Placental homogeneity: Characterizing transcriptional variation among equine chorioallantoic locations
Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Editora
ELSEVIER SCIENCE INC
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Métricas da Revista
Autores
VERSTRAETE, Margo H.
DINI, Pouya
ORELLANA, Daniela
URIBE-SALAZAR, Jose M.
CARNEIRO, Francieli
DAELS, Peter
FERNANDES, Claudia B.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
THERIOGENOLOGY, v.229, p.75-82, 2024
Resumo
The proper function of the placenta is essential for the health and growth of the fetus and the mother. The placenta relies on dynamic gene expression for its correct and timely development and function. Although numerous studies have identified genes vital for placental functions, equine placental molecular research has primarily focused on single placental locations, in sharp contrast with the broader approach in human studies. Here, we hypothesized that the molecular differences across different regions of the equine placenta are negligible because of its diffuse placental type with a macroscopic homogenous distribution of villi across the placental surface. We compared the transcriptome and stereological findings of the body, pregnant horn, and non-pregnant horn within the equine chorioallantois. Our transcriptomic analysis indicates that the variation between regions of the placenta within individuals is less than the variation observed between individuals. A low number of differentially expressed genes (DEGs) (n = 8) was identified when comparing pregnant and nonpregnant horns within the same placenta, suggesting a remarkable molecular uniformity. A higher number of DEGs was identified when comparing each horn to the body (193 DEGs comparing pregnant horn with body and 207 DEGs comparing non-pregnant horn with body). Genes with a higher expression in the body were associated with processes such as extracellular matrix synthesis and remodeling, which is relevant for placental maturation and placenta-endometrial separation at term and implies asynchrony of these processes across locations. The stereological analysis showed no differences in microcotyledonary density, and width between the locations. However, we observed a greater chorioallantoic thickness in the body and pregnant horn compared to the nonpregnant horn. Overall, our findings reveal a uniform transcriptomic profile across the placental horns, alongside a more distinct gene expression pattern between the uterine body and horns. These regional differences in gene expression suggest a different pace in the placental maturation and detachment among the placental locations.
Palavras-chave
Chorioallantois, Placental separation, Retained placenta, Transcriptomics, Stereology
Referências
- Ali HES, 2022, BIOL REPROD, V107, P1296, DOI 10.1093/biolre/ioac154
- Ali HES, 2021, BIOL REPROD, V104, P638, DOI 10.1093/biolre/ioaa209
- Allbrand M, 2019, J PERINAT MED, V47, P539, DOI 10.1515/jpm-2018-0290
- Allen WR, 2002, REPRODUCTION, V123, P445, DOI 10.1530/rep.0.1230445
- Attupuram NM, 2016, MOL REPROD DEV, V83, P287, DOI 10.1002/mrd.22635
- Avila L, 2010, PLACENTA, V31, P1070, DOI 10.1016/j.placenta.2010.09.011
- Bauer MK, 1998, MOL CELL ENDOCRINOL, V140, P115, DOI 10.1016/S0303-7207(98)00039-2
- Burton GJ, 2014, PLACENTA, V35, P9, DOI 10.1016/j.placenta.2013.11.005
- Burton GJ, 2015, PHILOS T R SOC B, V370, DOI 10.1098/rstb.2014.0066
- Canisso IF, 2013, J EQUINE VET SCI, V33, P570, DOI 10.1016/j.jevs.2012.08.006
- Chavatte-Palmer P, 2022, DOMEST ANIM ENDOCRIN, V79, DOI 10.1016/j.domaniend.2021.106692
- Chen DB, 2014, MICROCIRCULATION, V21, P15, DOI 10.1111/micc.12093
