AU2010313367B2 - Process for the conversion of propane and butane to aromatic hydrocarbons - Google Patents
Process for the conversion of propane and butane to aromatic hydrocarbons Download PDFInfo
- Publication number
- AU2010313367B2 AU2010313367B2 AU2010313367A AU2010313367A AU2010313367B2 AU 2010313367 B2 AU2010313367 B2 AU 2010313367B2 AU 2010313367 A AU2010313367 A AU 2010313367A AU 2010313367 A AU2010313367 A AU 2010313367A AU 2010313367 B2 AU2010313367 B2 AU 2010313367B2
- Authority
- AU
- Australia
- Prior art keywords
- stage
- propane
- butane
- ethane
- feed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 title claims abstract description 188
- 238000000034 method Methods 0.000 title claims abstract description 99
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 94
- 239000001294 propane Substances 0.000 title claims abstract description 94
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 title claims abstract description 91
- 239000001273 butane Substances 0.000 title claims abstract description 73
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 title claims abstract description 73
- 150000004945 aromatic hydrocarbons Chemical class 0.000 title description 12
- 239000003054 catalyst Substances 0.000 claims abstract description 79
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims abstract description 76
- 238000005899 aromatization reaction Methods 0.000 claims abstract description 38
- 125000003118 aryl group Chemical group 0.000 claims abstract description 18
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 16
- 239000002737 fuel gas Substances 0.000 claims description 24
- 239000000047 product Substances 0.000 claims description 14
- 230000000052 comparative effect Effects 0.000 claims description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 105
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 66
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 48
- 238000011056 performance test Methods 0.000 description 27
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 27
- 239000001257 hydrogen Substances 0.000 description 21
- 229910052739 hydrogen Inorganic materials 0.000 description 21
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 20
- 239000007789 gas Substances 0.000 description 18
- 238000011069 regeneration method Methods 0.000 description 17
- 230000008929 regeneration Effects 0.000 description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 229930195733 hydrocarbon Natural products 0.000 description 14
- 150000002430 hydrocarbons Chemical class 0.000 description 14
- 239000008096 xylene Substances 0.000 description 14
- 239000007788 liquid Substances 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 229910052697 platinum Inorganic materials 0.000 description 13
- 229910021536 Zeolite Inorganic materials 0.000 description 12
- 239000000571 coke Substances 0.000 description 12
- 239000010457 zeolite Substances 0.000 description 12
- 239000006227 byproduct Substances 0.000 description 11
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 10
- 239000012263 liquid product Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 9
- 239000005977 Ethylene Substances 0.000 description 9
- 229910000323 aluminium silicate Inorganic materials 0.000 description 9
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 9
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 9
- 150000003738 xylenes Chemical class 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 150000001335 aliphatic alkanes Chemical class 0.000 description 8
- 125000004122 cyclic group Chemical group 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 150000002431 hydrogen Chemical class 0.000 description 6
- 239000000376 reactant Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 239000008247 solid mixture Substances 0.000 description 6
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 5
- 150000001336 alkenes Chemical class 0.000 description 5
- 238000001354 calcination Methods 0.000 description 5
- 238000006356 dehydrogenation reaction Methods 0.000 description 5
- -1 ethane Chemical class 0.000 description 5
- 229910052733 gallium Inorganic materials 0.000 description 5
- 239000003949 liquefied natural gas Substances 0.000 description 5
- 239000003345 natural gas Substances 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 238000007327 hydrogenolysis reaction Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000009533 lab test Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000001833 catalytic reforming Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- CHPZKNULDCNCBW-UHFFFAOYSA-N gallium nitrate Inorganic materials [Ga+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CHPZKNULDCNCBW-UHFFFAOYSA-N 0.000 description 1
- YVFORYDECCQDAW-UHFFFAOYSA-N gallium;trinitrate;hydrate Chemical compound O.[Ga+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O YVFORYDECCQDAW-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- NWAHZABTSDUXMJ-UHFFFAOYSA-N platinum(2+);dinitrate Chemical compound [Pt+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O NWAHZABTSDUXMJ-UHFFFAOYSA-N 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/76—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/02—Boron or aluminium; Oxides or hydroxides thereof
- C07C2521/04—Alumina
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
- C07C2529/42—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
- C07C2529/44—Noble metals
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Abstract
A process for the conversion of propane and/or butane into aromatics which comprises first reacting a propane and/or butane feed in the presence of an aromatization catalyst under reaction conditions which maximize the conversion of propane and/or butane into first stage aromatic reaction products, separating ethane produced in the first stage reaction from the first stage aromatic reaction products, reacting ethane in the presence of an aromatization catalyst under reaction conditions which maximize the conversion of ethane into second stage aromatic reaction products, and optionally separating ethane from the second stage aromatic reaction products.
Description
WO 2011/053745 PCT/US2010/054598 PROCESS FOR THE CONVERSION OF PROPANE AND BUTANE TO AROMATIC HYDROCARBONS Field of the Invention 5 The present invention relates to a process for producing aromatic hydrocarbons from propane and/or butane. More specifically, the invention relates to a two stage process for increasing the production of benzene from a mixture of propane and butane in a dehydroaromatization process. 10 Background of the Invention There is a projected global shortage for benzene which is needed in the manufacture of key petrochemicals such as styrene, phenol, nylon and polyurethanes, among others. Generally, benzene and other aromatic hydrocarbons are 15 obtained by separating a feedstock fraction which is rich in aromatic compounds, such as reformate produced through a catalytic reforming process and pyrolysis gasolines produced through a naphtha cracking process, from non-aromatic hydrocarbons using a solvent extraction process. 20 To meet this projected supply shortage, numerous catalysts and processes for on-purpose production of aromatics (including benzene) from alkanes containing six or less carbon atoms per molecule have been investigated. These catalysts are usually bifunctional, containing a zeolite or 25 molecular sieve material to provide acidity and one or more metals such as Pt, Ga, Zn, Mo, etc. to provide dehydrogenation activity. For example, U.S. Patent 4,350,835 describes a process for converting ethane-containing gaseous feeds to aromatics using a crystalline zeolite catalyst of 30 the ZSM-5-type family containing a minor amount of Ga. As another example, U.S. Patent 7,186,871 describes aromatization of C 1
-C
