reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
lim(n->Infinity, oo, u(2n+1)/u(2n)) = 1/2(2207+987*sqrt(5)),
lim(n->Infinity, oo, u(2n)/u(2n-1)) = 1/2(47+21*sqrt(5)). (End)
(End)
lim(n->Infinity, oo, u(2n+1)/u(2n)) = 1/2(L_16+F_16*sqrt(5)),
lim(n->Infinity, oo, u(2n)/u(2n-1)) = 1/2(L_8+F_8*sqrt(5)),
a(n) = L_1*a(n-1) + L_24*a(n-2) - L_24*a(n-3)- L_1*a(n-4) + L_1*a(n-5). (End)
(End)
G.f.: x(1+54*x+18034*x^2+54*x^3+x^4)/((1-x)(1-322*x+x^2)(1+322*x+x^2)). (End)
(End)
proposed
editing
editing
proposed
The two bisections satisfy the same recurrence relation: a(n+2)=103682*a(n+1)-a(n)+18144 or a(n+1)=51841*a(n)+9072+2898*(320*a(n)^2+112*a(n)+9)^0.5. The g.f. satisfies f(z)=(z+55*z^2+18088*z^3+18088*z^4+55*z^5+z^6)/((1-z^2)*(1-103682*z^2+z^4))=1*z+55*z^2+121771*z^3+... - Richard Choulet, Sep 20 2007
approved
editing
editing
approved
J. C. Su, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Su/su.html">On some properties of two simultaneous polygonal sequences</a>, JIS 10 (2007) 07.10.4, example 4.4
approved
editing
<a href="/index/Rec#order_05">Index to sequences with entries for linear recurrences with constant coefficients</a>, signature (1,103682,-103682,-1,1).
proposed
approved