in the art. Many expression detection methods use isolated RNA. For in vitro methods, any RNA isolation technique that does not select against the isolation of mRNA can be utilized for the purification of RNA from ceils. See, e.g., Ausubel et al., Ed., Curr. Prot. Mol. Biol., John Wiley & Sons, NY (1987-1999). Additionally, large numbers of tissue samples can readily be processed using techniques well-known to those of skill in the art, such as, e.g., the single- step RNA isolation process of U.S. Pat. No, 4,843,155. The isolated mRNA can be used in hybridization or amplification assays that include, but are not limited to, Southern or Northern analyses, PCR analyses and probe arrays. One preferred diagnostic method for the detection of mRNA levels involves contacting the isolated mRNA with a nucleic acid molecule (probe) that can hybridize to the mRNA encoded by the gene being detected. The nucleic acid probe can be, e.g., a full-length cDNA, or a portion thereof, such as an oligonucleotide of at least 7, 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to a mRNA or genomic DNA encoding a marker of the present invention. Other suitable probes for use in the diagnostic assays of the invention are described herein. Hybridization of an mRNA with the probe indicates that the marker in question is being expressed.
In one format, the mRNA is immobilized on a solid surface and contacted with a probe, for example, by running the isolated mRNA on an agarose gel and transferring the mRNA from the gel to a membrane, such as nitrocellulose. In an alternative format, the probe(s) are immobilized on a solid surface and the mRNA is contacted with the probe(s), for example, in an Affymetrix gene chip array. A skilled artisan can readily adapt known mRNA detection methods for use in detecting the level of mRNA encoded by the markers of the present invention.
Although amplification of molecules is not required in the present invention as discussed in the examples section, one of skill in the art could use amplification methods.
One alternative method for determining the level of mRNA corresponding to a marker of the present invention in a sample involves the process of nucleic acid amplification, e.g., by RT-PCR (the experimental embodiment set forth in Mullis, U.S. Pat. No. 4,683,202 (1987); ligase chain reaction, self-sustained sequence replication, Guatelli et al., Proc. Nail. Acad.
Sci. USA, Vol. 87, pp. 1874-1878 (1990); transcriptional amplification system, Kwoh et al, Proc. Natl. Acad. Sci. USA, Vol. 86, pp. 1173-1177 (1989); Q-Beta Replicase, Lizardi et al., Biol. Technology, Vol. 6, p. 1197 (1988); rolling circle replication, U.S. Pat. No. 5,854,033 (1988); or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well-known to those of skill in the art. These detection schemes are especially useful for the detection of the nucleic acid molecules if such molecules are present in very low numbers. As used herein, amplification primers are defined as being a pair of nucleic acid molecules that can anneal to 5' or 3' regions of a gene (plus and minus strands, respectively, or vice-versa) and contain a short region in between.
In general, amplification primers are from about 10-30 nucleotides in length and flank a region from about 50-200 nucleotides in length. Under appropriate conditions and with appropriate reagents, such primers permit the amplification of a nucleic acid molecule comprising the nucleotide sequence flanked by the primers.
For in situ methods, mRNA does not need to be isolated form the cells prior to detection. In such methods, a cell or tissue sample is prepared/processed using known histological methods. The sample is then immobilized on a support, typically a glass slide, and then contacted with a probe that can hybridize to mRNA that encodes the marker.
As an alternative to making determinations based on the absolute expression level of the marker, determinations may be based on the normalized expression level of the marker. Expression levels are normalized by correcting the absolute expression level of a marker by comparing its expression to the expression of a gene that is not a marker, e.g., a housekeeping gene that is constitutively expressed. Suitable genes for normalization include housekeeping genes, such as the actin gene or epithelial cell-specific genes. This normalization allows the comparison of the expression level in one sample, e.g., a patient sample, to another sample or between samples from different sources.
Alternatively, the expression level can be provided as a relative expression level. To determine a relative expression level of a marker, the level of expression of the marker is determined for 10 or more samples of normal versus disease biological samples, preferably 50 or more samples, prior to the determination of the expression level for the sample in question. The mean expression level of each of the genes assayed in the larger number of samples is determined and this is used as a baseline expression level for the marker. The expression level of the marker determined for the test sample (absolute level of expression) is then divided by the mean expression value obtained for that marker. This provides a relative expression level.
Preferably, the samples used in the baseline determination will be from patients who do not have the polymorphism. The choice of the cell source is dependent on the use of the relative expression level. Using expression found in normal tissues as a mean expression score aids in validating whether the marker assayed is specific (versus normal cells). In addition, as more data is accumulated, the mean expression value can be revised, providing improved relative expression values based on accumulated data.
Antibodies and Aptamers
In a preferred embodiment, the antibodies and aptamers specifically bind each component of the biomarkers described herein. The components include the nucleic acid sequences, complementary sequences, fragments, alleles, variants and gene products thereof of each component in each biomarker.
Aptamer polynucleotides are typically single-stranded standard phosphodiester DNA (ssDNA). Close DNA analogs can also be incorporated into the aptamer as described below. A typical aptamer discovery procedure is described below: A polynucleotide comprising a randomized sequence between "arms" having constant sequence is synthesized. The arms can include restriction sites for convenient cloning and can also function as priming sites for PCR primers. The synthesis can easily be performed on commercial instruments.
The target protein is treated with the randomized polynucleotide. The target protein can be in solution and then the complexes immobilized and separated from unbound nucleic acids by use of an antibody affinity column. Alternatively, the target protein might be immobilized before treatment with the randomized polynucleotide.
The target protein-polynucleotide complexes are separated from the uncomplexed material and then the bound polynucleotides are separated from the target protein. The bound nucleic acid can then be characterized, but is more commonly amplified, e.g. by PCR and the binding, separation and amplification steps are repeated. In many instances, use of conditions increasingly promoting separation of the nucleic acid from the target protein, e.g. higher salt concentration, in the binding buffer used in step 2) in subsequent iterations, results in identification of polynucleotides having increasingly high affinity for the target protein.
The nucleic acids showing high affinity for the target proteins are isolated and characterized. This is typically accomplished by cloning the nucleic acids using restriction sites incorporated into the arms, and then sequencing the cloned nucleic acid.
The affinity of aptamers for their target proteins is typically in the nanomolar range, but can be as low as the picomolar range. That is Kd is typically 1 pM to 500 nM, more typically from 1 pM to 100 nM. Apatmers having an affinity of Kd in the range of 1 pM to 10 nM are also useful.
Aptamer polynucleotides can be synthesized on a commercially available nucleic acid synthesizer by methods known in the art. The product can be purified by size selection or chromatographic methods.
Aptamer polynucleotides are typically from about 10 to 200 nucleotides long, more typically from about 10 to 100 nucleotides long, still more typically from about 10 to 50 nucleotides long and yet more typically from about 10 to 25 nucleotides long. A preferred range of length is from about 10 to 50 nucleotides.
The aptamer sequences can be chosen as a desired sequence, or random or partially random populations of sequences can be made and then selected for specific binding to a desired target protein by assay in vitro. Any of the typical nucleic acid-protein binding assays known in the art can be used, e.g. "Southwestern" blotting using either labeled oligonucleotide or labeled protein as the probe. See also U.S. Pat. No. 5,445,935 for a fluorescence polarization assay of protein-nucleic acid interaction.
Appropriate nucleotides for aptamer synthesis and their use, and reagents for covalent linkage of proteins to nucleic acids and their use, are considered known in the art. A desired aptamer-protein complex, for example, aptamer-thrombin complex of the invention can be labeled and used as a diagnostic agent in vitro in much the same manner as any specific protein-binding agent, e.g. a monoclonal antibody. Thus, an aptamer-protein complex of the invention can be used to detect and quantitate the amount of its target protein in a sample, e.g. a blood sample, to provide diagnosis of a disease state correlated with the amount of the protein in the sample. A desired aptamer-target/bait molecular complex can also be used for diagnostic imaging. In imaging uses, the complexes are labeled so that they can be detected outside the body. Typical labels are radioisotopes, usually ones with short half-lives. The usual imaging radioisotopes, such as 123I, l24I, l25I, I3II, 99mTC, l86Re, 188Re, ^Cu, 67Cu, 212Bi, 213Bi, 67Ga, MY,1,1 In, 18F, 3H, l4C, 35S or 32P can be used. Nuclear magnetic resonance (NMR) imaging enhancers, such as gadolinium-153, can also be used to label the complex for detection by NMR. Methods and reagents for performing the labeling, either in the polynucleotide or in the protein moiety, are considered known in the art.