4 alkanes using a catalyst containing Pt and ZSM-5. 1 WO 2011/053745 PCT/US2010/054598 Most lower alkane dehydroaromatization processes carry out the reaction in one step. For example, EP0147111 describes an aromatization process wherein a C3-C4 feed is mixed with ethane and all are reacted together in a single 5 reactor. A minority of these processes involves two separate steps or stages. For example, US 3,827,968 describes a process which involves oligomerization followed by aromatization. US 4,554,393 and US 4,861,932 describe two step processes for propane involving dehydrogenation followed 10 by aromatization. None of these examples mention a two-stage process in which lower alkane aromatization takes place in both stages. The aromatization of propane and butane results in the production of a significant amount of ethane and methane 15 byproducts by hydrogenolysis. Ethane is more difficult to convert to benzene than propane or butane because it is less reactive. Generally, the byproduct ethane is not subjected to further reaction, which leads to a lower yield of aromatics from the propane and/or butane feed. It would be 20 desirable if a significant level of conversion of the byproduct ethane to aromatics could be achieved. It would be advantageous to provide a light alkane dehydroaromatization process wherein (a) the conversion of each component of a mixed alkane feed can be optimized, (b) 25 the ultimate yield of benzene is greater than that of any other single aromatic product, and (c) the generation of undesired methane by-product is minimized. Summary of the Invention The above problem is resolved by designing a two-stage 30 process as described below. The present invention provides a process for the conversion of propane and/or butane into aromatics which comprises first reacting a propane and/or butane feed in the 2 WO 2011/053745 PCT/US2010/054598 presence of an aromatization catalyst under first stage reaction conditions which maximize the conversion of the propane and/or butane into first stage aromatic reaction products, separating the first aromatic reaction products 5 from the ethane which is produced in the first stage reaction, reacting ethane in the presence of an aromatization catalyst under second stage reaction conditions which maximize the conversion of ethane into second stage aromatic reaction products, and optionally separating any unreacted 10 ethane from the second aromatic reaction products. Fuel gas, which includes primarily methane and hydrogen, may also be produced in either or both of the first and second stages. The fuel gas may be separated from the aromatic reaction products in either or both of the stages. 15 Thus, fuel gas may be an additional product of the process of this invention. Brief Description of the Drawings Fig. 1 is a schematic flow diagram which illustrates the process scheme for producing aromatics (benzene and higher 20 aromatics) from a propane and butane feed containing at least using a one reactor-regenerator stage process. Fig. 2 is a schematic flow diagram for producing aromatics (benzene and higher aromatics) from propane and butane feed using a two stage reactor-regenerator system. 25 Fig. 3 is a schematic flow diagram for producing aromatics (benzene and higher aromatics) using a two stage reactor-regenerator system from a propane and butane feed with ethane co-fed from the recycle stream to the first stage aromatization reactor. 30 Detailed Description of the Invention The present invention is a process for producing aromatic hydrocarbons which comprises bringing into contact a hydrocarbon feedstock containing propane and/or butane, 3 WO 2011/053745 PCT/US2010/054598 preferably at least 20%wt propane, and possibly other hydrocarbons such as ethane, and a catalyst composition suitable for promoting the reaction of such hydrocarbons to aromatic hydrocarbons, such as benzene, at a temperature of 5 from about 400 to about 7000C and a pressure of from about 0.01 to about 1.0 Mpa absolute. The gas hourly space velocity (GHSV) per hour may range from about 300 to about 6000. These conditions are used in each of the stages but the conditions in the stages may be the same or different. 10 The conditions may be optimized for the conversion of propane and butane in the first stage and ethane in the second stage. In the first stage, the reaction temperature preferably ranges from about 400 to about 6500C, most preferably from about 420 to about 6500C, and in the second stage, the 15 reaction temperature preferably ranges from about 450 to about 6800C, most preferably from about 450 to about 6600C. The primary desired products of the process of this invention are benzene, toluene and xylene (BTX). In an embodiment, the first stage reaction conditions may be optimized for the 20 conversion of propane and butane to aromatics. In the second stage reaction conditions may be optimized for the conversion of ethane to aromatics. The first stage and second stage reactors may be operated under similar conditions. When either reactor is 25 run at higher temperatures, i.e., above about 630 - 6500C, more fuel gas and less aromatics are produced even though the net feed conversion per pass for that stage may be higher. Therefore it is better to run at lower temperature and convert less feed in each pass of each stage in order to 30 produce more aromatics in total. Operating in the preferred range helps to maximize aromatics production by minimizing fuel gas production. The use of higher temperatures may maximize the production of fuel gas. 4 WO 2011/053745 PCT/US2010/054598 Fuel gas may be an additional product of the process of the present invention. Fuel gas includes primarily methane and hydrogen which are produced along with the aromatics. Fuel gas may be used for power and/or steam generation. The 5 hydrogen in the fuel gas may be separated and used for refinery or chemical reactions that require hydrogen, including the hydrodealkylation of toluene and/or xylene as discussed below. It is possible to carry out this process in batch mode 10 using separate reactors for each stage or using the same reactor for each stage but it is highly preferred that it be carried out in continuous mode in separate reactors. Each stage may be carried out in a single reactor or in two or more reactors aligned in parallel. Preferably, at least two 15 reactors are used in each stage so that one reactor may be in use for aromatization while the other reactor is offline so the catalyst may be regenerated. The aromatization reactor system may be a fluidized bed, moving bed or a cyclic fixed bed design. The cyclic fixed bed design is preferred for use 20 in this invention. The hydrocarbons in the feedstock may be comprised of propane and/or butane, preferably at least about 20 %wt of propane. In one embodiment, the feedstock is from about 30 to about 90 wt% propane and from about 10 to about 50 wt% 25 butane. The feed may contain small amounts of C2-C4 olefins, preferably no more than 5 to 10 weight percent. Too much olefin may cause an unacceptable amount of coking and deactivation of the catalyst. A mixed propane/butane feed stream may be derived from, 30 for example, an ethane/propane/butane-rich stream derived from natural gas, refinery or petrochemical streams including waste streams. Examples of potentially suitable feed streams include (but are not limited to) residual propane and butane 5 WO 2011/053745 PCT/US2010/054598 from natural gas (methane) purification, pure propane and butane streams (also known as Liquified Petroleum Gas, LPG) co-produced at a liquefied natural gas (LNG) site, C3-C4 streams from associated gases co-produced with crude oil 5 production (which are usually too small to justify building a LNG plant but may be sufficient for a chemical plant), unreacted "waste" streams from steam crackers, and the C1-C4 byproduct stream from naphtha reformers (the latter two are of low value in some markets such as the Middle East). 