Placental homogeneity: Characterizing transcriptional variation among equine chorioallantoic locations

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Editora
ELSEVIER SCIENCE INC
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Métricas da Revista
Autores
VERSTRAETE, Margo H.
DINI, Pouya
ORELLANA, Daniela
URIBE-SALAZAR, Jose M.
CARNEIRO, Francieli
DAELS, Peter
FERNANDES, Claudia B.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
THERIOGENOLOGY, v.229, p.75-82, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The proper function of the placenta is essential for the health and growth of the fetus and the mother. The placenta relies on dynamic gene expression for its correct and timely development and function. Although numerous studies have identified genes vital for placental functions, equine placental molecular research has primarily focused on single placental locations, in sharp contrast with the broader approach in human studies. Here, we hypothesized that the molecular differences across different regions of the equine placenta are negligible because of its diffuse placental type with a macroscopic homogenous distribution of villi across the placental surface. We compared the transcriptome and stereological findings of the body, pregnant horn, and non-pregnant horn within the equine chorioallantois. Our transcriptomic analysis indicates that the variation between regions of the placenta within individuals is less than the variation observed between individuals. A low number of differentially expressed genes (DEGs) (n = 8) was identified when comparing pregnant and nonpregnant horns within the same placenta, suggesting a remarkable molecular uniformity. A higher number of DEGs was identified when comparing each horn to the body (193 DEGs comparing pregnant horn with body and 207 DEGs comparing non-pregnant horn with body). Genes with a higher expression in the body were associated with processes such as extracellular matrix synthesis and remodeling, which is relevant for placental maturation and placenta-endometrial separation at term and implies asynchrony of these processes across locations. The stereological analysis showed no differences in microcotyledonary density, and width between the locations. However, we observed a greater chorioallantoic thickness in the body and pregnant horn compared to the nonpregnant horn. Overall, our findings reveal a uniform transcriptomic profile across the placental horns, alongside a more distinct gene expression pattern between the uterine body and horns. These regional differences in gene expression suggest a different pace in the placental maturation and detachment among the placental locations.
Palavras-chave
Chorioallantois, Placental separation, Retained placenta, Transcriptomics, Stereology
Referências
  1. Ali HES, 2022, BIOL REPROD, V107, P1296, DOI 10.1093/biolre/ioac154
  2. Ali HES, 2021, BIOL REPROD, V104, P638, DOI 10.1093/biolre/ioaa209
  3. Allbrand M, 2019, J PERINAT MED, V47, P539, DOI 10.1515/jpm-2018-0290
  4. Allen WR, 2002, REPRODUCTION, V123, P445, DOI 10.1530/rep.0.1230445
  5. Attupuram NM, 2016, MOL REPROD DEV, V83, P287, DOI 10.1002/mrd.22635
  6. Avila L, 2010, PLACENTA, V31, P1070, DOI 10.1016/j.placenta.2010.09.011
  7. Bauer MK, 1998, MOL CELL ENDOCRINOL, V140, P115, DOI 10.1016/S0303-7207(98)00039-2
  8. Burton GJ, 2014, PLACENTA, V35, P9, DOI 10.1016/j.placenta.2013.11.005
  9. Burton GJ, 2015, PHILOS T R SOC B, V370, DOI 10.1098/rstb.2014.0066
  10. Canisso IF, 2013, J EQUINE VET SCI, V33, P570, DOI 10.1016/j.jevs.2012.08.006
  11. Chavatte-Palmer P, 2022, DOMEST ANIM ENDOCRIN, V79, DOI 10.1016/j.domaniend.2021.106692
  12. Chen DB, 2014, MICROCIRCULATION, V21, P15, DOI 10.1111/micc.12093
  13. Costa MA, 2016, REPROD BIOMED ONLINE, V32, P14, DOI 10.1016/j.rbmo.2015.10.005