In a preferred embodiment, an antibody or aptamer is specific for each biomolecule of biomarker (TBB-I) comprising: 1553145_at (hypothetical protein FLJ39653), 1553575_at, 1557236_at (apolipoprotein L, 6), 1558142_at (trinucleotide repeat containing 6B), 1560752_at (F-box and WD-40 domain protein 2), 1565614_at (Zinc finger protein 337), 1567100_at (Dachshund homolog 1 (Drosophila)), 200068 s_at (calnexin /// calnexin), 20103 l_s_at (heterogeneous nuclear ribonucleoprotein HI (H)), 202646_s_at (cold shock domain containing El, RNA-binding), 205758_at (CD8a molecule /// CD8a molecule), 206188 at (zinc finger protein 623), 212637_s_at (WW domain containing E3 ubiquitin protein ligase 1), 212920_at, 213317_at (chloride intracellular channel 5), 213619_at (Heterogeneous nuclear ribonucleoprotein HI (H)), 215443_at (thyroid stimulating hormone receptor), 216198_at (activating transcription factor 7 interacting protein), 217870_s_at (cytidylate kinase), 218087_s_at (sorbin and SH3 domain containing 1), 222145_at (CDNA: FLJ23572 fis, clone LNG12403), 223577_x_at (PRO1073 protein), 224321_at (transmembrane protein with EGF-like and two follistatin-like domains 2), 224373_s_at (IQ motif and WD repeats 1), 224644_at (CDNA clone IMAGE:5278517), 226173_at (ornithine aminotransferase-like l), 226773_at (CDNA FLJ35131 fis, clone PLACE6008824), 226880_at (nuclear casein kinase and cyclin-dependent kinase substrate 1), 228980_at (ring finger and FYVE-like domain containing 1), 229569_at (CDNA clone IMAGE:5263455), 231735_s_at (PRO 1073 protein), 233765_at (Hypothetical LOCI97135), 235803_at (Cytokine receptor-like factor 3), 236131_at (CDNA clone IMAGE:6622963), 236953_s_at (similar to RIKEN cDNA 8030451 KOI), 240544_at (Zinc finger, ANl-type domain 3), 24097l_x_at (Cullin 4A), 244042_x_at (Similar to retinoic acid receptor responder (tazarotene induced) 2), complementary sequences, fragments, alleles, variants and gene products thereof.
In a preferred embodiment, an antibody or aptamer is specific for each biomolecule of biomarker (TBB-II) comprising: 1552419_s_at (tubulin tyrosine ligase-like family, member 10), 1553212_at (keratin 78), 15 55124_at (hypothetical protein MGC40574), 1556192_x_at (Metastasis suppressor 1), 1556320_at (Stomatin (EPB72)-like 1), 1556510_at (CDNA clone IMAGE:4796864), 1558484_s_at (leucine rich repeat containing 27), 1565662_at (Mucin 6, oligomeric mucus/gel-forming), 1567410_at (zinc finger protein 135), 1568513_xat (Protease, serine, 1 (trypsin 1)), 1570408_at (Serine/threonine kinase 24 (STE20 homolog, yeast)), 203307_at (guanine nucleotide binding protein-like 1), 20458 lat (CD22 molecule, myelin associated glycoprotein), 205586_x_at (VGF nerve growth factor inducible), 206333_at (musashi homolog 1 (Drosophila)), 207004 at (B-cell CLL/lymphoma 2), 210059_s at (mitogen-activated protein kinase 13), 210228_at (colony stimulating factor 2 (granulocyte-macrophage)), 210384_at (protein arginine methyltransferase 2), 210923_at (solute carrier family 1 (glutamate transporter), member 7), 211024_s_at (thyroid transcription factor 1 /// thyroid transcription factor 1), 211062_s_at (carboxypeptidase Z /// carboxypeptidase Z), 211096 at (pre-B-cell leukemia transcription factor 2), 211181_x_at (runt-related transcription factor 1 (acute myeloid leukemia 1; amll oncogene)), 211710__x_at (ribosomal protein L4 /// ribosomal protein L4), 213096_at (transmembrane and coiled-coil domain family 2), 213121 _at (small nuclear ribonucleoprotein 70kDa polypeptide (RNP antigen)), 213242_x_at (KIAA0284), 213568_at (odd-skipped related 2 (Drosophila)), 213770_at kinase suppressor of ras 1 (214171 _s_at (U2 small nuclear RNA auxiliary factor 2), 216116_at (NCK interacting protein with SH3 domain), 216427_at (CDNA: FLJ22786 fis, clone KAIA2150), 216820_at, 2I7054_at (CDNA FU39484 fis, clone PROST2014925), 217180_at (Hypothetical protein similar to K.IAA0187 gene product), 217182_at (mucin 5AC, oligomeric mucus/gel-forming), 217322_x_at, 21743O x at (collagen, type I, alpha 1), 219070_s_at (motile sperm domain containing 3), 219425_at (sulfotransferase family 4A, member 1), 221663_x_at (histamine receptor H3), 221684_s_at (Nyctalopin), 223974_at (hypothetical protein MGC11082), 226640_at (diacylglycerol lipase beta), 228074_at (hypothetical protein LOC162073), 229191 at (tubulin folding cofactor D), 229257_at (KIAA1856 protein), 229335_at (immunoglobulin superfamily, member 4C), 229358_at (Indian hedgehog homolog (Drosophila)), 23034l_x_at (ADAM metallopeptidase with thrombospondin type 1 motif, 10), 230693_at (ATPase, Ca++ transporting, cardiac muscle, fast twitch 1), 230768_at (FERM, RhoGEF and pleckstrin domain protein 2), 231510_at (GLI-Kruppel family member GLI2), 231629_x_at (Kallikrein-related peptidase 3), 231998_at, 233794_at (Single stranded DNA binding protein 3), 233974_s_at (family with sequence similarity 129, member B), 234495_at (kallikrein-related peptidase 15), 234637_at (keratin associated protein 4-5), 23488l_at, 235568_at (chromosome 19 open reading frame 59), 235600_at (Transcribed locus), 236496_at (degenerative spermatocyte homolog 2, lipid desaturase (Drosophila)), 237087_at (Chromosome 14 open reading frame 105), 237144_at (Latent transforming growth factor beta binding protein 3), 237398_at (Transcribed locus), 237547_at (Hypothetical protein LOC728730), 237679_at (tripartite motif-containing 66), 238267_s_at, 238445_x_at (mannosyl (alpha-1,6-)-gIycoprotein beta-l,6-N-acetyl-glucosaminyltransferase, isozyme B), 239026_x_at (centaurin, gamma 3), 239463_at (Transcribed locus), 239756_at (MAD1 mitotic arrest deficient-like 1 (yeast)), 240039_at (Transcribed locus /// Transcribed locus), 240147_at (hypothetical protein MGC11257), 240517_at (Cystathionine-beta-synthase), 24I270_at (Rhomboid 5 homolog 2 (Drosophila)), 241431_at, 242365_at (Coiled-coil domain containing 32), 243297_at (Vacuolar protein sorting 13 homolog D (S. cerevisiae)), 243497_at (Transcribed locus), 243766_s_at (TEA domain family member 2), 43934_at (G protein-coupled receptor 137), complementary sequences, fragments, alleles, variants and gene products thereof.
In a preferred embodiment, an antibody or aptamer is specific for each biomolecule of biomarker (TBB-III) comprising: 1553212_at (keratin 78), 1557236_at (apolipoprotein L), 1558142_at (trinucleotide repeat containing 6B), 1558484 s_at (leucine rich repeat containing 27), 1565614_at (Zinc finger protein 337), 1565662_at (Mucin 6, oligomeric mucus/gel-forming), 1567100_at (Dachshund homolog 1 (Drosophila)), 203307_at (guanine nucleotide binding protein-like 1), 205758_at (CD8a molecule /// CD8a molecule), 206333 at (musashi homolog 1 (Drosophila)), 212920_at, 213242_x_at (KIAA0284), 213619_at (Heterogeneous nuclear ribonucleoprotein HI (H)), 213770_at (kinase suppressor of ras 1), 214171 s at (U2 small nuclear RNA auxiliary factor 2), 215443_at (thyroid stimulating hormone receptor), 216198_at (activating transcription factor 7 interacting protein), 216427_at (CDNA: FLJ22786 fis, clone KAIA2150), 217054jit (CDNA FLJ39484 fis, clone PROST2014925), 217182_at (mucin SAC, oligomeric mucus/gel-forming), 217322_x_at, 219425_at (sulfotransferase family 4A, member 1), 222145_at (CDNA:
FLJ23572 fis, clone LNG12403), 229191_at (tubulin folding cofactor D), 229569_at (CDNA clone IMAGE;5263455), 231629__x_at (Kallikrein-related peptidase 3), 233765_at (Hypothetical LOCI97135), 233794_at (Single stranded DNA binding protein 3), 233974_s_at (family with sequence similarity 129, member B), 234495_at (kallikrein-related peptidase 15), 235568_at (chromosome 19 open reading frame 59), 235803_at (Cytokine receptor-like factor 3), 236496_at (degenerative spermatocyte homolog 2, lipid desaturase (Drosophila)), 236953_s_at, 238445_x_at (mannosyl (alpha-l,6-)-glycoprotein beta-l,6-N-acetyl-glucosaminyltransferase, isozyme B), 239463_at (Transcribed locus), 240544_at (Zinc finger, AN 1-type domain 3), 243766_s_at (TEA domain family member 2), and 244042_x_at complementary sequences, fragments, alleles, variants and gene products thereof.
Drug Discovery
In other preferred embodiments, the molecular signatures are useful for the identification of new drugs in the treatment of cardiovascular diseases and disorders.