10 Usually natural gas, comprising predominantly methane, enters an LNG plant at elevated pressures and is pre-treated to produce a purified feed stock suitable for liquefaction at cryogenic temperatures. Ethane, propane, butane and other gases are separated from the methane. The purified gas 15 (methane) is processed through a plurality of cooling stages using heat exchangers to progressively reduce its temperature until liquefaction is achieved. The separated gases may be used as the feed stream of the present invention. The byproduct streams produced by the process of the present 20 invention may have to be cooled for storage or recycle and the cooling may be carried out using the heat exchangers used for the cooling of the purified methane gas. Any one of a variety of catalysts may be used to promote the reaction of propane and butane to aromatic hydrocarbons. 25 One such catalyst is described in U.S. 4,899,006 which is herein incorporated by reference in its entirety. The catalyst composition described therein comprises an aluminosilicate having gallium deposited thereon and/or an aluminosilicate in which cations have been exchanged with 30 gallium ions. The molar ratio of silica to alumina is at least 5:1. Another catalyst which may be used in the process of the present invention is described in EP 0 244 162. This 6 WO 2011/053745 PCT/US2010/054598 catalyst comprises the catalyst described in the preceding paragraph and a Group VIII metal selected from rhodium and platinum. The aluminosilicates are said to preferably be MFI or MEL type structures and may be ZSM-5, ZSM-8, ZSM-11, ZSM 5 12 or ZSM-35. Other catalysts which may be used in the process of the present invention are described in U.S. 7,186,871 and U.S. 7,186,872, both of which are herein incorporated by reference in their entirety. The first of these patents describes a 10 platinum containing ZSM-5 crystalline zeolite synthesized by preparing the zeolite containing the aluminum and silicon in the framework, depositing platinum on the zeolite and calcining the zeolite. The second patent describes such a catalyst which contains gallium in the framework and is 15 essentially aluminum-free. It is preferred that the catalyst be comprised of a zeolite, a noble metal of the platinum family to promote the dehydrogenation reaction, and a second inert or less active metal which will attenuate the tendency of the noble metal to 20 catalyze hydrogenolysis of the higher hydrocarbons in the feed to methane and/or ethane. Attenuating metals which can be used include those described below. Additional catalysts which may be used in the process of the present invention include those described in U.S. 25 5,227,557, hereby incorporated by reference in its entirety. These catalysts contain an MFI zeolite plus at least one noble metal from the platinum family and at least one additional metal chosen from the group consisting of tin, germanium, lead, and indium. 30 One preferred catalyst for use in this invention is described in U.S. Application No. 12/371787, filed February 16, 2009 entitled "Process for the Conversion of Ethane to Aromatic Hydrocarbons." This application is hereby 7 WO 2011/053745 PCT/US2010/054598 incorporated by reference in its entirety. This application describes a catalyst comprising: (1) 0.005 to 0.1 %wt (% by weight) platinum, based on the metal, preferably 0.01 to 0.05 %wt, (2) an amount of an attenuating metal selected from the 5 group consisting of tin, lead, and germanium which is preferably not more than 0.2 %wt of the catalyst, based on the metal and wherein the amount of platinum may be no more than 0.02 %wt more than the amount of the attenuating metal; (3) 10 to 99.9 %wt of an aluminosilicate, preferably a 10 zeolite, based on the aluminosilicate, preferably 30 to 99.9 %wt, preferably selected from the group consisting of ZSM-5, ZSM-11, ZSM-12, ZSM-23, or ZSM-35, preferably converted to the H+ form, preferably having a SiO 2 /Al 2 0 3 molar ratio of from 20:1 to 80:1, and (4) a binder, preferably selected from 15 silica, alumina and mixtures thereof. Another preferred catalyst for use in this invention is described in U.S. Provisional Application No. 61/029939, filed February 20, 2008 entitled "Process for the Conversion of Ethane to Aromatic Hydrocarbons." This application is 20 hereby incorporated by reference in its entirety. The application describes a catalyst comprising: (1) 0.005 to 0.1 %wt (% by weight) platinum, based on the metal, preferably 0.01 to 0.06 %wt, most preferably 0.01 to 0.05 %wt, (2) an amount of iron which is equal to or greater than the amount 25 of the platinum but not more than 0.50 %wt of the catalyst, preferably not more than 0.20 %wt of the catalyst, most preferably not more than 0.10 %wt of the catalyst, based on the metal; (3) 10 to 99.9 %wt of an aluminosilicate, preferably a zeolite, based on the aluminosilicate, 30 preferably 30 to 99.9 %wt, preferably selected from the group consisting of ZSM-5, ZSM-11, ZSM-12, ZSM-23, or ZSM-35, preferably converted to the H+ form, preferably having a SiO 2 /Al 2 0 3 molar ratio of from 20:1 to 80:1, and (4) a binder, 8 WO 2011/053745 PCT/US2010/054598 preferably selected from silica, alumina and mixtures thereof. Another preferred catalyst for use in this invention is described in U.S. Application No. 12/371803, filed February 5 16, 2009 entitled "Process for the Conversion of Ethane to Aromatic Hydrocarbons." This application is hereby incorporated by reference in its entirety. This application describes a catalyst comprising: (1) 0.005 to 0.1 wt% (% by weight) platinum, based on the metal, preferably 0.01 to 10 0.05% wt, most preferably 0.02 to 0.05% wt, (2) an amount of gallium which is equal to or greater than the amount of the platinum, preferably no more than 1 wt%, most preferably no more than 0.5 wt%, based on the metal; (3) 10 to 99.9 wt% of an aluminosilicate, preferably a zeolite, based on the 15 aluminosilicate, preferably 30 to 99.9 wt%, preferably selected from the group consisting of ZSM-5, ZSM-11, ZSM-12, ZSM-23, or ZSM-35, preferably converted to the H+ form, preferably having a SiO 2 /Al 2 0 3 molar ratio of from 20:1 to 80:1, and (4) a binder, preferably selected from silica, 20 alumina and mixtures thereof. One of the undesirable products of the aromatization reaction is coke which may deactivate the catalyst. While catalysts and operating conditions and reactors are chosen to minimize the production of coke, it is usually necessary to 25 regenerate the catalyst at some time during its useful life. Regeneration may increase the useful life of the catalyst. Regeneration of coked catalysts has been practiced commercially for decades and various regeneration methods are known to those skilled in the art. The regeneration of the 30 catalyst may be carried out in the aromatization reactor or in a separate regeneration vessel or reactor. For example, the catalyst may be regenerated by burning the coke at high temperature in the presence of an oxygen-containing gas as 9 WO 2011/053745 PCT/US2010/054598 described in US Patent No. 4,795,845 which is herein incorporated by reference in its entirety. Regeneration with air and nitrogen is shown in the examples of US Patent No. 4,613,716 which is herein incorporated by reference in its 5 entirety. Another possible method involves air calcination, hydrogen reduction, and treatment with sulfur or a sulfurization material. Platinum catalysts have been used to assist the combustion of coke deposited on such catalysts. The preferred regeneration temperature range for use 10 herein is from about 450 to about 7880C. The preferred temperature range for regeneration in the first stage is from about 470 to about 7880C. The preferred temperature range for regeneration in the second stage is from about 500 to about 7880C. 15 The unreacted methane and byproduct