- Costa MA, 2016, REPROD BIOMED ONLINE, V32, P14, DOI 10.1016/j.rbmo.2015.10.005
- Cox B, 2015, AM J OBSTET GYNECOL, V213, pS138, DOI 10.1016/j.ajog.2015.07.046
- Dini P, 2021, BIOL REPROD, V104, P1386, DOI 10.1093/biolre/ioab039
- Dini P, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2006474118
- Dini P, 2018, BMC GENOMICS, V19, DOI 10.1186/s12864-018-5341-2
- Dobin Alexander, 2015, Curr Protoc Bioinformatics, V51, DOI 10.1002/0471250953.bi1114s51
- Ali HE, 2021, VET RES, V52, DOI 10.1186/s13567-021-00972-4
- Foote AK, 2012, EQUINE VET J, V44, P120, DOI 10.1111/j.2042-3306.2011.00507.x
- Ge Steven, 2018, Zenodo, DOI 10.5281/ZENODO.1451847
- Geng JN, 2016, MOL REPROD DEV, V83, P276, DOI 10.1002/mrd.22626
- Hughes DA, 2015, GENOME BIOL, V16, DOI 10.1186/s13059-015-0627-z
- Janecka JE, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-05290-6
- Janssen AB, 2015, PLACENTA, V36, P790, DOI 10.1016/j.placenta.2015.06.011
- Jaworska J, 2021, ANIMALS-BASEL, V11, DOI 10.3390/ani11030675
- John R, 2012, REPROD BIOMED ONLINE, V25, P5, DOI 10.1016/j.rbmo.2012.03.018
- Kalbfleisch TS, 2018, COMMUN BIOL, V1, DOI 10.1038/s42003-018-0199-z
- Kanehisa M, 2021, NUCLEIC ACIDS RES, V49, pD545, DOI 10.1093/nar/gkaa970
- Kipkeew F, 2016, CELL ADHES MIGR, V10, P163, DOI 10.1080/19336918.2016.1139265
- Konwar C, 2019, PLACENTA, V84, P57, DOI 10.1016/j.placenta.2019.01.006
- Loux SC, 2020, REPRODUCTION, V160, P65, DOI 10.1530/REP-20-0015
- Loux S, 2022, REPRODUCTION, V163, pR39, DOI 10.1530/REP-21-0115
- Loux SC, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0224497
- Love MI, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0550-8
- Luo WJ, 2013, BIOINFORMATICS, V29, P1830, DOI 10.1093/bioinformatics/btt285
- Martinez CA, 2022, BIOL REPROD, V106, P449, DOI 10.1093/biolre/ioab232
- MAYHEW TM, 1991, EXP PHYSIOL, V76, P639, DOI 10.1113/expphysiol.1991.sp003533
- McCue PM, 2021, Equine reproductive procedures, Vsecond, P361
- Meirelles MG, 2017, J EQUINE VET SCI, V56, P68, DOI 10.1016/j.jevs.2017.03.226
- Morresey P, 2004, P 50 ANN CONV AM ASS
- Murase H, 2023, EQUINE VET J, V55, P405, DOI 10.1111/evj.13602
- OIKAWA M, 1990, J COMP PATHOL, V103, P343, DOI 10.1016/S0021-9975(08)80055-2
- Pidoux G, 2004, PLACENTA, V25, P469, DOI 10.1016/j.placenta.2003.10.016
- Pozor M, 2016, EQUINE VET EDUC, V28, P396, DOI 10.1111/eve.12514
- Pozor M, 2016, EQUINE VET EDUC, V28, P327, DOI 10.1111/eve.12499
- PROVENCHER R, 1988, CAN VET J, V29, P903
- Rapacz A, 2012, J EQUINE VET SCI, V32, P38, DOI 10.1016/j.jevs.2011.06.015
- Redline RW, 2008, PLACENTA, V29, pS86, DOI 10.1016/j.placenta.2007.09.003
- Reynolds LP, 2001, BIOL REPROD, V64, P1033, DOI 10.1095/biolreprod64.4.1033
- Roberts RM, 2016, REPRODUCTION, V152, pR179, DOI 10.1530/REP-16-0325
- Robinson WP, 2021, TRENDS MOL MED, V27, P721, DOI 10.1016/j.molmed.2021.04.008
- Robles M, 2022, REPRODUCTION, V163, pR25, DOI 10.1530/REP-21-0116
- Rossdale P. D., 2002, Reproduction - foaling. Part 1: maternal aspects, P78
- Rossdale P D, 1993, Equine Vet J Suppl, P3
- Suryawanshi H, 2022, J REPROD IMMUNOL, V151, DOI 10.1016/j.jri.2022.103624
- Suvarna K. S., 2018, Bancroft's Theory and Practice of Histological Techniques
- Tinel JB, 2023, ANIM REPROD SCI, V250, DOI 10.1016/j.anireprosci.2023.107201
- Turco MY, 2019, DEVELOPMENT, V146, DOI 10.1242/dev.163428
- Tzschoppe AA, 2010, PLACENTA, V31, P178, DOI 10.1016/j.placenta.2009.12.002
- Vandeplassche M, 1971, Equine Vet J, V3, P144, DOI 10.1111/j.2042-3306.1971.tb04459.x
- WHITWELL KE, 1975, RES VET SCI, V19, P44
- Wilsher S., 2011, Equine reproduction, Volume 2, P2234
- Wyatt SM, 2005, PLACENTA, V26, P372, DOI 10.1016/j.placenta.2004.07.003
- Zhang CZ, 2023, TROP ANIM HEALTH PRO, V55, DOI 10.1007/s11250-023-03733-x