Small Molecules: Small molecule test compounds or candidate therapeutic compounds can initially be members of an organic or inorganic chemical library. As used herein, "small molecules" refers to small organic or inorganic molecules of molecular weight below about 3,000 Daltons. The small molecules can be natural products or members of a combinatorial chemistry library. A set of diverse molecules should be used to cover a variety of functions such as charge, aromaticity, hydrogen bonding, flexibility, size, length of side chain, hydrophobicity, and rigidity. Combinatorial techniques suitable for synthesizing small molecules are known in the art, e.g., as exemplified by Obrecht and Villalgordo, Solid-Supported Combinatorial and Parallel Synthesis of Small-Molecular-Weight Compound Libraries, Pergamon-Elsevier Science Limited (1998), and include those such as the "split and pool" or "parallel" synthesis techniques, solid-phase and solution-phase techniques, and encoding techniques (see, for example, Czamik, Curr. Opin. Chem. Bio., 1:60 (1997). In addition, a number of small molecule libraries are commercially available.
Particular screening applications of this invention relate to the testing of pharmaceutical compounds in drug research. The reader is referred generally to the standard textbook "In vitro Methods in Pharmaceutical Research", Academic Press, 1997, and U.S.
Pat. No. 5,030,015). Assessment of the activity of candidate pharmaceutical compounds generally involves administering a candidate compound, determining any change in the morphology, marker phenotype and expression, or metabolic activity of the cells and function of the cells that is attributable to the compound (compared with untreated cells or cells treated with an inert compound), and then correlating the effect of the compound with the observed change.
The screening may be done, for example, either because the compound is designed to have a pharmacological effect on certain cell types, or because a compound designed to have effects elsewhere may have unintended side effects. Two or more drugs can be tested in combination (by combining with the cells either simultaneously or sequentially), to detect possible drug—drug interaction effects. In some applications, compounds are screened initially for potential toxicity (Castell et al, pp. 375-410 in "In vitro Methods in Pharmaceutical Research," Academic Press, 1997). Cytotoxicity can be determined in the first instance by the effect on cell viability, survival, morphology, and expression or release of certain markers, receptors or enzymes. Effects of a drug on chromosomal DNA can be determined by measuring DNA synthesis or repair. [3H]thymidine or BrdU incorporation, especially at unscheduled times in the cell cycle, or above the level required for cell replication, is consistent with a drug effect. Unwanted effects can also include unusual rates of sister chromatid exchange, determined by metaphase spread. The reader is referred to A. Vickers (PP 375-410 in "In vitro Methods in Pharmaceutical Research," Academic Press, 1997) for further elaboration.
In one embodiment of the invention, a method of identifying a candidate agent is provided said method comprising: (a) contacting a biological sample from a patient with the candidate agent and determining the level of expression of one or more biomarkers described herein; (b) determining the level of expression of a corresponding biomarker or biomarkers in an aliquot of the biological sample not contacted with the candidate agent; (c) observing the effect of the candidate agent by comparing the level of expression of the biomarker or biomarkers in the aliquot of the biological sample contacted with the candidate agent and the level of expression of the corresponding biomarker or biomarkers in the aliquot of the biological sample not contacted with the candidate agent; and (d) identifying said agent from said observed effect, wherein an at least 1%, 2%, 5%, 10% difference between the level of expression of the biomarker gene or combination of biomarker genes in the aliquot of the biological sample contacted with the candidate agent and the level of expression of the corresponding biomarker gene or combination of biomarker genes in the aliquot of the biological sample not contacted with the candidate agent is an indication of an effect of the candidate agent.
In preferred embodiments, the effects of the drug are correlated with the expression of the molecular signatures associated with a good prognosis as described in detail in the examples which follow.
In another embodiment of the invention, a candidate agent derived by the method according to the invention is provided.
In another embodiment of the invention, a pharmaceutical preparation comprising an agent according to the invention is provided.
In another preferred embodiment of the invention, a method of producing a drug comprising the steps of the method according to the invention (i) synthesizing the candidate agent identified in step (c) above or an analog or derivative thereof in an amount sufficient to provide said drug in a therapeutically effective amount to a subject; and/or (ii) combining the drug candidate the candidate agent identified in step (c) above or an analog or derivative thereof with a pharmaceutically acceptable carrier.
Vectors, Cells: In some embodiments it is desirable to express the biomolecules that comprise a biomarker, in a vector and in cells. The applications of such combinations are unlimited. The vectors and cells expressing the one or more biomolecules can be used in assays, kits, drug discovery, diagnostics, prognostics and the like. The cells can be stem cells isolated from the bone marrow as a progenitor cell, or cells obtained from any other source, such as for example, ATCC. "Bone marrow derived progenitor cell" (BMDC) or "bone marrow derived stem cell" refers to a primitive stem cell with the machinery for self-renewal constitutively active. Included in this definition are stem cells that are totipotent, pluripotent and precursors. A "precursor cell" can be any cell in a cell differentiation pathway that is capable of differentiating into a more mature cell. As such, the term "precursor cell population" refers to a group of cells capable of developing into a more mature cell. A precursor cell population can comprise cells that are totipotent, cells that are pluripotent and cells that are stem cell lineage restricted (i.e. cells capable of developing into less than all hematopoietic lineages, or into, for example, only cells of erythroid lineage). As used herein, the term "totipotent cell" refers to a cell capable of developing into all lineages of cells. Similarly, the term "totipotent population of cells" refers to a composition of cells capable of developing into all lineages of cells. Also as used herein, the term "pluripotent cell" refers to a cell capable of developing into a variety (albeit not all) lineages and are at least able to develop into all hematopoietic lineages (e.g., lymphoid, erythroid, and thrombocytic lineages). Bone marrow derived stem cells contain two well-characterized types of stem cells. Mesenchymal stem cells (MSC) normally form chondrocytes and osteoblasts. Hematopoietic stem cells (HSC) are of mesodermal origin that normally give rise to cells of the blood and immune system (e.g., erythroid, granulocyte/macrophage, magakaryocite and lymphoid lineages). In addition, hematopoietic stem cells also have been shown to have the potential to differentiate into the cells of the liver (including hepatocytes, bile duct cells), lung, kidney (e.g., renal tubular epithelial cells and renal parenchyma), gastrointestinal tract, skeletal muscle fibers, astrocytes of the CNS, Purkinje neurons, cardiac muscle (e.g., cardiomyocytes), endothelium and skin.
In a preferred embodiment, a method of identifying candidate therapeutic compounds comprises culturing cells expressing at least one biomolecule selected from biomarker (TBB- I) having nucleic acid sequences/biomolecules comprising: 1553145_at (hypothetical protein FLJ39653), 1553575_at, 1557236_at (apolipoprotein L, 6), 1558142_at (trinucleotide repeat containing 6B), 1560752_at (F-box and WD-40 domain protein 2), 1565614_at (Zinc finger protein 337), 1567100_at (Dachshund homolog 1 (Drosophila)), 200068_s_at (calnexin /// calnexin), 201031_s_at (heterogeneous nuclear ribonucleoprotein HI (H)), 202646_s_at (cold shock domain containing El, RNA-binding), 205758_at (CD8a molecule /// CD8a molecule), 206188_at (zinc finger protein 623), 212637_s_at (WW domain containing E3 ubiquitin protein ligase 1), 212920_at, 213317_at (chloride intracellular channel 5), 213619_at (Heterogeneous nuclear ribonucleoprotein HI (H)), 215443_at (thyroid stimulating hormone receptor), 216198_at (activating transcription factor 7 interacting protein), 217870_s_at (cytidylate kinase), 218087_s_at (sorbin and SH3 domain containing 1), 222145_at (CDNA: FLJ23572 fis, clone LNG12403), 223577_x_at (PRO1073 protein), 224321_at (transmembrane protein with EGF-like and two follistatin-like domains 2), 224373 s at (IQ motif and WD repeats 1), 224644 at (CDNA clone IMAGE:5278517), 226173_at (ornithine aminotransferase-like 1), 226773_at (CDNA FLJ35131 fis, clone PLACE6008824), 226880_at (nuclear casein kinase and cyclin-dependent kinase substrate 1), 228980_at (ring finger and FYVE-like domain containing 1), 229569_at (CDNA clone IMAGE:5263455), 231735_s_at (PRO 1073 protein), 233765_at (Hypothetical LOCI97135), 235803_at (Cytokine receptor-like factor 3), 236131_at (CDNA clone IMAGE:6622963), 236953_s_at (similar to RIKEN cDNA 8030451K01), 240544_at (Zinc finger, ANl-type domain 3), 24097 l_x at (Cullin 4A), 244042_x_at (Similar to retinoic acid receptor responder (tazarotene induced) 2), complementary sequences, fragments, alleles, variants and gene products thereof, complementary sequences, fragments, alleles, variants and gene products thereof, with a candidate therapeutic agent; identifying candidate therapeutic agents which modulate the expression of the biomolecules and identifying a candidate therapeutic agent. Preferably, a candidate therapeutic agent comprises organic molecules, inorganic molecules, vaccines, antibodies, nucleic acid molecules, proteins, peptides and vectors expressing nucleic acid molecules.