hydrocarbons may be used in other steps, stored and/or recycled. It may be necessary to cool these byproducts to liquefy them. When the propane and butane originate from an LNG plant as a result of the purification of the natural gas, at least some of these 20 byproducts may be cooled and liquefied using the heat exchangers used to liquefy the purified natural gas (methane). The toluene and xylene may be converted into benzene by hydrodealkylation. The hydrodealkylation reaction involves 25 the reaction of toluene, xylenes, ethylbenzene, and higher aromatics with hydrogen to strip alkyl groups from the aromatic ring to produce additional benzene and light ends including methane and ethane which are separated from the benzene. This step substantially increases the overall yield 30 of benzene and thus is highly advantageous. Both thermal and catalytic hydrodealkylation processes are known in the art. Methods for hydrodealkylation are 10 WO 2011/053745 PCT/US2010/054598 described in US Published Patent Application No. 2009/0156870 which is herein incorporated by reference in its entirety. The integrated process of this invention may also include the reaction of benzene with propylene to produce 5 cumene which may in turn be converted into phenol and/or acetone. The propylene may be produced separately in a propane dehydrogenation unit or may come from olefin cracker process vent streams or other sources. Methods for the reaction of benzene with propylene to produce cumene are 10 described in US Published Patent Application No. 2009/0156870 which is herein incorporated by reference in its entirety. The integrated process of this invention may also include the reaction of benzene with olefins such as ethylene. The ethylene may be produced separately in an 15 ethane dehydrogenation unit or may come from olefin cracker process vent streams or other sources. Ethylbenzene is an organic chemical compound which is an aromatic hydrocarbon. Its major use is in the petrochemical industry as an intermediate compound for the production of styrene, which in 20 turn is used for making polystyrene, a commonly used plastic material. Methods for the reaction of benzene with ethylene to produce ethylbenzene are described in US Published Patent Application No. 2009/0156870 which is herein incorporated by reference in its entirety. 25 Styrene may then be produced by dehydrogenating the ethylbenzene. One process for producing styrene is described in U.S. Patent No. 4,857,498, which is herein incorporated by reference in its entirety. Another process for producing styrene is described in U.S. Pat. No. 7,276,636, which is 30 herein incorporated by reference in its entirety. 11 WO 2011/053745 PCT/US2010/054598 EXAMPLES The following examples are provided for illustrative purposes only and are not intended to limit the scope of the 5 invention. Example 1 In this example the results of laboratory tests are used to represent a one-stage aromatization process vs. a two 10 stage process utilizing the same catalyst in each stage. The lower alkane feedstock of this example consists of 43.1%wt propane and 56.9%wt n-butane, and the temperature of the second stage is higher than the temperature of the first stage. 15 Catalyst A was made on 1.6 mm diameter cylindrical extrudate particles containing 80%wt of zeolite ZSM-5 CBV 2314 powder (23:1 molar SiO 2 /Al 2 0 3 ratio, available from Zeolyst International) and 20%wt alumina binder. The extrudate samples were calcined in air up to 6500C to remove 20 residual moisture prior to use in catalyst preparation. The target metal loadings for Catalyst A were 0.025%w Pt and 0.09%wt Ga. Metals were deposited on 25-100 gram samples of the above ZSM-5/alumina extrudate by first combining appropriate 25 amounts of stock aqueous solutions of tetraammine platinum nitrate and gallium(III) nitrate, diluting this mixture with deionized water to a volume just sufficient to fill the pores of the extrudate, and impregnating the extrudate with this solution at room temperature and atmospheric pressure. 30 Impregnated samples were aged at room temperature for 2-3 hours and then dried overnight at 1000C. Fresh 15-cc charges of Catalyst A were subjected to performance tests as described below. Performance Test 1 was conducted under conditions which might be used for a one 12 WO 2011/053745 PCT/US2010/054598 stage aromatization process with a mixed propane/butane feed. Performance Test 2 was conducted under conditions which might be used for the first stage of a two-stage aromatization process with a mixed propane/butane feed according to the 5 present invention. Performance Test 3 was conducted under conditions which might be used for the second stage of a two stage aromatization process according to the present invention. For each of the three performance tests, a 15-cc charge 10 of fresh (not previously tested) catalyst was loaded "as is," without crushing, into a Type 316H stainless steel tube (1.40 cm i.d.) and positioned in a four-zone furnace connected to a gas flow system. Prior to Performance Test 1, the fresh charge of 15 Catalyst A was pretreated in situ at atmospheric pressure (ca. 0.1 MPa absolute) as follows: (a) calcination with air at approximately 60 liters per hour (L/hr), during which the reactor wall temperature was raised from 25 to 5100C in 12 hrs, held at 5100C for 4-8 hrs, 20 then further increased from 5100C to 6300C in 1 hr, then held at 6300C for 30 min; (b) nitrogen purge at approximately 60 L/hr, 6300C, for 20 min; (c) reduction with hydrogen at 60 L/hr, for 30 min, 25 during which time the reactor wall temperature was raised from 6300C to 6750C. At the end of the above reduction step, the hydrogen flow was terminated, and the catalyst charge was exposed to a feed consisting of 50%wt ethane and 50%wt propane at 30 atmospheric pressure (ca. 0.1 MPa absolute), 6750C reactor wall temperature, and a feed rate of 1000 GHSV (1000 cc feed per cc of catalyst per hr). Three minutes after introduction 13 WO 2011/053745 PCT/US2010/054598 of the feed, the total reactor outlet stream was sampled by an online gas chromatograph for analysis. Performance Test 2 was conducted in the same manner and 5 under the same conditions as Performance Test 1 above, except that the final temperature reached during the air calcination pretreatment step was 6000C, the nitrogen purge and hydrogen reduction steps were conducted at 6000C, and the propane/n butane feed was introduced at 6000C reactor wall temperature. 10 This simulates the first stage of a two stage process. Performance Test 3 was conducted to simulate the second stage of a two stage process according to the present invention. For Performance Test 3, the fresh charge of Catalyst A was pretreated in situ at atmospheric pressure 15 (ca. 0.1 MPa absolute) as follows: (a) calcination with air at approximately 60 liters per hour (L/hr), during which the reactor wall temperature was raised from 25 to 5100C in 12 hrs, then held at 5100C for 4-8 hrs; 20 (b) nitrogen purge at approximately 60 L/hr, 5100C, for 30 min; (c) reduction with hydrogen at 60 L/hr, for 2 hrs. At the end of the above reduction step, the hydrogen flow was terminated, and the catalyst charge was exposed to a 25 feed consisting of 100%wt ethane at atmospheric pressure (ca. 0.1 MPa absolute), 5100C reactor wall temperature, and a feed rate of 1000 GHSV (1000 cc feed per cc of catalyst per hr). After 10 min at these conditions, the reactor wall temperature was raised to 6210C. At 25 min after 30 introduction of the ethane feed, the total reactor outlet stream was sampled by an online gas chromatograph for analysis. 