  14. Cox B, 2015, AM J OBSTET GYNECOL, V213, pS138, DOI 10.1016/j.ajog.2015.07.046
  15. Dini P, 2021, BIOL REPROD, V104, P1386, DOI 10.1093/biolre/ioab039
  16. Dini P, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2006474118
  17. Dini P, 2018, BMC GENOMICS, V19, DOI 10.1186/s12864-018-5341-2
  18. Dobin Alexander, 2015, Curr Protoc Bioinformatics, V51, DOI 10.1002/0471250953.bi1114s51
  19. Ali HE, 2021, VET RES, V52, DOI 10.1186/s13567-021-00972-4
  20. Foote AK, 2012, EQUINE VET J, V44, P120, DOI 10.1111/j.2042-3306.2011.00507.x
  21. Ge Steven, 2018, Zenodo, DOI 10.5281/ZENODO.1451847
  22. Geng JN, 2016, MOL REPROD DEV, V83, P276, DOI 10.1002/mrd.22626
  23. Hughes DA, 2015, GENOME BIOL, V16, DOI 10.1186/s13059-015-0627-z
  24. Janecka JE, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-05290-6
  25. Janssen AB, 2015, PLACENTA, V36, P790, DOI 10.1016/j.placenta.2015.06.011
  26. Jaworska J, 2021, ANIMALS-BASEL, V11, DOI 10.3390/ani11030675
  27. John R, 2012, REPROD BIOMED ONLINE, V25, P5, DOI 10.1016/j.rbmo.2012.03.018
  28. Kalbfleisch TS, 2018, COMMUN BIOL, V1, DOI 10.1038/s42003-018-0199-z
  29. Kanehisa M, 2021, NUCLEIC ACIDS RES, V49, pD545, DOI 10.1093/nar/gkaa970
  30. Kipkeew F, 2016, CELL ADHES MIGR, V10, P163, DOI 10.1080/19336918.2016.1139265
  31. Konwar C, 2019, PLACENTA, V84, P57, DOI 10.1016/j.placenta.2019.01.006
  32. Loux SC, 2020, REPRODUCTION, V160, P65, DOI 10.1530/REP-20-0015
  33. Loux S, 2022, REPRODUCTION, V163, pR39, DOI 10.1530/REP-21-0115
  34. Loux SC, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0224497
  35. Love MI, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0550-8
  36. Luo WJ, 2013, BIOINFORMATICS, V29, P1830, DOI 10.1093/bioinformatics/btt285
  37. Martinez CA, 2022, BIOL REPROD, V106, P449, DOI 10.1093/biolre/ioab232
  38. MAYHEW TM, 1991, EXP PHYSIOL, V76, P639, DOI 10.1113/expphysiol.1991.sp003533
  39. McCue PM, 2021, Equine reproductive procedures, Vsecond, P361
  40. Meirelles MG, 2017, J EQUINE VET SCI, V56, P68, DOI 10.1016/j.jevs.2017.03.226
  41. Morresey P, 2004, P 50 ANN CONV AM ASS
  42. Murase H, 2023, EQUINE VET J, V55, P405, DOI 10.1111/evj.13602
  43. OIKAWA M, 1990, J COMP PATHOL, V103, P343, DOI 10.1016/S0021-9975(08)80055-2
  44. Pidoux G, 2004, PLACENTA, V25, P469, DOI 10.1016/j.placenta.2003.10.016
  45. Pozor M, 2016, EQUINE VET EDUC, V28, P396, DOI 10.1111/eve.12514
  46. Pozor M, 2016, EQUINE VET EDUC, V28, P327, DOI 10.1111/eve.12499
  47. PROVENCHER R, 1988, CAN VET J, V29, P903
  48. Rapacz A, 2012, J EQUINE VET SCI, V32, P38, DOI 10.1016/j.jevs.2011.06.015
  49. Redline RW, 2008, PLACENTA, V29, pS86, DOI 10.1016/j.placenta.2007.09.003
  50. Reynolds LP, 2001, BIOL REPROD, V64, P1033, DOI 10.1095/biolreprod64.4.1033
  51. Roberts RM, 2016, REPRODUCTION, V152, pR179, DOI 10.1530/REP-16-0325
  52. Robinson WP, 2021, TRENDS MOL MED, V27, P721, DOI 10.1016/j.molmed.2021.04.008
  53. Robles M, 2022, REPRODUCTION, V163, pR25, DOI 10.1530/REP-21-0116
  54. Rossdale P. D., 2002, Reproduction - foaling. Part 1: maternal aspects, P78
  55. Rossdale P D, 1993, Equine Vet J Suppl, P3
  56. Suryawanshi H, 2022, J REPROD IMMUNOL, V151, DOI 10.1016/j.jri.2022.103624
  57. Suvarna K. S., 2018, Bancroft's Theory and Practice of Histological Techniques
  58. Tinel JB, 2023, ANIM REPROD SCI, V250, DOI 10.1016/j.anireprosci.2023.107201
  59. Turco MY, 2019, DEVELOPMENT, V146, DOI 10.1242/dev.163428
  60. Tzschoppe AA, 2010, PLACENTA, V31, P178, DOI 10.1016/j.placenta.2009.12.002
  61. Vandeplassche M, 1971, Equine Vet J, V3, P144, DOI 10.1111/j.2042-3306.1971.tb04459.x
  62. WHITWELL KE, 1975, RES VET SCI, V19, P44
  63. Wilsher S., 2011, Equine reproduction, Volume 2, P2234
  64. Wyatt SM, 2005, PLACENTA, V26, P372, DOI 10.1016/j.placenta.2004.07.003
  65. Zhang CZ, 2023, TROP ANIM HEALTH PRO, V55, DOI 10.1007/s11250-023-03733-x