In a preferred embodiment, a method of identifying candidate therapeutic compounds comprises culturing cells expressing at least one biomolecule selected from: biomarker (TBB-I) having nucleic acid sequences/biomolecules comprising: 1553145_at (hypothetical protein FLJ39653), 1553575_at, 1557236 at (apolipoprotein L, 6), 1558142_at (trinucleotide repeat containing 6B), 1560752_at (F-box and WD-40 domain protein 2), 1565614_at (Zinc finger protein 337), 1567100_at (Dachshund homolog 1 (Drosophila)), 200068_s_at (calnexin /// calnexin), 201031_s_at (heterogeneous nuclear ribonucleoprotein HI (H)), 202646_s_at (cold shock domain containing El, RNA-binding), 205758_at (CD8a molecule /// CD8a molecule), 206188 at (zinc finger protein 623), 212637_s_at (WW domain containing E3 ubiquitin protein ligase 1), 212920_at, 213317 at (chloride intracellular channel 5), 213619_at (Heterogeneous nuclear ribonucleoprotein HI (H)), 215443_at (thyroid stimulating hormone receptor), 216198_at (activating transcription factor 7 interacting protein), 217870_s_at (cytidylate kinase), 218087_s_at (sorbin and SH3 domain containing 1), 222145_at (CDNA: FLJ23572 fis, clone LNG12403), 223577_x_at (PRO 1073 protein), 224321_at (transmembrane protein with EGF-like and two follistatin-like domains 2), 224373_s_at (IQ motif and WD repeats 1), 224644_at (CDNA clone IMAGE:5278517), 226173_at (ornithine aminotransferase-like 1), 226773 at (CDNA FLJ35131 fis, clone PLACE6008824), 226880_at (nuclear casein kinase and cyclin-dependent kinase substrate 1), 228980_at (ring finger and FYVE-like domain containing 1), 229569__at (CDNA clone IMAGE:5263455), 231735_s_at (PRO 1073 protein), 233765_at (Hypothetical LOCI97135), 235803_at (Cytokine receptor-like factor 3), 23613 l_at (CDNA clone IMAGE:6622963), 236953_s_at (similar to RIKEN cDNA 8030451 KOI), 240544_at (Zinc finger, AN 1-type domain 3), 24097 l_x_at (Cullin 4A), 244042_x_at (Similar to retinoic acid receptor responder (tazarotene induced) 2), complementary sequences, fragments, alleles, variants and gene products thereof, complementary sequences, fragments, alleles, variants and gene products thereof.
In a preferred embodiment, a method of identifying candidate therapeutic compounds comprises culturing cells expressing at least one biomolecule selected from: biomarker (TBB-II) having nucleic acid sequences/biomolecules comprising: 1552419_s_at (tubulin tyrosine ligase-like family, member 10), 1553212_at (keratin 78), 1555124_at (hypothetical protein MGC40574), 1556192_x_at (Metastasis suppressor I), 1556320_at (Stomatin (EPB72)-like 1), 1556510_at (CDNA clone IMAGE:4796864), 1558484_s_at (leucine rich repeat containing 27), 1565662_at (Mucin 6, oligomeric mucus/gel-forming), 1567410_at (zinc finger protein 135), 1568513_x_at (Protease, serine, 1 (trypsin 1)), 1570408_at (Serine/threonine kinase 24 (STE20 homolog, yeast)), 203307_at (guanine nucleotide binding protein-like 1), 20458l_at (CD22 molecule, myelin associated glycoprotein), 205586_x_at (VGF nerve growth factor inducible), 206333_at (musashi homolog 1 (Drosophila)), 207004_at (B-cell CLL/lymphoma 2), 210059_s_at (mitogen-activated protein kinase 13), 210228_at (colony stimulating factor 2 (granulocyte-macrophage)), 210384_at (protein arginine methyltransferase 2), 210923_at (solute carrier family 1 (glutamate transporter), member 7), 211024_s_at (thyroid transcription factor 1 /// thyroid transcription factor 1), 211062_s_at (carboxypeptidase Z /// carboxypeptidase Z), 211096_at (pre-B-cell leukemia transcription factor 2), 211181x at (runt-related transcription factor 1 (acute myeloid leukemia 1; amll oncogene)), 211710_x_at (ribosomal protein L4 /// ribosomal protein L4), 213096_at (transmembrane and coiled-coil domain family 2), 213121 _at (small nuclear ribonucleoprotein 70kDa polypeptide (RNP antigen)), 213242_x_at (KIAA0284), 213568_at (odd-skipped related 2 (Drosophila)), 213770_at kinase suppressor of ras 1 (214171_s_at (U2 small nuclear RNA auxiliary factor 2), 216116_at (NCK interacting protein with SH3 domain), 216427_at (CDNA: FLJ22786 fis, clone KAIA2150), 216820_at, 217054_at (CDNA FLJ39484 fis, clone PROST2014925), 217180_at (Hypothetical protein similar to KIAA0187 gene product), 2171 S2_at (mucin 5AC, oligomeric mucus/gel-forming), 217322_x_at, 217430_x_at (collagen, type I, alpha 1), 219070_s_at (motile sperm domain containing 3), 219425_at (sulfotransferase family 4A, member 1), 221663_x_at (histamine receptor H3), 221684_s_at (Nyctalopin), 223974_at (hypothetical protein MGC11082), 226640_at (diacylglycerol lipase beta), 228074_at (hypothetical protein LOCI62073), 229191_at (tubulin folding cofactor D), 229257_at (KIAA1856 protein), 229335_at (immunoglobulin superfamily, member 4C), 229358_at (Indian hedgehog homolog (Drosophila)), 23034 l_x_at (ADAM metallopeptidase with thrombospondin type 1 motif, 10), 230693_at (ATPase, Ca++ transporting, cardiac muscle, fast twitch 1), 230768_at (FERM, RhoGEF and pleckstrin domain protein 2), 231510_at (GLI-Kruppel family member GLI2), 231629_x_at (Kallikrein-related peptidase 3), 231998_at, 233794_at (Single stranded DNA binding protein 3), 233974_s_at (family with sequence similarity 129, member B), 234495_at (kallikrein-related peptidase 15), 234637_at (keratin associated protein 4-5), 23488 l_at, 235568_at (chromosome 19 open reading frame 59), 235600_at (Transcribed locus), 236496_at (degenerative spermatocyte homolog 2, lipid desaturase (Drosophila)), 237087_at (Chromosome 14 open reading frame 105), 237144_at (Latent transforming growth factor beta binding protein 3), 237398_at (Transcribed locus), 237547_at (Hypothetical protein LOC728730), 237679_at (tripartite motif-containing 66), 238267_s_at, 238445_x_at (mannosyl (alpha-l,6-)-glycoprotein beta-l,6-N-acetyl-glucosaminyltransferase, isozyme B), 239026_x_at (centaurin, gamma 3), 239463_at (Transcribed locus), 239756_at (MAD1 mitotic arrest deficient-like 1 (yeast)), 240039_at (Transcribed locus /// Transcribed locus), 240147_at (hypothetical protein MGC11257), 240517_at (Cystathionine-beta-synthase), 241270_at (Rhomboid 5 homolog 2 (Drosophila)), 24143 l_at, 242365_at (Coiled-coil domain containing 32), 243297_at (Vacuolar protein sorting 13 homolog D (S. cerevisiae)), 243497_at (Transcribed locus), 243766_s_at (TEA domain family member 2), 43934_at (G protein-coupled receptor 137), complementary sequences, fragments, alleles, variants and gene products thereof.
In a preferred embodiment, a method of identifying candidate therapeutic compounds comprises culturing cells expressing at least one biomolecule selected from: biomarker (TBB-III) having nucleic acid sequences/biomolecules comprising: 1553212_at (keratin 78), 1557236_at (apolipoprotein L), 1558142_at (trinucleotide repeat containing 6B), 1558484_s_at (leucine rich repeat containing 27), 1565614_at (Zinc finger protein 337), 1565662 at (Mucin 6, oligomeric mucus/gel-forming), 1567100_at (Dachshund homolog 1 (Drosophila)), 203307_at (guanine nucleotide binding protein-like 1), 205758_at (CD8a molecule /// CD8a molecule), 206333_at (musashi homolog 1 (Drosophila)), 212920_at, 213242_x_at (KIAA0284), 213619_at (Heterogeneous nuclear ribonucleoprotein HI (H)), 213770 at (kinase suppressor of ras 1), 214171_s_at (U2 small nuclear RNA auxiliary factor 2) , 215443 at (thyroid stimulating hormone receptor), 216198_at (activating transcription factor 7 interacting protein), 216427_at (CDNA: FLJ22786 fis, clone KAIA2150), 217054_at (CDNA FLJ39484 fis, clone PROST2014925), 217182_at (mucin 5AC, oligomeric mucus/gel-forming), 217322_x_at, 219425 at (sulfotransferase family 4A, member 1), 222145_at (CDNA: FLJ23572 fis, clone LNG12403), 229191_at (tubulin folding cofactor D), 229569_at (CDNA clone IMAGE:5263455), 231629_x_at (Kallikrein-related peptidase 3) , 233765_at (Hypothetical LOC197135), 233794_at (Single stranded DNA binding protein 3), 233974_s_at (family with sequence similarity 129, member B), 234495_at (kallikrein-related peptidase 15), 235568_at (chromosome 19 open reading frame 59), 235803_at (Cytokine receptor-like factor 3), 236496__at (degenerative spermatocyte homolog 2, lipid desaturase (Drosophila)), 236953_s_at, 238445_x_at (mannosyl (alpha-1,6-)-glycoprotein beta-l,6-N-acetyl-glucosaminyltransferase, isozyme B), 239463_at (Transcribed locus), 240544 at (Zinc finger, ANl-type domain 3), 243766_s_at (TEA domain family member 2), and 244042_x_at complementary sequences, fragments, alleles, variants and gene products thereof.