14 WO 2011/053745 PCT/US2010/054598 Table 1 lists the results of online gas chromatographic analyses of the total product streams from Performance Tests 1-3 described above. Based on composition data obtained from the gas chromatographic analysis, initial ethane, propane, n 5 butane and total conversions were computed according to the formulas given below: Ethane conversion, % = 100 x (%wt ethane in feed - %wt ethane in outlet stream)/(%wt ethane in feed) Propane conversion, % = 100 x (%wt propane in feed - %wt 10 propane in outlet stream)/(%wt propane in feed) n-Butane conversion, % = 100 x (%wt n-butane in feed %wt n-butane in outlet stream)/(%wt n-butane in feed) Total ethane + propane + n-butane conversion = ((%wt ethane in feed x % ethane conversion) + (%wt propane in feed 15 x % propane conversion) + (%wt n-butane in feed x % n-butane conversion))/100 15 WO 2011/053745 PCT/US2010/054598 TABLE 1 PERFORMANCE TEST 1 2 3 Catalyst A A A Catalyst volume, cc 15 15 15 Reactor wall temperature, C 675 600 621 Pressure, MPa 0.1 0.1 0.1 Feed composition Ethane, %wt -0- -0- 100 Propane, %wt 43.1 43.1 -0 n-Butane, %wt 56.9 56.9 -0 Total feed rate, GHSV 1000 1000 1000 Total feed rate, WHSV 2.73 2.73 1.61 Ethane conversion, % -- -- 49.28 Propane conversion, % 99.47 97.71 n-Butane conversion, % 99.88 99.85 - Total ethane + propane + n-butane 49.28 conversion, % 99.69 98.91 Reactor outlet composition, %wt Hydrogen 3.6 3.58 4.71 Methane 23.03 16.01 7.56 Ethylene 4.82 2.02 3.95 Ethane 18.47 28.41 50.72 Propylene 0.59 0.62 0.58 Propane 0.23 0.99 0.70 C4 0.07 0.09 0.11 C5 0 0 -0 Benzene 26.68 20.52 16.60 Toluene 11.23 16 8.72 C8 aromatics 1.65 3.72 1.70 C9+ aromatics 9.44 8.04 4.65 Total aromatics 49.19 48.28 31.67 5 From Table 1, it can be seen that the one stage method produced 49.19%wt total aromatics from the given propane/n butane feedstock, while the two stage method produced 57.28%wt total aromatics based on a 100%wt total feed to stage 1 followed by stage 2 which is fed with the ethane 10 produced in stage 1. In a true two stage operation, it is 16 WO 2011/053745 PCT/US2010/054598 likely that the feed to stage 2 would include all non aromatics from the outlet of stage 1 except the fuel gas (methane and hydrogen). These non-aromatics would include not only unconverted ethane but also ethylene, propylene, 5 propane, etc. which would likely increase the total aromatics yield to slightly more than 58%wt based on a 100%wt total feed to stage 1. Example 2: 10 Process Configuration Comparisons 2.1 One-Stage Process (comparative) Fig. 1 is a schematic flow diagram, which illustrates 15 the process scheme for producing aromatics (benzene and higher aromatics) from a feed containing 43.1 wt% propane and 56.9 wt% butane using a one reactor-regenerator stage process. 25 tonnes/hr (tph) of mixed feed (stream 1), which 20 constitutes primarily 43.1 wt% propane and 56.9 wt% butane (including minor amounts of methane, butane, etc.) is mixed with a recycle stream 2 that consists primarily of ethane and other hydrocarbons, possibly including but not limited to, ethylene, propane, propylene, methane, butane and some 25 hydrogen. The total feed stream 3 is now introduced to the single stage aromatization reactor 100. The aromatization reactor system may be a fluidized bed, moving bed or a cyclic fixed bed design. Here the cyclic fixed bed design is used. The reactor system employs "Catalyst A" described earlier. 30 The unconverted reactants as well as the products leave the reactor 100 via stream 4 and are fed to the separation system. The unconverted reactants and light hydrocarbons are recycled back in stream 2 to the reactor 100 while the 17 WO 2011/053745 PCT/US2010/054598 separation system yields fuel gas (predominantly methane and hydrogen in stream 8 from vapor-liquid separator 200), C, liquid products and benzene, toluene and xylenes (BTX). The reactor 100 operates at about 1 atmosphere pressure 5 and at a temperature of 6750C while the regenerator 300, which removes the coke formed in the reactor 100, operates at around 7300C. The heat (9) required for the reaction step is provided by the hot catalyst solid mixture which is preheated during the regeneration step. In the regeneration step, 10 catalyst containing coke flows through stream 5 to regenerator 300 and stripping gas is supplied. Regenerated catalyst flows back to the reactor 100 through stream 6 and the stripping gas exits the regenerator 300 through stream 7. The reactor 100 achieves almost complete conversion of 15 propane and butane (greater than 99%) . The average single pass mixed feed conversion is 99.74%. The liquid products are separated in a sequence of three consecutive columns to obtain the separated liquid products as shown in Figure 1. The process yields are summarized in Table 10 below. This 20 one stage mode of operation produces about 8.8 tph of benzene (from column 400 through stream 10), 3.7 tph toluene (from column 500 through stream 11) and 0.5 tph of mixed xylenes (from column 600 through stream 12) resulting in an overall BTX yield of 52.1 wt%, an overall liquid yield of 64.6 wt% 25 with respect to the mixed feed. The fuel gas make (stream 8) is 8.8 tph which is about 35.3 wt% of the mixed feed. 2.2 Two-Stage Process Fig. 2 is a schematic flow diagram for producing 30 aromatics (benzene and higher aromatics) from a feed containing 43.1 wt% propane and 56.9 wt% butane using a two stage reactor-regenerator system according to the present invention. 18 WO 2011/053745 PCT/US2010/054598 25 tonnes/hr (tph) of mixed feed (stream 1), which constitutes primarily 43.1 wt% propane and 56.9 wt% butane including minor amounts of methane, butane, etc. (stream 1) are fed to the stage 1 aromatization reactor 100 that uses 5 "Catalyst A" described in example 1. The first stage reactor 100 operates at about 1 atmosphere pressure and at a temperature of about 6000C while the stage 1 regenerator 200, which removes the coke formed in the reactor 100, operates at around 7300C. The heat required for the reaction step is 10 provided by the hot catalyst solid mixture which is preheated during the regeneration step. The reactor 100 achieves almost complete conversion of butane and 98% conversion of propane. The reactor effluent stream 3a is then mixed with the reactor effluent from the second stage reactor 300 15 (stream 3b), described below. The combined effluent from both the reactor stages (stream 4) is then fed to a separation system where unconverted reactants and light hydrocarbons that consist primarily of ethane and some other hydrocarbons, which may include ethylene, propane, propylene, 20 methane, butane and some hydrogen, are used as the feed (stream 2) for the stage-2 aromatization reactor 300 which uses "catalyst A" described above. The second stage reactor 300 operates at about 1 atmosphere pressure and a temperature of about 6200C while 25 the regenerator 400, which removes the coke formed in the reactor, operates at around 7300C. The heat required for the reaction step is provided by the hot catalyst solid mixture which is preheated during the regeneration step. The second stage reactor 300 converts almost half the ethane fed to it 30 as was the case in performance test 3 in Table 1 above. The effluent from the second stage reactor 300 (stream 3b) is mixed with the effluent from the first stage reactor 100 as 19 WO 2011/053745 PCT/US2010/054598 described above. Both stage-1 and stage-2 of the aromatization reactor system use a cyclic fixed bed design. The average single pass conversion for the mixed feed is obtained from the cumulative conversion of propane and butane 5 (feeds) over both the stages and is calculated to be 99.95%. The liquid products are separated in a sequence of three consecutive columns to obtain the separated liquid products as shown in Figure 2. The process yields are summarized in Table 2 below. This two-stage mode of operation produces 10 about 8.1 tph of benzene (from column 600 through stream 10), 5.6 tph toluene (from column 700 through stream 11) and 1.2 tph xylenes (from column 800 through stream 12) resulting in an overall BTX yield of 59.7 wt% and an overall liquid yield of 71.1 wt% with respect to the mixed feed. The undesired 15 fuel gas make (stream 8 from vapor-liquid separator 500) is about 7.1 tph which is about 28.6 wt % of the mixed feed. 2.3 Comparison of process configurations Table 2 below shows the comparison of the system 20 performance for one stage and two stage processes. The processes are compared for conditions resulting in constant overall feed conversions. It is evident from Table 2 that the two-stage operation results in better product yields of benzene, toluene, mixed xylenes and C9+ liquids with lower 25 undesired fuel gas make as compared to the one stage process. 20 WO 2011/053745 PCT/US2010/054598 Table 2 Reactor (stages) One stage Two stages Feed (wt%) (proanebutne)43.1/56.9 43.1/56.9 (propane/butane) Catalyst A (stage 1) A (stage 2) A (stage 2) Average conversion per 99.69 98.91 pass % 1000 GHSV (per hr) 1000(btsag) (both stages) Reactor Temp (0C) Stage-1: 675 Stage-: 600 Reacto TempStage-2: 621 Benzene yield 35.1% 32.4% (tonne/tonnefeed, %) Toluene yield 4.8 % 22.3% (tonne/tonnefeedr%) Mixed Xylene yield 2.2 % 5.0% (tonne/tonnefeed, %) C9+ liquids yield 12.5% 11 (tonne/tonnefeed, %) Total BTX yield (tonne/tonnefeed, %) Total Liq yield (tonne/tonnefeed, %) Total fuel-gas make 35.3% 28.6% (tonne/tonnefeedr%) 5 Note: " All yields are expressed as tonnes of the product per tonne of the mixed feed entering the overall process, expressed as percentage. * The average conversion per pass for a two-stage process is 10 computed as: (Total propane conversion x mol fraction of propane in the mixed feed) + (Total butane conversion x mol fraction of butane in the mixed feed) 15 Example 3 In this example the results of laboratory tests are used to represent a one-stage aromatization process vs. a two 20 stage process utilizing the same catalyst in each stage, with the temperature of the second stage being higher than the temperature of the first stage. To simulate a process in 21 WO 2011/053745 PCT/US2010/054598 which unconverted byproduct ethane is recycled, the lower alkane feedstock of this example consists of 31.6%wt ethane, 29.5%wt propane, and 38.9%wt n-butane. Fresh 15-cc charges of Catalyst A (prepared as described 5 in Example 1) were subjected to performance tests as described below. Performance Test 4 was conducted under conditions which might be used for a one-stage aromatization process with a mixed ethane/propane/butane feed. Performance test 5 was conducted under conditions which might be used for 10 the first stage of a two-stage aromatization process with a mixed ethane/propane/butane feed. Performance Test 3 (described in Example 1) was conducted under conditions which might be used for the second stage of a two-stage aromatization process according to the present invention. 15 Performance Test 4 was conducted in the same manner and under the same conditions as those used for Performance Test 1 (described in Example 1), except that the feed for Performance Test 4 consisted of 31.6%wt ethane, 29.5%wt propane, and 38.9%wt n-butane. Performance Test 5 was 20 conducted in the same manner and under the same conditions as those used for Performance Test 2 (described in Example 1), e except that the feed for Performance Test 5 consisted of 31.6%wt ethane, 29.5%wt propane, and 38.9%wt n-butane. Table 3 lists the results of online gas chromatographic 25 analyses of the total product streams from Performance Tests 4, 5, and 3. Based on the composition data obtained from the gas chromatographic analysis, initial ethane, propane, n butane, and total conversions were computed according to the formulas given in Example 1 above. 30 22 WO 2011/053745 PCT/US2010/054598 TABLE 3 PERFORMANCE TEST 4 5 3 Catalyst A A A Catalyst volume, cc 15 15 15 Reactor wall temperature, C 675 600 621 Pressure, MPa 0.1 0.1 0.1 Feed composition Ethane, %wt 31.6 31.6 100 Propane, %wt 29.5 29.5 -0 n-Butane, %wt 38.9 38.9 -0 Total feed rate, GHSV 1000 1000 1000 Total feed rate, WHSV 2.24 2.24 1.61 Ethane conversion, % 34.02 -30.04 49.28 Propane conversion, % 99.27 97.80 n-Butane conversion, % 99.80 99.79 - Total ethane + propane + n-butane 78.84 58.15 49.28 conversion, % Reactor outlet composition, %wt Hydrogen 4.93 3.62 4.71 Methane 18.2 10.98 7.56 Ethylene 5.57 2.9 3.95 Ethane 20.86 41.11 50.72 Propylene 0.57 0.48 0.58 Propane 0.22 0.65 0.70 C4 0.08 0.08 0.11 C5 0 0 -0 Benzene 28.33 18.89 16.60 Toluene 11.1 13.31 8.72 C8 aromatics 1.62 2.97 1.70 C9+ aromatics 8.52 5.01 4.65 Total aromatics 49.57 40.18 31.67 5 The negative value recorded for % ethane conversion in Table 3 for Performance Test 5 indicates that the amount of ethane made as a byproduct of propane and/or butane conversion exceeded the amount of ethane converted in this test. Nevertheless, it can be seen from Table 3 that the one 10 stage method produced 49.57%wt total aromatics from the given 23 WO 2011/053745 PCT/US2010/054598 ethane/propane/n-butane feedstock, while the two stage method produced 53.20%wt total aromatics based on a 100%wt total feed to stage 1 followed by stage 2 which is fed with the ethane from stage 1. In a true two stage operation, it is 5 likely that the feed to stage 2 would include all non aromatics from the outlet of stage 1 except the fuel gas (methane and hydrogen). These non-aromatics would include not only ethane but also ethylene, propylene, propane, etc. which would likely increase the total aromatics yield to 10 slightly more than 54%wt based on a 100%wt total feed to stage 1. Example 4: 15 Process Configuration Comparisons 4.1 One-Stage Process (comparative) Fig. 1 is a schematic flow diagram, which illustrates the process scheme for producing aromatics (benzene and 20 higher aromatics) from a feed containing 43.1 wt% propane and 56.9 wt% butane using a one reactor-regenerator stage process. 25 tonnes/hr (tph) of mixed feed (stream 1), which constitutes primarily 43.1 wt% propane and 56.9 wt% butane 25 (including minor amounts of methane, butane, etc.) is mixed with a recycle stream 2 that consists primarily of ethane and other hydrocarbons, possibly including but not limited to, ethylene, propane, propylene, methane, butane and some hydrogen. The total feed stream 3 is now introduced to the 30 single stage aromatization reactor 100. The aromatization reactor system may be a fluidized bed, moving bed or a cyclic fixed bed design. Here the cyclic fixed bed design is used. The reactor system employs "Catalyst A" described earlier. 24 WO 2011/053745 PCT/US2010/054598 The unconverted reactants as well as the products leave the reactor 100 via stream 4 and are fed to the separation system. The unconverted reactants and light hydrocarbons are recycled back in stream 2 to the reactor 100 while the 5 separation system yields fuel gas (predominantly methane and hydrogen in stream 8 from vapor-liquid separator 200), C, liquid products and benzene, toluene and xylenes (BTX). The reactor 100 operates at about 1 atmosphere pressure and at a temperature of 6750C while the regenerator 300, 10 which removes the coke formed in the reactor 100, operates at around 730'C. The heat (9) required for the reaction step is provided by the hot catalyst solid mixture which is preheated during the regeneration step. In the regeneration step, catalyst containing coke flows through stream 5 to 15 regenerator 300 and stripping gas is supplied. Regenerated catalyst flows back to the reactor 100 through stream 6 and the stripping gas exits the regenerator 300 through stream 7. The reactor 100 achieves almost complete conversion of propane and butane (greater than 99%) . The average single 20 pass mixed feed conversion is 99.74%. The liquid products are separated in a sequence of three consecutive columns to obtain the separated liquid products as shown in Figure 1. The process yields are summarized in Table 10 below. This one stage mode of operation produces about 8.8 tph of benzene 25 (from column 400 through stream 10), 3.7 tph toluene (from column 500 through stream 11) and 0.5 tph of mixed xylenes (from column 600 through stream 12) resulting in an overall BTX yield of 52.1 wt%, an overall liquid yield of 64.6 wt% with respect to the mixed feed. The fuel gas make (stream 8) 30 is 8.8 tph which is about 35.3 wt% of the mixed feed. 25 WO 2011/053745 PCT/US2010/054598 4.2 Two-Stage Process Fig. 3 is a schematic flow diagram for producing aromatics (benzene and higher aromatics) from a feed containing 43.1 wt% propane and 56.9 wt% butane using a two 5 stage reactor-regenerator system according to the present invention. 