Such compounds are useful, e.g., as candidate therapeutic compounds for the treatment of heart disease, heart disorders and conditions thereof. Thus, included herein are methods for screening for candidate therapeutic compounds for the treatment of, for example, myocarditis, Coronary Heart Disease, angina, Acute Coronary Syndrome, Aortic Aneurysm and Dissection, arrhythmias, Cardiomyopathy, Congenital Heart Disease, congestive heart failure or chronic heart failure, pericarditis, and the like. The methods include administering the compound to a model of the condition, e.g., contacting a cell (in vitro) model with the compound, or administering the compound to an animal model of the condition, e.g., an animal model of a condition associated with heart disease. The model is then evaluated for an effect of the candidate compound on the clinical outcome in the model and can be considered a candidate therapeutic compound for the treatment of the condition. Such effects can include clinically relevant effects, decreased pain; increased life span; and so on. Such effects can be determined on a macroscopic or microscopic scale. Candidate therapeutic compounds identified by these methods can be further verified, e.g., by administration to human subjects in a clinical trial.
The biomolecules can be expressed from one or more vectors. A "vector” (sometimes referred to as gene delivery or gene transfer "vehicle") refers to a macromolecule or complex of molecules comprising a polynucleotide to be delivered to a host cell, either in vitro or in vivo. The polynucleotide to be delivered may comprise a coding sequence of interest in gene therapy. Vectors include, for example, viral vectors (such as adenoviruses ("Ad"), adeno-associated viruses (AAV), and retroviruses), liposomes and other lipid-containing complexes, and other macromolecular complexes capable of mediating delivery of a polynucleotide to a host cell. Vectors can also comprise other components or functionalities that further modulate gene delivery and/or gene expression, or that otherwise provide beneficial properties to the targeted cells. As described and illustrated in more detail below, such other components include, for example, components that influence binding or targeting to cells (including components that mediate cell-type or tissue-specific binding); components that influence uptake of the vector nucleic acid by the cell; components that influence localization of the polynucleotide within the cell after uptake (such as agents mediating nuclear localization); and components that influence expression of the polynucleotide. Such components also might include markers, such as detectable and/or selectable markers that can be used to detect or select for cells that have taken up and are expressing the nucleic acid delivered by the vector. Such components can be provided as a natural feature of the vector (such as the use of certain viral vectors which have components or functionalities mediating binding and uptake), or vectors can be modified to provide such functionalities. Other vectors include those described by Chen et al; BioTechniques, 34: 167-171 (2003). A large variety of such vectors are known in the art and are generally available.
In another preferred embodiment, a vector expresses one or more biomolecules that comprise or make up TBB-I.
In another preferred embodiment, a vector expresses one or more biomolecules that comprise or make up TBB-II.
In another preferred embodiment, a vector expresses one or more biomolecules that comprise or make up TBB-III.
Kits
In another preferred embodiment, a kit is provided comprising any one or more of the biomarkers or molecular signatures comprising Tables 1,2, and 4.
For use in the applications described or suggested above, kits or articles of manufacture are also provided by the invention. Such kits may comprise a carrier means being compartmentalized to receive in close confinement one or more container means such as vials, tubes, and the like, each of the container means comprising one of the separate elements to be used in the method. For example, one of the container means may comprise a probe that is or can be detectably labeled. Where the kit utilizes nucleic acid hybridization to detect the target nucleic acid, the kit may also have containers containing nucleotide(s) for amplification of the target nucleic acid sequence and/or a container comprising a reporter-means, such as a biotin-binding protein, such as avidin or streptavidin, bound to a reporter molecule, such as an enzymatic, florescent, or radioisotope label.
The kit of the invention will typically comprise the container described above and one or more other containers comprising materials desirable from a commercial and user standpoint, including buffers, diluents, filters, needles, syringes, and package inserts with instructions for use. A label may be present on the container to indicate that the composition is used for a specific therapy or non-therapeutic application, and may also indicate directions for either in vivo or in vitro use, such as those described above.
The kits of the invention have a number of embodiments. A typical embodiment is a kit comprising a container, a label on said container, and a composition contained within said container; wherein the composition includes a primary antibody that binds to the biomolecules of each molecular signature and instructions for using the antibody for evaluating the presence of biomolecules in at least one type of mammalian cell. The kit can further comprise a set of instructions and materials for preparing a tissue sample and applying antibody and probe to the same section of a tissue sample. The kit may include both a primary and secondary antibody, wherein the secondary antibody is conjugated to a label, e.g., an enzymatic label.
Another embodiment is a kit comprising a container, a label on said container, and a composition contained within said container; wherein the composition includes a polynucleotide that hybridizes to a complement of the polynucleotides under stringent conditions, the label on said container indicates that the composition can be used to evaluate the presence of a molecular signature in at least one type of mammalian cell, and instructions for using the polynucleotide for evaluating the presence of biomolecule RNA or DNA in at least one type of mammalian cell.
Other optional components in the kit include, microarrays, one or more buffers (e.g., block buffer, wash buffer, substrate buffer, etc), other reagents such as substrate (e.g., chromogen) which is chemically altered by an enzymatic label, epitope retrieval solution, control samples (positive and/or negative controls), control slide(s) etc.
Embodiments of inventive compositions and methods are illustrated in the following examples. These examples are provided for illustrative purposes and are not considered limitations on the scope of inventive compositions and methods.
EXAMPLES
Materials and Methods:
Patients: EMBs were collected from patients that were referred to Johns Hopkins Hospital between 1997 and 2006 for evaluation of cardiomyopathy (n=350). A clinical data base of patient outcome was maintained concurrently for a 10 year period beginning in 1997. All patients gave written informed consent for sample collection and medical chart abstraction. Transvenous EMBs from the right ventricular septum were obtained as previously described (Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, Baughman KL, Kasper ΕΚ. N Engl JMed 2000 April 13;342(15): 1077-84) for subsequent microarray analysis. In order to avoid possible disease specific confounding factors, only samples from patients with IDCM were selected. IDCM was a diagnosis of exclusion after extensive histological work-up without any detectable pathological signs. Within a repository of 180 IDCM samples, biopsies were selected in a case-control fashion based on the phenotypic extremes in survival of the cohort. A group with good prognosis (GP, n=25), was defined as having event free survival for at least 5 years after initial presentation with heart failure symptoms; a group with poor prognosis (PP, n=18), experienced an event within the first 2 years. Events included death (n=14), requirement for left ventricular assist device (n=;2) or cardiac transplantation (n=2).
Processing of biopsies: EMBs were immediately flash frozen in liquid nitrogen for storage in a biorepository. All steps of RNA isolation and processing were performed according to MIAME guidelines (Minimum Information about a Microarray Experiment). Tissue samples (average diameter ~2mm) were homogenized with the MM 301 Mixer Mill (Retsch, Cat.No. 85120). Trizol reagent together with the Micro-to-Midi Total RNA Purification System (Invitrogen, Cat.No. 12183-018) was used for extraction of total RNA (success rate: 97% of samples). Concentration and integrity of total RNA was measured with the Agilent 2100 Bioanalyzer. All RNA samples exhibited intact 28S and 18S ribosomal RNA on denaturing agarose gel electrophoresis and the 260/280 nm absorbance readings fell in the acceptable range of 1.8-2.1. An average amount of 568 ± 92ng (SEM) total RNA was isolated and preprocessed with the Ovation Biotin RNA Amplification and Labeling System (NuGen, Cat.No. 2300-12).
Microarray hybridization: Samples were hybridized to the Human Genome U133 Plus 2,0 Array from Affymetrix without additional amplification step. The microarray experiments were judged successful when RNA isolation and microarray hybridization met all the indices of quality control as specified in the Affymetrix Guideline for Assessing Sample and Array Quality (Kittleson MM, Irizarry RA, Heidecker B, Hare J.M. Transcriptomics: Translation of Global Expression Analysis to Genomic Medicine. In: Willard H.F., Ginsburg G.S., eds. Handbook of Genomic Medicine. 1st ed. Elsevier; 2008). Average background and noise of all chips registered within acceptable ranges and hybridization efficiencies were similar for all samples.
Statistical Analysis'. Raw intensity values from microarray hybridization were normalized with Robust Multiarray Average (RMA) implemented in the R package for statistical computing (available at www.R-project.org). In the next step, Significance Analysis of Microarrays (SAM) (Tusher VG, et al. Proc Natl Acad Sci USA 2001 April 24;98(9):5116-21) was used to identify phenotype specific differences in gene expression. SAM defines significance with the q-value, an adjusted p-value for multiple comparisons.