25 tonnes/hr (tph) of fresh mixed feed (stream 1), which constitutes primarily 43.1 wt% propane and 56.9 wt% butane including minor amounts of methane, butane, etc. is mixed 10 with a part of the recycle stream (2b) such that the combined mixed stream (lb) contains about 31.6 wt% ethane, 29.5 wt% propane and 38.9 wt% butane including minor amounts of methane, butane. The combined mixed stream (lb) is then fed to the stage 1 aromatization reactor 100 that uses "Catalyst 15 A" described in example 3 above. The first stage reactor 100 operates at about 1 atmosphere pressure and at a temperature of about 6000C while the stage 1 regenerator 200, which removes the coke formed in the reactor 100, operates at around 730'C. The heat required for the reaction step is 20 provided by the hot catalyst solid mixture which is preheated during the regeneration step. The reactor 100 achieves almost complete conversion of butane and 98% conversion of propane. The reactor effluent stream 3a is then mixed with the reactor effluent from the second stage reactor 300 25 (stream 3b), described below. The combined effluent from both the reactor stages (stream 4) is then fed to a separation system where unconverted reactants and light hydrocarbons that consist primarily of ethane and some other hydrocarbons, which may include ethylene, propane, propylene, 30 methane, butane and some hydrogen, form the primary recycle stream (stream 2). This stream is then split into two parts such that about 48 wt% of this recycle stream is used as the feed (stream 2a) for the stage-2 aromatization reactor 300 26 WO 2011/053745 PCT/US2010/054598 which uses "catalyst A" described above. The remainder 52% of the recycle stream (2b) is combined with the primary mixed feed (stream 1) to form the feed stream for the first stage reactor (stream lb) described earlier. 5 The second stage reactor 300 operates at about 1 atmosphere pressure and a temperature of about 6200C while the regenerator 400, which removes the coke formed in the reactor, operates at around 7300C. The heat required for the reaction step is provided by the hot catalyst solid mixture 10 which is preheated during the regeneration step. The second stage reactor 300 converts almost half the ethane fed to it as was the case in performance test 3 in Table 3 above. The effluent from the second stage reactor 300 (stream 3b) is mixed with the effluent from the first stage reactor 100 as 15 described above. Both stage-1 and stage-2 of the aromatization reactor system use a cyclic fixed bed design. The average single pass conversion for the mixed feed is obtained from the cumulative conversion of propane and butane (feeds) over both the stages and is calculated to be 98.95%. 20 The liquid products are separated in a sequence of three consecutive columns to obtain the separated liquid products as shown in Figure 3. The process yields are summarized in Table 4 below. This two-stage mode of operation produces about 8.7 tph of benzene (from column 600 through stream 10), 25 5.9 tph toluene (from column 700 through stream 11) and 1.3 tph xylenes (from column 800 through stream 12) resulting in an overall BTX yield of 63.4 wt% and an overall liquid yield of 72.8 wt% with respect to the mixed feed. The undesired fuel gas make (stream 8 from vapor-liquid separator 500) is 30 about 6.7 tph which is about 26.9 wt % of the mixed feed. 27 WO 2011/053745 PCT/US2010/054598 4.3 Comparison of process configurations Table 4 below shows the comparison of the system performance for one stage and two stage processes. The processes are compared for conditions resulting in constant 5 overall feed conversions. It is evident from Table 4 that the two-stage operation stage results in better product yields of benzene, toluene, mixed xylenes and C9+ liquids with lower undesired fuel gas make as compared to the one stage process. Further, on comparing the two stage processes 10 from Tables 2 and 4 it is evident that ethane co-feed along with the propane/butane mixed feed as shown in Table 4 results in enhanced BTX yields, C9+ liquids with lower undesired fuel gas make. 28 WO 2011/053745 PCT/US2010/054598 Table 4 Two stages (with Reactor (stages) One stage recycle ethane co-feed) Feed (wt%) (rpe/buta) 43.1/56.9 43.1/56.9 (propane/butane) Catalyst A (stage 1) A (stage 1) A (stage 2) Average conversion per 99.69 98.95 pass % 1000 GHSV (per hr) 100 0bt tgs (both stages) Reactor Temp (0C) Stage-1: 675 Stage-: 600 Reacto TempStage-2: 621 Benzene yield 35.1% 34.9% (tonne/tonnefeed, %) Toluene yield 14.8 % 23.4% (tonne/tonnefeed,%) Mixed Xylene yield 2.2 % 5 .1% (tonne/tonnefeed, %) C9+ liquids yield (tonne/tonnefeed, %) Total BTX yield (tonne/tonnefeed, %) Total Liq yield (tonne/tonnefeed, %) Total fuel-gas make 35.3% 26.9% (tonne/tonnefeed, %) 5 Note: " Stage-1 reactor has an ethane co-feed via the recycle stream " All yields are expressed as tonnes of the product per tonne of the mixed feed entering the overall process, expressed as percentage. 10 * The average conversion per pass for a two-stage process is computed as: (Total propane conversion x mol fraction of propane in the mixed feed) + (Total butane conversion x mol fraction of butane in the mixed feed) 15 29
Claims (10)
1. A process for the conversion of butane and/or propane into aromatics which comprises first reacting a butane and/or propane feed in the presence of an aromatization catalyst under first stage reaction conditions which maximize the conversion of propane and/or butane into first stage aromatic reaction products, separating ethane produced in the first stage aromatic reaction from the first aromatic reaction products, reacting the ethane in presence of an aromatization catalyst under second stage reaction conditions which maximize the conversion of ethane into second stage aromatic reaction products, and optionally separating ethane from the second stage aromatic reaction products.
2. The process of claim 1, wherein the aromatization reaction is carried out at a temperature of from 400 to 7000C.
3. The process of claim 1 or 2, wherein the first stage reaction conditions comprise a temperature of from 400 to 6500C, preferably from 420 to 6500C.
4. The process of any one of claims 1 to 3, wherein the second stage reaction conditions comprise a temperature of from 450 to 6800C, preferably from 450 to 6600C.
5. The process of any one of claims 1 to 4, wherein the first stage reaction products are produced in at least two reactors aligned in parallel.
6. The process of any one of claims 1 to 5, wherein the second stage reaction products are produced in at least two reactors aligned in parallel.
7. The process of any one of claims 1 to 6, wherein fuel gas is also produced in either or both of the first and second stages and is separated from the aromatic reaction products and ethane.
8. The process of claim 1, wherein at least part of the ethane produced in the first stage aromatization reaction is mixed with the propane and/or butane feed to the first stage aromatization reactor.
9. A process for the conversion of butane and/or propane into aromatics which comprises the steps substantially as herein described with reference to Figures1 to 3 and/or the examples excluding the comparative examples.