For the development of a TBB, Prediction Analysis of Microarrays (PAM) (Tibshirani R, et al. Proc Natl Acad Sci USA 2002 May 14;99(10):6567-72) was used to create a classifier in a training set (containing 2/3 of the data, n~29), with subsequent validation in a test set (containing 1/3 of the data, n=14)( Kittleson MM, et al. Circulation 2004 November 30; 110(22):3444-51). PAM is a software that allows to find the minimum number of genes necessary to create a phenotype specific “nearest shrunken centroid” for classification (Tibshirani R, et al. 2002, supra). This was done by a balanced 10-fold cross validation in a training set, which enables one to choose a threshold that minimizes classification errors. Overall accuracy of the discovered transcriptomic biomarker was assessed after 50 random partitions. To test for balanced baseline conditions of our cohort with good vs. poor prognosis, a student t-test for numerical and Fisher’s exact test for categorical variables was used.
Example 1: Transcriptomic Biomarker
To identify this biomarker (gene signature) heart samples were collected from patients undergoing heart biopsy at an early stage of heart failure, originating from either myocarditis or idiopathic cardiomyopathy, and stored them in a biorepository over 10 years. Endomyocardial biopsy samples from patients with myocarditis or idiopathic cardiomyopathy have been collected at the Johns Hopkins Hospital between 1997-2004 and stored in liquid nitrogen, The biorepository was reviewed and biopsy samples from 19 patients with myocarditis and 42 patients with idiopathic cardiomyopathy were chosen. Myocarditis was diagnosed from endomyocardial biopsy samples by immunohistochemistry. The MIAME (Minimum information about a microarray experiment) guidelines were followed for all experiments. The tissue was homogenized with the MM301 instrument from Retsch and total RNA was isolated with the Micro-to-Midi Total RNA purification system from Invitrogen. Microarray analysis of total RNA was performed with the Human Genome U133 Plus 2.0 Array from Affymetrix. In all samples, both RNA isolation and microarray hybridization met all indices of quality control as specified in the Affymetrix Guideline for
Assessing Sample and Array Quality. Raw expression values of all microarray chips were preprocessed with Robust Multiarray Average (RMA) in R. We performed Significance Analysis of Microarrays (SAM) on a training set of 28 samples (11 samples from myocarditis, 17 samples from idiopathic cardiomyopathy) to select a subset of 122 differentially expressed genes (FC>1.2, q = 0%). These 122 contained 38 genes that were overexpressed and 84 genes were downregulated in patients with myocarditis (Figure 1).
With this predefined subset of 122 genes, a heatmap was created including all samples of the study (n=6I) standardized by mean levels of expression (Figure 2, Table 1, Table 2). A heatmap is a classification method of unsupervised machine learning. Each row represents one of the 122 genes, and each column is a patient sample. A red cell depicts an underexpressed gene in a given patient relative to the average gene expression in all patients, while a blue cell denotes an overexpressed gene. The dendrogram at the top is an unsupervised hierarchical clustering algorithm that divides samples into groups based on the similarity of the gene expression profiles. This algorithm performed with 77% sensitivity and 97% specificity. To increase predictive power, the same subset of 122 genes for a “nearest shrunken centroid” classification approach with Prediction Analysis of Microarrays (PAM) implemented in R was used. After training of the classifier (supervised clustering) in a subset of 11 samples of patients with myocarditis and 17 samples of patients with idiopathic cardiomyopathy, a cluster of 39 genes that identified myocarditis with 90% sensitivity and 88% specificity was found (Figure 3, Figure 4, Figure 5, Table 3, Table 4). To test if the predictive power of the discovered transcriptomic biomarker could be increased, heatmap with the new subset of 39 candidate genes was created (Figure 6). While the first heatmap of 122 genes produced 6 misclassified samples, only 4 samples were classified incorrectly by this algorithm (sensitivity: 89%, specificity: 95%). With this extremely powerful diagnostic method of gene expression profiling, even patients that do not present with characteristic clinical signs of myocarditis, will be detected at a very early stage of the disease and treated appropriately. The application of this highly sensitive biomarker will significantly reduce the number of cases that undergo a fatal course of myocarditis in the future. In addition this biomarker will allow appropriate use of therapies specifically for myocarditis.
Table 1 shows the 38 genes that were significantly upregulated in patients with myocarditis versus idiopathic cardiomyopathy. First column contains the ID from Affymetrix for each transcript.
Table 1: 38 significantly upregulated genes in patients with myocarditis (q=0.1%; FC>1.2)
Table 2 shows 84 genes that were significantly downregulated in patients with myocarditis versus patients with idiopathic cardiomyopathy (FOl.2, q=0%).
Table 2: 84 significantly downregulated genes in myocarditis (FC>1.2, q=0.1%))
Table 3 shows the prediction results of the test set (n=28): 39 genes signature was used. The sample labels are listed above the row highlighted in red, followed by the predicted classes. Myocarditis (Myo) samples were assigned to class 2 - idiopathic cardiomyopathy samples (GP, BP) samples were assigned to class 1. 25 samples were correctly classified (probabilities between 75% and 99%), Only three samples were misclassified (with probabilities between 48% and 99%). Predicted probabilities are listed for each class in the last two lines.
Table 3
Table 4: 39 genes transcriptomic biomarker for detection of patients with myocarditis: First column contains the IDs from Affymetrix for every gene. Annotations for biological function were derived from the gene ontology database.
Table 4: 39 genes biomarker to detect myocarditis
Other Embodiments
It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention. Other aspects, advantages, and modifications are within the scope of the following claims.
Claims (18)
1. Use of nucleic acid molecules consisting of nucleic acid sequences of: 1553145_at (hypothetical protein FLJ39653), 1553575_at, 1557236_at (apolipoprotein L, 6), 1558142_at (trinucleotide repeat containing 6B), 1560752_at (F-box and WD-40 domain protein 2), 1565614_at (Zinc finger protein 337), 1567100_at (Dachshund homolog I (Drosophila)), 200068_s_at (calnexin /// calnexin), 20103 l_s_at (heterogeneous nuclear ribonucleoprotein HI (H)), 202646_s_at (cold shock domain containing El, RNA- binding), 205758_at (CD8a molecule /// CD8a molecule), 206188_at (zinc finger protein 623), 212637_s_at (WW domain containing E3 ubiquitin protein ligase 1), 212920_ at, 213317_ at (chloride intracellular channel 5), 213619_at (Heterogeneous nuclear ribonucleoprotein HI (H)), 215443_at (thyroid stimulating hormone receptor), 216198_at (activating transcription factor 7 interacting protein), 217870_s_at (cytidylate kinase), 218087_s_at (sorbin and SH3 domain containing 1), 222145_at (CDNA: FLJ23572 fis, clone LNG12403), 223577_x_at (PRO1073 protein), 224321_at (transmembrane protein with EGF-like and two follistatin-like domains 2), 224373_s_at (IQ motif and WD repeats 1), 224644_at (CDNA clone IMAGE:5278517), 226173_at (ornithine aminotransferase-like 1), 226773_at (CDNA FLJ35131 fis, clone PLACE6008824), 226880_at (nuclear casein kinase and cyclin-dependent kinase substrate 1), 228980 at (ring finger and FYVE-like domain containing 1), 229569_ at (CDNA clone IMAGE:5263455), 231735_s_at (PRO 1073 protein), 233765_at (Hypothetical LOCI97135), 235803_at (Cytokine receptor-like factor 3), 23613l_at (CDNA clone IMAGE:6622963), 236953_s_at (similar to RIKEN cDNA 8030451K01), 240544_at (Zinc finger, ANl-type domain 3), 24097l_x_at (Cullin 4A), and 244042_x_at (Similar to retinoic acid receptor responder (tazarotene induced) 2) in the manufacture of a molecular composition for the in vitro diagnosis of myocarditis.
2. Use of a molecular composition in the in vitro diagnosis of myocarditis, said composition comprising nucleic acid molecules consisting of nucleic acid sequences of: 1553145_at (hypothetical protein FLJ39653), 1553575_at, 1557236_at (apolipoprotein L, 6), 1558142_at (trinucleotide repeat containing 6B), 1560752_at (F-box and WD-40 domain protein 2), 1565614_at (Zinc finger protein 337), 1567100_at (Dachshund homolog I (Drosophila)), 200068_s_at (calnexin /// calnexin), 20103 l_s_at (heterogeneous nuclear ribonucleoprotein HI (H)), 202646_s_at (cold shock domain containing El, RNA- binding), 205758_at (CD8a molecule /// CD8a molecule), 206188_at (zinc finger protein 623), 212637_s_at (WW domain containing E3 ubiquitin protein ligase 1), 212920_ at, 213317_ at (chloride intracellular channel 5), 213619_at (Heterogeneous nuclear ribonucleoprotein HI (H)), 215443_at (thyroid stimulating hormone receptor), 216198_at (activating transcription factor 7 interacting protein), 217870_s_at (cytidylate kinase), 218087_s_at (sorbin and SH3 domain containing 1), 222145_at (CDNA: FLJ23572 fis, clone LNG12403), 223577_x_at (PRO1073 protein), 224321_at (transmembrane protein with EGF-like and two follistatin-like domains 2), 224373_s_at (IQ motif and WD repeats 1), 224644_at (CDNA clone IMAGE:5278517), 226173_at (ornithine aminotransferase-like 1), 226773_at (CDNA FLJ35131 fis, clone PLACE6008824), 226880_at (nuclear casein kinase and cyclin-dependent kinase substrate 1), 228980 at (ring finger and FYVE-like domain containing 1), 229569_ at (CDNA clone IMAGE:5263455), 231735_s_at (PRO 1073 protein), 233765_at (Hypothetical LOCI97135), 235803_at (Cytokine receptor-like factor 3), 23613 l_at (CDNA clone IMAGE:6622963), 236953_s_at (similar to RIKEN cDNA 8030451 KOI), 240544_at (Zinc finger, AN 1-type domain 3), 24097 l_x_at (Cullin 4A), and 244042_x_at (Similar to retinoic acid receptor responder (tazarotene induced) 2).
3. The use of claim 1 or 2, wherein detection of overexpression of the nucleic acid molecules, complementary sequences, alleles, or gene products thereof, in a biological sample is diagnostic of myocarditis.
4. The use of any one of the previous claims, wherein the nucleic acid molecules, complementary sequences, alleles or gene products thereof, are over-expressed at levels by at least 10% in a cell or patient as compared to levels in a normal cell or normal subject.
5. The use of any one of the previous claims, wherein the nucleic acid molecules, complementary sequences, alleles, or gene products thereof, are overexpressed by about 50% in a cell or a patient as compared to levels in a normal cell or normal subject.
6. The use of any one of claims 1 to 4, wherein the nucleic acid molecules, complementary sequences, alleles or gene products thereof, are overexpressed by about 75% in a cell or a patient as compared to levels in a normal cell or normal subject.
7. The use of any one of the previous claims, wherein a biochip comprises the nucleic acid molecules.
8. The use of any one of claims 1 to 6, wherein a kit comprises the nucleic acid molecules.
9. Use of a transcriptomic biomarker consisting of nucleic acid molecules complementary to: 1553212_at (keratin 78), 1557236_at (apolipoprotein L), 1558142_at (trinucleotide repeat containing 6B), 1558484_s_at (leucine rich repeat containing 27), 1565614_at (Zinc finger protein 337), 1565662_at (Mucin 6, oligomeric mucus/gel-forming), 1567100_at (Dachshund homolog 1 (Drosophila)), 203307_at (guanine nucleotide binding protein-like 1), 205758_at (CD8a molecule /// CD8a molecule), 206333_at (musashi homolog 1 (Drosophila)), 212920_at, 213242_x_at (KIAA0284), 213619_at (Heterogeneous nuclear ribonucleoprotein HI (H)), 213770_at (kinase suppressor of ras 1), 214171 _s_at (U2 small nuclear RNA auxiliary factor 2), 215443_at (thyroid stimulating hormone receptor), 216198_at (activating transcription factor 7 interacting protein), 216427_ at (CDNA: FLJ22786 fis, clone KAIA2150), 217054_at (cDNA FLJ39484 fis, clone PROST2014925), 217182_at (mucin 5AC, oligomeric mucus/gel-forming), 217322_x_at, 219425_at (sulfotransferase family 4A, member 1), 222145_at (cDNA: FLJ23572 fis, clone LNG12403), 229191_at (tubulin folding cofactor D), 229569 at (cDNA clone IMAGE:5263455), 231629_x_at (Kallikrein-related peptidase 3), 233765_at (Hypothetical LOCI97135), 233794_at (Single stranded DNA binding protein 3), 233974_s_at (family with sequence similarity 129, member B), 234495_at (kallikrein-related peptidase 15), 235568_at (chromosome 19 open reading frame 59), 235803_at (Cytokine receptor-like factor 3), 236496_at (degenerative spermatocyte homolog 2, lipid desaturase (Drosophila)), 236953_s_at, 238445_x_at (mannosyl (alpha-l,6-)-glycoprotein beta-l,6-N-acetyl-glucosaminyltransferase, isozyme B), 239463 at (Transcribed locus), 240544_at (Zinc finger, ANI-type domain 3) and 243766_s_at (TEA domain family member 2), in the manufacture of a molecular composition for the in vitro diagnosis of myocarditis.
10. Use of a transcriptomic biomarker in the in vitro diagnosis of myocarditis, said transcriptomic biomarker consisting of nucleic acid molecules complementary to: 1553212_at (keratin 78), 1557236_at (apolipoprotein L), 1558142_at (trinucleotide repeat containing 6B), 1558484_s_at (leucine rich repeat containing 27), 1565614_at (Zinc finger protein 337), 1565662_at (Mucin 6, oligomeric mucus/gel-forming), 1567100_at (Dachshund homolog 1 (Drosophila)), 203307_at (guanine nucleotide binding protein-like 1), 205758_at (CD8a molecule /// CD8a molecule), 206333_at (musashi homolog 1 (Drosophila)), 212920_at, 213242_x_at (KIAA0284), 213619_at (Heterogeneous nuclear ribonucleoprotein HI (H)), 213770_at (kinase suppressor of ras 1), 214171 _s_at (U2 small nuclear RNA auxiliary factor 2), 215443_at (thyroid stimulating hormone receptor), 216198_at (activating transcription factor 7 interacting protein), 216427_ at (CDNA: FLJ22786 fis, clone KAIA2150), 217054_at (cDNA FLJ39484 fis, clone PROST2014925), 217182_at (mucin 5AC, oligomeric mucus/gel-forming), 217322_x_at, 219425_at (sulfotransferase family 4A, member 1), 222145_at (cDNA: FLJ23572 fis, clone LNG12403), 229191_at (tubulin folding cofactor D), 229569 at (cDNA clone IMAGE:5263455), 231629_x_at (Kallikrein-related peptidase 3), 233765_at (Hypothetical LOCI97135), 233794_at (Single stranded DNA binding protein 3), 233974_s_at (family with sequence similarity 129, member B), 234495_at (kallikrein-related peptidase 15), 235568_at (chromosome 19 open reading frame 59), 235803_at (Cytokine receptor-like factor 3), 236496_at (degenerative spermatocyte homolog 2, lipid desaturase (Drosophila)), 236953_s_at, 238445_x_at (mannosyl (alpha-1,6-)-glycoprotein beta-l,6-N-acetyl-glucosaminyltransferase, isozyme B), 239463 at (Transcribed locus), 240544_at (Zinc finger, ANI-type domain 3) and 243766_s_at (TEA domain family member 2).
11. The use of claim 9 or 10, wherein detection of overexpression of the nucleic acid molecules, complementary sequences, alleles, or gene products thereof, in a biological sample is diagnostic of myocarditis.
12. The use of any one of claims 9 to 11, wherein nucleic acid molecules, complementary sequences, alleles, or gene products thereof, are overexpressed at levels by at least 10% in a cell or patient as compared to levels in a normal cell or normal subject.
13. The use of any one of claims 9 to 12, wherein the nucleic acid molecules, complementary sequences, alleles, or gene products thereof, are overexpressed by about 50% in a cell or a patient as compared to levels in a normal cell or normal subject.
14. The use of any one of claims 9 to 12, wherein the nucleic acid molecules, complementary sequences, alleles, or gene products thereof, are overexpressed by about 75% in a cell or a patient as compared to levels in a normal cell or normal subject.
15. A method of diagnosing myocarditis, comprising: generating from a patient a molecular signature, wherein the generating comprises measuring the expression of nucleic acid molecules comprising nucleic acid sequences: 1553145_at (hypothetical protein FLJ39653), 1553575_at, 1557236_at (apolipoprotein L, 6), 1558142_at (trinucleotide repeat containing 6B), 1560752_at (F-box and WD-40 domain protein 2), 1565614_at (Zinc finger protein 337), 1567100_at (Dachshund homolog I (Drosophila)), 200068_s_at (calnexin /// calnexin), 20103 l_s_at (heterogeneous nuclear ribonucleoprotein HI (H)), 202646_s_at (cold shock domain containing El, RNA-binding), 205758_at (CD8a molecule /// CD8a molecule), 206188_at (zinc finger protein 623), 212637_s_at (WW domain containing E3 ubiquitin protein ligase 1), 212920_ at, 213317_ at (chloride intracellular channel 5), 213619_at (Heterogeneous nuclear ribonucleoprotein HI (H)), 215443_at (thyroid stimulating hormone receptor), 216198_at (activating transcription factor 7 interacting protein), 217870_s_at (cytidylate kinase), 218087_s_at (sorbin and SH3 domain containing 1), 222145_at (CDNA: FLJ23572 fis, clone LNG12403), 223577_x_at (PRO1073 protein), 22432 l_at (transmembrane protein with EGF- like and two follistatin-like domains 2), 224373_s_at (IQ motif and WD repeats 1), 224644_at (CDNA clone IMAGE:5278517), 226173_at (ornithine aminotransferase-like 1), 226773_at (CDNA FLJ35131 fis, clone PLACE6008824), 226880_at (nuclear casein kinase and cyclin-dependent kinase substrate 1), 228980 at (ring finger and FYVE-like domain containing 1), 229569_ at (CDNA clone IMAGE:5263455), 231735_s_at (PRO1073 protein), 233765_at (Hypothetical LOCI97135), 235803_at (Cytokine receptor-like factor 3), 23613 l_at (CDNA clone IMAGE:6622963), 236953_s_at (similar to RIKEN cDNA 8030451K01), 240544_at (Zinc finger, ANl-type domain 3), 240971_x_at (Cullin 4A) and 244042_x_at (Similar to retinoic acid receptor responder (tazarotene induced) 2); analyzing the generated molecular signature; and diagnosing whether or not the patient has myocarditis upon the analysis of the generated molecular signature.
16. The method of claim 13, wherein the patient is diagnosed as having myocarditis if: 1553212_at (keratin 78), 1557236_at (apolipoprotein L), 1558142_at (trinucleotide repeat containing 6B), 1558484_s_at (leucine rich repeat containing 27), 1565614_at (Zinc finger protein 337), 1565662_at (Mucin 6, oligomeric mucus/gel-forming), 1567100_at (Dachshund homolog 1 (Drosophila)), 203307_at (guanine nucleotide binding protein-like 1), 205758_at (CD8a molecule /// CD8a molecule), 206333_at (musashi homolog 1 (Drosophila)), 212920_at, 213242_x_at (KIAA0284), 213619_at (Heterogeneous nuclear ribonucleoprotein HI (H)), 213770_at (kinase suppressor of ras 1), 214171 _s_at (U2 small nuclear RNA auxiliary factor 2), 215443_at (thyroid stimulating hormone receptor), 216198_at (activating transcription factor 7 interacting protein), 216427_ at (CDNA: FLJ22786 fis, clone KAIA2150), 217054_at (cDNA FLJ39484 fis, clone PROST2014925), 217182_at (mucin 5AC, oligomeric mucus/gel-forming), 217322_x_at, 219425_at (sulfotransferase family 4A, member 1), 222145_at (cDNA: FLJ23572 fis, clone LNG12403), 229191_at (tubulin folding cofactor D), 229569 at (cDNA clone IMAGE:5263455), 231629_x_at (Kallikrein-related peptidase 3), 233765_at (Hypothetical LOCI97135), 233794_at (Single stranded DNA binding protein 3), 233974_s_at (family with sequence similarity 129, member B), 234495_at (kallikrein-related peptidase 15), 235568_at (chromosome 19 open reading frame 59), 235803_at (Cytokine receptor-like factor 3), 236496_at (degenerative spermatocyte homolog 2, lipid desaturase (Drosophila)), 236953_s_at, 238445_x_at (mannosyl (alpha-1,6-)-glycoprotein beta-l,6-N-acetyl-glucosaminyltransferase, isozyme B), 239463 at (Transcribed locus), 240544_at (Zinc finger, ANI-type domain 3), 243766_s_at (TEA domain family member 2) and 244042_x_at are upregulated.
17. The method of claims 13 or 14, wherein the generating further comprises isolating nucleic acid molecules obtained from a biological sample, and the isolated nucleic acid molecules are preferably hybridized to a biochip comprising complementary nucleic acid molecules and raw intensity values from the hybridization are preferably normalized and phenotype specific differences in gene expression are preferably identified, and wherein the differences in gene expression preferably are identified by significance analysis of microarrays, wherein significance is defined with a q-value and multiple comparisons comprise an adjusted p-value, and wherein the phenotype specificity is preferably identified by creating a classifier in a training set comprising about 66% of data obtained, with subsequent validation in a test set comprising about 33% of data obtained and defining a phenotype specific nearest shrunken centroid for classification, and wherein the phenotype specific nearest shrunken centroid preferably comprises balancing about a 10-fold cross validation in a training set.
18. Use of a biochip in the in vitro diagnosis of myocarditis, said biochip comprising nucleic acid molecules hybridized to the biochip, wherein the nucleic acid molecules consist of: 1553212_at (keratin 78), 1557236_at (apolipoprotein L), 1558142_at (trinucleotide repeat containing 6B), 1558484_s_at (leucine rich repeat containing 27), 1565614_at (Zinc finger protein 337), 1565662_at (Mucin 6, oligomeric mucus/gel- forming), 1567100_at (Dachshund homolog 1 (Drosophila)), 203307_at (guanine nucleotide binding protein-like 1), 205758_at (CD8a molecule /// CD8a molecule), 206333_at (musashi homolog 1 (Drosophila)), 212920_at, 213242_x_at (KIAA0284), 213619_at (Heterogeneous nuclear ribonucleoprotein HI (H)), 213770_at (kinase suppressor of ras 1), 214171 s at (U2 small nuclear RNA auxiliary factor 2), 215443_at (thyroid stimulating hormone receptor), 216198_at (activating transcription factor 7 interacting protein), 216427_ at (CDNA: FLJ22786 fis, clone KAIA2150), 217054_at (cDNA FLJ39484 fis, clone PROST2014925), 217182_at (mucin 5AC, oligomeric mucus/gel-forming), 217322_x_at, 219425_at (sulfotransferase family 4A, member 1), 222145_at (cDNA: FLJ23572 fis, clone LNG12403), 229191_at (tubulin folding cofactor D), 229569 at (cDNA clone IMAGE:5263455), 231629_x_at (Kallikrein-related peptidase 3), 233765_at (Hypothetical LOCI97135), 233794_at (Single stranded DNA binding protein 3), 233974_s_at (family with sequence similarity 129, member B), 234495_at (kallikrein- related peptidase 15), 235568_at (chromosome 19 open reading frame 59), 235803_at (Cytokine receptor-like factor 3), 236496_at (degenerative spermatocyte homolog 2, lipid desaturase (Drosophila)), 236953_s_at, 238445_x_at (mannosyl (alpha-l,6-)-glycoprotein beta-1,6-N- acetyl-glucosaminyltransferase, isozyme B), 239463 _at (Transcribed locus), 240544_at (Zinc finger, ANI-type domain 3), 243766_s_at ( and TEA domain family member 2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2014259525A AU2014259525B2 (en) | 2007-05-01 | 2014-11-06 | A transcriptomic biomarker of myocarditis |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US91521507P | 2007-05-01 | 2007-05-01 | |
US60/915,215 | 2007-05-01 | ||
PCT/US2008/062290 WO2008137595A1 (en) | 2007-05-01 | 2008-05-01 | A transcriptomic biomarker of myocarditis |
AU2008247658A AU2008247658A1 (en) | 2007-05-01 | 2008-05-01 | A transcriptomic biomarker of myocarditis |
AU2014259525A AU2014259525B2 (en) | 2007-05-01 | 2014-11-06 | A transcriptomic biomarker of myocarditis |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2008247658A Division AU2008247658A1 (en) | 2007-05-01 | 2008-05-01 | A transcriptomic biomarker of myocarditis |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2014259525A1 AU2014259525A1 (en) | 2014-11-27 |
AU2014259525B2 true AU2014259525B2 (en) | 2017-10-19 |
Family
ID=51946308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2014259525A Active AU2014259525B2 (en) | 2007-05-01 | 2014-11-06 | A transcriptomic biomarker of myocarditis |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU2014259525B2 (en) |
-
2014
- 2014-11-06 AU AU2014259525A patent/AU2014259525B2/en active Active
Non-Patent Citations (1)
Title |
---|
"Affymetrix Human Genome U133 Plus 2.0 Array", Accession GPL570; GEO Expression, 7 November 2003. * |
Also Published As
Publication number | Publication date |
---|---|
AU2014259525A1 (en) | 2014-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10131948B2 (en) | Transcriptomic biomarkers for individual risk assessment in new onset heart failure | |
US20210302437A1 (en) | Transcriptomic biomarker of myocarditis | |
US11591655B2 (en) | Diagnostic transcriptomic biomarkers in inflammatory cardiomyopathies | |
US20040146921A1 (en) | Expression profiles for colon cancer and methods of use | |
US20090258002A1 (en) | Biomarkers for Tissue Status | |
JP2010508815A (en) | Evaluation of oocyte receptivity | |
US20060240441A1 (en) | Gene expression profiles and methods of use | |
MX2007014537A (en) | Leukemia disease genes and uses thereof. | |
WO2011044927A1 (en) | A method for the diagnosis or prognosis of an advanced heart failure | |
US20100104581A1 (en) | Methods for Diagnosing and Treating Graft Rejection and Inflammatory Conditions | |
US20130053261A1 (en) | Genes differentially expressed by cumulus cells and assays using same to identify pregnancy competent oocytes | |
WO2002059367A2 (en) | Diagnostic microarray for inflammatory bowel disease, crohn's disease and ulcerative colitis | |
US20140171371A1 (en) | Compositions And Methods For The Diagnosis of Schizophrenia | |
AU2014259525B2 (en) | A transcriptomic biomarker of myocarditis | |
US20240263242A1 (en) | Method for predicting prognosis of gastric cancer | |
WO2003016476A2 (en) | Gene expression profiles in glomerular diseases | |
WO2010138843A2 (en) | Acute lymphoblastic leukemia (all) biomarkers | |
KR20120001916A (en) | Snp gene set for diagnosis of aspirin-induced asthma |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) |