10. Aromatic products produced by the process of any one of claims 1 to 9.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25708909P | 2009-11-02 | 2009-11-02 | |
US61/257,089 | 2009-11-02 | ||
PCT/US2010/054598 WO2011053745A1 (en) | 2009-11-02 | 2010-10-29 | Process for the conversion of propane and butane to aromatic hydrocarbons |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2010313367A1 AU2010313367A1 (en) | 2012-05-10 |
AU2010313367B2 true AU2010313367B2 (en) | 2014-02-13 |
Family
ID=43922563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2010313367A Ceased AU2010313367B2 (en) | 2009-11-02 | 2010-10-29 | Process for the conversion of propane and butane to aromatic hydrocarbons |
Country Status (5)
Country | Link |
---|---|
US (1) | US20130131414A1 (en) |
CN (1) | CN102596864B (en) |
AU (1) | AU2010313367B2 (en) |
EA (1) | EA022493B1 (en) |
WO (1) | WO2011053745A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3110919B1 (en) * | 2014-02-25 | 2018-05-16 | Saudi Basic Industries Corporation | Process for producing btx from a mixed hydrocarbon source using pyrolysis |
US9327278B1 (en) | 2014-12-17 | 2016-05-03 | Uop Llc | Process for catalyst regeneration |
US9790442B2 (en) | 2014-12-17 | 2017-10-17 | Uop Llc | Selective hydrogenation method |
DE112018004207B4 (en) * | 2017-08-15 | 2022-09-22 | Sabic Global Technologies B.V. | Shale gas and condensate in chemicals |
CN108911940A (en) * | 2018-08-29 | 2018-11-30 | 锁浩 | A kind of alkadienes preparation method |
EP3689843A1 (en) | 2019-02-01 | 2020-08-05 | Basf Se | A method for producing an aromatic hydrocarbon or a mixture of aromatic hydrocarbons from a low molecular hydrocarbon or a mixture of low molecular hydrocarbons |
US11597689B2 (en) * | 2019-10-23 | 2023-03-07 | Phillips 66 Company | Dual stage light alkane conversion to fuels |
US12054446B2 (en) | 2019-11-13 | 2024-08-06 | Sabic Global Technologies B.V. | Method for aromatization of lower hydrocarbons to produce benzene and other aromatics |
US12043801B2 (en) | 2021-06-30 | 2024-07-23 | E2 Technologies, Llc | Apparatus and processes for pyrolysis of plastic feeds |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4806700A (en) * | 1986-10-22 | 1989-02-21 | Uop Inc. | Production of benzene from light hydrocarbons |
US4861932A (en) * | 1987-12-31 | 1989-08-29 | Mobil Oil Corp. | Aromatization process |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4120910A (en) * | 1976-12-27 | 1978-10-17 | Mobil Oil Corporation | Aromatization of ethane |
CN1007426B (en) * | 1983-12-24 | 1990-04-04 | 英国石油公司 | Process for producing aromatic hydrocarbons |
US4499316A (en) * | 1984-04-04 | 1985-02-12 | Union Carbide Corporation | Conversion of effluent hydrocarbons streams using aluminophosphate catalysts |
GB8507947D0 (en) * | 1985-03-27 | 1985-05-01 | British Petroleum Co Plc | Aromatisation of paraffins |
US4912273A (en) * | 1988-01-19 | 1990-03-27 | Mobil Oil Corp. | Production of aromatic hydrocarbons from alkanes |
US5043506A (en) * | 1990-09-17 | 1991-08-27 | Crossland Clifford S | Process for the alkylation of organic aromtic compounds in the presence of inert aliphatic compounds |
JPH0558919A (en) * | 1990-12-20 | 1993-03-09 | Res Assoc Util Of Light Oil | Production of aromatic hydrocarbon |
US5936135A (en) * | 1997-05-02 | 1999-08-10 | Council Of Scientific & Industrial Research | Process for the preparation of hydrocarbons |
WO2002010099A2 (en) * | 2000-07-27 | 2002-02-07 | Conoco Inc. | Catalyst and process for aromatic hydrocarbons production from methane |
US7745675B2 (en) * | 2006-12-20 | 2010-06-29 | Saudi Basic Industries Corporation | Regeneration of platinum-germanium zeolite catalyst |
WO2009076393A2 (en) * | 2007-12-12 | 2009-06-18 | Shell Oil Company | Process for the conversion of ethane or mixed lower alkanes to aromatic hydrocarbons |
-
2010
- 2010-10-29 CN CN201080049739.1A patent/CN102596864B/en not_active Expired - Fee Related
- 2010-10-29 US US13/505,017 patent/US20130131414A1/en not_active Abandoned
- 2010-10-29 WO PCT/US2010/054598 patent/WO2011053745A1/en active Application Filing
- 2010-10-29 AU AU2010313367A patent/AU2010313367B2/en not_active Ceased
- 2010-10-29 EA EA201290280A patent/EA022493B1/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4806700A (en) * | 1986-10-22 | 1989-02-21 | Uop Inc. | Production of benzene from light hydrocarbons |
US4861932A (en) * | 1987-12-31 | 1989-08-29 | Mobil Oil Corp. | Aromatization process |
Also Published As
Publication number | Publication date |
---|---|
AU2010313367A1 (en) | 2012-05-10 |
WO2011053745A1 (en) | 2011-05-05 |
CN102596864B (en) | 2015-11-25 |
EA201290280A1 (en) | 2012-12-28 |
EA022493B1 (en) | 2016-01-29 |
CN102596864A (en) | 2012-07-18 |
US20130131414A1 (en) | 2013-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2010313369B2 (en) | Process for the conversion of mixed lower alkanes to aromatic hydrocarbons | |
AU2010313367B2 (en) | Process for the conversion of propane and butane to aromatic hydrocarbons | |
AU2008335195B2 (en) | Process for the conversion of ethane or mixed lower alkanes to aromatic hydrocarbons | |
AU2009282954B2 (en) | Process for the conversion of lower alkanes to aromatic hydrocarbons and ethylene | |
US20130338415A1 (en) | Process for the conversion of mixed lower alkanes to aromatic hydrocarbons | |
US5138112A (en) | Process for converting a C2 -C6 aliphatic hydrocarbon to high octane transportable fuel | |
CN108137434B (en) | Conversion of non-aromatic hydrocarbons | |
WO2010104920A1 (en) | Process for the conversion of lower alkanes to aromatic hydrocarbons | |
AU2010313368B2 (en) | Process for the conversion of lower alkanes to aromatic hydrocarbons | |
EP3259335A1 (en) | Upgrading paraffins to distillates and lube basestocks | |
CN112739802B (en) | Selective hydrogenolysis in combination with cracking | |
US8766026B2 (en) | Process for the conversion of lower alkanes to aromatic hydrocarbons | |
AU2009283043B2 (en) | Process for the conversion of lower alkanes to ethylene and aromatic hydrocarbons | |
CA2819248A1 (en) | Process for the conversion of lower alkanes to aromatic hydrocarbons and ethylene | |
WO2012078509A2 (en) | Process for the conversion of mixed lower alkanes to armoatic hydrocarbons | |
EP3689843A1 (en) | A method for producing an aromatic hydrocarbon or a mixture of aromatic hydrocarbons from a low molecular hydrocarbon or a mixture of low molecular hydrocarbons | |
AU2020369060A1 (en) | A process for the conversion of light alkanes to aromatic compounds with improved selectivity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) | ||
MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |